Elsevier Science Home
Computer Physics Communications Program Library
Full text online from Science Direct
Programs in Physics & Physical Chemistry
CPC Home

PROGRAM SUMMARY
Manuscript Title: DPEMC: A Monte-Carlo for Double Diffraction
Authors: M. Boonekamp, T. Kúcs
Program title: DPEMC version 2.4
Catalogue identifier: ADVF
Journal reference: Comput. Phys. Commun. 167(2005)217
Programming language: FORTRAN 77.
Computer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systems.
Operating system: UNIX; Linux.
RAM: 25 MB
Keywords: Proton-(anti)proton collisions, diffraction, double pomeron exchange, double photon exchange.
PACS: 12.40.Nn, 13.85.-t.
Classification: 11.2, 11.6.

Nature of problem:
Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [1, 2, 3, 4, 5]. This program implements some of the more significant ones, enabling the simulation of central particle production through color singlet exchange between interacting protons or antiprotons.

Solution method:
The Monte-Carlo method is used to simulate all elementary 2 → 2 and 2 → 1 processes available in HERWIG. The color singlet exchanges implemented in DPEMC are implemented as functions reweighting the photon flux already present in HERWIG.

Restrictions:
The program relying extensively on HERWIG, the limitations are the same as in [6].

Running time:
Approximate times on a 800 MHz Pentium III : 5-20 minutes per 10000 unweighted events, depending on the process under consideration.

References:
[1] A. Bialas, P.V. Landshoff, Phys.Lett.B256:540,1991; A. Bialas, W. Szeremeta, Phys.Lett.B296:191,1992;
A. Bialas, R. A. Janik, Z.Phys.C62:487,1994.
[2] M. Boonekamp, R. Peschanski, C. Royon, Phys.Rev.Lett.87:251806,2001;
M. Boonekamp, R. Peschanski, C. Royon, Nucl.Phys.B669:277,2003.
[3] R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys.Rev.Lett.89:081801,2002;
R. Enberg, G. Ingelman, L. Motyka, Phys.Lett.B524:273,2002;
R. Enberg, G. Ingelman, N. Timneanu, Phys.Rev.D67:011301,2003.
[4] B. Cox, J. Forshaw, Comput.Phys.Commun.144:104,2002;
B. Cox, J. Forshaw, B. Heinemann, Phys.Lett.B540:26,2002.
[5] V. Khoze, A. Martin, M. Ryskin, Phys.Lett.B401:330,1997;
V. Khoze, A. Martin, M. Ryskin, Eur.Phys.J.C14:525,2000;
V. Khoze, A. Martin, M. Ryskin, Eur.Phys.J.C19:477,2001, Erratum-ibid.C20:599,2001;
V. Khoze, A. Martin, M. Ryskin, Eur.Phys.J.C23:311,2002.
[6] G. Marchesini, B. R. Webber, G. Abbiendi, I. G. Knowles, M. H. Seymour and L. Stanco, Comput.Phys.Commun.67:465,1992;
G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. Seymour, B. Webber, JHEP 0101:010,2001.