
An Upgraded Version of the Generator BCVEGPY2.0 for

Hadronic Production of Bc Meson and Its Excited States

Chao-Hsi Chang1,2, Jian-Xiong Wang3 and Xing-Gang Wu2

1CCAST (World Laboratory), P.O.Box 8730, Beijing 100080, P.R. China.

2Institute of Theoretical Physics, Chinese Academy of Sciences,

P.O.Box 2735, Beijing 100080, P.R. China.

3Institute of High Energy Physics, P.O.Box 918(4), Beijing 100049, P.R. China

1

Summary of the changes (improvements) :

(1) The structure and organization of the program have been changed a lot. The new version

package BCVEGPY2.1 has been divided into several modules with less cross communication

among the modules (some old version source files are divided into several parts for the

purpose). The main program is slimmed down and all the further actions are decoupled

from the main program so that they can be easily called for various applications. All of

the Fortran codes are organized in the main code directory named as bcvegpy2.1, which

contains the main program, all of its prerequisite files and subsidiary ‘folders’ (subdirectory

to the main code directory). The method for setting the parameter is the same as that of

the previous versions [1,2], i.e. the parameters are set in a file named parameter.F. Each

subsidiary ‘folders’ contains the necessary files to complete specific tasks accordingly. And

there are totally seven modules/‘folders’ in the program:

• The module generate: it is the key module, which contains the files for generating

the Bc events. There are seven source files in this ‘folder’: evntinit.F, colorflow.F,

genevnt.F, py6208.F (a nickname of PYTHIA6.208 [3]), totfun.F, outerpdf.F and init-

mixgrade.F. The function of the module generate is to set the initialize conditions for

event simulation; to establish a connection with PYTHIA [3]; to establish a connection

to the parton distribution functions (PDFs) that are not included in PYTHIA accord-

ing to specific need; to record the color flow information of the generated Bc events

and may provide it according to one’s need; to calculate the kernel for phase space

integration with the help of swave module and pwave module; to do the phase space

integration with the help of phase module. A useful trick for generating the mixed

type of Bc events is suggested (three types of mixed events are provided in the gen-

erator [2], e.g. by setting the parameter IMIXTYPE=2, one can generate the mixed

events for the two color-singlet (cb̄)-quarkonium states (cb̄)1(
1S0) and (cb̄)1(

3S1)). The

file initmixgrade.F is used to initialize the importance sampling function for Monte

Carlo simulation, i.e., either by using the importance sampling function given by the

current VEGAS running [4] or by using the existed importance sampling function

recorded in an existed grade file in data subdirectory that has already been generated

by earlier VEGAS running. Once the importance sampling function has been obtained

2

by VEGAS, it is recorded in a grade file (with suffix .grid) automatically, and can be

conveniently used (by initmixgrade.F) for later usage without running VEGAS again.

Some more detail on this point will be shown in the following item (2).

• The module phase: it contains the files for generating the allowed phase-space point

and for generating an importance sampling function with VEGAS program [4]. It

contains three source files: phase gen.F, phase point.F and vegas.F.

• The module swave: it contains the files for calculating the square of the amplitudes for

producing the four color-singlet and color-octet (cb̄)-quarkonium in S-wave: (cb̄)1(
1S0),

(cb̄)1(
3S1), (cb̄)8(

1S0) and (cb̄)8(
3S1), where the subscripts 1 and 8 stand for color-

singlet and color-octet accordingly. Note that in fact the configurations (cb̄)8(
1S0)

and (cb̄)8(
3S1) play comparatively important role only for the production of the P -

wave excited Bc states as shown in Ref [5]. It contains five source files: s bound.F,

s common.F, s foursets.F, s free.F and s samp.F.

• The module pwave: it contains the files for calculating the square of the ampli-

tudes for producing the four color-singlet (cb̄)-quarkonium in P -wave: (cb̄)1(
1P1) and

(cb̄)1(
3PJ) (J = 1, 2, 3). It contains six source files: p lorentz.F, p1p1amp.F, pj0amp.F,

pj1amp.F, pj2amp.F and p samp.F.

• The module pybook: it contains the files for initializing the subroutine PYBOOK of

PYTHIA to record the events. The user may conveniently switch off this module in

the main program to use his/her own way to record the data. It contains five source

files: pybookinit.F, uphistrange.F, uppydump.F, uppyfact.F and uppyfill.F.

• The module setparameter: it contains the files for inner use of the parameters

(mainly generates some short notations for the parameters) that have been set in

parameter.F. It has only two source files: simparameter.F and uperror.F, where up-

error.F lists some typical error messages for the cases when the input parameters are

out of allowed (reasonable) range.

• The module system: it contains files to open or close the record files and to print out

certain running messages at the intermediate steps according to need, which may tell

3

Main code directory

pybook/
system/

phase/
generate/

data/

pwave/
setparameter/

swave/

................. generating allowed phase space
............. generating events

................ recording running information

................ using PYBOOK to record data
................. calculating S−wave square of amplitude
................. calculating P−wave square of amplitude

.................... all the obtained data files are put here
...... generating short notation for parameters

FIG. 1: The schematic structure for the new version of BCVEGPY.

the users at what step the program is running. It contains six source files: upopenfile.F,

uplogo.F, vegaslogo.F, updatafile.F, upclosegradefile.F and upclosepyfile.F.

Each module is equipped with its own makefile that will be used to make a library

of the same name, e.g. the makefile in the ‘folder’ swave/ will be used by the GNU

command make to generate a library swave.a. These sub-makefiles are orchestrated by a

master makefile in the main code directory. Libraries required for the main program are

listed in the LIBS variable of the master makefile and built automatically by invoking the

sub-makefiles:

LIBS = generate.a swave.a pwave.a phase.a setparameter.a system.a pybook.a

In the way that based on makefile then the make command builds an executable file

whose default name is run, the program acquires good modularity and code reusability, and

the user can easily make the BCVEGPY generator to suit his/her experimental simulation

environment as wish. Namely, to connect this generator with his/her own generator package

such as ANTENNA (used by ATLAS group), LHCb (used by LHCB group) and SIMUB

(used by CMS group)1 only a few pieces of the program need to be changed. By doing

this way, the time for compiling the Fortran source files can be saved, because once the

source file has been compiled, it does not need to be recompiled again unless some changes

have been made. The schematic structure of the program is shown in FIG. 1. Note that in

order to let the make command work smoothly, especially, to deal with some preprocessor

parameters in the source files, all the suffixes of the source files (with suffix .for) in the

1 The first version BCVEGPY1.0 has already been introduced into ANTENNA [1,8] and SIMUB [9], and
the import of BCVEGPY2.1 into LHCb package GAUSS is in progress [10].

4

original version of BCVEGPY2.0 [2] are renamed as .F and the suffixes of the original

header files (with suffix .f) are renamed as .h.

(2) To simulate the events in mixture of the Bc and its excited states properly and in order

to save CPU time, we offer an additional option in the package BCVEGPY2.1: by setting

IVEGASOPEN=0 and IGRADE=1, one may generate the mixed Bc events just by reading

the existent importance sampling function and total cross-section from ‘previous’ VEGAS

runs for the production, when they have been saved in date files with initmixgrade.F

accordingly. Thus, it means that when using the package under the option, one runs

VEGAS once enough. Whereas, in BCVEGPY2.0 [2], there is only one option by setting

IVEGASOPEN=1: it is to run VEGAS every time, although the importance sampling

function obtained by each run is recorded in an existed grade file in the data subdirectory.

For the new option offered here, the trick to save CPU time is not to run VEGAS, once the

importance sampling function has been recorded in the .grid file already.

(3) In the package BCVEGPY2.1, for testing the importance sampling function obtained

by VEGAS and simulating the true situation as well as possible, we have further offered

another option: with setting IVEGASOPEN=0 and IGRADE=0, VEGAS or the impor-

tance sampling function (grade function) generated in previous runs will not be used at

all. In this case, being different from the other options, all of the files with suffix .grid

must be generated and saved via previous run(s) for the states which one would like

to mix according to their weights. Namely one should have them in advance, because

the program needs to read the total cross-sections of these states from the .grid files ac-

cordingly, so as to determine the relative weight of each state in making the mixing correctly.

(4) As stated in Ref. [2], the precision of the generated importance sampling function by

running VEGAS can be improved by properly adjusting the maximum iteration number,

the number of calls to the integrand in each time of the iteration, and the number of bins

(the [0, 1] region is divided into how many sub-regions) as well. In the present version,

we define three overall parameters: NVEGITMX, NVEGCALL and NVEGBIN in the

head file invegas.h, with these three parameters one can easily adjust them. Similarly, for

convenience, the parameters which are not changed frequently are also defined in the source

5

file run.F, e.g. NUMOFEVENTS (number of events to be generated), ENERGYOFTEVA

(TEVATRON energy) and ENERGYOFLHC (LHC energy).

(5) All the files for obtained data are put in the subdirectory data. For clarity, in recording

the obtained data, all of the grade files are ended with the suffix .grid, all the intermediate

files, that record the used parameter values and the VEGAS running information, are ended

with suffix .cs and all the files that record the differential distributions, e.g. the transverse

momentum and rapidity distributions of the (cb̄)-quarkonium, are ended with suffix .dat.

In a specific grade file, not only the information for the sampling importance function is

recorded, but also the total cross-section and the maximum differential cross-section are

recorded.

(6) A simple script, named as do which does all the necessary jobs for generating the

events, is put in the main code directory. For convenience, a script, named as pnuglot that

may produce a high-quality plot in Encapsulatetd PostScript (EPS) format from a data

file, is supplied here (taken from the FormCalc package [7].

(7) We have found several typos in BCVEGPY2.0 [2], so we list all of them and their

corrections here:

• In the subprogram bcvegpy.for: in line 493-507, the values for MSTU(112)

and PARU(112) should be exchanged; in line 212, IMIXTYPE=1 should be re-

placed by IMIXTYPE=3; in line 956, PETA=PYP(I,19) should be replaced with

PSETA=PYP(I,19).

• In the subprogram genevnt.for: in line 505, ICOLUP(1,3)=503 should be replaced by

ICOLUP(1,4)=503.

• In the subprogram parameter.for: we should add the statement ‘double complex col-

mat, bundamp’ for assigning the nature of the variables in all of the three subroutines

there; in the subroutine setparameter when calling the subroutine setctq6, to match

to the default setting of the parameters, the original setctq6(3) should be replaced by

setctq6(4), which corresponds to the default setting of PDF as CTEQ6L1 [6].

6

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Y.N. Gao, Dr. Z.W. Yang and Dr. J.B. He for

helpful suggestions on improving the program. This work was supported by the Natural

Science Foundation of China. The author (X.G. Wu) would like to thank the support from

the China Postdoctoral Science Foundation.

[1] Chao-Hsi Chang, Chafik Driouich, Paula Eerola and Xing-Gang Wu, Comput. Phys. Commun.

159, 192 (2004); hep-ph/0309120.

[2] Chao-Hsi Chang, Jian-Xiong Wang and Xing-Gang Wu, Comput. Phys. Commun. 174, 241

(2006); hep-ph/0504017.

[3] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).

[4] G.P. Lepage, J. Comp. Phys 27, 192 (1978).

[5] Chao-Hsi Chang, Cong-Feng Qiao, Jian-Xiong Wang and Xing-Gang Wu, Phys. Rev. D71,

074012(2005).

[6] H.L. Lai, et al., hep-ph/0201195; JHEP 0207, 012 (2002).

[7] T. Hahn and M. Rauch, hep-ph/0601248(2006).

[8] private communication with Paula Eerola and Chafik Driouichi.

[9] private communication with A.A. Belkov, G.M. Chen, S. Shulga and S.H. Zhang; S.H. Zhang,

A.A. Belkov, S. Shulga and Guo-Ming Chen, Chin. Phys. Lett. 21, 2380(2004).

[10] private communication with Y.N. Gao, J.B. He, P. Robbe and Z.W. Yang.

7

