PROGRAM SUMMARY
Title of program:
fhi98PP
Catalogue identifier:
ADKA
Ref. in CPC:
119(1999)67
Distribution format: uuencoded compressed tar file
Operating system: UNIX
High speed store required:
1MK words
Number of bits in a word:
32
Number of lines in distributed program, including test data, etc:
145847
Programming language used: Fortran
Computer: IBM/RS 6000
Nature of physical problem:
The norm-conserving pseudopotential concept allows for efficient and
accurate ab initio electronic structure calculations of poly-atomic
systems. The key features of this approach are: (i) Only the valence
states need to be calculated. The core states are considered as
chemically inert, and removed within the frozen-core approximation.
This exploits that many chemical and physical processes are governed by
the valence states but only indirectly involve the core states. (ii)
The valence electrons move in a pseudopotential which is much smoother
than the true potential inside the small core regions around the nuclei,
while reproducing it outside. This pseudopotential acts on smooth
pseudo wavefunctions that are equivalent to the true valence
wavefunctions, but avoid the radial nodes that keep the true valence and
core orbitals orthogonal. This enables the use of computationally
expedient basis sets like plane waves, and facilitates the numerical
solution of the Schrodinger and Poisson equations in complicated
systems. (iii) The norm-conservation constraint ensures that outside
the core the pseudo wavefunctions behave like their all-electron
counterparts over a wide range of different chemical situations. Along
with a proper design, this makes the pseudopotential approach a
dependable approximation in describing chemical bonds.
Derived and applied within density-functional theory [1-3],
norm-conserving pseudopotentials [4-6] enable total-energy calculations
of complex poly-atomic systems [7-9] for a multitude of elements
throughout the periodic table. Questions addressed with
pseudopotentials provided by this code, or its earlier version, range
from phase transitions [10,11], defects in semiconductors [12-14], the
structure of the diffusion on surfaces of semiconductors [15-17], simple
metals [18], and transitions metals [19-21], up to surface reactions
[22,23], including molecules [24,25] of first-row species.
This package is a tool to generate and validate norm-conserving
pseudopotentials, usable either in semilocal or in fully separable form,
and including relativistic effects. Exchange and correlation is treated
in the local-density approximation based on Ceperley and Alder's data
[26] as parametrized, e.g., by Perdew and Wang [27], or in the
generalized gradient approximation, as proposed by Perdew, Burke, and
Ernzerhof (PBE) [28], Perdew and Wang (PW91) [29], Becke and Perdew (BP)
[30,31], and by Lee, Yang, and Parr (BLYP) [32].
Method of solution
The first part of the program (psgen) generates pseudopotentials of the
Hamann [33] or the Troullier-Martins type [34], based on a
scalar-relativistic all-electron calculation of the free atom. A
partial core density can be included to allow for nonlinear
core-valence exchange-correlation [35] where needed, e.g., for
spin-density functional calculations, alkali metal compounds, and the
cations of II-VI compounds like ZnSe. The second part (pswatch) serves
to assess the transferability of the pseudopotentials, examining
scattering properties, excitation energies, and chemical hardness
properties of the free pseudo atom. Transcribing the pseudopotentials
into the fully separable form of Kleinman and Bylander [36], we verify
the absence of unphysical states by inspection of the bound state
spectrum and by the analysis of Gonze et al [37]. The convergence of
the pseudo wavefunctions in momentum space is monitored in order to
estimate a suitable basis set cutoff in plane wave calculations.
Restrictions on the complexity of the problem
(i) Only some of the GGA's currently in use are implemented, others may
be readily added however. (ii) The present pseudopotentials yield the
correct relativistic valence levels where spin-orbit splittings are
averaged over, as it is intended for most applications.
Typical running time
The time for the test run took about 1 min.
Unusual features of the program
The output is tailored to the graphics software XMGR or XVGR (both are
public domain packages) [38].
References
[1] P. Hohenberg, W. Kohn, Phys. Rev. 136, B 864 (1964). [2] R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer Verlag, Berlin, 1990). [3] W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100, 12974 (1996). [4] W.C. Topp, J.J. Hopfield, Phys. Rev. B 7, 1295 (1973) [5] D.R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979). [6] G.B. Bachelet, D.R. Hamann, M. Schluter, Phys. Rev. B 26, 4199 (1982). [7] W.E. Pickett, Comput. Phys. Rep. 9, 115 (1989). [8] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). [9] M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler, Comput. Phys. Commun. 107, 187 (1997). [10] N. Moll, M. Bockstedte, M. Fuchs, E. Pehlke, M. Scheffler, Phys. Rev. B 52, 2550 (1995). [11] U. Engberg, Phys. Rev. B 55, 2824 (1997). [12] M. Bockstedte, M. Scheffler, Z. Phys. Chem. 200, 195 (1997). [13] G. Schwarz, A. Kley, J. Neugebauer, M. Scheffler, Phys. Rev. B 58, 1392 (1998). [14] C. Stampfl, Ch.G. Van de Walle, Phys. Rev. B 57, R15052 (1998). [15] N. Moll, A. Kley, E. Pehlke, M. Scheffler, Phys. Rev. B 54, 8844 (1996). [16] A. Kley, P. Ruggerone, M. Scheffler, Phys. Rev. Lett. 79, 5270 (1997). [17] L. Lottermoser, E. Landemark, D.M. Smilgies, M. Nielsen, R. Feidenhansl, G. Falkenberg, R.L. Johnson, M. Gierer, A.P. Seitsonen, H. Kleine, H. Bludau, H. Over, S.K. Kim, F. Jona, Phys. Rev. Lett. 80 3980 (1998). [18] R. Stumpf, Phys. Rev. Lett. 78, 4454 (1997).[19] B.D. Yu, M. Scheffler, Phys. Rev. Lett. 77, 1095 (1996). [20] C. Ratsch, A.P. Seitsonen, M. Scheffler, Phys. Rev. B 55, 6750 (1997). [21] G. Boisvert, L.J. Lewis, M. Scheffler, Phys. Rev. B 57, 1881 (1998); G. Boisvert, L.J. Lewis, Phys. Rev. B 56, 7643 (1997). [22] E. Pehlke, M. Scheffler, Phys. Rev. Lett. 74, 952 (1995). [23] A. Gross, M. Bockstedte, M. Scheffler, Phys. Rev. Lett. 79, 701 (1997). [24] S. Schwegmann, A.P. Seitsonen, H. Dietrich, H. Bludau, H. Over, K. Jacobi, G. Ertl, Chem. Phys. Lett. 264, 680 (1996). [25] C. Stampfl, M. Scheffler, Phys. Rev. Lett. 78, 1500 (1997); C. Stampfl, S. Schwegmann, H. Over, M. Scheffler, G. Ertl, Phys. Rev. Lett. 77, 3371 (1996). [26] D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980). [27] J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992). [28] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). [29] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996); J.P. Perdew, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992). [30] A.D. Becke, Phys. Rev. A 38, 3098 (1988). [31] J.P. Perdew, Phys. Rev. B 33, 8822 (1986); Phys. Rev. B 34, 7406 (1986). [32] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988). [33] D.R. Hamann, Phys. Rev. B 40, 2980 (1989). [34] N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991). [35] S.G. Louie, S. Froyen, M.L. Cohen, Phys. Rev. B 26, 1738 (1982). [36] L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982). [37] X. Gonze, R. Stumpf, M. Scheffler, Phys. Rev. B 44, 8503 (1991). [38] P.J. Turner, ACE/gr User's Manual in Software Documentation Series, SDS3, 91-3 (Oregon Graduate Institute of Science and Technology, Beaverton, 1992); see also the WWW URL http://plasma-gate.weizmann.ac.il/Xmgr.