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The review is presented of papers devoted to the construction of effective meson Lagrangians on
the basis of studying QCD at low energies. Two different approaches to the solution of this problem
are given as an example. In the first case, meson fields are introduced as a chiral phase of quark
fields and external sources directly in the QCD Lagrangian. In other papers, mesons are treated as
composite quark-antiquark objects. More attention is paid to the Nambu — Jona-Lasinio model,
from the second group of models, and to its various physical applications. The main advantage of
the last model is its mechanism of spontaneous breaking of chiral symmetry.

Jaercs 0630p paboT, noCBsEHHbIX NOCTPOeHUIO 3D EK THBHBIX ME3OHHbIX IATPAHXHUAHOB HA
ocHoe uayueHus KX1 B o6nacti Huakux snepruit. IIpusoasaTca NPUMEPLI JBYX PA3JIMUHbIX MOA-
XOfI0B K PEINEHMIO 3TOi npofnemsi. B nepsoM ciiyuae Me3OHHbIE 110/ BBOJATCA B KAUECTBE
KMPaJbHOM (ha3bl KBAPKOBBIX MOJIEif M BHELIHMX MCTOUYHMKOB HEMOCPEACTBEHHO B JIarpaHKHaHe
KXJI. B gpyrux paforax Me30HB! PACCMaTPMBAIOTCA KAK COCTaBHBIE KBAPK-aHTUKBAPKOBBIE
ofwextor. Hanbonsinee suumanume yaenero mogesin Hamfy — Uowa-JlaznHno, OTHOCSIHIEHCS KO
BTOPOJ rpynIe MOAeJei, 1 ee pasMuHbIM (PU3HHECKUM NPUIOKEHUAM. OCHOBHOE NPEUMYILIECT-
BO TIOC/IEAHEN MOZIEM CBI3aHO C 3aJI0JKEHHBIM B €€ OCHOBY MEXAaHU3MOM CMTOHTAHHOTO HAPYIIEHHUS
KHUPAJIbHOM CUMMETPHUH.

1. INTRODUCTION

Quantum chromodynamics is well known to be a successful theory in the
description of high-energy interactions of hadrons. On the other hand, the
low-energy physics of hadrons is also well described by effective chiral
Lagrangians developed much earlier than QCD [1—3]. As at low energies the
direct use of QCD is difficult owing to a large value of the coupling constant,
attempts have repeatedly been undertaken to obtain such effective chiral
Lagrangians immediately from QCD rather than from group-theoretical con-
siderations, and to consider them as a low-energy representation of QCD. In
recent years, a lot of papers has been devoted to that problem. Here we
present a brief review of some of the most characteristic investigations.

All these attempts can be divided into two groups. In the first of them, the
authors introduce pseudoscalar meson fields, considering them to be external
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fields, as a chiral phase of quark fields directly into the QCD Lagrangian
[4—7]. In the second group, a consistent bosonization of QCD is carried out,
with all types of mesons treated as quark-antiquark bound states [§—13]. We
consider here the most typical examples of these approaches.

The main attention in this work is paid to the Nambu — Jona-Lasinio
model (NJL model). This model belongs to the second group. The NJL model
at quark level was first studied in 1976 in {14 1. In the last decade interest in
this model was continuously increasing [15—19 ] thus expanding the range of
its application in recent years [20—32 ]. More thorough studies were made of
chiral anomalies and Skyrme-like terms with fourth-order derivatives as well
as of intrinsic properties of the model connected with nondiagonal transitions
of mesons [16,18,21,22 ], mixing of flavours [13,20—23 ], dependence of the
model parameters on temperature and density [24—26 ], gluon condensates
[26,27], phase transitions [28], relations to QCD [9,11,13,29] and the
description of diquarks [30—31 ], baryons and light nuclei [11,29,32]. This
list, being far from complete, shows a sufficiently wide spectrum of possible
applications on the NJL model. Here we describe the connection of the NJL
model with QCD, the main points of this model and its some applications to
the meson physics. ‘

The paper is organized as follows. In section 2 we describe models of the
first type [4—7]. We shall show how the effective chiral Lagrangian can be
obtained from QCD in the limit of large N .and low energies. The next section

is devoted to the problem of scalar particles and conformal anomaly. In sec-
tion 4 we show how the NJL model is connected with QCD, and in sections
5—7 we describe the main points of the NJL model. Finally, in section 8 we
present different applications of the NJL model to the low-energy meson
physics.

2. DERIVATION OF EFFECTIVE CHIRAL LAGRANGIAN
FROM QCD IN THE LIMIT
OF LARGE N, AND LOW ENERGIES

In 1985—1986 two papers appeared [4,12 | devoted to similar problems of
derivation of an effective meson chiral Lagrangian from QCD at large N . (the

number of colours) and low energies. It has been shown that a nonlinear
chiral Lagrangian together with the anomalous Wess — Zumino term can be
obtained as a low-energy approximation of QCD at large N . under the as-

sumption that the chiral symmetry in the space of flowers is spontaneously
broken. Then QCD is reduced to a pure pseudoscalar theory provided that
more heavy scalar, vector, and axial mesons are neglected; in this case pions
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represent a chiral phase of quark fields or Goldstone modes of the dynamical-
ly broken chiral symmetry. These modes are conserved only in the parts of
QCD action without complete local chiral invariance.

Integration over all the colour degrees of freedom can be performed under
quite general assumption on the behaviour of the arising potential. As a result,
we get a chiral Lagrangian for pion fields and a number of standard formulae
for such quantities as F, (the pion decay constant), m 7 (the mass of a con-

stituent quark), and <gg> 0 (the quark condensate).

The model thus obtained leads to the Skyrme model in which we may
study the problem of stability of the soliton.

Now we shall describe basic features of the model [4 ]. The effective chiral
Lagrangian follows from QCD by using identical transformations within the
1/N . expansion. The change of variables of quark fields is made in the func-

tional integral, which separates the degrees of freedom responsible for the
spontaneous breaking of chiral symmetry and corresponding to pseudoscalar
mesons. Use is also made of the hypothesis of spontaneous breaking of chiral
symmetry (SBCS).

The QCD Lagrangian (chiral symmetry U(n)X U(n) and colour symmetry
SU(N)) is of the form

N
@60 = = 56 67 +

+ ig(x)y ¥ (aﬂ - iG'u(x))q(x). (Gﬂ = G:Ta . )

Meson fields are described by operators Eyst 44, where t ¢ are generators of
U(n) and tr (¢ % b) = 26%. Consider the generating functional

z(n) = z," [ du(G)dadg exp {ifdx(€ (x) + Pt @

where du(G) is the measure that includes gauge fixing terms and ghost fields.
To single out chiral phase of quark fields, one performs the transformation

=@ Py +P)g, T =T(QP, + Py, 3)
where Q(x) = exp {in(x)}, = = 2%, P, = 3(1 +°). With the help of
the Faddeev — Popov procedure

1=A@G fdu(@) 3 @'1%%) “
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for the transformed fields g, Z is written in the form

Z(n) = 25 [ du(G)dq dg du(Q)dp JA@, ) exp {if dx[£(x) +

+iGOLP () + 7% (1% W) + T %@ . )

Here use was made of the d-function in the exponential form with the

Lagrange multiplier 9%, L = }/‘Lﬂ, L = Q‘laﬂQ and J is the Jacobian of the
. -1

change of variables, ¢ » qQ . Owing to the 8-function in (4) the pseudoscalar

meson fields cannot simultaneously appear as phase of quark fields (see

eq. (3)) and as costituent operators gyt % in the functional Z(n). In what
follows, they appear only as chiral phases of quark fields. An analogous pro-
cedure is employed also in [12]. There the transformation (3) is related to the
transition from currént quarks to constituent quarks with a large dynamical
mass.

The Jacobian J results in the Wess — Zumino terms and Abelian anomaly

0

with a " -meson necessary for solving the U 4(1) problems

. V2
InJ=if,, + i Jdx G,(x) G, (%) PO (%). (6

Now let us consider the remaining part of the functional Z(57). We should

integrate over all the colour variables and obtain the effective action for z%(x).
Integration over gluon fields yields the factor

exp {iS,@T ¥*q, 7°)} )
and the functional S, contains the bilocal combinations of the fields
'q‘i(x)q”; (») (k is the colour index) singlet in colour (i and j are flavours).

Now the bilocal collective variable £ i (x, y) is introduced which is singlet
in colour [4,10],

exp {iSp} = [dE O(N & ¥(x, y) — T.(0)a.()) exp {~iV(§, 1)},
O(NE — ag) = [dh exp {ifdx dyA¥(x, y) IN £/~ G- (x)d () 1}

and then one can integrate over g and ¢

Z(n) = 27! [du(Q)dE di dp A exp (i[-V(E, 2°) + £, (L) + N, tr A —
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—ithrln(13+iZPR~A+¢“t“y5+...)]}. ()]
The functional V(§, no) can be splitted into two parts
Vg, 2°) = VE, 0) + V'(E, 20, (10)

where V'(&, no) includes at least one source, 7%, The fermion lines are
associated with the factor 8, , §. At large N, the behaviour of V'(§, no) is
determined by purely Yang — Mills diagrams and does not depend on &:
V(& 2% = Vy(z%) + O(1/N).

The diagrams corresponding to V(&, 0) contain at least one quark loop
and lead to an expansion of the form

VIE 0) = N [Vo®) + - V,®) + ... 1 an

(4
To integrate over the remaining variables in the leading order in N - one
expands the action in the exponential (9) around the stationary point*

if . 1 y if 6V0 v a a
=) =il -y = 5|, ¢t =at=0. a2
i9 — Ast st
From the assumption that the U(n)XU(n) symmetry is broken down to the
diagonal U(n) it follows that £¥ =8%  A¥=08%)_. Though explicit
st st> st st
solutions & and A are not known since V(6) is not known, it is sufficient to
assume that fs (p) at small momenta tend to a nonzero constant,
i;t(p) | p=0 = €% 0. This implies that quarks acquire a dynamical mass, i.e.

chiral symmetry gets spontaneously broken (the quark propagator in the
leading order in N coincides with Est(p)) . This point is crucial in both papers

[4,12] for constructing effective chiral Lagrangians. Computation of the

effective action for fields n° is only a technical problem slightly different in
both the papers.

* An analogous procedure is also employed in paper [12].



86 VOLKOV M K.

Let us turn back to paper {4 ]. At low energies leading are the terms quad-
ratic in currents Ly. In the vicinity of the stationary point the exponent of the

exponential (9) is of the form

’ . 1 N ey 1IN 1
£ w2 = Vo@®) + Nt {~5LPpLPy — LPph + FPh +

+ 3900 + 28 + LK + ), (13)

where ¢ and K are coefficient functions in the expansion of tr In (iD) and
Vo®-
0

Then integrating over £, 1 and ¢ successively we get

FZ
T 4 0
geff = - TtrL,uLy - VO(JI ) —
N, 1 .
- v
. { dr P 1r[Ly(r) L (1) L () L, (1) L)), (14)

where F_ = 93 MeV is the pion-decay constant. Upon expanding the

functional V;)(no) in powers of z° one obtains an extra mass term for the n’

meson.

Note that a most important point in all models considered here is the hy-
pothesis about the spontaneous breaking of chiral symmetry. This phe-
nomena is a natural result of the assumption on the form of the potential

- 1%
Vy(£), i.e. of the condition [lst(p) = 6T-‘S%]p=0 =c#0.

A rather different formulation of that hypothesis is given in [§]. There
ong considers the eigenvalues K of the total Dirac operators iD = iy + G +
+V+ vsd — S+ iysP with external vector, axial, scalar, and pseudoscalar

fields, V,u, Aﬂ, S and P, and gluon fields G/‘. In the Euclidean space, iDqka =
= Kg, . These eigenvalues define the determinant of the Dirac operator and

thus the generating functional. Then the low-energy region is separated in an
asymmetric way:

“A+M=K=<A+M (0=<M=sA), 15

where A is a spectral parameter, and M is the mass of a constituent quark. For
M = 0 the quark condensate is nonvanishing
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_ N, o AP

<qq>,= - -———(A M+ = ) (16)
This expression can be easily denved from the definition <Eq>0 =
. 4 1 _
= iN, tcfd’p G (p), where G (p) = a0 m PrE R ~ is the momentum repre

sentation for the quark propagator 1ntegrated in the limits (15). In this way
the spontaneous breaking of chiral symmetry is phenomenologically
introduced into the model.

As we see, SBCS in all models cannot be shown to follow directly from the
construction of the models, but is rather an extra condition imposed either on
an unknown potential [4,121], or on a spectrum of eigenvalues of the Dirac
operator [6]. In this regard, the Nambu — Jona-Lasinio (NJL) model to be
considered in the next sections is a more self-consistent model directly
reproducing the mechanism of SBCS at low energies.

To conclude this section, we briefly indicate how the parameters A and M
in the model [6 ] are expressed through the quark and gluon condensates. The
quark condensate is described by equation (16); to deduce an equation for the
gluon condensate we consider «radial» fluctuations of the quark field

g(x) = exp (—o(x))g(x) with the scalar field o(x) = oy(x) + t“aa(x). Singlet
fluctuations change the magnitude of the condensate <(_1q>0 therefore they

should be suppressed for stability of the region L. In order to investigate the
possibility of the suppression of these fluctuations these authors construct the
effective action W, (o) for the field o(x) generated by the conformal trian-

gular anomaly; here gluons play a leading role. Therefore, calculating
eff(o) one may put my =0 0 and A = V =S=P=0 so that iD=

1(6 + gG) Along with D there is conmdered the conformally transformed
operator D = De The corresponding generating functional is of the form

Z(G,0) = [ dgdq exp (- [d *x 7D _g).
The conformal-invariant part Z, (G) follows upon integration over o(x)
-1
= [do Z[ (G, o).

Then the conformal-non-invariant part Z__(G) and effective action W (o)
are given by the formulae

ZCOnf(G) = fdo Zq(G) 1) Z;I(G, U) = fdo' e—Weff(U,G),

L ~
W (o, G) = {dsfd “x21r (o(x)<x16(A* = (D, ~ M)’ 1x>). (D
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By using the methods proposed in [6 ] for the effective potential one obtains
the expression

N, [N
;l% {_8[ (e—8<7c - 1)(6A2M2 - At - M4) + %gzz(G/z,)z}. (18)

Stability of the low-energy region (15) implies that the effective potential
should possess a minimum at o, = 0, i.e. at the value of the quark condensate

chosen above (see (16)). As a result, we arrive at the condition

6N (6A%M* — A* — M*) = <3 (e 2>,

a9
<> (Gﬂ‘:,)z>0 > 0.

Thus, the quark and gluon condensates become directly connected with the
parameters A and M. In [6] the following estimates were found: for

<gg>, = —((200+250) MeV)? and <—$2 (G,;)2>0 = ((350+400) MeV)*

we have A = (475+610) MeV and M = (250+300) MeV. In derivation of (19)
these authors made use of the low-energy approximation

£2 Go)' = <&T (Go)*>, 20

As a result, the quantum fluctuations of the gluon fields are neglected.
However, note that these quantum gluon fields play an important role in
calculating effective four-quark interaction, as has been shown in [8§—13,

16,18 1. They may produce additional terms in equation (19) of the form
2

M
G
gap equation in the NJL model). This, in turn, may somewhat change the
values of the parameters M and A*.

(const where G is the four-quark coupling constant (see, for instance the

The nonlinear Lagrangian for the fields V#, A s S, and P can be obtained
by the method suggested by Andrianov, Bonora [6].

*Just now we get acquainted with the recent paper [33] in which four-quark interactions were
taken into account, which led to an increasing value of A, A = 750 MeV. This value is close to the
value used in the NJL model.
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Here we have for the first time met with the notion of conformal Sym-
metry. As it is of much significance for the construction of effective Lagran-
gians, we will dwell upon its physical consequences in the next section.

3. SCALE SYMMETRY, CONFORMAL ANOMALY,
AND EFFECTIVE LAGRANGIAN
OF A GLUONIUM (DILATON)

Scale symmetry plays an important role in the field theory and is
employed in constructing effective Lagrangians. Here we shall only review a
part of the voluminous literature devoted to that problem.

Let us recall basic ideas related to scale transformations of fields and
Lagrangians [34 ]. Under a scale transformation of coordinates

x> Ax

scalar and spinor fields are transformed as follows:

p(x) > 27 p(x), p(x) » 17 ().

As a result, a simplest Lagrangian of the form
1 L =D —
£ = = 50,9)° + oy + ghpy + hp*

is transformed in the following way: £ (Ax) > 274¢ (x) and gives rise to a
scale-invariant action. It is easy to notice that mass terms break scale
invariance.

If masses of light current quarks are set to be zero (m2 as=0,aQCD
Lagrangian should be scale-invariant. There, however, arises an internal
scale with mass dimensionality at the quantum level [35,360]

M 8z
# = M, exp {— }, @n

=

where M, is the mass of an ultraviolet regulator, &, is the bare coupling cons-
tant, g, = g(M) and b = (1IN, - 3N f)/ 3. This effect breaks scale inva-

riance. The naive trace of the energy-momentum tensor should equal zero,
however, owing to the gluon anomaly
Bl
§

(a,)
o(x) = 8,,(0) = (G Ax)>, 2)
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where f(a) = — ba?/ ot + O(af) is the Gell-Mann — Low function.

In quantum field theory, the classical scale invariance gives rise to the
relation [37 ]*

limi [ d* €¥<T{Q(x), o(0)} > = ~ d_<Q>, 23)
g0

where Q(x) is an arbitrary local operator constructed of gluons and quarks,
and d_is its normal dimension. In what follows we will utilize a very important

ag)
particular case of the relation (23) when Q(x) = o(x) = 74—&3-—(6;,)2, i.e., the
§
Ward identity
i [ d* <T{o(x), o(0)}> = — 4<o>. Q24

Now let us determine the low-energy (tree) interaction Lagrangian for
o(x) obeying the Ward scale identity (24). Note that the solution is entirely
determined by the sign of vacuum energys, it is stable only when €yac< 0.

The normal dimension of o(x) equals four. Therefore, if one takes the
kinetic term in the form

g wip = const (a'ua(x))2 (a(x))_al 2 25)

the corresponding part of the action will be scale-invariant and Qkin will not
contribute to 8 .
o

Let us now construct the potential part V(o) so as to satisfy the condition

9/4# = ¢. Under an infinitesimal scale transformation, when A = 1 + ¢, the
field o and potential part of the action transform as follows
4 4 . OV
o> (1 —4e)o, AS = -Afd%x V(o) = —[d**|4V - do5-|. 26

Equating this change of S to the quantity [ dx eﬂ#(x)\ we arrive at the
equation that ensures the identity (24) to be valid [38 ]

4V ~ 4U%K=U. @n
o

*A simple derivation of the relation (23) can be found in the paper by Shifman [36].
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Fig. 1. The potential part of the effective \
Lagrangian of a gluonium (dilaton) V(X)
|Evacl
It has a simple solution® 0 .
o X
V= -4 (no+const). (28)
-1
The constants in (25) and (28) can be

expressed through the mass of o, m,,

_ _1
and the vacuum energy, ¢ = <016,,10> = vy <0I6ﬂﬂlQ>. Recall that
€, < 0. The ficld o can be written in the form o = 4e,,. expy, then the
gluonium (dilaton) effective Lagrangian acquires the form

€
e off = vac (a'u X)2 exp (—xj) +e, 0 —1)exp (). 29

2m§
Let us demonstrate how the effective Lagrangian describing both the

gluonium and quarkonium fields may be constructed. We will follow [41,42].
Besides the dilaton field d(x) (gluonium) we consider the pion fields 7 (x)

(i = 1,2,3) and singlet scalar field S(x).The quarkonium fields, 7;and S are

described by the chiral SU(2)xSU(2) sigma-model. The gluonium field d is
invariant under chiral transformations. The total Lagrangian has the form

= % {0, + @8+ (3,7)") - V(d, S, =), (30)

where the potential V obeys an equation of the type (27)

4
a=—H0(—(-1—) —ay— g _gdV_ SV 31

2 8d ~ ° 38 " Tidm,
Here Hy= - <o> and f 4 is an analog of the pion constant fn
—<0lold>=mlf,, f,=<01d10>. (32)

*Note that an expression like (28) was obtained by Leutwyler {39] and Voloshin, Ter-
Martirosyan [40] on the basis of the one-loop (rather than tree) approximation of gluon
fluctuations in a condensate (background) field.
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Equation (31) again provides the validity of the Ward identity (24). The
potential V does not contain ﬁelds with derivatives and is a function of two

SU(2)xSU(2) invariants, d and (s 24 )1/2
Then from equation (31) one can determine the following form of the
potential J . J ) m
V(d, S, n;) = H, 7) lnE+df""d—’, 33
where C is an arbitrary constant of mass dimensionality and f is an arbitrary
dimensionless function of the argument (VS> + niz/ d).

Following {42 ], the function f can be taken in the form

2 2 2 2 2
Vs +ni) _ 1% (E\/Sz+ni) , G + 7%)
2

d A VI UANEN
where G, = %H o Then the potential V acquires the form
Go (d)* d VSP4my| g
V(d,S,Jrl.) = iz(f—d) llNc In C 41n T + 7% f_4 (S 2ix ) 35

If fluctuations of the gluon field are neglected, i.e., if d = f 4 in (35), one
arrives at the following expression for the potential of the sigma-model

G, Vs§*+xl |G, ,
1n——+—f—(S+ 32,

Vu(S: 7) = =g In—¢

1

An analogous potential was obtained in [43 ] directly from QCD with the
use of the procedure of bosonization described in the previous section. The
obtained Lagrangians allow us to estimate the masses of the gluonium and
mesons of the scalar nonet, parameters of mixing of the gluonium with neutral
scalar mesons and to describe basic decays of these scalar states [41,42].

4. QCD AND NAMBU — JONA-LASINIO MODEL [9]

Recall that the generating functional of QCD (in Euclidean space) takes
the form

W = [ dgdqDG exp (- fdx {q 3 + mOq + 7Gq + g{‘; tr (G v)z})- (36)
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Here G = y“G”aT @ m? is the current quark mass. Gauge fixing terms and the
Faddeev — Popov factor for the SU(N ) colour gauge symmetry are included

in the gluon measure. When m® = 0, the Lagrangian has UN f) XU(N f) global

flavour symmetry.
Integrating again over the gluon fields yields

e W = [dgdg exp (-—[fde @ + m%q +

o 1 a..a .a .
+ 'EZ Tl f dx, ... dxn r”:"'”njf‘,l(xl) ...]/‘n (xn)}) , @37

where ]':(x) = E(x)yﬂT ?q(x) is a chiral singlet local current coupling to G:;

% are chiral singlets related to one-gluon irreducible Green functions
B

that contain the whole gluon dynamics. Fortunately, the principal features of

the low-energy dynamics can be understood without detailed information on

the functions I,

We introduce a bilocal field (x, y) describing mesons at low energies (see
Sec.2) [4,9,10]

1 = [ DDy exp (f dxdy trn(x, ) C(y, x) — q(3) E(x)) .
Then

e W= [ dgdaD;Dn exp (~|f dxa(@ + m)q —f dxdyn(c - @)}~ T®)),

where
| a..a
re¢) = Esz dx,...dx, I‘”llmﬂ"(xl...xn) X
n= "
Iz 1%
X tr [y lTal§(x1, X,y 2Ta2§(x2, x3)...Tan§(xn, x) 1
Integrating over § and defining

e = [ DL exp {-(T¢) - tr 1)},
we get
™% = [ dgdqDy exp {-(fdx (@ + m")q +

+ [ dxdy q(x) n(x, y) ¢() + G())}, (38)

where G(7) is a nonlocal functional containing any powers of meson fields.
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Further, use is to be made of a scale parameter A when considering low-
energy physics.

The following assumptions are then made:

1) Gluon confinement

I‘ﬂ‘:‘_""::(xl, ...x,) should be a colour singlet for Ix, —x, 1| > AL
n # m; glueballs should have masses larger than A. Then ™ js completely

defined by the gluon condensate and has no poles. From Lorentz invariance it
follows then that

a,.a o) = 8% n
I‘,‘1 u (6 xn) d 5#1‘_'#nCnA ,

where Cn are constants on the scale Ixn - xml > AL
2) Quark confinement

7(x, y) and §(x, y) are strongly localized on the scale A1 50 that no free
quarks would exist at energies lower than A. Therefore the following expan-
sions are possible

A™n(x,3) = 1@A) + 1, OLS O + 3 1,@LL O + oo

£(x, ) = EDEll) + s
where z = % (x+yandt= % (x — y); f and grapidly vanish when t 2 - oo;
4(x) can also be expanded around z.

a0 = 0@ + AT 1,000+ D) | g * o

Then every term of (38) can be written as follngs

[fdx dya(x) n(x, ) aO) = [dz 3(z) n(z) a@fdt ft) + ...,

Jfdx dyt(x, ) n(x, y) = [dz8(2) 1(2) fdt /(1) &(&) + ...,

N fdx dyy 26 3) 7,800 = [datr BV dt 1) + .. ete

Note that only g and the meson wave function f are integrated over momenta
larger than A.

Apart from the localization of 7(x, y), one must further require the sup-
pression of disintegration of the meson into a quark—anthuark pair above the
threshold (=0.6 GeV) (quark confinement).
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In the spinor space the local fields # are expanded as follows

.S, . P -~y A_ - 5= B 55
n=1n"+iyy +yﬂ7]/‘+y5yﬂn”—U+1y<p+V+yA—M+yﬂNﬂ,

(a= aala, A% are the Gell-Mann matrices).

Here the different terms correspond to the composite operators (gi‘g),
(E'yslaq), @/4 %), ((7}’5)’” 2%g) with quantum numbers (0*F, 071, 177,
1™, respectively. The gluon potential G(z) takes then the following form

2 N
G(n) = [ dx (—EO + {”T tr (—;—MM - NN+ } +

6
B raan2_ D 2 n
+{ 3 t(MM)"~N N MM+7MN MN, + 8(N,N,) )+...}+o(

> 2 ) , (39)

where E is the vacuum-energy density. The function G(y) is locally chiral-
invariant, does not contain derivatives, and is even in%. Terms in G(#) are of
the order of ch, 1,1/N, ..., respectively.

To the first approximation, where the ¢ terms are omitted, G(7) contains

only one parameter #2, and this construction may generate four meson multi-
plets. As will be seen, we may achieve a quantitative description of meson
physics without a detailed analysis of the gluon dynamics. Integrating over g,
from (38) and (39) we get p

~ G
e™W = [ [dg dq], exp (-—f dx {5(6 + m%q - 71[(?11“(1)2 + (@iyA°g)?1 +

2@ 1% + @ 1) (40)
7 @A) + (e A1 |

where G, = 4 / ,u2, G, = 2/ ,u2. This is just the NJL model. The obtained four-

quark interaction is the Fierz transformation of the interaction 1% 2, i.e.,
vy

a consequence of the vector-like structure of QCD. However, the relation
G, = 262 for coupling constants of scalar (pseudoscalar) and vector

(axialvector) channels may be changed if either the functions f or e-terms are
taken into consideration (different for # and p) (see (39)).
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For a special treatment of the U(1) problem it is necessary to include the
U(1) anomaly into G(r), for instance, as a term with n§ (see Sec.2)*.

5. NJL MODEL AND LINEAR oc-MODEL

The basic independent quantities of the NJL model are the masses of con-
stituent quarks connected with the quark condensate, the cut-off parameter
A determining the boundary of the region of spontaneous breaking of chiral
symmetry (SBCS) and the four-quark interaction constants G, and G,. The
purpose of the present part is to show how the standard linear o model
describing the scalar and pseudo-scalar mesons can be obtained from the ef-
fective four-quark interaction of the NJL type.

Let us consider the following effective quark Lagrangian of strong interac-
tions which is invariant under SU(3)_,,,® U(3);® U(3)y symmetry (for the
case m® = 0)

n2—1

~ A’ A.
£ @) =700 ~ m)g + 26, 3 {(?17“ o+ G g o7 -
a=0

n2-—1

Aa 2 S Aa 2
26, Y @5 9"+ @Y 5 a7 (4D
a=0
Here summation over the color indices is implicit; ,la are generators of the

flavour U(n) group; m® = diag (m(l), mg, e mg) is the bare quark mass
matrix which explicitly breaks chiral and diagonal U(n) flavour symmetry;
G, and G,are universal quark coupling constants with the dimension of length

squared. The meson fields can be introduced and phenomenological meson
Lagrangian can be derived by a standard procedure on the basis of generating
functionals Z(z, 77) [14—18]

Z(m, M) = -lﬁf dq dg exp [if d*x[2(, ¢) + 73 + ﬁq]} =

8
1 - . - _
= 7/ dadq HodSadPadVadAa exp {ifd *x (2@, q, 5, PV, A)+ 77+ 7ql|=
a=

*Recently, the NJL model has also been derived from a relativistic version of the potential model
based.on QCD [13].
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f[] ds dP dV dA x

1!
N a=0

x exp [if d*x[£"(S, P,V, 4) + i [ d*y7(x)D ™ (x, y) n(3) 1}, @2
where N, N', N'' are normalization constants, and 5,  are external sources,

iD(x,y) ='lid —m+ S +iyP + V+ Ay 0P(x — y) =

_ .l\ ./\ FaN + _
=[i0+A, + MIP, + [0+ A, + M 1P, — m. S 43

Here m = diag (ml, m sm ) are masses of constituent quarks, P

2 R/IL™
=% 1= 75) are projection operators, V and A are vector and axial-vector

fields, respectively,
2
A nh-1 -1

V= ago Vart, A= 2 A“A r# (44

(Ag, L)# = V * A S and P are scalar and pseudoscalar fields,
2
n-1 n -1
ZS“A , P=X P9, M=5+iP. (45)
a=0
The Lagrangians £’ and £ are given by

£'@ 4.5 PV, A)=7lid - m® + S+ iyP + V + Ay 1g -

~ 2 2
1 5%+ Py . tr (V# +A4) (46)
4G, 4G, ’
(S, P, V, A) =
- 2, 42
tr (S 2+ P 2) tr (Vy + A,u) . N
- i, + ic, —itrin [iD(x — ) ]|x=y . @D

In what follows we consider only the case of three flavours (1 = 3) and in this
section our consideration will be restricted to scalar and pseudoscalar fields,
S and P.
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§0 38 Only identical transformations were employgd forin-
™~ troducing boson fields into the functional Z (7, 7). How-
'é_@ ever, when one passes from the Lagrangian £ to £,
there occurs an important phenomenon caused by re-

Fig.2. Aloop, tadpole. ~ arrangement of the vacuum due to spontaneous breaking
of chiral symmetry As a result, the light masses of cur-

rent quarks, m® , change to heavier masses of constituent
quarks m. This is a result of vacuum expectation values of the originally in-
troduced fields s (SO, 8) in (46) being nonzero. In terms of diagrams,
these expectation values are described by loop diagrams, tadpoles (see Fig.2).
Redefining the quark mass matrix m one can go over to the physical scalar
fields S with zero vacuum expectation values,

0, T _ -
-m + 8= m+S—><SO,S3,Ss>0—0. (48)

In this way there appear masses of the constituent quarks.

Equation (48) represents an analog of the gap equation in a superconduc-
tor. Upon calculating the vacuum expectation value of both the parts of that
equation, the latter acquires the form [16 ]

0 —
m; =m,; [1- 8G111(ml.)] =m, + ZGI. <q;4,>,- 49)

Here <?]i 4> is the vacuum condensate of quarks and is a quadratically

divergent quark loop (Fig.2). We will use an invariant cut-off A in the
Euclidean region of momenta determining the boundary of the region of SBCS

N, d*%6 (A=K ' 2
I(m)=—[t————= 3 = |A?=m? In —’}—2—+1 ,
Y@ m; + k (4m) g m?

i

¢ d ke (AP- kY 5%
IL(m,m)= = 30
2mp ™) 4 (m?+ k2)(m/? + k%

2 2
A

= 32 21 = |m? In —A2+1 ~m? In [=5 +1

(4m)” (m; — m) ! m; / m;

Let us now show how one can derive a standard sigma model that descri-
bes masses and interactions of scalar and pseudoscalar mesons from the Lag-
rangian (47). The functional (42) may be written (without external sources),
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S
2@+ D35 0 |
P P~ S S
P P >

Fig. 3. Expansion of the fermion determinant. The mesons interact through quark loops

m + m%)2+ P?]
4G, ' (51)

8 —
Z = (detiD)V[ [] dS_dP_exp { _ifg 4 16
0

where det iD = det (iD,+ fl) = exp trln (iDy+ J\~J) is the quark deter-
minant arising upon integration over quark fields, iDo= id—m, and
M= MPy + M+P.L = 8§ +iysP. There exist various methods for computing

this fermion determinant (see, for instance, [18]). In this section we will use
the simplest expansion in powers of external meson lines corresponding to the
one-loop quark approximation,

—itrin [iDy+ M]=itry, % iy 'MT". (52)
n=1

This method was employed in [14-17 ]. To obtain the standard sigma model,
it suffices to consider divergent quark loops of four types drawn in Fig.3. A
total set of these diagrams together with quadratic meson terms entering into
(47) is described by the Lagrangian

+ tr {[p?L,+ 2(1, +m*L) 1[(S—m)?+P % |-

; £(4)_ _ ir [(S—m+m0)2+P2]
T 4G

1
~L([(S—m)*+P2 P~ [(S—m), P1%}. (53)

The first term is the kinetic term (p is the meson momentum). Let us
renormalize the fields so as to supply the kinetic term with a correct coefficient

, R -1/2 ,
Sa = gasa v Py = gaPaR &= [412(mi’ mj] ! ’ (a = (l’ ])) (549

a

Then the Lagrangian (53) acquires the form corresponding to the standard
sigma-model
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_1 2 2, 2|2
£(s,P) =71t |3, + (3,P)+ & o | G

0
m-—m
—_— 8m11(m)) S -

(g, 0 T +P =87 g lm8) +P - . P 4

a

. &a .
—itrin{l + % (S +iysP)p' =
i0 ~ m

i
=gtr [(GFS)Z +0,P) - (Msasaz")z— (1\4,,‘1111;1“)2 + 4mgS(S 2+ P?) -

& [(s 24P (s- ﬂ),mz_} }— itrln {1+ <£— [S + iy,Pl}". (59
g id —m -

The index R is omitted here and in what follows; M s and M p are masses of
a

a
scalar and pseudoscalar mesons. Using the condition of minimum of £ with
respect to the variable S,

oS |s,p=0" "

or the absence of terms linear in S in the Lagrangian £ (S, P) we again arrive
at the gap equation (49). We shall discuss the masses of scalar and
pseudoscalar mesons somewhat later, upon consideration of nondiagonal
P —» A transitions. The prime of the last term in (5§) means that this term
contains converging parts of the quark loop diagrams (including loop
diagrams with an arbitrary number of external meson lines).

Now, let us fix the parameters m and A. To this end we construct the axial
current on the basis of the Lagrangian (55)

- m
() = T g RPN
Jsﬂ Soaﬂn 7 aﬂso + z, 6ﬂn +.... 56)
If we then apply it to the decay =~ - uv, we arrive at the Goldberger -
Treiman identity
m, *
z - F_ =93 MeV (pion decay constant). (EY))

u
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In the next section, we will show that upon renormalization of the vector fields
there appears the following connection between the constants g, and g (gp is

the decay constant for the p-meson, gj/ 47 = 3)
8, = (3 g,. (58)

Using this connection, the experimental value of 8, taken from the decay

p = 2m, and the Goldberger — Treiman identity (57) we obtain the following
estimates for the parameters of our model:

m, = 234 MeV, A = 1.05 GeV, 59
<q,4, > = —4m I,(m ) = — (255 MeV)?

and for masses of the pion and o-particle:

2 24 8GI Li_n__m_.. -4 7
mﬂ‘GI[ - l(m)]—G m, F2~— 2 <99,
n 7
m§=m;+4mz. 60)

These formulae represent the known Gell-Mann — Oakes — Renner formula
for the pion mass [44] and standard model mass of the o-particle,
m_ = 500 MeV. The constant of four-quark interaction G, influences only the
mass of mesons but not their interaction constants. From (60) we get
G =17 GeV_Z, and from (49) we derive the estimate for the current mass,

mg = 5 MeV. Masses of the remaining members of the pseudoscalar nonet are

also well described within model when the mass of the strange quark is
introduced and gluon anomaly and P - A transitions are taken into account
[16,18].

6. VECTOR AND AXIAL-VECTOR MESONS
AS COMPOSITE ¢q¢-STATES

In the previous section, it was shown how the NJL model leads to the
linear sigma-model describing interactions of scalar and pseudoscalar
mesons. To this end, vector and axial-vector fields were neglected in the Fer-
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mion determinant, and the one-loop approximation with divergent quark
loops was considered.

For a common description of scalar, pseudoscalar, vector, and axial-vec-
tor fields it is convenient to employ the so-called «heat kernel» technique used
and expounded in detail in [18 ]. The merits of this technique consist in that
it, on the one hand, allows one to preserve the explicit dependence of the
theory on the physical important parameter A related to the scale of SBCS*,
and, on the other hand, provides gauge invariance of the theory. The latter
plays an important role for ensuring vector dominance of our theory upon in-
troducing electroweak interactions and external electromagnetic fields, W
and Z bosons, and also the inclusion of gluon background fields producing
gluon condensates.

For simplicity, we will here consider a more trivial regularization of Pauli
— Villars with two subtractions. The parameter A will be the mass of the
subtracted field**. The main purposes of this section are as follows: deriva-
tion of the Yang — Mills structure of the Lagrangian for the composite quark-
antiquark vector and axial-vector fields from the NJL model, renormalization
of these fields leading to the universal physical coupling constant g that, in

particular, describes the decay p - 27, and obtaining the important relation

g, = Vg e=g) 61)
used in the previous section for determining the parameters m and A. We will
follow the papers by Kikkawa [14 ] and Volkov [16]. The corresponding part
of the fermion determinant det (iD) will be determined within the one-loop
approximation with the above regulatization of divergent integrals.

Summing up divergent quark loops with two, three, and four external vec-

tor mesons (like it was done in the previous section), we arrive at the expres-
sion:

1 .
- 3t {IL(m)(¥V,, = ilV,, v,1.%, (62)

\\

*If one uses regularizations without the explicit dependence on the péra{neter A (for instance,
dimensional regularization), then an important equation of the model, like the gap equation, gets
distorted and incorrect relations are established between the masses of current and constituent
quarks.

**Two fields with equal masses, M =M= A, are subtracted so as to annihilate the quadratic
divergence in the loop diagram with two-meson lines; in this case a constant gauge-non-invariant
term that corresponds to the quadratic divergence drops out.

Note that all the three regularizations mentioned here (cut-off on the upper limit A, Pauli —
Villars, and heat kernel technique) give similar expressions for divergent parts of loop diagrams up
to terms of the order O(m?/ A?) (see [16,18)).
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where V. =1 [0 V?~ 3 V% and [V ,V ] is the commutator of the
y224 a“ u v vou w oyl
operators Vﬂ. Upon renormalizatioit

N . 8y
vie/J 3  yRij_ LV R (63)

# 81,(m,, mj) #

for getting a right coefficient of the kinetic term, the vector part of the
Lagrangian £’ is reduced to the form

g
“Ltmzv2r_ly 0k 2 _
ew=gtr ‘MVUV” 3 (Y = i34 VL) }
1 gVi_A
—itrln {1 +T“_—2‘1' V}', 64
id —m

2 -1/2 2
where gV,y = (—3- I(m,, mj)) and MVij
that if for scalar (pseudoscalar) and vector mesons one uses regularization
with the same cut-off parameter A (SBCS scale), the constants A and g are

= (g, )2/ 4G,*. Hence, it is seen
i -

connected by (61) (see formulae (63) and (54) derived in the previous
section).

From (64) and (47) for the masses of vector mesons we get

M2Z=pM2=—3 2 _ g2 LHm)
P o 8G,L(m)’ e P Iym)’
1y(m,)
2 _ 2,2 22" 3 )
M = Mo Tmy my T2 (T )" 9

Numerical estimations for the meson masses will be given in the next section,
upon consideration of nondiagonal transitions P - A and calculation of the
final values for parameters m,=mgmg, G2 and A.

For the axial-vector mesons we will in the same way arrive at the Lag-
rangian

*Recall once more that as a result of the employed Pauli — Villars regularization, the
expressions for I| and J, up to terms of the order of O(ml.z/ A2) coincide with 1, and /, derived in the

previous section {16].
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g
_ 1 2 242 _ 1,2 2
.S?(A)—Ztr{(MVii+ 6m")A, - —2-A;w+-——1[A ﬂ]_}—
i {1+ L e s (66)
—itrin —
{ id—m 2 y5}

from which for their masses we obtain

2_ a2 _ ag2 2 2 _ ag2 . 2_ a2 2
M, = MAu_ Mp + 6mp, MAl/z— Mg + 6mu m, MAS— Mp + 6ms N (Y))

Selecting all the diverging quark loops with scalar, pseudosgalar, vector,
and axial-vector meson lines in the fermion determinant det (iD) we get the
Lagrangian for interaction of these fields,

f(S', P, V, A) = — 1 26, 1 (gm®s’) - —tr{ pHSPHPY) —M(V I+ A +
+PUS 24P Y218, PR 1=(D,S')~ (D PY+ 361Gy ¥ 364G )
—itrln{l + ;;;%— [g(S + iygP) + 2V(/1\/+ zys) ', (68)
where

, m 2_ 2.1 2
S =S—?, H =g[b—l—8(11(m)+m12(m))],
DS =38 Vv, S 8via . p
M a _1 [ ] - 2 { ‘u! }+
DP—GP—I Y1y, P +—-{A , P}, (69)
g
Gl = oMV"= PVF — i IV, V71 + 14, A1),
g
G = g*A”- FAF + i~23([A/‘, V¥ + [VF, A']).

The last term of the Lagrangian (68) written jn the form —i tr In {—"—}'
describes a finite part of the determinant det (iD) connected with anomalous
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quark loops resulting in the Wess — Zumino terms, with loops having five and
more external meson lines, with finite parts of diverging diagrams, etc.

The Lagrangian (68) contains nondiagonal terms describing S - V and
P - A transitions 3

A£SV = n/gtr {aﬂs [V/‘, m] },
3 (70)
ASp = —Vgir{8,P 1A, ml).

The terms of the first type are proportional to the mass difference of con-
stituent quarks (m; - m/.) and arise for ne= 3 only in the description of
strange mesons [18 ]. A much more important role in chiral meson Lagran-
gians is attributed to the second-type transitions (70), to be thoroughly
analysed in the next section.

7. NONDIAGONAL TRANSITIONS IN THE NJL MODEL

The nondiagonal terms that describe S = Vand P -» A mixing appear in
the NJL model due to the SBCS and dynamical masses acquired by quarks,
m;. As is known, these transitions play an important role in chiral
phenomenological Lagrangians (see a review by Gasiorowicz, Geffen [45]).
Here we will show how these terms affect the values of basic parameters of our
model (m;, A, G, Gy.

The first-type transitions (S » V) when ne= 3 appear only for strange

particles and result in an insignificant additional renormalization of scalar
fields of the form [18 ]*

, (m, — m.)2
S =YY v.=|1- gimmm) ) (71)
if /A if 2 le

These renormalizations amount to about 10% which does not go beyond the
accuracy of the model, and they do not lead to essential physical
consequences. Therefore we shall neglect them in what follows.

*It is assumed that me=mz#*m. The renormalization (71) results from diagonalization of the
Lagrangian via introduction of the physical fields V;‘, S’
‘ 3 (m—m
Vi=yiy \/3(—’2—2 25 S .
13 I 2 MV ¥y omg
i
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More important are transitions of the second type (P - A) and they
deserve a more accurate consideration.
Let us present one more diagonalization of the Lagrangian through intro-

ducing physical fields A/; [16,18,46]

" 3 (m;+m)
=AY b ll
A” A/‘ +vVs 2 M2 6 P (72)
Then pseudoscalar fields acquire an extra renormalization
2
, B (m.+ m)
Po=z"p  z =|1-3 2 (13)
if ij iy if 2 j

i
and the constant g, will now differ from the constant 8 by.the factor z"
] v,
g =2/g], &)=2g". (74)

: . o om.+m,
Using the Goldberger — Treiman identity, g7 = —~——.. and the relation
P

2F
gy = v6 &g we arrive at the following equation for the masses of constituent
quarks
2 2
.+ m, .+ m, 8
mtm)L g )t By as
2F,. 2 a2 6
i A

from which we get for the mass of the u quark

2
M 2
ml= |1 =V 1 - |2 ,z“:% 1+V1 |22 | a6
a’ a

1 1

Here the parameters m, and Z are expressed in terms of the physical observ-
1 al

Note that of all the above observables, the mass M is by now measured
1

with the least accuracy. In fact, there are large discrepancies between experi-
ments on detection of the mass and width of the a; meson made in 1981 on

ables, &, Fn and Ma (M is the mass of the axial-vector meson al).

hadron reactions zN - 3xN and experiments performed in 1986 on the study
of 7-lepton decays. In the first experiments it was established that the mass
and width of the a; meson equal [47]
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M, =1275+28 MeV , I, =316x45 MeV. an
1 1

At the same time, the analysis of decay 7 » v, 3 gave values in wider and
completely different limits [48 .

1046 MeV < M, <1194 MeV, 400MeV < T < 520MeV.  (78)

1 i

From formulae (76) it follows that the masses m, and M, are tightly
1

connected with each other and they are subjected to be constraints

2
2g F
1- |51 =0, M, =2g,F,=1140MeV,m, < 330 MeV.  (79)

a
1

The constraints on the mass of the constituent u quark are consistent with the
standard ideas. The constraints on the amass of the a; meson indicate that in

the experiments of Ruckstuhl et al. [48 | and Albrecht et al. [48 ] in which the
values Ma = 1056 MeV and Ma = 1046 MeV were obtained, probably, the

1 1
data were not analysed quite accurately. Indeed, a subsequent analysis
performed by [49] in which new ideas of the form of the vertex a,pr were

used demonstrated the validity of this assertion and gave results for
experimental data of 1986 more close to the original values (77)

M, = 1250 MeV. (80)

1
Inequality (79) resulting from (76) allows us to understand under which

conditions the Weinberg sum rule, Ma2 = 2Mp2 [501, and KSFR relation,
1
Mp2 = 2ng73 [51], hold valid. They can be derived with the minimal mass of

the a, meson, M"n = ngFﬂ (see (79)) and by using the formula Ma21=

= Mp2 + GmZ, for the a, meson mass obtained in the previous section. Then,
inserting the value mz =M az/ 12 obtained from (76) into the formula for the
1

a, meson mass we immediately arrive at the above relations*.

*Itis interesting to notice that formula M,Z, = MZ + ﬁmi (76) is consistent with the formula only
1

when M =2¢g F .
Ca P



108 VOLKOV M.K.

’,Jﬁ /J“ Now we have all the for-
TOFCw T T T Ml ey o fing e
a b me, A, Gl and G2 upon which

Fig. 4. Diagrams, describing the decay @ - 2t we may proceed to calculate

the meson masses and other
physical quantities (like Fy, F, mg, m(s), etc.).
- From formula (76) we get m, = 280 MeV that corresponds to M, =
1

= 1260 MeV [52]. Using the formula obtained in the previous section
gﬁlz(mu) = 3/2 we estimate the cut-off parameter A

A = 1280 MeV. ‘ @81

From formula (65) of the previous section for the p meson mass we evaluate
the constant G,

2

g
— _L o~ -2
G, = W, 16 Gev ™2, 82)

If the strange-quark mass is taken to equal 460 MeV, for masses of vector

mesons ¢ and K* we get from the same formulae

M¢ = 1025 MeV and M, » = 916 MeV,

which is in satisfactory agreement with experiment,

M(p = 1020 MeV and My = 892 MeV.

Now let us determine the mass difference for the 1 and d quarks by using,
for instance, the decay w - 2t [53].
The amplitude of the w » 27 decay is described by the two diagrams
shown in Fig.4 and has the form
T, .=C t- p’)“wﬂ;r*'n:i 83

w —>»

Here, p* and p~ are the nt and n~ momenta, and the constant

C = C,+ C,consists of two parts; C,; describes the process of the strong tran-

sition w —» po (Fig.4a) which takes place on account of the mass difference of
the 1 and d quarks
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Yoprgr2
8(ﬂap) 2M(u u (m)—-I(m)z—G-—ln—ni
2 u 2 d (4][)2 mu

C, = ]
l 2—— 2 1 ’
3(1\lp M + UVIPFP)

c, describes the process of the electromagnetic transition w - po. (Fig.4b). It
has the opposite sign to C;

2aM?
p

1 1
Cp=—V (a=—1—37).

2 2 2 .
p (M7 — M2 +iMT)

Using the experimental w - 2 decay width, which is 286 KeV, we obtain for
the mass difference of the u and d quarks the value

A=m,-m, = 4.5 MeV. 84)
Now we shall proceed to describe the masses of pseudoscalar mesons.
From formula (55) for the Lagrangian £(S, P) we arrive at the following ex-

pressions for the masses of pseudoscalar mesons [16]

_1 2 _ 2
Mn%_i(cuu+cdd), MZ%=C+ (my—m)",

Mlgt = Cus + (ms - mu)z’ M]go = Cds + (ms - md)z’ 85
c —-C
2 _ 1 _ 58 U\ 2 § 2
MP=3 [cuu+ Cptdy ‘/(d - 5 4 5(C— C) ]
N '

where
C.o= 1 m) + m
ij 412(ml., mj) [Gl 4(11( i) Il( J') 1

The term d = 0.8 GeV?2is due to the gluon anomalies taken into account [16].
It causes mixing of singlet-octet components of pseudoscalar mesons, 7 and
n’. With the value of d = 0.8 GeV? we get the mixing angle § = —18°*.

*The U ,4(1) anomaly could be taken into accout more accurately by introducing the t'Hooft
determinant that breaks chiral symmetry and leads to mixing of flavours {20, 54].
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With the use of the #° meson mass we may fix the last free parameter,
G,= 4.7 GeV 2. Then for the masses of constituent quarks m,= 280 MeV,
m,= 284.5 MeV, m = 460 MeV we get

M == 493 MeV, M o= 497 MeV,
Mﬂ = 520 MeV, M, = 1027 MeV. (86)
The corresponding experimental values are as follows [52 ]
Myz= 493.6 MeV, MK°= 497.7 MeV,
M,,= 549 MeV, M, = 958 MeV. 87

Agreement is quite satisfactory.

The gap equation (formula (49) of Sec.5) provides the following values for
the masses of current quarks:

mg = 3 MeV, mg = 4 MeV, m? = 90 MeV. (88)

Diagonalization of the P — A terms leads not only to renormalization
of a number of fields and constants and to the change of basic model
parameters, but also to appearance of extra diagrams that are important for
obtaining self-consistent results. Recall that under the redefinition of the
field A,;

. ... 8F.Z.
Alj=Alj+ P Y UaPU (72a)
u 1z M: “
]

the diagrams with external lines Aﬂij may transform into the diagrams with

gradients of pseudoscalar mesons a” P
As an illustration, we present the calculation of two typical strong verti-
ces with corrections due to P — A transitions [55]. These are the vertices

exr and 7z that play an important role in the description of &z scattering in
the sigma model (e is a scalar isoscalar meson consisting of u and d quarks). If
the 7 - a, transitions are taken into account, the above vertices acquire the

form
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Fig. §. Diagrams of nx séattering in the tree approximation
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Let us show that the formula obtained describes sz scattering in the complete
agreement with low-energy theorems.

The diagrams describing nx scattermg in the tree approximation are
drawn in Fig.5.,

Using the formula M£2= M”2+ 4m§ and retaining only terms with the
lowest derivatives we get for the diagrams 5a and 5b from (89)

g%z [(naﬂn)% @ - 1)u2(a”n)2].

u

Using the Lagrangian fpm= gp(:r xx)p, we get for the diagram Sc

2 2

g g
Va= —P_ 2_ o2 2, ___"¢ 2
£ 5 ; (e, )"~ 29, 7)] » ; (e x 8 7)".

> As we saw carlier, in the region where the low-energy sum rules hold
valid, it is to be assumed that M = 2gp . p2= Gmi, Z = 2. Then, using

these relations and formula (75) we obtain for the total scattering amplitude
the following expression

2

£4=£'4+£”4=

=2mz[2(naat) +(Z - (an)]— 2(m?ﬂf)

u

(D)
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satisfying all the requirements of the low-energy theorems for pion-pion
scattering.

A thorough analysis of the role of P - A transitions in the NJL model was
performed by M.Wakamatsu [56 ].

8. APPLICATIONS

In the previous sections it has been shown that all the known
phenomenological chiral Lagrangians describing low-energy physics of
scalar, pseudoscalar, vector, and axial-vector mesons can easily be con-
structed within the NJL model. Besides, this model allows one to describe the
deviations from the exact chiral group U(n) X U(n), which can be seen in cal-
culations of the mass spectrum of mesons and constants F_, F, and F,. This

is possible because the NJL model describes meson vertices in the one-loop
quark approximation, and the difference of masses of constituent quarks (u,
d) and s, that breaks the chiral group, may be taken into account. In what
follows, we will show a number of cases where the difference of masses m  and

mg plays an important role in the description of meson interactions. The NJL

model allows us to describe all basic decays of pseudoscalar, vector, and axial-
vector mesons (for n = 3) and their intrinsic properties, in particular,
electromagnetic and weak radii, polarizabilities, scattering’lengths. Since a
detailed account of applications of the model is given in review papers
[16,57], we shall here only demonstrate the most typical and interesting
examples.

1) Strong Decays of Vector Mesons. Basic decays of vector mesons occur
in a strong channel of the VPP type and are specified by constants 8, 8g* and

8, defined by formulae (63) and (65) of Sec.6. Formula (65) can be written in

the form \ ;
2 2 _ 2
G _%_ My s _w Mg 3(mo-m)
25 T 2 2 - 25,7777 2
g T M g % M M,

from which we obtain for the above constants the following ratios
2 _ yAp2 2 2
g = 1.26gp 8, = 1.75gp . on

Then one can calculate the partial widths of decays V » P, + P,
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2 9%
a M 2Mn
r(p-nm)_—&ﬁﬂ 1- =7 = 156 MeV,
p
Y2
a oM » M, — M _ +M
24% 92)
— a M ZMK
r(<p->1<1<)=—5‘;~2—£ L~ |57 = 3.4 MeV.
¥

The theoretical values of these partial widths are in good agreement with
experiment [52 ]*,

T, pp= (14923) MeV, T, =

T, zx= (3.7£0.2) MeV.

(50+1) MeV,

2) Radiative Decays of Pseudoscalar and Vector Mesons. The most typi-
cal radiative decays of pseudoscalar and vector mesons are two-particle
decays of the type P » yy, P - Vy and V - Py. All these processes are well
described by anomalous triangular quark diagrams [58 ]. These diagrams give
the Wess — Zummo terms connected with the imaginary part of the deter-
minant det (1D) or with the last term of the Lagrangian (68) from Sec.6. These
processes are thoroughly described in review papers [16,57 ]; here we only
cite Table 1 of theoretical and experimental values for those decays. A par-
ticular note concerns the decays K*- Ky for which our model provides a bet-
ter agreement with experiment due to the difference of m, — m, (the devia-

tion from the group U(3)x U(3)).
The partial width of the decay V - Py is of the form
c2 (m2-m2\?
ax v P

vV ~vpP
T(V > Py) = . 93)

*The value a, = 3 is taken according to the old experimental data I‘,J »an= 193 MeV (Particle
Data Group 1988).
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Table 1. Partial widths of radiative decays P - yy, P -» Vy
and V - Py of low-lying mesons

Decay Numerical values of partial widths (KeV)
Theory (f = ~18°) Experiment [52]
> yy 7.6-1073 (7.5+0.3)-107°
7>y 0.63 0.460.01
n'->yy 4.5 4.5+0.35
7' p% 67 623
n'-> wy 1.5 6.2+0.6
> 2% 830 720+40
p >y 87 118+30
p =y 65 57+10
o>y 8.5 3.9°1%
¢ = 2% 53 5.8%0.6
© >y 69 56x3
>y 0.56 <1.8
K'*'> Ky 52 50+4
K% K% 130 120+10

The coefficients C ypare respectively

pr
C =2cosb, C ,=2cos§, C o=3sinp.
] ] pn

C =1, Cam=3, C(m]=sin0, Cp”=3sin8,

Here6 = 6,— 0, 01is the singlet-octet mixing angle (8 = —18°); 60 is the ideal
mixing angle (sin 6, = 1/V3), f = 3" is the w—p-mixing angle. For the

decays K" Ky the coefficients C x' x depend on the quark mass difference

2 2
Corv g = A 26’1 L, 1(22 D na?= 122,
02— 1) @2-1)

2
/lzln,l - 197,
Ac—1

CK‘OKO =14
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Fig. 6. Diagrams describing the 7 - 7%y decay

where A = ms/ m, = 1.64 (mu = 280 MeV, mg = 460 MeV). As can be seen

from Table 1, quite good agreement is achieved with experiment. In
particular, for the ratio of these decays we get

r(x*%-» Koy) — 26

(K> Kty 7

whereas the experimental value equals 2.4. If one neglects the quark mass
difference, i.e., if one putsA = 1, then C it = 1,C KO = 2, and that ratio

will significantly differ from the experimental value,

Ty qoy
[(K**> Kty) )

3) Decay 7 —» noyy. The decay 7 -» Jroyy is of interest since it clearly
demonstrates merits of the linear sigma-model as compared to nonlinear
chiral Lagrangians in describing some processes. Actually, in the nonlinear
model it is difficult to get a correct result for the width of this decay [59 ). Let
us see what is the reason for this.

The decayn » Jroyy is described both by anomalous vertices of the type of
Wess — Zumino terms (vertices now, ﬂpopo, nopow, Fig.6a) linked by inter-
mediate vector mesons and by strong vertices corresponding to divergent
quark diagrams and entering into the main Lagrangian of the sigma-model
(see Lagrangian (68) of Sec.6) (vertices mropow, a0(980)777z0 and a0(980)wp0
Fig.6b,c). The latter two vertices are connected by intermediate scalar mesons
a,(980).

If one passes to the nonlinear chiral model, the contribution of the
diagrams of Fig.6b,c disappears and only the diagrams with intermediate vec-
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P __P_  tor mesons survive*. In terms of the cur-

a1 74 + rent algebra this means that the com-
I |, mutator of neutral currents vanishes.

a = b dn  However, the contribution from

diagrams 6a amounts only to 30% of the
Fig. 7. Diagrams describing the a, > px experimental value. If one takes for the

vertex. Diagrams b results from z->a, mass a,(980) not a theoretical but ex-
diagonalization . .
perimental value, the diagrams 65 and

6¢ do not cancel each other, which
means the violation of chiral symmetry that occurs in reality. Then contribu-
tions of these diagrams are comparable with those of the diagrams 6a, and
together with interference terms they will produce quite satisfactory result for

the width of decay  » noyy [60]

@ , = b+ _ (int) =
F"__ Ly 0.4eV, I‘r’_’ 2y 0.3eV, I‘n__ 2y 0.4¢cV, I‘”_’ Ly 1.1eV,

whereas the experimental value equals
exp), —
TP = (0.85£0.26) eV.

4) Axial-Vector Mesons. The Vertex a o and Decays a, - px, a| > 7y,

7z~ - evy, T -» v3n. The most typical decay of axial mesons is a decay of the
type A » VP. The appropriate vertex is contained in the Lagrangian (68) of
Sec.6 and is drawn in Fig.7a. Upon P—A diagonalization, a divergent part of
the diagram 7a cancels out with a divergent part of the diagram 75 (the vertex
PA (A~ aﬂn)) upon which we are left with the remaining convergent part

that enters into the last term of the Lagrangian (68). Therefore we should
make use of the momentum expansion of quark loops and consider, at least,

qz—terms of those vertices. Strictly speaking, this step is beyond the scope of
the approximation employed earlier and requires special substantiation.
Nevertheless, we will try to consider some physical consequences of this ap-
proximation that, as will be seen below, gives reasonable results**,

*This can easily be verified using the formula Mz = Mf’+ 4mi, expressing the vertex agnno
0

through the mass m, and F_ and taking the limit Ma = oo, tending the mass m to infinity.
0

**Note that the heat kernel technique described in 18] is also related to the momentum expan-
sion of quark loops. The qz—approximation was considered by many authors [3,10,59,62—64].
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The diagram 7a along with the divergent part and qz-terms result in the
amplitude [64 ]

Tfl‘l’l o= ing,,{Zg”"+ x [p¥q"— g"pg + g (¢*+ p?) lle (D e, (@). 94

Herex = (8n2F 7{2)—1, Q = p + g, p, q are the momenta of the pion and the p
mesons, s#(Q) and ¢ (g) are the polarization vectors of the a, and p mesons.
The diagram 75 gives the additional contribution*

2 2

b . Q°-4q

Ta(l-)'pn =ig’F Z v g"¢,(Q) £,(a). (95)
a

Summing up (94) and (95) one may ea‘sily see that on the mass shell the

contribution from the divergent part of the diagram 7a (the first term of (94))

cancels out with the corresponding contribution from the diagram 75, which

results in (we put p2 = Mi and neglect the last small term in (94))

2
M
— g2 P _wv 2 v ®Y_wy _
Taﬁ, pr = T8 F 25 8T KIM g™+ (¢5p - g™ ap) e (Q)e,(9) =

a
1

. 2 2 Z_ 2_,.2
=—1gpFn/c{q”p"—g”qu+cg”vq }eﬂ(Q)ev(q). (C=1+ A =M_). (96)
a

1
In the low-energy limit (Z = 2, M‘ZI = 2M’§) the factor of the first term is
3

ZM;/ MZ = 1; thus, we obtain the known chiral-symmetric result for the local
1

part of the given meson vertex. The expression in parentheses coincides with
the k term proposed in [61 ] on the basis of the chiral symmetry as well. All
this indicates a close relation between our approach and the phenomenology
based on chiral Lagrangian which has shown itself to be good.

As in the method of chiral Lagrangians, we have not yet got rigorous
theoretical proofs for the qz-approximation used here. So we shall dwell upon
indirect reasons. The a,pr vertex has some properties similar to those of the

anomalous wpm vertex (see 2) of this section). Calculated through the quark
loop, the latter vertex has no diverging part and begins directly with q2 terms.

*One must take two q2 expansion steps in diagram 7a and only one step in diagram 75 in order
to stay within the approximation used.
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In this case the qz-approximation describes a wide class of decays in the ener-

gy interval from 100 MeV to 1 GeV (=0~ Y, p > ay, w >y, (7, 17') > vy,
etc., see Table 1). When the a o vertex is calculated after taking into account

two diagrams (see Fig.7), the expansion also begins with q2 terms. The
amplitudes of the radiative decays p - my and a,~> 7y associated with these

meson vertices, look similar even outwardly:

L= %gpan(e "“’a’gp;ﬂ - 2ia"“")FMn+ + h.c =
%g/cF s"“'aﬂ(p + ia ﬁ)F xt + hec, 9N

where a;ﬂ = %eaﬁ#v a" is the dual a*"= 9#a"~ 8”a* tensor. (a~ = a)).
In the region of energies equal to a, and p meson masses they describe the
decay a,—> mwy

r = 400 keV, T *P = 640+240keV [65]

a-> my a > ny

and the decay p - my (see Table 1) well.

In the low-energy region the Lagrangian (97) allows a good description of
the axial and vector form factors of the radiative decay n~ - evy [64]. The
structure part of the x ™ - evy amplitude has the form

4
To o= eG , cos 8 [hye”mﬂ + 1hA(g" pg — p"q!') ]lv(+)s,‘(q). 98)
Here G s the Fermi constant, OC is the Cabibbo angle, p, ¢ are the momenta

of the pion and the photon, lv(+) is the lepton current and hV, h L, are the vector

and axial-vector form factors. Then for the hywe have the standard value

1
S”ZF::
For the A, using (97) and the axial-vector dominance of the weak interaction
[66]

hy = (99)

Q

£ Iz
LW gcosB [Mpp +Z Ma gF67r]l+hc (100)

we get
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1
— 2 .
8x F”Z

hy

Then, the ratio of these form factors is equal to

2
h 2¢ F
—A_ -1 _1 _ | 2=
,,_hV_z =31+ V1 7 ) (101)

For the M, = 1.2 GeV we gety = 0.65. The experimental data are equal to
1

¥ = 0.52%0.06 [67],7 = 0.67x0.04+0.16 [68 ].

Analogously we can describe the form factors of the decay
K™ - evy (uvy)and ™ - eve’e” [64,69, 70].
Now let us calculate the a,~> pn decay width using the amplitude (96)

2 2
— 2 ﬁi‘; 1~ ]Mj Mal 1+ M4
a7 3nM, |3292F M || M2 IMAM?
1 F q P pa
2
+ (1 +C)? 2+——"244;2 30+ 0%l (2= M2+ m2). a0
4 pMa Mp P 1
1

Then for the M, = 1.2 GeV we get

r = 300 MeV.

a,~> 7p

The interesting property of amplitude (96) is that in calculaton of the
a;~> pr decay width there appears a large negative interference term which

reduces the sum of independent contributions of the gradient (p#¢*— g“*pg)

and the g2 (with g**) parts of the amplitude almost by an order. It also turns
out that in the interval 1.1 GeV < M, < 1.4 GeV the a,-» pr decay width
1

decreases with increasing @, meson mass.

If these properties of the amplitude a, - px are included into analysis of

experimental data on the decay t - v3m, the results of different groups [48 ]
giving much different masses and widths of the a, meson become comparable
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with each other and also with data obtained earlier in analysing the processes
N - 3N [47] (see [49]1and Table 2).

Table 2. The a;, parameters obtained by different collaborations
with the o p amplitude taken as a constant and the results obtained
with our representation of the amplitude*

‘Source [47, 48] T(“l + mpy= CoNSt T, ay =+ %) equals (96) [49]
a, Mass (MeV) | q, Width (MeV) | @, Mass (MeV) | a; Width (MeV)

DELCO 1056+20£15 | 4767 ]32+54 124237 4657222
(Ruckstuhl 1986) ;
MARK II 1194£14%10 | 462x56+30 1260+14 298%39
(Schmidke 1986)
ARGUS 104611 52127 12509 488+32
(Albrecht 1986)
xp-pataaT 1280+30 300+50
(Daum 1981)
a”p > prtaa® 1240£80 380100
(Dankowych 1981} -

* The results {49] have been included into the Particle Data Group 1992.

5) Strong, Weak and Electromagnetic Kaon Decays and the Al = 1/2
Rule. Here we shall consider kaon decays of the types K - yy, K, - noyy,

K - 2n, K - 37 and present a theoretical explanation of the phenomenologi-
cal Al = 1/2 rule.

The above-mentioned decays are described by weak interactions with
W-boson exchange, strong high-energy corrections with gluon exchange and
strong low-energy interactions. The result of weak interactions with W-boson
exchange and strong high-energy corrections with gluon exchange can be
described by a local low-energy Lagrangian .S?J,ﬁm =1 [71—73] ‘

G G
1ASI1=1_ D F
et =yrsias 2 CQw) =gy sie0. 103
i=1,2,3,5,6
Here G‘:.slclc3 = 2.5 GeV ™2 S|» €5 €5 are elements of the Kobayasﬁi —
Maskawa matrix [74]. C(u) are numerical coefficients. Q,(u) are four-quark

operators by Gilman, Wise [72 ], while Q6(/4) is the «penguin»-operator [71],
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4 is a normalization point. The appearance of the normalization point u is due
to the inclusion of the high-energy QCD interaction. The dependence onu is
contained in terms of the current quark-gluon coupling constant

(@) = 2._97:_ ln_l(AL » calculated for three quark flavours where A, is the
3

QCD-parameter (A3 = (.12 GeV). Numerical values of the coefficients C l./,u
are functions of 4 and masses of heavy quarks (m o My and m). For standard
normalization a,(u) = 1 (u = 0.24 GeV) one has [73]

C,=1,C, = -16,C, = 0.033,C; = —0.02,C, = 0.1.

The effective Lagrangian (103) satisfies the selection rules: AS =1,
AI'=1/2and 3/2.

Amplitudes of considered kaon decays contain matrix elements of o)
operators: <x!Q,(u)|K>, where |x> is any low-energy state. Values of
matrix elements <x| Qi(,u) | K> are determined by strong low-energy interac-
tions. Thus the calculation of <x1Q,(u)| K> is an extremely involved problem
which admits at present only model solutions.

Using results of [75] one can present matrix elements <x| Q) K> as
the sum of two terms

<xIQu) K> = <x1 Q)| K>\po+ <xIQu)IK>,

where <x!Q,(u)| K>, is a nonperturbative contribution (NPC) which is
independent of 4 and defined by the SBCS.

The term <x!Q,(u)! K> corresponds to a perturbative contribution
(PC); the quantity <x1Q,(u)| K> is defined by quantum fluctuations with

an energy less than u. For sufficiently small 4 (@ ~ 0.24 GeV) nonperturba-
tive contributions become essential. Thus all perturbative contributions for
u ~ 0.24 GeV can be neglected.

In our model <x!Qu)1K> is naturally approximated by quark loops
with virtual constituent quarks and the cut-off parameter A = 1.28 GeV that
characterizes the scale of the chiral symmetry breaking.

Decays K - yy

The K - yy amplitudes are defined by contact and pole diagrams in Fig.8.
The pole diagrams are due to exchange of the pseudoscalar mesons no, 7,1’
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(=)
Ks

Fig. 8. Contactand pole diagrams of decays K, ¢ - yy (¢ = f;, (700))

i

and the scalar isoscalar meson &(f;). Within our model accuracy (20-25%) the

contribution of contact diagrams can be neglected [76 ].
In the pole approximation the decay K -» yy amplitudes contain matrix

elements of the Q,(u) operatars calculated between IK%> and x> states,

where X = n°, 1, 1’ or &(fy). Since the value of the matrix elements of the
above-mentioned transitions depends mainly on the operator Q> We write
down these elements in the explicit form only for the «penguin» operator O

Q5= I’ (L =¥)d, ¥ [ag,(1 —¥)q,1
g=u,d,s
Here a,b = 1,2,3 are colour indices. Then

<n’1Q 1K"> = pX,

<plQ 1K%> = [~(g+p) sin 6 + \/T—Fi(l+p’) cos 81X
71Qg 3 73 ' (104)

<10 K% = [~ + é—ﬁfil+' in 61X
n Q6 >_[_°(3 p) cos Fn(3 p') sin .

Here X = <7r0IQ1 1K%> =3.5-1073 (GeV)*. The parameters p and p’ are

equal to Zm F, 2 AF 13
=041 + )| |1l —- ————|= 50,
p=040+ D\ F, 21 + A)F?
(105)
2\2 2
Fy

o~

"= 64A(1 + A) i3 ] - ——
P M F\F 2(1 + )F}

Herel = ms/mu and MK is the K-meson mass.
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It is seen from the above formulae that in the case of exact SU(3) sym-
metry (m,= mg, F, = Fy= F) (104) and (105) result in a usual SU(3) sym-

metric relation between the matrix elements <K0IQ6I7:°, n,n'> used in
some papers [77,78 1.
Using formulae, given in [76,79 ] one can obtain the following values for

the matrix elements of the transitions XK° - no, n, n' for two different values
of the angle 6

6 = —18°: < 1QIK?> = 4.9X; <91 QI1K">= 3X; <y’ 1 QIK®>= ~10.6X.
8 =—20": <a®1QIK%>= 4.9X; <pi1QI1K%>= 2.6X; <5’ 1QIK®>=—10.7X.

For the decay amplitude K 1~ vy we have

aG.s ¢ c 0 _ F _ | K
Ty, = 1% 3 2|Q|K20>+(5 sin - vZ 2 cos 5y L2 K> 4
L ) 4 MK_MJE s MK_Mﬂ
_ F,  _ <p 4.5-107° Gev™!(9=-18°
+(5 cos 6+ ﬁ—ﬁﬁsin 6) <77—2|Q—|—IS;- = 0 ¢ 1( ). (106)
s MK—M”I 3.4'10_ GeV_ (0=_20°)
The experimental values are equal to
_ 1n-12 _a4.10-9 -1
FKL")’}'— (7.2420.35)- 10" "“eV, TKL”}'Y_ 3.4-100 "GeV ™.
It is seen that at 6 = —20° one can obtain a good agreement between

theoretical and experimental data.
Now let us consider the decay K ¢ yy. Here the main diagram is the pole

diagram 8b with the ¢ meson (f(700—800)) . The expressions of correspond-
ing matrix elements are [79]

<el1Q1K%> = <e1Q,1K"> = <e1Q,1K"> =0,
1 i 1
<elQ1K"> = 3 <elQ(IK?> = 3P X.
The parameter p’’ is defined by the expression

2
man -0
FyMy

p'=64(1 + 1)z ”?

The decay K P4 amplitude is
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. __10_a 1<sIQIK°>

Koy 9 > 7 (Gpscy63) Ve cos 8, (M) exp id (M

2.7-10 %exp (160°) GeV™' (m = 0.7 GeV)

= -9 e -1 - aon
2.3-10 “exp (i 45°) GeV (m,= 0.8 GeV),
where

M, T (M) 3¢ ]’

' K gemt b4
6( ) = arctg ﬁ, r(M) = 1 - ,

2tM 2

M, — My ) 3 K My

4m22 2
gSJU[( )

Here I' (M,) and g __(M ) are the partial width and effective coupling

ETTT
constant of the decay ¢ -» sz of the virtual meson ¢ (700—800) with the
energy M.

The experimental value is equal to [52]

- 107 Gev~!
Ty = (5:0£1.3):107 Gev™l.

Decay X, - noyy

If matrix elements of the transitions K, - 7, n,n’ are known, one can

describe the decay K, -» noyy by analogy with the decayn —» JIOY}' (see sub-

sec.3 of this section). This decay is described by diagrams with intermediate
vector w and p mesons, with scalar fo (700—800), fo (975) and fo (1400)

mesons and contact diagrams (see Fig.9). Besides, as shown in {77,78], a
noticeable contribution to this process comes from diagrams with pion loops
(see Fig.9d).

The decay K, -» noyy is also of interest since it is essential to take account
of the difference of masses of s and (u,d) quarks when the transitions
K~ 70, n, ') are calculated. If this difference is neglected and use is made

of the relation for matrix elements <K Llno, n, n'> following from the group

SU(3), the relative contributions of diagrams with the intermediate 7-meson
are much reduced at physical values of (ny» mg) mixing angle
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n"nn )

Fig. 9. Pole, contact and loop diagrams that describe the decay K. S noyy

(—20°< 6 =—18°). Therefore, there remain the diagrams with intermediate

7 and n’'-mesons that have the same sign and reinforce each other [77,78 1.

Normalization to the matrix element with the intermediate 7° meson gives
rise to the following value for the amplitude with vector mesons (Fig.9a)

o @ m @
[1-009+021=11] ©®=-18, m=m).

However, when the mass difference of constituent s and («, d) quarks is
taken into account (see formulae (104) and (105)), the contribution of the
diagram with the intermediate # meson highly increases; and since it is op-

posite in sign to the contributions from z° and n' mesons, the total value of the
amphtude decreases drastically. Therefore, when the width of the decay

K,»x yy is computed, one may neglect the influence of the diagrams with
intermediate vector mesons [80 ]

@) ")

Ty v a%p= Tlgn_znw[1~127+0266— —0.041 (0= -18°, m = m).

A similar situation holds for contact diagrams (Fig.9¢).
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As a result, appreciable contributions to the amplitude of the decay
K~ noyy come only from the diagrams with the intermediate scalar mesons
and pion loops* (Figs.95 and d). Theoretical estimates are as follows [80]

(M,=0.7 Gev) _ 3.9-10714 ev (8= -18°)
P> 331074 eV (0= -20°)

(M08 GeV) _ 3.0-107% ev (0= -18°)
K >y 2510714 eV (8 = -20°)

The experimental value is equal to

Ty . aty= (27£08): 10714 ev.

Decay K » 2n

a) AI = 3/2 transitions. The effective Lagrangian, obeying the selection
rules AS = 1 and Al = 3/2, takes the form [79]

G
IATT =¥, F
S”eff '= \/2_ slclcl.O'Z.Q‘A“:a&, (108)

where
Ql ATl =% SaL“da)(EbLﬂub) - GaL”da)(dbL#db) + (EaLﬂua)(ZbL,udb)’

= *(1—°) and a,b are colour indices. The decay amplitude T (K > 2)

T%(K> 21) = 3.5:1077 i<271Q, ,, _y, | K> GeV >

In our model the matrix elements <2z1Q, ,, _,, | K> are defined by the

contact quark diagrams drawn in Fig.10a,b.
Let us write down the results of the calculation

+_— 0 1 A
<atmT1Q pp sy K> = — 5 <n’°10,, 1K> = —g<a’'n’1Q,, 1K

*For the decay n ~> JIO‘)/‘y, the contribution of diagrams with pion loops to the decay amplitude is
very small and can thus be neglected.
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i<a*n’1Q,, 1K*> =

2 2

SMLF MF F?
=KX _(1”) e —(Z—l)(lﬂ) 1+ || =6.6-10"2 GeV?.

F

K

1+

2 ) | MF, 2

The numerical values of decay K - 27z ampltudes and partial widths due to
the Al = 3/2 transitions are presented in Table 3.

< n . n
L

S T Lef

<

a b c
Fig. 10. Contact and pole diagrams of the decay K » 2z (¢ = f;, (700))

Table 3. Numerical values of K —» 2 amplitudes and partial widths

Decay Theory Experiment
Al = 3/2 Al =1/2
T r T r T r
K*'»>ata® 2.3 1.8 0 0 1.84 1.13
Ko n¥n” 1.1 0.4 30 300 21.7 253
K 290 2.2 0.8 30 150 26.3 116

Here 7 is an absolute value of K - 27 amplitude in units 1078 GeV, andT'isa partial width of
a decay in units 107! GeV.

b) AI = 1/2 transitions. The AI = 1/2 transitions take place in the de-

cays K% 7™ and K% 7%, The effective Lagrangian satisfying the selec-
tion rules A7 = 1/2 and AS = 1 can be obtained by subtracting (108) from
(103)

G
0 1A =Vy_@IASI=1_@IAll=¥% _ F
o =g =Ly = 77 5161639 A0 =1 - 109

The decay K% 21 amplitudes are defined both by contact and pole
diagrams. The main contribution comes from the pole diagram with the ¢
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meson exchange (f, (700—800)). Within the model accuracy, the contribu-
tion of contact diagrams and pole diagrams with the exchange of other
resonances can be neglected as compared to the £ meson contribution. -

Then the decay K% 27 amplitudes due to the AI = 1/2 transitions are

M
A"(KO>2m)= ﬁs 1<sIQVIK0>;T§)cosd(M)exp(u§( M))=

€ K
=3-10"" exp (id,) GeV. © (110

Hered_ = 60° is the phase of the amplitude A2 K~ 27) (see formula (107)).

The numerical values of amplitudes and partial widths of decays K% 27 that
are due to the Al = 1/2 transitions are presented on Table 3.

The theoretical values of decay K— 2 amplitudes are in satisfactory
agreement with the experimental data and conform the phenomenological
AI = 1/2 rule. Strengthening of the Al = 1/2 transitions in the linear o
model takes place by the exchange of the scalar meson fo (100—800). This

scalar meson is a broad resonance which can be identified with the S 1 910)
state of Au, Morgan, Penington [81 ] (see also the new data in [81 ]).

Decay K- 3x

Nonleptonic decays K- 3 proceed with a small energy release
(~25 MeV per one particle of the decay), thus a soft-meson technique (a low-
energy limit) is a good approach for their description. The K- 37 amplitudes
can be connected with the K% 2 amplitudes [82]. For instance, in case of
+_+

J

the decay K- z*nn™ one obtains

— i _
TK > x'w 2 @), o= 737 T K> a"a7).
+ F:4

The variant of the NJL model proposed here well describes the decays
K> “nTy, g >axtnTy, @ > 3n, ¢ > 3 [83], form factors of the decay
K, [84]and soon.

6) Internal Structure of Mesons. In addition to various decays of mesons,
the NJL model can describe their intrinsic properties, i.e., electromagnetic
radii, polarizabilities, 7w and 7K scattering lengths, etc. [16]. For illustra-
tion, we will here calculate the pion electromagnetic radius.
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Y
Y p°
pO

b T M . MU T
[(+})] a P b c

Fig. 11. Diagrams describing the pion electromagnetic radius

We demonstrate two versions of this calculation, one with the use of vector
dominance and the second as a direct calculation. We start with the latter. The
pion electromagnetic radius is described by two diagrams drawn in Figs.11la

and b. Transition poy through a quark loop leads to the expression [16 ]

e 0

~—F p .
14

gpﬂw.

B’ —

Using then the local approximation for all diverging quark loops we get the
following formula

k2 » k2
Fn_(k) = —ekv(l + m) Av == —-ekv(l + —]W_Z) Av (k = P - Pz) s
P P

which provides the known result:

<> =8 s 063m

M2
p
in good agreement with experiment,

\/<r2>n— = (0.663+0.023) fm.

An analogous expression for the pion radius follows from our model when
use is made of the vector dominance. In this case, apart from diagrams 11a
and b one should consider the diagram 1lc that leads to the expression
g -

%k ’pg. Upon making change vector fields, pP,=p, + Ee—AV, the contributions
: (2

of diagrams I laand 11ccancel out and the remaining diagram 115 again gives

the standard result corresponding to the vector dominance model
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2

M 2
A . k
F (k)= —ek”(1 = 1+ —L— 4, = —ek”(1 + “5)A, .
: p

The radii of K® and K* mesons are described in the same manner.
The model can also satisfactorily describe polarizabilities of pions and
kaons [85,86 ] and =z and nK scattering lengths [87 ].

The validity of qz-expansions used in the model should be proved more
rigorously, which, in particular, requires the solution of a highly complicated
préblem, the problem of quark confinement. Successful attempts along this
line were undertaken in [11}].

9. THE QUARK AND GLUON CONDENSATES IN NJL MODEL

The purpose of this section is to investigate a QCD-motivated NJL model
containing a nonperturbative gluon condensate. We will then show how the
basic parameters and model equations of the resulting chiral o-model will
change with this quantity taken into account [27 ].

’, Let us start with QCD and decompose the gluon field G/‘i into a conden--

sate field GZ and the quantum fluctuations gz around it

GZ(x) = Gﬂa(x) + g"’;(x). (111

By assumption the first part of the field yields a nonvanishing gluon
condensate

2 2
<vacl-f5:GZv(0)G’;”(O):|vac> = <vacl-§7—t—Gﬂ‘:}(O)Gf”(0)lvac>, (112)

where Gﬂ‘i is the field strength tensor. Integrating in the generating functional

of QCD over the-quantum field gZ(x) and approximating the (unknown)

nonperturbative gluon propagator by a d-function we get an cffective chiral
four-quark interaction of the NJL type. In this case, the condensate field

Gﬂa(x) enters into the standard Lagragian of the NJL model through the

covariant derivative of the quark field

A
ny . "aa
Dﬂq = (‘),4 + 1g70” )a, (113)
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where g is the QCD coupling constant and Aa/ 2 are the generators of the color
group SU(N ).
The effective chiral quark Lagrangian describing interactions of com-

posite scalar and pseudoscalar mesons in the presence of condensate gluon
can be written as [16,18 ]

£ (4, 6) = GiD - mO)q + % [(@%9)*+ @ iys™“9)?), (114)

where D = y"Dﬂ, Dﬂ is the covariant derivative (113), % are the Pauli
matrices of SU(2) » @ = I'; summation over « is understood), and ¢ are
fields of current quarks with mass mO*, Upon introducing meson fields, the
Lagrangian (114) turns into the equivalent form
| ~ (5§+‘PZ}) -.N 0, ~, .

L' g, G, 7, ¢)=— et 4(iD-m +G +iygp)g  (115)
with 6 =0 1% ¢ = p % The vacuum expectation value of the isoscalar-
scalar field 50 turns out to be nonzero (<50> # 0). To pass to a physical field

%

mass m 1o be identified with the mass of constituent quarks (see (48))

with <o,> = 0 one usually performs a field shift leading to a new quark

0 ~ ~
-m’ +0,=-m+ gy 0,=0, (e = 1,2,3), (116)

[24
where m is determined from the gap equation (see below). A
Let us for a moment neglect the gluon condensate in (115) (D - 3). In-
tegrating in the generating functional associated with the Lagrangian (115)
over the quark fields, evaluating the resulting quark determinant by a loop

expansion and including thereby only sccond-order field derivatives gives
then an expression corresponding to the linear o-model (see (53))

S?rr#__a__+
2k

*This type of interaction results from the (current X current) inferaction of quarks due to gluon
exchange after applying a Fierz transformation to color and Dirac indices. For simplicity, we shall
omit here vector and axial-vector channels and consider an uabroken flavour group SU(2), with

equal quark masses m(:: mg‘



132 VOLKOV M.K.

+ Tr {[pL,+ 201+ m*L) 1[(o — m)*+ ¢*1 = Ll(e — m)*+ p* 1}, (53"

Here 1 , and I, are divergent integrals regularized with a cut-off parameter A

(see (50)).

Now let us see how the Lagrangian (53’) changes when condensate gluon
fields are taken into account. Here the effect of gluon condensate corrections
will be calculated with an accuracy up to squared terms in the field strength

G,;(x). For evaluating the quark determinant with external fields we shall use

the «heat kernel» technique which has been proposed in papers [18,881].
Then, instead of (53°) we get*

2 0,2 2
G _ _pH(e—mt+m ) 1 G
£ = Tr { e (1 + 2= % )+
+ 20 +miL+ ———(1+ 2)11[(0 m)2+p?]—
2
— (iy+ 91—6%)[(0—-m)2+tp2 7, 117

where
=2 <% )?> e
x (/W) YT 4

Now let us determine physical quantities and model parameters. In order
that the Lagrangian (117) takes its usual form (with the standard coefficient

of the kinetic term) one should perform the following field renormalizations:

) " (118)

- cpoR p = =1
%a™ ga“f’ Poa = 8,P0r 8= 8, = 2(12+ 96 4
Then, from the requirement for terms linear in o to vanish we get a modified
«gap» equation

0 G* .
m=m+ 8ml, +xk-—. 19
; 1 6m
After renormalization of the meson fields we get for the square part of the

Lagrangian (117) determining the mass terms (omitting the field index R),

<G°G’G* >
*Higher ord f the form g°f  — &2 % ive 1 ial ibuti f
igher order terms of the form ,fabC G + ... give less essential contributions o

about several percent [89], and will therefore, be neglected. Note that proper-time regularized
integrals are replaced here by momentum cut-off regularized integrals l‘ , ]2.
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& .1 G ¢*
98 = - Z e (& - 81~ SN 9% + (4m)’(Ly+ e} =
0

— o™ 2 2
= -2 Tr @+ ¢%) — m? Tr &, (120

where in the last line of eq. (120) use of the gap equation (119) has been
made. We then get for the meson masses the known equations

0 — 121)
_2m <qg> Gell—-Mann — QOakes — Renner formula),
F 2

k14

U

m2= m? + 4m?.
ag 4

Here we have used the Goldberger — Treiman identity 8,= m/ F_ and the

expression for the total quark condensate <gg> which will be derived below
(see eq. (127)). The Goldberger — Treiman identity leads to the following
expression for the pion decay constant F_

= m*@r, + 5—2). (122)

Finally, the effective coupling constants of meson interactions can be read
off from the interaction terms

2
£a¢2= g,m Tr (op”),
) (123)
_ _ % 2 2

e = T F Tr (6°+ ¢%)°.
Thus, the form of meson interactions remains unchanged after the inclusion
of gluon condensate fields (see (55)). Only expression of the coupling
constant ga(g‘P) changes.

Until now we have not considered vector and axial-vector mesons. How-
ever, one should bare in mind that since axial-vector mesons do exist, non-
diagonal transitions of the typex - a, play an essential role in the NJL model

(see Sec.?).
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Then, (see (76)) the constituent quark mass is expressed

M 2 F :
m2= _4a 1 - _ M
12 M
al
2

; 2g
It is seen from (76) that1 — —Mu =0 and hence the minimal mass of the

4

a, meson equals M, = 2gpFn= \/TMP= 1.1 GeV, where in the last step the
1

1

KSFR relation has been used. This is just Weinberg’s relation. From this the
estimates m = 330 MeV and Z = 2 follow.

The value of the gluon condensate is taken from the data on the hadron
process ete” - hadrons (seeref. [90])

G*=2 <GAGL”> = [(410£80) MeV I (124)

Taking into account the additional renormalization constant Z due to x — a,
mixing, eq. (122) together with eq. (50) gives for F_

N, m* 2 m? 2
Fl= (In (A2 +) -1+ 2y e TGl 129
(2n)%Z AZ 6N m
Hence, using the values £, = 93 MeV, N = 3 and eq. (124) we find for the

parameter A the estimate

A =700 MeV.
Let us first calculate that part of the quark condensate <gg>' which does not

explicitly contain the gluon condensate G?

<Tg>'= Tr (—) = —4mI = — (200 MeV)?,
id —m

The gap equation (119) can be rewritten in terms of quark and gluon
condensates as

m=m —2x<qq> +6__<G;ch'1uv> =m -—21c<qq> (126)
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where we have introduced the notion of the total quark condensate <gg>
which includes also gluon condensate corrections,

_ N 1« <Gﬂ‘iG£"’ 3
<gg> = <gg>'-— e m = —(245 MeV)”. azmn

We see that this number is close to the standard value of the quark
condensate.

With egs. (121) and (126) we find the constant

-1_ mnFnz 2<Eq>
e (R

= 0.091 GeV2, k = 11 GeV ™2,

Finally, we can determine the current quark mass mo,
0 miF:/c _
m = p” =m + 2k <gg> = 5 MeV.

This is also a standard value. Thus, our model gives a reasonable self-
consistent ‘description of the most important model parameters and physical
quantities.

The above investigation shows that corrections due to the gluon conden-
sate which naturally arises in our QCD-motivated NJL model provide quite

reasonable results. In particular, the gluon condensate — <G/wGé"'> turns

out to contribute to various quantities, like for instance 8, F,, mand <qq>,

without changing thereby the form of meson mass formulae and interaction
terms in the effective meson Lagrangian. Thus, in the considered approxima-
tion the main effects of the gluon condensate are the decrease in the value of
"the low-energy cut-off scale A from 1.25 GeV to 700 MeV and the increase in
the coupling constant of the effective four-quark ineraction x from 5 to

11 GeV™2,

It has been argued in the literature that in models with a gluon conden-
sate a dynamical gluon mass could appear. For example, the authors of
ref. [91] presented a description of the gluon condensate based upon an ana-
logy to the Landau — Ginzburg theory of superconductivity. As a result of
that analysis they predicted a gluon mass of the order of 600 MeV. In our
approach, in the case of a massive gluon, we would have the relation
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= i 4—” At low energies one has Xi = 1, which leads to an estimate
4z 9 N M> 4
c G
2
M, = Ne=~ 440 MeV which is not too different from the above value.
Cc
The effect of the gluon condensate in nonlinear chiral Lagrangians was
studied in ref. [92] as well, particularly for estxmatmg its influence on the

low-energy coefficients. The coefficients of the G 2 terms obtained in their ex-
pressions for F, and in the quark condensate coincide with the coefficients of

the present paper. However, a definite advantage of the present approach is
the existence of an inherent mechanism for spontaneous breaking of chiral
symmetry and the appearance of constituent quarks and meson masses on the
basis of a simple effective four-quark interaction arising from gluon exchange.
In the above-mentioned paper the mechanism of spontaneous breaking of
chiral symmetry is brought in from outside by using additional assumptions.
Another essential difference between both approaches is that we cannot
neglect the quark condensate <gg>' since it is an important contribution of
the four-quark interaction caused by quantum fluctuations of the gluon field.
Finally, let us mention that our bosonization approach is in some sense com-
plementary to the more phenomenological approach of QCD sum rules [89].
Indeed, in our case composite hadrons arise as a result of two combined non-
perturbative effects: i) by the ladder summation of (soft) gluon-mediated
four-quark interactions and ii) the nonperturbative contributions of the quark
and gluon condensates.

Here we have shown how it is possible to take into account the G 2 gluon
corrections in NJL model. Let us remind that using the scale symmetry (see
sec.3 ) we can introduce gluon condensate into our model in a more common
method.
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