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MICROSCOPIC DESCRIPTION
OF LOW-LYING STATES
IN DEFORMED NUCLEI
WITH ROTATION-VIBRATION COUPLING

V.O.Nesterenko

Joint Institute for Nuclear Research, Dubna

The extended version of the Quasiparticle-Phonon Model (QPM) for even-cven, odd and odd-
odd deformed nuclei is presented. The main new point is taking into account the coupling of
rotational and vibrational degrees of freedom. Applications of the model for all three types of nuclei
are considered.

[peacrasneH pacuimpeHHbIR BAPUAHT KBA3M4ACTHUHO-BOHONNHOM Moaean (KDM) ans yetHo-
UYETHBIX, HCUETHBIX U HEYETHO-HEUCTHBIX A6POPMUPOBAHHBIX SACP, MABHOM 0COOEHHOCTLIO KOTO-
POIO ABJIETCH YUET CBY3N POTALMOHHBIX W BUOPaLMOtiHbIX CTeneneit caoBoanl. PaccMaTpusaloTey
NPUTOXKCHUY MOJIC/IH LN BCEX TPEX THIIOB YACD.

1. INTRODUCTION

The up-to-day status of investigation of low-lying states in deformed
nuclei requires the construction of a general microscopic model which would
include consistently such important ingredients of residual interaction as: the
rotational and vibrational degrees of freedom, the Coriolis mixing, the
coupling with even-even core excitations (for odd and odd-odd nuclei), the
pairing and, finally, the interaction between an external proton and neutron
in an odd-odd nucleus, which results in the Gallagher — Moszkowski splitting
and the Newby shift. It is very important also that the model would be able to
describe the properties of even-even, odd and odd-odd nuclei on the same
microscopic footing. Up to now, such a general microscopic model has not
been derived though some ingredients mentioned above have been incorpo-
rated into different microscopic models (see, e.g., refs. [1—8]). The QPM
[1—4,10,11 ] scems to be the most appropriate ground for this aim since just
the QPM is known to succeed in the description of the vibrational low-lying
states in a wide region of deformed even-even and odd nuclei [1—3,10—17].
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It is worth noting that in the QPM most of the model parameters are fixed at
the stage of calculations for even-even core. In this sense the calculations in
the QPM for even-even, odd and odd-odd nuclei are consistent.

Investigation of low-lying states in deformed nuclei within the QPM was
developed last time in the following directions: two-phonon components in
low-lying states of even-even nuclei, the Pauli principle effects, particle-
particle channel of residual interaction, high multipolarity states, magnetic
collective excitations and so on. These fields are described in the monograph
[2] and will not be presented here. The main aim of this paper is a further
extending of the QPM by taking into account rotational degrees of freedom
together with its coupling (through the Coriolis interaction) with vibrational
excitations. It is clear from very beginning that in deformed nuclei where
rotational and vibrational excitations are in many cases quite entangled, such
extending of the model should be very important for successful description of
low-lying states. Also, additional modifications (mainly for odd-odd nuclei)
providing the grounds for the calculation of the Gallagher — Moszkowski
splitting, Newby shift, mixing of neutron-proton configurations and some
others are proposed. The sketch of general microscopic scheme for description
of low-lying states in strictly deformed nuclei, which satisfies in large extent
the demands listed above, is given. In the framework of this scheme all
degrees of freedom are considered on the same microscopic footing. Such
extended model can be applied to even-even, odd and odd-odd deformed
nuclei. Description of the model is given in section 2.

A practical application of the general scheme presented here is not a
simple task. Rather sophisticated computer codes should be used. Now only
for odd nuclei the main ingredients of the model (the quasiparticle-phonon
and Coriolis interactions) arc taken into account simultancously in real
calculations [18—20]. So, only for this kind of nuclei the general scheme is
realized in large extent. In calculations for even-even and especially for odd-
odd nuclei truncated version of the general scheme, embracing only one of the
main ingredients, have been used up to now [1,2,4,13]. Nevertheless, we
present here the examples of calculations for these nuclei also since in spite of
simplified character of these calculations the results obtained seem to be
rather interesting from physical point of view.

As a first example we will consider in subsection 3.1 the nonadiabatic
behavior of E2(y - gr) transitions in 1665, discovered recently in the
Coulomb excitation reaction [21 ]. In the phenomenological two-rotor model
[22] this behavior is explained by the coupling between the y and ground

bands through the K™ = 1% state interpreted as a «scissors» mode [23]. The
Coriolis interaction is considered as the main (but not the single) physical
origin of this coupling. We will show that in the framework of the RPA the
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Coriolis coupling between the ground and 1V states vanishes completely if the
rotational invariance of the Hamiltonian is restored [24 1. This effect was not
mentioned before in spite of the intensive investigation of the «scissors» mode

for a long time. So, the ground and 1 states represent a unique example of
the states with the same parity and AK = 1, which are not mixed by the
Coriolis interaction in the framework of the familiar RPA. Under some special
conditions, e.g. in the case of nuclear triaxiality, the Coriolis mixing appears
again. So, the physical interpretation of the phenomenclogical description
[22 ]is not trivial and needs careful analysis.

The second example presented in subsection 3.2 concerns odd nuclei. It
will be shown that even very small (about 1%) octupole admixtures in wave
functions of odd nuclei can influence very much El transitions between low-
lying states. This is a challenge to numerous calculations of reduced pro-
babilities B(E1) where only pairing and Coriolis mixing were taken into
account (the main motivation for neglecting vibrational admixtures in such
calculations was just their small magnitude). Also, it is demonstrated that in
some expressive cases only the interplay of the quasiparticle-phonon and
Coriolis interactions can explain experimental data [18,19].

In subsection 3.3 the calculations for low-lying states of '®Ho are
presented where the coupling of external nucleons with core vibrations is
allowed for [8,9]. It turns out that low-lying states contain vibrational
components whose magnitudes are sufficiently large to influence strongly
reduced probabilities of electrical transitions. It means that, like odd nuclei,
the traditional approach for calculations of B(EA) values in odd-odd nuclei
where only pairing and Coriolis coupling are taken into account should be
revised.

2. THE MODEL

2.1. The Hamiltonian. The Hamiltonian of the model is written as a sum
of the rotational, intrinsic and Coriolis interaction terms:

H=H +H +H (0
rot intr cor
where
R -2 @
rot ~ 2J G 3)’ )

=TT, @

cor
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In egs. (2)—(3) I* and j* are the shift operators of the total and intrinsic
angular moments, respectively; K is the projection of the angular momentum
onto the axis z; J is the moment of inertia.

In accordance with [1,2,4,9)

H =H +H . +H @

intr sp pair mm ’

where HSp is a single-particle potential,

= - T Lt
Hpair - Z z Gr a, 4 aq - aq - aqf s (&)

T g4, ! 1 2
is a monopole pairing and

H  =-1/2 ;42 2 (I\()’“) +11'K (}‘”))Q(T)Qgt o ®
{1t

is an isoscalar and isovector intcraction. In this paper the latter is taken in the
form of multipolc-multipole forces except for the special case of consideration
of the Gallagher — Moszkowski splitting and Newby shift where a spin-spin
forces are used. The use of a spin-multipole residual interaction for the
description of magnetic type excitations in deformed nuclei is considered in
[2 ]1and is not presented here. The multipole operator in (6) is written as

“x
I A Vi AR 0
qur ' q,

where (g, |/,’\}‘“ | g,) is the single-particle matrix clement for the operator

z ) (48, 07! ®)

with unspecified radial dependencc R(r). In exps. (5)—(7) tis equal to—1 and
+1 for neutron and proton systems, respectively; ag(aa) is the particle creation

"= RO (Y, + (=DM,

(annihilation operator for the single-particle state §; § = go, K = Ko} i = uo,
u = 0; o = = 1 characterizes the symmetry with respect to the time reversal

operation; G_is the pairing strength constant; /cgl") and x(lj‘“) are the strength
constants of isoscalar and isovector interaction, respectively.

Using the RPA equations for one-phonon excitations of the even-even
core the intrinsic Hamiltonian (4) can be transformed to the form:

- ph pair
H  =H, Q+HQB+H +Hy, 9

where
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xg'

generates quasiparticle and phonon excitations,

HP“=—1/422 > rgf;hq(r) (QT+Q ) B(ga — &) +he] (D
T gqqZEI

is the quasiparticle-phonon interaction in the particle-hole channel (just this
interaction couples the quasiparticle excitations of external nucleons in odd
and odd-odd nuclei with the phonon vibrations of the even-even core as well
as multiphonon configurations differing from each other by one phonon in
even-cven nuclei),

Hpalr Z 2 Z [ pair(+)(r)Q;0i + r.pair(_)(T)on,-) B(qqu;O) + h.c.]

! i
T i 9,9, ct 9,9, 9,9, 2
is the pairing quasiparticle-phonon interaction and
Hpp=—1/2 }; > (kglﬂ) + n’xg'l")) X
MO
X Fzgqu 7 (’)B(qlqz,ﬁ) B(q'\q'y — i) (13)

is the so-called «scattering» interaction. In the case of spin-spin residual
forces just this interaction is responsible for the Gallagher — Moszkowski
splitting and the Newby shift [8,9].

In (10)—(13) the following notation is used: € is the energy of the one-
quasiparticle state g;

=1/2 E ('/’qqAT(Q ap ) — ¢qqA(qlq2, @) 14)

I 2
is the creation operator of one-phonon state g= go = Auio, where i is the

number of one-phonon state with given Au; "l’g 7 and ¢f g are forward and
172

backward amplitudes of two-quasiparticle component 4,4y two-quasiparticle

operators AT(qlqz; i) and B(qlqz; i) are of the form
Al (g0, /0) = S — > o, - _alale (15)
+

and
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B(g,9:; )= X 9 aqila ~ 6 (16)

T T o~ — — —g *
Pt K|+K2"“ q, —o,—0,
172
where 6_ _ =1-3_ 0, . The expressions for the functions VS
979 % 2’ 9,9,
£ x 8 ‘i’,g th rpair(+) Fpair(—) dFBB hich
, 7), I} 7), I 7) an . . (r) which are
yqlqz’ LA ga,gz( ): iq,q, @, iq,a, ®© Arq,4,9' 9 2( )

determined after solving the RPA equations are given in the Appendix.
2.2. Wave Functions for Even-Even, Odd and Odd-Odd Nuclei. The wave
function of the Hamiltonian (1) has the form

| 17Mp) = 3 % | 1" MKv), an
Kv
where b:’l’\, are the Coriolis mixing coefficients; M and K are’the angular
momentum projections in the laboratory and intrinsic systems, respectively;
p and v are additional quantum numbers. Further [25],
20 + 1

162(1 + 8, )

3 ! 14Kl

| 1"MKv) = Dy + (= D)7T0Dy,_ R)W (K™, (18)
where ¥ (K ™) is the eigenvector of H, .+ R, is the operator of rotation by an
angle x around the second intrinsic axis.

In this paper the intrinsic wave function for even-even nucleus is written
as a one-phonon state

X = of
W (K™) = O gpa (19)

though the two-phonon version [2,26] (or the multiphonon one [27]) of the
wave function may also be used. The case when the wave function of even-
even nucleus contains both one- and two-phonon components is described in
detail in [2 } and is not considered here.

In an odd nucleus the intrinsic wave function has the form [1,2,4]

Y = L Y § VoS ol ot 20)
lpv (K ) { ; qu 6K|-K aql ¥ ?]Z Dq|g16K| +ﬁ|‘K aql le} I >RPA | )q,
1 171

where Cq" and Dq‘"g are amplitudes of one-quasiparticle and quasipar-
1 171

ticle ® phonon components, respectively; |)gn, and | )q are the RPA
(QEI Jrpa = 0) and quasiparticle (aq~| )q = () vacuum; v is the number of the
state with given K ™.

In an odd-odd nucleus the intrinsic wave function is {4,8,9]
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_ tie %
v, (K™) = { > C;l";l AJ(S 1K)+
slrl
K" t (7% t 5~ -
+~~2~ k,u Dsl;lgI Ayl (slrlKl) Q§| 6Kl+ﬁ,l(} l >RPA | >q ’ 2D
SNEY )
where 0
P SF kY= — 't o ts. . K
b T = e 5 7 R R K g, @2
K,0
and
K _ -1/2 K _ X :
k,4 =1+ 61(,0 (- (5/1‘0)) y kV”s"r =1-(+y) 61(,0 éos,_l 60”+l . (23)

Here, Cs"’; and D;”; ¢ are amplitudes of neutron-proton and neutron-proton
[ ] 1™

® phonon components, respectively. For K = 0 the function (21) depends on
y = * | which is eigenvalue of the operator R, In this case the condition

y=(— 1)1 takes place |25 1. The coefficients k/’f and k)]:w are introduced to

provide the simple form of the normalization condition for the wave function
20 [8,9].

~ After solving the RPA equations for the even-even core the phonon basis
is used for the construction of the states (20)—(21). The energies and struc-
ture of the intrinsic states (20)—(21) are calculated by the variation method
with keeping the normalization condition for the states. It should be noted
that all the parameters of the model are fixed after solving the RPA equations.

If a wave function includes a complex components like two-phonon — in
even-even nuclei, quasiparticle ® phonon — in odd nuclei and neutron-
proton ® phonon — in odd-odd nuclei we should take into account the Pauli
principle. This problem was considered for even-even and odd nuclei in ref.
[2,3,10,27]. In [27] it was shown for even-even nuclei that taking into
account multiphonon configurations (three-phonon and so on) decreases in
large extent the excitation energy shifts caused by the Pauli principle effects.
For the sake of brevity we do not present here the corresponding formalism.

2.3. Final Expressions of the Model. The RPA equations for one-phonon
excitation in even-even nuclei are given in the Appendix. Below we present the
final expressions for determining wave functions and excitation energies in
odd and odd-odd nuclei. These expressions are derived in the framework of
the variation procedure [1—3,8,9]. Since we do not discuss in this paper the
Pauli principle effects, the corresponding corrections are omitted.

For odd nuclei the amplitudes Cq” and D q';, of the wave function (20) are
found from the system of equations
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r @r, .()
Y 1 89,9 £4,9 3

E, Ctl’ (eq =1, 60,(1' T4 2 e tw —7 =0, 24

q q, g v

8,
v o_ _ -1 l v
Dpe=(egtw,=m)) 3 ; Co Tear™ 25)
and the secular equation for determination of the excitation energy 7, is

ng,a(r) ng,q’(r)

1
det "(sq ~1)8, .~ % > : Yo -7 Il =o0. (26)
&g, q g v

For odd-odd nuclei the corresponding equations are

Z’ c.r {-(es +e, + (rs| Voo I rs)oy = 1,) Oy o —
sr

1 2 gsslrr| gs’slr’rI 0 an
4 gs,ry’ 8s.+ er.+ rysy | Vap ‘ rlsl>.“)'+ “e~ 77")’} ’
Voo gyt 4
Dsrg = (e, + e, + (rs| Vnp | rs)#y+ w, nw) 7 2 C,h ngs,rr, (28)
sr
and
det H(es+ €, + <rs I Vup I rs)oy - 771:) 6sr,s’r‘ -
r. .
1 gsslrrl 85 Slr rl ”
_ 1 2 =90, 2%
Yosry & et R T
where
gss rr, I‘gssl t=-D 6r‘r|+ Fgrrl =+ as's' . o

ot

In- (27)—(29) only diagonal matrix elements of n—p interaction

(rs| Vip | rs) ey ATC taken into account. These matrix elements are discussed in

the subsection 2.5. Except for the n—p interaction terms final equations for

odd and odd-odd nuclei are quite similar. The expression for ngq (r) is given
1

in the Appendix.
2.4. EA Transition Probabilities. The reduced probability of FA transition
between states (17) is written as [25 ]

B(EA, I~ 1p’f' =1/@2+1) | (1p’f' IEL 1) | 2 a3hH

where the reduced matrix element has the form
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, S o I's"
(BT =v2r+ 1 3 bk 62 x
KvK'v'

X{UKAK' = K| I'K') (B,(K' ™) M(EA, 1 = K' — K) W (K™)) +
DU KK K| TR (K™ )YMEL = K+ K)W (K ) )
The intrinsic matrix element (¥ (K’ ”')IC!(E/I,M =K'xK)W (K™)is
calculated using the operator for EA transition [2,10]

> Ei e - e 2
M(EAi) = ; L, (Q£+Q_:) +qu pq|q2 vfllq)2 B(q,q,; 1) + 2 § pi’qvq. 33
172

Here

£
+ ¢"."z) : 34

EA_ 77 s T +) (,,8
Lg =V(l + 6;4,0)/4 E pqx“lz uglq)z (waqz
99,

is the matrix element of EA the transition between the one-phonon state (19)

and the ground state; v(¥) =u u *v v and ¥ =u v *xv u ,u
& a9, Tee, T e, 949, 4,9, 9,4 "¢

and v, are the Bogolubov transformation cocfficients; 1’2“(]
172

is the single-
particle matrix element for the operator of E1 transition:

ey _ T _ ¢ _l

p= eeeff'l(y/l,‘ LG VAR AT ¢ t3,0 (35

where the effective charge "’fo =(l+71)/2 + ¢ 18 fitted so as to reproduce
the experimental B(EX) values in the even-even core.

The first term in exp. (33) is responsible for the EA transitions between
the states (or components of the states) which differ from each other by one
phonon. This term determines the transitions between the ground and one-
phonon states in even-even core and the collective part of the interband EA
transitions in odd and odd-odd nuclei. The second term in (33) determines
EXA transitions between the wave function components with the same number
of quasiparticles (phonons). This term plays the main role in interband
transitions in odd and odd-odd nuclei if vibrational admixtures of wave
functions can be neglected. The third term in (33) is responsible for the
intraband transitions. Just this term determines the quadrupole moment of
nucleus.

The intrinsic matrix elements for odd and odd-odd nuclei are, respec-
tively,
N — ANy v~V (=) ~Au
W, (K" )M ELpu=K KW (K™) = qzq ClCp Yoy’ Do +
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EA v oY v » v (=) =he
+ 2;: L&m Z (Cfl' Dq g + Dq g Cq) + E 2 Dqlg, Dq’lgl Vqlq'l pqlq’l (36)

and R
(¥, (K'"YM(EAu=K +K)W, (K)=

= 3 CICT VDB, + VD B8 )kl +
ss'rr’

+2 Lff‘ E (€7D + DY C) +

srg

+ X3 2D ,Ylu T s v s ) kPP (37)

srg rr Py 5,8’ )Y
ss'rr’ 8, yy 1

Expressions for the coefficients kcg and kD . are given in the Appendix. The
single-particle matrix element p :‘;f of operator (35) is of the same form as

the matrix element f;qf‘ whose expression is also given in the Appendix.

2.5. Gallagher-Moszkowski Splitting (GMS) and Newby Shift (NS). Itis
well known that the GMS and NS in odd-odd nucleus are caused by the spin-
spin part of interaction between external neutron and proton. Let us consider
the neutron-proton part of the interaction (13) for the case of spin-spin
residual forces. It is easy to show that the GMS and NS are implicity involved
in the equations for the intrinsic excitations of odd-odd nuclei just due to this
term [8,9 ]. So, for odd-odd nuclei this term (denoted as Vnp) should be taken

into account in addition to the quasiparticle-phonon interaction.

The expressions for the Gallagher — Moszkowski splitting and Newby
shift can be extracted from the secular equation (29) if the long-range

residual interaction, except for V, , is neglected (I‘g{;1 )= Fpa'r( )@) = 0).
172

Then for general case of v, 0 to be hermitian and invariant under ume reversal
the secular equation (29) can be written as [8,9]

nvy=es+er+(rs|Vnp|rs)0y=es+sr— (r+s— |r—s+)+

K, o’ ' np

2.2
Pk (04 s+ [Vl rts 00 e D) -

2 2 2 2
—{r—s+ | "p|r-—s+)(vrus+urvs))+

+6‘K_KI’K((r+s— | v

2.2 2.2
np|r+s—)(u Ut v, Vo) —

—(r—s— |V Ir—s—)(v u +u2v2)) (38

np
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Using the connection y = (— 1)] we finally obtain the well-known expression
for the Gallagher — Moszkowski splitting energy, corresponding to the case
of the independent quasiparticles:

AE = ”wale—K’I,K_ ”VyaKs+K’,K ={r+s— | Vnp | r+s-—)—
I+1
—rts+ |V lrds )40, 0 ()T ks |V, [r-s+). (39
The last term in (39) is connected with the Newby shift:

AE =2r+s— | r—s+). (40)

K=0=’7vy=—l _ﬂvy=+l np’

Expressions (38) —(40) were derived for a general case of v, - The same
kind of spin splitting should be in even-even nuclei also. If neutron-proton
interaction is approximated by exp.(13) with spin-spin forces, the expressi-

ons for the energy splitting between two-quasiparticle configurations with
parallel and antiparallel spins has especially simple form:
_ _=10 10
AE = K o0 pqq gzqzqz 41
for two-quasiparticle state 4,4, in even-even nucleus and

_ o, ~10 10 10
AE = +k, 0,00, 9, (42)

for neutron-proton state sr in odd-odd nucleus. In (41)—(42) /?llo is the
strength constant of isovector spin-spin interaction with multipolarity
Au = 10 (this strength constant is negative) ; p;so is a diagonal single-particle

matrix element for the Pauli matrix operator; ¢ values are defined here as
signs of K projections (do not confuse them with signs of spin projections!).
The calculations for rare-earth even-even nuclei [28 ] have shown that
expression (41) well reproduces the Gallagher rule for even-even nuclei. This
rule states that two-quasiparticle configuration has lower excitation energy if
spins of quasiparticles are antiparallel as compared with the case of parallel
spins.

2.6. Coriolis Interaction Matrix Elements. The general expression (for
even-even, odd and odd-odd nuclei) for the Coriolis matrix element is

h2

S mram 27 %

X8 k1 VIH8 o VU+K) I =K+ 1) (W, (K'™) || W, (K™) +

<|1'”M’K'V’|H

cor

| I"MKv) =

0 ki VI+0, VUK T+ K+ 1) (¥, (K™ |j* | W, (k™) +

+ —_
I1+1/2 , ; 1
+ (=D Ok1/2%K 12 (W, (K™ —-)|,+|\pv(1<"=—2 )} 43)
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In the most simple case of one-phonon excitations (19) in even-even
nuclei the intrinsic matrix element (W, (K' ™) | j* | W, (K ”)) is written as

gt st 2lv 21y
(K - 1 |] l >RPA R."A< | Q2lv] l >RPA 2 "q 4, q q2 q q2+ ¢qlq2)

449

for the coupling between the ground and l: bands and
| st N + 1 _
<K v |J l K;: ) - RPA( l QA"u'v' J Q},ul' | )RPA -

\ + + YR YT
=g ket 2 JpoVe 2 L1y ) (L4 6y 1) 49
9,24,

for the coupling between bands with one-phonon band heads (the y and 1:

bands, octupole bands and so on). In (44), (45) the boson (~ a; v a; . ) and
: B 22

fermion (~ a;fo aqu) parts of the operator j¥ are taken into account,
I 1 22

respectively; j 04 is the single-particle matrix ¢lement for this operator.
172

It is easy to sec that the well-known condition of restoration of the
rotational invariance in even-cven nuclei

+ + — + _
a, A Yrea = rpAl | Q! | Yrpa =0 (46)
in the intrinsic system can be written as
+ 4+ - + _
1 Drpa = geall Qo7 Dirpa =05 “Dn

since in this case only the intrinsic part of the total momentum operator affects
the RPA wave functions. As a result, exp. (47) for the Coriolis matrix element
has the same form as the relation of the orthogonality of the RPA wave
function with respect to the spurious state in ref. [29]. Exp. (47) leads to
important consequence: if in the RPA calculations the rotational invariance is
restored correctly, the Coriolis interaction between the ground band and the

K" = 1: bands should be exactly zero. For the case of two-quasiparticle
states (without a residual interaction) the similar result has been obtained in
ref. [30}. So, in the framework of the RPA the ground band has no the

Coriolis coupling with any other band. It should be noted that under some
special conditions (for example, a triaxiality of nucleus) the Coriolis coupling

of the ground band with K™ = l: bands appears again.
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The intrinsic matrix elements of the Coriolis interaction for odd and odd-
odd nuclei are respectively:

(P, (K|, (K™) =

(+) it vy
ZC c +§q§ D/ Dqquq qu‘, (48)

and
WK™ |, (K= 3 €7 L 6D T, 4+ v T s, ) kS +
vy o57)

rr
ss'rr’

> > > "Nt +) T+ pp (49
¥ rr ' Dsrg" srgl ( ( )JSS'a +V£r)1rr 6ss)k)f)’1
ss'rr’ g vy,

Note that terms of C”- D" type are absent in (48),(49). This is the case if we
take into account the rotational invariance of the Hamiltonian (see above the
comment for even-even nuclei) and neglect the Pauli principle effects.

In [31 }it has been shown that vibrational admixtures in wave functions of
odd deformed nuclei can be the main reason of the well-known atienuation of
the Coriolis coupling matrix elements. Indeed, vibrational admixtures in wave

function of odd nucleus (20) decrease the absolute values of amplitudes C; of

one-quasiparticle configurations. As a result, if heads of two rotational bands
can be approximated by one-quasiparticle configurations g, and ¢, we can

easy get in first approximation the following attenuation coefficient {caused
by vibrational admixtures only!) for the Coriolis coupling between these
bands:

att __ 1'|' vz
k"lqz = qu qu . (610)]

In section 4 this coefficient will be used for estimation of the Coriolis
attenuation in odd Eu and Tb isotopes. It is clear that similar attenuation
coefficient should take place for odd-odd nuclei also.

3. NONADIABATIC BEHAVIOR
OF E2(y -» gr) TRANSITIONS IN '6gr

An almost complete set of reduced £2 matrix elements for the ground and

y bands up to spin 14 and 12* , respectively, has recently been measured for

8Er in a Coulomb excitation experiment [21]. In total, 44 E2 matrix ele-
ments have been determined in a model-independent way. Some of them
clearly show a non-adiabatic behavior (deviation from the Alaga rule). Calcu-
lations of the £2 matrix elements were performed [21 ] within four collective
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Fig.1. The experimental and calcu-
0.6 I T I I I lated values {21] olfﬁtbhe Iy-» (1—2)gr

matrix elements in  Er. The calcu-
lations were performed within the
symmetric rotor model (sym), the
asymmetric rotor model [32]
(y = 10° and 12.7°, respectively),
the rotation-vibration model {33]
(rvmn! and rvm2), the IBA-1 model
[34] (iba) and a two-rotor model
[22] (tr). The adiabatic behavior
. e corresponds to the results of the
» \!.. T . 100 symmetric rotor model

<
o~
]

o
N
|
.
P
s
Hal
]

N models: the symmetrical
.. “.ovml | rotor model, the asymmetric
W\ , rotor model [32}, the rota-
| _MN__ __| tion-vibration model (331,
0.0 N and the IBA-1 model [34]. It
T has been shown that both

' vm2 | the y deformation and rota-

I { | | | tion-vibration coupling may
2 4 6 8 10 be responsible for the strong
slope in the Iy - (I - 2)gr

< T IE211-2> (eb)

transitions (see figurc |1
‘ taken from ref. [21 ]). How-
ever, these models failed in explaining the sudden increase of the E2 matrix

element of the 10;' - 8;’ transition.

The Dubna group has previously succeeded in describing the nonadia-
batic effects of the E2 transitions between the y and ground bands (hereafter
denoted as E2(y = gr)) in the framework of the two-rotor [22] and Coriolis
coupling {35 ] phenomenological models. In both models the coupling between

the y and ground bands takes place due to the 17 state interpreted as a
«scissors» mode [23]. In the latter model the Coriolis interaction is
considered as the origin of this coupling. Both the models use the band head
energies, moments of inertia, the band coupling matrix elements as well as
some basic E2 matrix elements as parameters fitted so as to reproduce the
experimental data for the spectrum and electromagnetic transitions. In some
sense the models take into account, through these parameters, the y
deformation. Figure 1 shows that the calculations [22] give a satisfactory
description of the experimental data for 166
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The main idea of the model [35], i.e. the Coriolis coupling between the y

and ground bands through one 1+ state, seems (o be attractive. However, the
energy excitation interval 2—5 MeV embracing the «scissors» mode includes
a large number of 1% states. So it is worth to perform a microscopic study of
the role of the Coriolis coupling in the nonadiabatic behavior of the
E2(y - gr)) transitions taking into account all the 17V states in this energy
interval and not using any free parameters. The y deformation is not taken
into account since this would result in rather cumbersome calculations. It is
worth noting that although the «scissors» mode has been investigated very
carefully (see the review [36 ] and refs. therein) the problem discussed here
has not been considered on a microscopic footing.

The RPA calculations have been performed within the model described in
the previous section. The intrinsic Hamiltonian (4) includes the Woods —
Saxon single-particle potential as a sum of the spherical and quadrupole parts

Hy, = VOX(r) + VA v, 6, 9), D

the monopole pairing and the quadrupole isoscalar and isovector interaction
with Ay = 22 and 21 [2,10].

The reduced matrix element (32) for the E2 transition between the y and
ground bands can be written as

(2|1 = V2 + 1 (M(E2) o, * M(ED) . + M(E2)), (5D

where
_ _5_ I’ IY I’Kp lg, lr lg’l

M(E2)Qo =V Tom e Oy _2 byb, Cl,?pﬂo + ; b bl C l;20}, (53)

p=gry v=l v v Yy

_ B2l 0, 10 L 1
M(E2)1+ - ‘/721 Ll: {bgr bl: Clyl;z—l bl: by ClyO;Zl}’ (54

_ B2, 1, 1, 1.0 Ly 0, 12

M(ED), = VI 1! {bgr b, clym_2 +bo by clyo;zz}. (55)

In exp. (53) Q0 is the quadrupole moment calculated in the microscopic way
(see subsection 2.4),
In the calculations the y-vibrational K™ = 2* stateand 30 K™ = 1 RPA

states (all 1% states with excitation energies up to § MeV) have been taken
into account. Without going into details of calculations which can be found in
~[24 ] let us consider the most delicate point of the task — determination of the

isoscalar strength constant x(()ZI) which is known to be connected with the

problem of extraction of the spurious admixtures caused by the violation of
the rotation invariance of the Hamiltonian. There are different prescriptions
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for the extraction of the spurious admixtures (see, for example,
[29,30,37,38 ). We used the method proposed in ref. [37 ] which seems to be
most simple.and convenient if the single-particle potential has the form 3.
It is easy to show that in this case the restoration of the rotational invariance
leads just to the Au = 21 residual interaction with the radial dependence

2
R, (r) = VA(r). (56)
Indeed, for a single-particle potential of the form ‘
Hy=-V, 2 F© Y6 ¢) 57
1=0,2,4,...
we have
AR+ 1
H 1, 1= —vV, > Ad+ 1) 3 )Fl(r) Y, (6, ¢) (58)
A=0,2,4,.v==1

and the rotational invariance violated by the single-particle potential (57) can
be restored by the quadrupole residual interaction with radial dependence
(56). The isoscalar strength constant should be adjusted so as to put the first
solution of the secular equation for 17 states to be zero. For the generalization
of this method to the case of both isoscalar and isovector interactions we
followed the prescription of ref. [38]. In accordance with [38 ] the Au = 21
residual interaction is written as

- _ 2Ht A
Hyo=—1/2 3 $90},0,, 59
T=0,1
where ézl = Q,, +0; and Q,, — Q] for T = 0 and 1, respectively, and
(11Q, 1,1
y=——a (60)
(11, 111

Then, the isoscalar and isovector interactions are decoupled and the strength
constant of the isovector interaction can be fitted so as to reproduce the energy
of the isovector giant quadrupole resonance. In this case we have
k) = — 15k,

The Coriolis matrix elements we need for the calculations have the form
(44)—(45). If in the RPA calculations the rotational invariance is restored
correctly, the Coriolis interaction between the ground band and the

K™= 1: bands should be exactly zero. For the case of two-quasiparticle
states (without a residual interaction) the similar result has been obtained in
ref. [30]. So, in the framework of this approach the 1: bands are coupled by
the Coriolis interaction with the y band only. The ground band is coupled
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neither with the y band nor with the 1: bands. In this case, M(EZ)Q =0,
0
whereas M(E'2)1+ and M(EZ)Y contain the first terms only and the influence

of the Coriolis coupling should be rather weak, which is confirmed by our
calculations presented below. To switch on the coupling of the ground band
with the 1: and y band, it is necessary to gencralize the approach by, c.g.,
taking into account y deformation [32 ].

Let us consider the results of the calculations. In table 1 the largest
Coriolis mixing coefficients for the y band are given. The mixing with the 1:
states is shown to be noticeable both for the low-lying and high-lying (the
«scissors» mode region) states.

Table 1. Coriolis Mixing Coefficients for the y Band

¥ 1} 1 N

+ + +
1 7 L] il ll7 122 1

23 4

~.0277 |-.0137 |-.0076 |-.01i6 |.007! -.0066 |.0063 -.0127 1.9992
—.0426 [-.0212 |-0118 {-.0180 |.0109 —.0108  1.0097 —.0181 1.9981
—.0554 |-.0276 [-.0153 1-.0234 |.0142 -.0137 1.0127 -.0236 {.9968
-.0667 |~0334 |-0185 {-.0283 ].0172 -.0165 |.0153 —.0285 |.9953
—.0768 |-.0386 |-.0214 {-.0327 |.0199 -.0191 |.0177 -.0330 |.9938
—.0860 |—.0433 |-.0241 1-.0368 |.0223 -.0215 |.0199 -.0371 ].9922
—.0942 |-.0476 |-.0265 |-.0405 |.0246 —.0236 |.0219 —.0408 |.9906
9 |-.1017 [-.0516 |-.0287 [-.0439 [.0266 -.0256 |.0238 ~.0443 |.9889
10 |—.1085 |-.0552 [-.0307 |-.0470 |.0285 —.0274 |.0255 —-.0475. |.9873
11 1-.1147 1-.0586 [—.0326 |-.0499 |.0303 —.0292 [.0271 —.0504 1.9858
12 11205 |-.0618 |-.0344 |-.0526 |.0319 |-.0307 |.0286 —.0532 |.9842

20 |~ (O (G b W I

It is interesting to compare the collectivity of the l: states from the low-
energy and «scissors» mode regions. For this aim the B(E2, 0+Ogr - 2+KV)

values and the structure of the lowest 17 state, two most collective 1" states
from the «scissors» mode region and the y vibrational state are-presented in

table 2. It is seen that in both regions there are quite collective 1 states.
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Table 2. Calculated Excitation Energies (MeV), Reduced Transition
Probabilities B(E2, 0+0gr—> 2*K ) (Wu) and Main Two-Qiasiparticle

Components of the K7 =2, 11,1 and 1), States

K The main % IQ' The main %
Ev two-quasiparticle E two-quasiparticle
v components v components
B(E2)} B(E2)? ‘
2;‘ nns523 4 -521} 30 1:’| nnS32 | -521} 20
0.786 ppall t+411) 28 3.66 ppd021-41t 4 16
2 nn5234+521) 16 (3 nn514 45124 16
ppal3|-411} 6 ) nn523 4532 10
I nn633 1-6421% 71 N nnd21 4-5101% 58
1 23
181 pp5144-5231 9 4.55 nn$124-521 9
55 nnS124-521 4% 8 0'75 nnS23{-512} 8
) nn6241-6334 2 ’ ppdll $-4201 5
25 prorrrrrrrrTErTTTTT—— The correlation between the
%3? 20 1 collectivity of the 1: states and the
= Coriolis matrix elements (45) is
P - . -
+a 15 ] demonstrated in figure 2. The larger
f 10 E i the collectivity of the 1t band
o E { head, the stronger the Coriolis
‘2’ 5t ' ' . I 1 coupling between this band and the
= bl A A1} § » band. Indeed, this should be the
Qj l i casesince according to equation (45)
=5 F 1 the coupling takes place only if the
-10 F— Y e el 1* state and the y vibrational state
2 SE(Mev)* ° contain identical quasiparticles in
1.0 [ e , their structures. This is most prob-
r 1 able for the collective state and
1 table 2 confirms this assertion. On
| | g r the other hand, this correlation
00 l I R m ] clearly shows the importance of the
= residual interaction for description
I of the Coriolis coupling of 1:
w10 excitations with other states.
~ -
] Fig.2. The calculated reduced E2 matrix ele-
PN S o L ] ments (07 {|M(£2) ||1.}) and Coriolis coup-

2 8 E(MeV) 4 S ling matrix elements (2; Ii* 1)) in 166p,
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It should be also noted that the signs of the reduced E2 matrix elements
(O;r IM(E2) ||17) and of the Coriolis coupling matrix elements (2; 7L
are mainly positive and negative, respectively, which means that the
contribution of the 1: states to the matrix element of equation (45) is quite

coherent. This favors the nonadiabatic effects caused by coupling with the
1: states.

The results of the microscopic calculations of the reduced E2 matrix
clements for the Iy -~ 2)gr transitions in '%®Er as well as the experimental

data {21 ] are shown in figure 3. The figure also includes calculations in the
adiabatic approximation, i.e. without any Coriolis coupling. The microscopic
calculations are performed with two values of the effective charge in the
matrix element M(E2)1+: e = 0.02 and 0.3 (in matrix elements M(EZ)Q0

and M(E2)y we keep e, = 0.02 in both cases). The value e = 0.3 was used

to demonstrate the extremal case of very collective 17 states. As is seen from
figure 3, the calculations do not reproduce the deep minimum in the
experimental data. So, the conventional (without y deformation) Coriolis
interaction obtained within the familiar RPA cannot account for the
nonadiabatic behavior. It is necessary to take into account other effects like y
deformation. The y deformation results in a mixing of the ground and y bands
and the corresponding enhancement of the Coriolis coupling should improve
the description of the experimental data [21 ]. Such investigations are now in
progress.

Since the main physical mechanism (Coriolis interaction) usually
responsible for the AK =1

coupling is suppressed for the R
ground and 1t bands, these two - E
bands can be used for investiga- & 06} e
tion of more delicate effects 7
(manifestation of y deformation, E\‘;’ 05 ¢ /"
E »
etc.). | 3 e
Z 04F L
a  f
Fig.3. The reduced £2 matrix elements for E 03¢E §
the I > (/-2) transitions in '®Er:0 — TR 3
Y 8 = E $
experimental data, ® — adiabatic calcula- =~ 02t H
tions, — nonadiabatic calculations with
eff=0.02‘*—nonadiabmiccalculalions 0.1 .11 ........ dite st
© o 5 10 15 20
with € = 0.3 (see the text) I
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4. E1 TRANSITIONS IN ODD NUCLEL
INTERPLAY BETWEEN CORIOLIS INTERACTION
AND COUPLING WITH CORE VIBRATIONS

The most wide and complete application of the model derived in the sect.2
takes place for odd nuclei. In this section two expressive examples of
competition between the Coriolis interaction and coupling with core vibrations
are analyzed.

The El transitions between the members of the 5/2° [532] rotational
band and the members of the 5/2° (413 and 3/2% 1411 ] bands in 153,155,
and 31°7Tb are of special interest because they have strong fluctuations
amounting to two orders of magnitude. The models taking into account only
the pairing and the Coriolis mixing, ¢.g. the nonadiabatic rotational model

Y cunnnn AR : VR S T T T — T T T —
0} 5427 l5321 -5/2° [1.131\ 10 5/2‘[5321 - 32 {ml
e | . i L
10 10
0
o
“16°F 3 3 19’ 3 1
w
fs1]
Iy 1535\‘I
16’_ t g a Y55y o o
t 4 a "S57p
T i o "y |
Exp NRM QPM-NRM Exp NRM QPM ¢ NRM
16" 16*

N o Nl A . s ' oA s N R "
5/2° T N 72 W2 712’I w2 s w2 st omrt wr st ne

.-

Fig.4. The reduced probabmues of El transitions between the mcmbers of the 5/27{532] band
and the 5/2° [413] and 3/2* [411] bands in 1531556, and 1551571y, calculated within the NRM
and the present model labeled as the QPM + NRM
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Table 3. The Calculated Energies and Structure
of Low-Lying Nonrotational States in 153gy

K* Energy, keV Structure
Exp. Calc.
5/2* 0 0 | 413] |94 Al +Qy, 13%, 523t +Q,,, 102%
5320 +Qy, |01% |[541t+@,,, [003%
5/7 97 69 5321 929 4111 +Qy,, 10.8%, [4131+Q,,, |0.1%

4021 +Q,,, |03%
3/2* | 103 96 | 411t [86% |4111+Q,, [6%., |5231+4Q,,, |4%.
5321 +Q,,, |06% 541140, [0-2%
3/27 | 637 448 | 541t |84%  [5501+Q,,, |5%. |4201+Qy,, |1.7%,

4220 +Q,, |17 4111 +Q,,, [04%

727 | — 467 | 523t |86% [4111+Q,,, |9%. |4131+0Q,, |0.4%
404§ +Q,,, |04%
1z | — 550 | 5501 |64% |5320+Q,, [10%, |420t+Q,, |9%

541140y, |3%
/28 | 789 | 612 | 411 [47%  |41114Q,,, [27%  |4134+Q,,, |22%

1724 | 635 645 | 4201 |76% |5S01+Q,, (6%, [422)+Q,, |5%.
532140, |[4% 5411 +Q,,, 2%

517 | — 915 | 5234 [03% |[5321+Q,, |[100%
5/2° | 618 | 934 | 4021 [5%  [4130+Q,, |91% |5320+Qy, |25%
5/2° | 707 | 1118 | 4021 [16% [5321+Qy, [73% |4131+Q,, |7%

7/2° | 570 | 1609 | 404} |63% |523t+Qy, [21%, 411140y, 1%
5321 +0,, |4%

(NRM) [39], fail in the description of these transitions. The deviation of the
calculated B(E1) values is up to two orders of magnitude of the experimental
ones The hindrance factors are F>> 1 for AK = 0 transitions and F << 1 for
AK = 1 transitions (see figure 4). As will be shown below, the use of the wave
function (20) with quadrupole and octupole vibrational admixtures improves
crucially the agreement with the experimental data [18 ].

The calculations have been done according to the prescription of Sec.2 but
with the complicated version of the RPA, where the K™ = 1 "0and K "= 171
one-phonon states are calculated with simultaneous use of the isoscalar
octupole and isoscalar and isovector dipole forces as well as with extracting —
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Table 4. Attenuation Coefficients of the Coriolis Matrix Elements
A R vV, V
(@ = VIH N/ UVH (WD ppp Fopy = qu' quf )

;o 1535, 155p, 1557 1570
it 2orM iy %orm iy %orM it oM
5234 --532¢ 0.7 0.9 0.8 0.9 0.7 0.9 0.8 0.9
5324 —5411 0.6 0.9 0.6 0.9 0.6 0.9 0.7 0.9
5414 —5501¢ 0.8 0.7 0.7 0.7 0.8 0.7 0.8 0.6
404 —413} 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9
4021 —4111% 0.4 0.4 0.5 0.7 0.7 0.8 0.6 0.7
4111 —4201¢ 0.5 0.8 0.6 0.7 0.9 0.8 0.8 0.8

spurious admixtures caused by the violation of the transitional invariance of
the Hamiltonian [18,40].

The calculations have shown that the dominating contribution to £1 tran-
sition matrix element for the odd nuclei comes (due to the octupole admix-

tures) from the E! transition O+0gr - l_K1 in even-even core. The influence

on this transition of the «tail» of giant dipole resonance (GDR) can be
estimated by calculating the contribution to the E1 transition matrix element
(34) of the g ¢, terms with energies €,+ ¢, from the GDR region. The

contribution turns out to be 91—97%, both for AK = 0 and 1 [40]. Thus just
the «tail» of GDR causes 0+0gr - | K, transitions whereas low-energy two-
quasiparticle configurations mixed by octupole forces determine main
structure of the 1~ K| states.

In table 3 the calculated energies and structure of low-lying nonrotational
states in '*3Eu are presented. It is seen that the level energies are reproduced
rather well. The main vibrational admixtures are, as a role, of quadrupole
character whereas the octupole admixiures amount usually of several percent
and less. The vibrational admixtures lead to decrease of the amplitude of
main one-quasiparticle component, and as a result, to the attenuation of the
Coriolis-mixing matrix clements. Table 4 shows that just this effect can be the
main reason of the Coriolis attenuation at low spins.

The results of our calculations for the B(E2) values (labeled as
QPM + NRM) as compared with the results of the NRM and experimental
data (see refs.in[18 ]) are shown in figure 4. It is seen that the NRM does not
provide even a qualitative description of the E1 transitions. On the contrary,
the QPM + NRM gives the excellent agreement with the experimental data. It
is remarkable, that inclusion of the vibrational admixtures leads to more than
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an order of magnitude increase in the AK = 0 transitions and simultaneously
provides a deep minimum in the AK = 1 transition in '*'Tb.

For understanding of the obtained results the different parts of the E1
transition matrix element (36) have been analyzed (see table 5 and details in
ref.[18 D). It turns out that the E1(AK = 0) transitions in the Eu nuclei are
mainly accomplished between principal K-components of initial and final
states. These transitions are very enhanced due to the coupling with even-
even core (see C-D term in (36)). On the other hand, in describing
E1(AK = 1) transitions in "*"Tb it is important to take into account not only
principal but also small Coriolis-mixing components. Then, both AK = 1 and
AK = 0 terms will contribute to the total E1(AK = 1) transition. Moreover,
due to large intrinsic matrix element the contribution to the total E1 (AK = 1)
transition from the AK = 0 term turns out to be considerable. Because of
different signs of AK = | and AK = 0 contributions to the total E1(AK = 1)
matrix element we have a mutual compensation which just explains the deep
minimum in B(E1, AK = 1) values for °"Tb.

As can be seen from table 3 the octupole admixtures in wave functions are
rather small. Thus, our calculations show that even smatl octupole admixtures
in the wave functions of odd nuclei influence very much El transitions and, in
particular, can enhance B(E1) values to an order of magnitude. Earlier, the
similar results have been obtained for small quadrupole admixtures in wave
functions of odd nuclei [12]. It was shown that even very small quadrupole
admixtures (about 1%) can dramatically influence E2 transitions in some
odd nuclei.

It is clear that large collectivity of octupole K™ =07 and 1~ states in
even-even core lead to large octupole admixtures in wave functions of corres-
ponding odd nucleus and, as a result, to strong effects like ones considered
above. Nuclei at the onset of the rare-earth region have the most collective
octupole low-lying states [1,13,41 |. The nuclei considered above belong just
to this group. But what will be for more heavy odd nuclei? Do octupole
admixtures influence much El transitions in these nuclei also? In general,
this does not seem to be the case since for heavier nuclei the low-lying
octupole states in even-even cores are usually less collective. Also, some
calculations for E1 transitions in odd nuclei of this sector show that often E1
transitions are satisfactorily described without taking into account octupole
admixtures [41). Nevertheless, we will demonstrate that in some cases the
octupole admixtures play crucial role in description of E1 transitions for more
heavy nuclei as well.

Let us consider dipole /;79/2[624 ] > 1,7/2[514] transitions in 77y,
the data for which are given at table 6. Numerous calculations are devoted to
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Table 5. Structure of the Reduced E! Matrix Elements

M(E1, 1 ‘> 1 = € I\ E1 I\, YRS 21, + 1 (see exp.(32)) Between
Members of the 5/2 [532] Band and 5/2 [413] and 3/27[411] Bands

in '53Eu and S'Tb. (M(ED) = (¥ (Kf/)M(El,y =K x K)¥, (Kl. N>

I
F = B(E) o/ BUED g ppganmme = iy iy Uy % Kl 1, KD

135y, 1, '5/21532] > l;'fs/2[413]. AK=0

i ,i"f 5/27 »5/2" 5/27»17/2" 11/27 »9/2"
f i AK ﬁ(El) a, q ,Mﬁ(El) a, ‘,Mﬁ(El) a, aMyE)
10 2e-fm 10%e-fm 10 %e-fm 102 ¢ fm
404}--5231 0 274 — — - — ~0.031 0.84
413} —5231 1 1.5 — — — — 0.199 0.30
413, —532¢ O -4.4 0.832 -3.68 0.519 -229 —0.521 2.30
413,541t 1 0.6  —0.083 0.04 0.130 -0.06 0.097 -0.05
402¢—532¢ 0 71.0 0.002 0.14 0.005 031 -0.0010 —0.58
4114—532¢ 1 -2.4 0.03¢4 —0.08 0020 -0.05 0066 —0.16
4111 —541¢ 0 7.4 0.005 -0.04 0010 -0.07 -0.024 0.18

.7!‘. Jl/
MELI > 1)

J!i .7!,
BEL L =1,

-3.62-107 2 e-fm -2.62-10"2 ¢-fm  3.84-107% e-fm

1.8 1056 3.06):10%*  8.0014-10°¢%

F 0.7 2.6 1.0
157 4l 7 _
Tb, I, '5/2(532] » 1,73/2[411], AK = |
P ]i"f 5/2 »3/2° 5/2»5/2* 5/27 »1/2"
1

f i AK M (El) a, aME) a, a ,Mﬁ(El) a, aM,E)

10 e-fm 10%e-fm 102%¢-fm 10%¢-fm
413 —532¢t 0 6.4 — — 0.038 024 0037 024
4021532t 0 13.0 — - 0026 033 0.025 032
41115321 1 0.6 0813 047 0531 031 0216 0.3
4111—541F 0 -17.4 —0.044 077 0043 -0.75 0059 -1.02
4201 —5411 1 3.7 0002 00t 0003 001 0002 001
M(El‘]:'i_,lj"f) 1.25-102 e-fm  0.14-10"2 e-fm —0.32-107% e-fm

.ﬂi 7!/
BELL =1,

F

61002107 ¢ 3.1103)-10%e*  8.424) 108

2.5 5.9 1.2
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Table 6. Energies and Structure of Low-Lying States in 77H

K Energy, keV Structure, %
exp. 1QM* QPM
72" 0 0 0 514} 913 5120+Q,, 2.1
9/2* 321.3 294 353 6241  98.8
5/7 508.1 711 542 5124 955 510140, 2.1
- 5124+4Q 83.1
_ 523} 201
5/2 1994 1542 { 95 oy 0., 7.0
_ 521 831  523)+Q,, 2.7
1/2 559.4 783 585 {5101 54 sy t+0,, 4.1
p= 5100 716 SI12}+Q,, 121
1/2 567 1111 604 521} 7.3 512440y, 7.0
1/2 745.9 801 796 633t 957  6511+0,,, 2.5
_ 510t+Q 16.2
-51 2]1 221
3/2 805.7 1486 780 { 66.2 siageg, 147
- 521 }+Q 41.2
521 f 221
3/27 | 1502 2066 1284 { 20 Gaipig. 144
6601t +Q 55
* —_ 6421 221
5/2 1132 951 { 89.4 624140, 1.3
_ 514,+Q 74.2
.5031 201
1/2 1057.8 1883 1213 { 22 g 140, 22
514+Q 25.8
— . 503 ¢ 201
7/2 1457 { 61.9 o) 140, 7.0
5031+Q 23.3
- 5014 221
3/2 1434 3673 1536 { 52.7 514440, 15.2

* Energies calculated within Independent Quasiparticle Model.

these transitions (see, for example, [25,42,43]) with the main purpose of
explanation of extremely small experimental value of B(E1, 9/2% - 17/27).
Though these calculations have not provided a good description of the
experimental data, they, nevertheless, have shown that both the Coriolis
interaction and octupole admixtures have to be allowed for. Calculations
[25,42,43] take into account the coupling with octupole core vibrations.
Nevertheless, they have serious shortcomings: 1) the octupole phonons are
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Table 7. Hindrance Factors F = B(El)exp/B(El)theor

for EI Transitions 7;9/2(6241~ 1;7/2[514] in Tyt
(see comments in the text)

AJ -7 E,keV | B(EL),,, 1077 e’ F
a b c
-1 21/2°>19/27 | 283.4 |9.32(29) 0.73 2.42 0.89
19/2° - 17/2 | 292.5  [7.46(27) 0.74 2.59 0.91
17/2% > 15/2° 291.4  |6.06(9) 0.68 2.56 0.86
15/2 > 13/27  1°299.0 [3.93(25) 0.66 2.77 0.92
13/2Y > 11/27 305.5 1.79(3) 0.65 3.48 1.12
11/2" > 9/2" 3137  |0.495(66) 0.27 3.78 1.16
9/2" > 7/7 321.3  {0.0393(39) 10.3 1.40 0.88
0 19/2% > 19/2” 69.2  17,67(20) 1.03 2.82 0.19
17/2° > 17/7 88.4  [8,32(10) 1.06 2.85 0.30
15/2* > 15/2° 1172 [9.58(10) 1.00 2.67 0.38
13/2% > 13/2° 1458 [9.16(D) 1.11 2.92 0.54
11/28 > 11/2 1770 [9.11(57) 1.10 2.86 0.66
9/2" > 9/2” 208.3 |6.74(38) 1.15 2.98 0.82
+1 9/2" > 11/2" 71.7  [2.44(23) 1.52 4.10 1.92

included by phenomenological way; 2) the calculations for E1 transitions are
not followed to description of the low-energy spectrum in 77yt

More realistic microscopic calculations have been performed recently
[19 ] within the model given in section 2. The calculations of B(E1) values
have been done following to three prescriptions: with the Coriolis interaction
only (a), with both the Coriolis interaction and coupling with core quadrupole
and octupole vibrations (b), improved version of (b) where El matrix

elements Lf ! for even-even core were calculated taking into account the «tail»
of the GDR (¢).

The results obtained are presented at tables 6 and 7. It is seen that
they are in quite satisfactory agreement with experimental data for both the
energy spectrum and B(El) values. The most important result is that
inclusion of octupole admixtures dramatically improves description of the

B(E1,9/2% - 7/27) value as compared with the case where the Coriolis
coupling is taken into account only. Simultaneously, description of other
transitions remains to be quite appropriate.

Thus, our calculations show that the most correct way of description of E1
transitions in rare-earth odd nuclei is a simultaneous use of the Coriolis inter-
action and coupling with even-even core vibrations. Just interplay of these two
interactions leads to anomalous behavior of E1 transitions. The microscopic
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scheme presented in section 2 provides satisfactory description of both
electrical transitions and low-energy spectrum. Moreover, in the framework
of this scheme the calculations for odd nuclei are consistent with calculations
for neighbour even-even nuclei. '

5. STRUCTURE OF LOW-LYING STATES IN ODD-ODD '®6Ho

Results presented here [9] are the first systematic application of the
model described in sec.2 to odd-odd nuclei. At this first stage the coupling
with core vibrations is taken into account only. The calculations with the
Coriolis interaction are in progress and will be presented later. The
calculations presented here have been performed for the states with excitation

energy up to 0.5 MeV in isotopes 160-16811,. The results of Vsystematic
microscopic calculations within the same model for neighbouring odd and
even nuclei can be found in [14,20] and 413 I, respectively. For the sake of
brevity we present here only results for 166Ho. Details of the calculations are
givenin [9].

The calculated energies and structure of nonrotational states in '*®Ho are
presented in table 8. For each level two theoretical values are given: E =

2 2

=1, ~ ”"o”o and E, = Myy™ n,,ox0+ % (12— KLK - gf (12— K]2=K0). It is
seen that the model provides satisfactory description of the energy spectrum
(together with the spectrum of the neighbouring odd nuclei, see ref.[20]).
The most interesting result of the calculations is the existence in low-lying
states of rather large vibrational admixtures. The simple estimations (like
those for odd nuclei in [12 ]) with using the amplitudes of components of the
states from table 8 show that these vibrational admixtures influence very
much on E2 and E1 transitions. We have quite the same situation as in odd
nuclei. This is not surprising since matrix elements of El transitions in odd
and odd-odd nuclei have similar structure (see (36) and (37)).

Table 8. The Level Energies and Structure of Low-Lying States in '%Ho

K Structure % Eunp K Structure % exp
Ep Exy,
ETh ETh
(keV) (keV)
0" 7/2523-7/2633 89% 0 7 7/2523+1/2633 79% 6
7/2523-3/2651-Q,, 10% 0 7/2523+3/2651+Q,, 1% -45
0 3/2541+7/2633+Q;, 5% 18

7/2523+11/2615-Q;, 3%
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K Structure % Em(p K Structure % Eexp
ETh ETh
ETh E’I‘h
(keV) (keV)

5" 7/2523+3/2651 81% — 2 7/2523-3/2651 66% (543)
3/2541+7/2 633 12% 215 3/2541-7/2633 5% 507
7/2523+1/2633-Q;, 6% 260 7/2523-1/2633+Q;, 26% 525

7/2523-1/2660-Q;, 1%

3* 7/2523-1/2521 92% 191 4" 7/2523+1/2521 92% 3712
3/2541-1/2521+Q;, 4% 178 3/2541+41/2521+4Q;, 4% 222
3/2411-1/2521+Qf, 2% 205 3/241141/25214Q5, 2% 258

6 7/2523+5/2512 82% 295 11 1/2523-5/2512 80% 426
7/2523+5/2523 3% 263 7/2523-5/2523 18% 411
7/2523+9/2624-Q;, 5% 317 7/2523-9/2624+Q;, 1% 420
7/2523+1/2 660+Q;, 2% 7/2523-1/2 660-Q5, 1%
7/2523+1/2400+Q;, 2% 7/2523-1/2400-Q;, 1%

17 3/2411-1/2521 95% 351 2 3/2411+1/2521 94% 563
3/2411-5/2642+¢Q;, 1% 354 1/2523+1/2521-0;,  2.5% 526
3/241143/2651-Q;, % 363 3/2541+1/2521+Q3, 1% 544
5/2523+1/2521-Qy, 1%
3/2541-1/2521+Qy, 1%

0" 1/2411-1/2521 96% 525 17 1/2411+1/2521 96% 373
1/241143/2521-Q;, 2% 560 1/2411-3/2521+Q;, 2% 381
3/2411+1/2521-Q;, 1% 560 3/2411-1/2521-Q;, 1% 390

5* 7/2523+3/2521 70% 264 2' 7/2523-3/2521 79% 430
3/2411+7/2633 21% 259 3/2411-7/2633 1% 409
7/2523+1/2633-Q;, 5% 304 7/2523-1/2514+Q;, 6% 427
7/253241/2514-Q;, 3% 7/2523-1/2633+Q;, 5%

1/2523+1/2521-Q3, 2%

1" 7/2523-5/2523 71% 567 6+ 7/2523+5/2523 7% —
7/2523-5/2 512 13% 554 7/2523+5/2 512 11% 660
7/2523-9/2624-Q;, 4% 563 7/2523+9/2624-Q;, 5% 114
3/2541-5/2523+Q;, 3% 3/254145/2523+Q;, 3%
7/2523-1/2530-Q;, 2% 1/2523+1/2651-Q;, 2%
7/2523-1/2651-Q;, 2% 7/2523+1/2530+Q;, 2%

2* 3/2411-7/2633 82% — 5% 3/2411+7/2633 82% —
7/2523-3/2521 14% 646 7/2523+3/2 521 13% 608
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K" Structure % E, v X" Structure % exp
ETh ETh
ETh ETh
(keV) (keV)
3/2411-3/2651+Q;, 4% 664 3/2411+43/2651+Q,, 5% 633

0" 7/2404-7/2633 75% 803 7' 7/2404+7/2633 5%  91S
7/2404-3/2651-Q;, 14% 839 7/2404+3/2651+Q;, 4% 915
7/2404-11/2505-Q;, 4% 839 7/2404+11/2505-Q;, 3.5% 975
3/2402-7/2633-Q;, 3% 3/2402+7/2633+Q;, 3%

2" 3/2541-7/2633 0% — 5" 3/2541+7/2633 3% —
7/2523-7/2633+Q,, 10% 708 7/2523+1/2633-Q,, 9% 815
1/2550-7/2633-Q;, 8% 726 1/2550-7/2633-Q;, 7% 860
3/2541-3/2651+Q,, 5% 3/254143/2651+Q;, 5%

27 7/2523-11/2615 8% — 9 7/2523+11/2615 7% —
7/2523-1/2633+Q;, 12% 1131 7/2523+7/2633+Q;, 14% 1082
7/2523-7/2 504+Q;. 6% 1149 7/2 523+1/2 504+Q 9% 1154

32 32

Table 9. The log ft of B_ Transitions Leading to the Low-Lying
1 States in 0dd-Odd '%6'%3 g, Isotopes

s 1 2
Daughter Final level 'Cn7+/2|5231.v5 Ja15231! log ft log.ft
nucleus E [keV], I™ Theory Experiment
166110 426.00™M 0.18 4.96 5.12
18840 192.501% 0.02 5.86 5.50
%80 630.4(1%) 0.66 4.34 4.60

The caiculations for Ho isotopes show that the main strength of the y
vibrations built on the ground state configurations is concentrated in intrinsic
states with excitation energies above 1 MeV. An exception to this generality is
the 27 (525 keV) state in '®®Ho which has a 26% of the y vibrational

component. Recently, a 27 y vibrational band was suggested [44 ] in 1661,
with a band head at 543 keV which is in rather nice agreement with our
calculations. It is interesting that up to the present theré¢ is no conclusive
experimental evidence for the calculated 5~ (260 keV) state.

The mixing of the neutron-proton configurations with the same K™
should be noted. The mixing is caused by the quasiparticle-phonon
interaction. Such kind of the mixing (do not confuse this with the Coriolis
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mixing) is well known in odd nuclei but has not been calculated before in odd-
odd nuclei. This effect can be very important for the study of the structure of
low-lying states in odd-odd nuclei. For example, just the admixture of the

spin-flip configuration 1 {%7/2[5231,v5/2[523 ]} to the low-lying states in
odd-odd '66-188p, explains the low experimental values of log ft in these
nuclei {9 ]. The results of corresponding calculations are presented in table 9.

6. CONCLUSICONS

The extending of the Quasiparticle-Phonon Model is proposed by taking
into account thc rotation-vibration coupling in cven-even, odd and odd-odd
nuclei. This extending is an important step in derivation of general
microscopic model for description of vibrational and rotational degrees of
freedom in strictly deformed nuclei on the same microscopic footing. Three
examples of calculations for cven-even, odd and odd-odd nuclci arc
considered.

1) In '%%Er the Coriolis interaction between ground and y bands through

low-lying 1* states (together with the «scissors» mode) is analyzed as a
possible origin of the nonadiabatic effects in E2(y - gr) transitions {24 ]. It is

shown that the Coriolis coupling between ground and 1* bands is absent
within the RPA for axially deformed nuclei. This is rather unexpected result
of general character, which was not mentioned before in spite of intensive
investigation of the «scissors» mode. Therefore, the Coriolis coupling can
exist and lead to the nonadiabatic cffects in '%®Er only under some special
conditions, for example, if a triaxiality of this nucleus takes place. The
contribution of the «scissors» mode to the nonadiabatic effects in E2(y - gr)
transitions can be much more noticeable in nuclei like ' 72Yb. Due to a small
collectivity of the y-vibrational state in such nuclei direct E2 transition

(2),+ - 0;;) is weak and, as a result, the effects of indirect (due to the Coriolis

interaction) E2 transitions should be larger.

2) The strong influence of small octupole vibrational admixtures in the
wave functions of odd nuclei on the El transitions in Eu—Tb isotopes and in
T4t was shown [18,19]. It was demonstrated that the anomalous behavior
of E1 transitions in these nuclei can be explained by the competition between
the quasiparticle-phonon and Coriolis interaction effects. It should be noted
that the model provides the possibility for simultaneous description of
electrical transition and energy spectrum in odd nuclei.

3) In low-lying states of odd-odd 1660 rather large vibrational admix-
tures are predicted as well as the mixing of neutron-proton configurations due
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to the quasiparticle-phonon interaction. Both the effects are quite important
for the study of level structure, E1 and E2 transitions and 8 transitions in
odd-odd nuclei.

7. APPENDIX

In subsection 2.1 the following functions characterizing the RPA phonons
are used:

e (+) 61
v _ L+ a/l.O 9,9, uq|q2
9,9, 2')718 E"nqz —w, ’
e (+)
. 1 + 6/‘_0 4,9, ”0,02 62)
49,9, 2yrg e".“z tw '

+)42
Uy 1)
9,9, 49,9, 49,4,

g
Xf=(1+0 ) ¥ L7 (63)
qlq2Er 94, 4
1 — (h(’h‘) + K(A'“))Xg 2
Y8=yZ4 y2 0 Lt (64)
T T T (h(()l,u) _ Nsl,u))xfr
where
A ke o
94, 4949, 44, &
Ytg= 1+ é/t,O) 2 I 22 - 2l22 65)
9,9,€* (Ealqz + wg)
and the secular equation for determining the one-phonon energies w, is
1 - (/c(()"’“) + x?’“)) XE+x2)+ 4/;'3’“)/;'?’“)X1g X% =0. (66)

Here, e+ €, For Au = 20 the expressions (61)—(66) are more

EQIQZ ql 2
complicated since in this case the interaction in particle-particle channel
is embraced to extract the spurious admixtures connected with particle
number nonconservation. The corresponding expressions can be found in
refs. [1,2,10].

The functions I’ g"’]n ‘iz(T)’ F?‘Zl‘;§+)(r) and I‘fqu ' q,z(r) involved in (11)—
(13) have the form
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ph = ,/ A ()
rgq,a2(t) =Vzgl 9,9, 9,9, ©D
T
Pmr(ﬂ(r) =1/VIG, u, Yy (u —v )¢§°; (68)
l 2
pair(=) .~ _ _ 20i
I‘l.qlq2 (r) = 1/V2 G, uqlvqI (u v )<pq g, 69
and
B ¢ () () (70)
tha 9,99, @ = thz/; 7, a0, a0,
Further,
I @=v= 2 T () _
84,49, Y‘tg(l + 6K,0 (1 - 5/‘ 0)) 94, q 19,

20i 20i
=84, 0ma0 V2 Oty Vg ?é: O “V)Z W * ) D

where we have for the operator of electrical type _;'\'1"
T _ e | ~ _ _
fq‘q2 ={q, Tl a,) ((30“02 alé{al, 0,) (72

(the same expression is for p :"; ) and for the operator of magnetic type_f\+
172

e D=
Jq a, (ql |J | q2> (alaal,o2 + aol.—az)' (73)

The coefficient kfyc from (37) is equal to 1 except for the cases

@, 418 =78, 4O for K =0, K" # 0

cC o,~1 a -1 "o ,+1
k)’)" = ) $ r r 74
7T (6%,H 50’”_1— y' 6%,_1 60”+l forK=0,K' =0

r

and the coefficient ky'; D,‘ is equal to k/’f' k/’f 1+ K0 d K0 (1 - 6}‘,0)) except
for the cases

1 ,
-\/—2_“1?(',(5%’4_150"_1 yég _1(50’,_'_1 forKk=0,K'#0
kD7 = ' L)
@, 8, =¥ O, 0, . forK#0,K =0
\/Tk as,,+ g, 1 G i ar,,+
(3
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