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A short review of recent theoretical resuits on the ground-state properties of the heaviest nuclei
is given. Even-even nuclei with atomic number Z = 92—114 are considered. Much attention is paid
to discussion of the role of shell effects in these properties.

Jan xpatkuit 0630p TEOPETHUECKMX PACUETOB CBOMCTB CAMBIX TSKEIbIX anep. Pacemorpenst
YETHO-YETHBIE SIAPA C ATOMHBIM HOMEPOM Z = 92—114. MHOro BHMMaHus YAEJEHO BOMPOCY O
POJIH, KOTOPYIO UFPaIoT obonoueunsie 3dekTh B CBOMCTBAX 3THX aaep.

1. INTRODUCTION

The objective of the present paper is to give a short review of theoretical
results on the ground-state properties of the heaviest nuclei, obtained in
recent years. Such properties like deformation, mass, alpha-decay and
spontaneous-fission half-lives are discussed. To see some systematics of the
properties, a rather large region of nuclei is considered. These are even-even
nuclei with atomic number Z = 92—114.

Much attention is paid to the discussion of the role of shell effects in the
properties of these nuclei, which seem to have been underestimated in the past.

The reviewed theoretical studies are closely connected with an extensive
experimental research on the heaviest nuclei (cf. e.g. [1—7)).

2. SPECIFIC FEATURES OF HEAVIEST NUCLEI

2.1. Instability. All nuclei of the considered region are unstable,
radioactive. As we are interested in the nuclei which are not too far from the
B-stability line, their main decay modes are: alpha-decay and spontaneous
fission. Both modes are discussed in the present review.
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2.2. Deformation. Most nuclei of the considered region are, or are
expected to be, deformed. This is because their outer nuclcons fill up large
nuclear shells. For protons, this is the shell between the last experimentally
known magic number Z = 82 and the theoretically predicted [8,9 | number
Z = 114. Thus, the shell is as large (32 protons) as the largest experimentally
observed proton shell between Z = 50 and 82. For neutrons, this is the shell
between the last experimentally known magic number N = 126 and the
theorctically predicted {8,9 | number N = 184. If the predictions are correct,
this shell would be the largest neutron shell (58 ncutrons) of all considered up
to now. The largest experimentally observed shell is between the magic
numbers N = 82 and 126 (i.e., 44 neutrons).

2.3. Essential Role of Shell Effects. Shell effects are important for all
nuclei. Their role for the heaviest nuclei is, however, cssential, as many of
them would not cxist at all without these effects.. This will be discussed in
more detail in the next chapter.

3. SHELL EFFECTS

Figure 1, taken from [10], illustrates shell effects in the mass of the
heaviest nuclei, M — M. Here, M®*P is the experimental mass and M is the
mass calculated by the macroscopic model without any shell effects. For the
latter, the widely used Yukawa-plus-exponential model [11] is taken. One
can see that the shell effect is negative, i.e., it decreases masses of the nuclei.
Its absolute value increases with the increasing atomic number Z, up to about
5 MeV for the heaviest known even-even nuclei: 262106 and 264108.

Figure 2 shows [10] logarithm of the spontancous-fission half-lives:
experimental and calculated within a macroscopic model without any shell
effects. Thus, the difference between the two is the shell effect in the
spontaneous-fission lifetime. Instead of showing this difference directly, we
show here the half-life itself, to see its values; in particular, to see how fast the
half-life Tsf decreases with increasing atomic number Z. For example, the

value calculated for the nucleus 26106 with Z = 106 is by about 40 orders of
magnitude smaller than the values obtained for nuclei with Z = 92 (U).
The macroscopic calculation of T, done here, consists in using the

Yukawa-plus-exponential model (Y) [111], for the calculation of the fission
barricr, and a smooth, phenomenological model [12—14 | for the calculation
of the mass (inertia) parameter, which describes the inertia of a nucleus with
respect to changes of its deformation.
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Fig.3. Total fission barrier (Y + SHELL) and its smooth part obmmed by the Yukawa-plus-
exponential (Y) and by the liquid-drop (LD) models, for the nucteus 24108 [10]

One can see in fig.2 that the shell effect delays the fission process in all
considered nuclei, except only few lightest ones (isotopes of uranium). The
delay increases from few orders (Pu isotopes) to about 15 orders of magnitude
for the heaviest even-even nucleus with measured T of (%%°106). For such a

heavy nucleus like 60106, with Tsf of the order of few milliseconds, this

elongation makes up practically the whole half-life of these nuclei. In other
words, they would not exist without shell effects.

The mechanism by which practically the whole half-life of a very heavy
nucleus is made up by shell effects is illustrated in fig.3. The illustration is
glven [10] for the heaviest even-even nucleus observed up to now, i.e., for

4108. Here, the total fission barrier (Y + SHELL), including shell effects, is
shown by solid line; and its smooth part (obtained by the Yukawa-plus-
exponential model (Y)), by dashed line. The smooth barrier obtained by
another macroscopic model (liquid drop [15], LD) is also shown (dofted
line), for comparison. One can see that a significant height (about 6 MeV) of
the fission barrier is obtained only after the inclusion of shell effects. Without
them, no fission barrier (Y and LD) appears.
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Figures 1 and 2 illustrate the strong dependence of shell effects on the
proton, Z, and neutron, N, numbers, This means that each nucleus should be
treated individually (i.e., without any averaging over a number of nuclei) in a
theoretical analysis. The strong dependence of shell effects also on the
deformation of a nucleus, illustrated in fig.3, requires a careful treatment of
this deformation in the analysis. In other words, the analysis of the properties
of a heavy nucleus should be performed in a sufficiently large, multi-
dimensional deformation space.

4. BIMODAL FISSION

It is known that nuclei around heavy isotopes of fermium show some
peculiarities in their spontaneous-fission properties. One of them is a rapid
decrease of asymmetry in the mass distributionof the fission fragments with
increasing neutron number N (e.g., [16]). Another peculiarity is that the
average total kinetic energy, TKE, of the fission fragments does not follow the
smooth systematics when one is approaching the heaviest st isotopes of these
nuclei [16 |. For example, for 258Em (and also >° Fm), TKE is much larger
than expected from this systematics. A careful analysis of the distribution of
the total kinetic energy, TKE, performed [17,18,5] for 28Fm and few other
nuclei close 1o it, resulted in the separation of two components. One of them
has a peak at TKE of about 200 MeV and corresponds to «normal» mode of
fission, which follows the above-mentioned systematics of TKE. The other
has a peak at TKE of about 235 MeV and, thus, corresponds to a new mode
with the higher Kinetic energy of fragments. The appearance of two different
modes in the fission of the same nuclide (i.e., in the fission of nuclei with the
same Z and N) has been called «bimodal fissions» [17].

As TKE comes from the Coulomb repulsion energy between the
fragments in the scission configuration, the low-energy component should
correspond to more elongated shapes (ES) and the high-energy component to
more compact shapes (CS) at the scission point. Thus, the simultaneous
appearance of both modes of fission for some nuclei means that there should
exist two different trajectories for each of these nuclei: one ending at the ES
scission point and the other at the CS point, but both corresponding to the
same fission barrier (to have the same fission half-life).

It was natural then to look at the potential energy, calculated theore-
tically, to see whether it predicts such trajectories. A number of calculations
have been undertaken (e.g., [19—23]). Some of the results of them will be
illustrated in chap.6.
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5. METHODS OF THEORETICAL DESCRIPTION

As mentioned in the Introduction, the main properties of the heaviest
nuclei, in which we are interested in the present paper, are the alpha-decay
and the spontaneous-fission half-lives, T and T, respectively. To describe

T, one needs to know the energy (mass) of initial (parent) and final
(daughter) nuclei. For description of T,;, the dependence of the energy of a

nuclcus on its deformation (fission barrier) as well as its inertia (mass
parameters) are needed. _

5.1. Energy of a Nucleus. The energy of a nucleus is usually calculated by
the macroscopic-microscopic method. The Yukawa-plus-exponential model
[11] or liquid-drop model [15] are usced for the macroscopic part of the
enecrgy. The Strutinski shell correction [24 ] is generally taken for the micro-
scopic part. It is based on a single-particle potential, describing the internal
structure of a nucleus. This is usually the Nilsson [25 ], Woods-Saxon {26 | or
folded-Yukawa [27) potentials. The residual pairing interaction is usually
treated in the BCS approximation (e.g., [28 D).

5.2. Inertia Tensor. The inertia tensor provides the metric in a
multidimensional deformation space and is nccessary to find the fission
trajectory. It is usually calculated in the cranking approximation (e.g.,
[29—32,14 ).

5.3. Parametrization of the Deformation. There is a number of
parametrizations of nuclear shapes. In most of the results presented in the
present paper, the shapes are described by the usual deformation parameters
/3,1, appearing in the expression for nuclear radius (in the intrinsic frame of

reference) in terms of spherical harmonics,

Amax

RO) = RyB,) (1 + PO
=2

where the dependence of R, on ﬂ/‘ is determined by the volume-conservation

condition.

The shapes described by this formula are axially symmetric. More
general shapes include a non-axiality into the quadrupole (4 =2) [33,34]
and - also into the hexadecapole A =4) [(35—38] components of the
deformation.

5.4. Alpha-Decay Half-Lives. Alpha decay is usually described by a
simple one-body model of this process. The alpha particle is assumed to be
already formed in the parent nucleus, before its emission, and the decay
consists in the penetration of this particle through the potential-energy
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barrier. The model leads to a simple expression of the half-life T, by the
decay energy Q, (e.g., [39—42). One of the forms of this expression is the

phenomenological formula of Viola and Seaborg |39 |
log T, = (aZ + 5)Q; /2 + (cZ + a),

where Z is the atomic number of the parent nucleus, Q, is the alpha-decay
energy in MeV, T is given in seconds and a,b,¢,d are adjustable parameters.

These parameters have been readjusted in [43 | to take into account new data.
They are

a=1.660175, b= —8.5166, c = — 0.20228, 4 = — 33.9069.

Thesc new values allow onc to better reproduce the data (especially for the
heaviest nuclei) than the old values of the original paper [39 ], by up to about
onc order of magnitude.,

5.5. Spontaneous-Fission Half-Lives. The spontancous-fission half-lives
Tsf have been usually calculated in two ways: the static way (e.g., [13,21 D

and in the dynamical one (e.g., [30,31,44,45)).

In the static way, the action integral (which determines the probability of
the penctration of a nucleus through the fission barrier) is calculated along
the static trajectory, in every point of which the potential energy is minimal.
The inertia of a nucleus is taken in a phenomenological form [12—14 |, which
scems, however, to be too much simplified. In particular, it does not take into
account the shell structure of a nucleus, which is so important for the heaviest
nuclei. In the dynamical approach, the half-life Tsf is calculated along the
dynamical trajectory which minimizes the action integral (the integral is
usually not minimal along the static trajectory). The trajectory is determined
then by both the potential energy and the inertia tensor of a nucleus. The
incrtia tensor is usually calculated by the cranking method (as already
mentioned above), which takes into account the microscopic (shell) structure
of a nucleus.

In the present paper, we will illustrate the results for Tsf obtained in the

dynamical calculations.

6. SOME OF THEORETICAL RESULTS
6.1. Ground-State Deformations. Figure 4 gives [46 | the equilibrium de-
formations ﬂg, A =2, 4, 6 and the shapes of nuclei with proton number
Z = 90—114 and neutron number N = 136—168. One can see that all nuclei
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Fig.4. Equilibrium deformalionsﬁf (A = 2, 4, 6) and shapes of nuclei. Numbers at the

contour lines give the values of the deformation. They are obtained by minimization of
the energy in the /32, /34, ,Bﬁ degrees of freedom. Difference in the values between

neighbouring solid lines is specified by the scale. Dashed lines divide this difference
by two [46]

in the studied region are deformed. The quadrupole deformation /3(2) is rather
large and does not vary much, especially around the center of the region. The

hexadecapole deformation ﬂg decreases from about /32 ~ 0.10, for the lightest
considered nuclei, down to about ﬂg = —0.09, for the heaviest nuclei. The

fastest variations are obtained for ,62, which changes sign twice inside the

considered region.
6.2. Shell Correction to Energy. Figure 5 shows a map [46 ] of the shell
correction, E,, to the potential energy. This correction is the gain in the

potential energy of a nucleus due to its shell structure. One can see that the
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Fig.5. Shell correction, E,, to the potential energy of nuclei (46]

correction is negative in the whole region, i.e., it increases the binding of the
nuclei. Starting from about 2 MeV (in absolute value), it systcmatically
increases, up 1o about 7 MeV, as one passes from the beginning of the region
to about its end. The large value of E_, obtained for nuclei around 210108 is
connccted with the new deformed shell at neutron number N = 162.

Experimentally known deformed shell at N = 152 manifests itself here by a
shallow local minimum in the E , map. Crosses in the figure indicate the

heaviest nuclei synthesized up to now. One can see that these nuclei profit by
about 5—6 MeV in their energy from the shell correction. Without this profit,
they could not exist, as was illustrated in fig.3.

Figure 6 gives a comparison [46 | between experimental (shown earlier in
fig.1) and theoretical shell corrections to mass of a nucleus. One can see that,
except for the lightest isotopes of uranium, the experimental values are rather
well reproduced by the calculations. In particular, the effect of the deformed
neutron shell at N = 152 is well reproduced in all elements (Z = 96—102) for
which it is observed experimentally. It is worth mentioning that the inclusion
of the deformation ﬂﬁ to the analysis is important for this reproduction.

6.3. Alpha-Decay Half-Lives. A map [46 ] of logarithm of the alpha-
decay half-life T_ is shown in fig.7. The half-life is calculated by the Viola-

Seaborg phenomenological formula [39 |. The parameters of the formula have
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been taken, however, from [43 | where they have been readjusted to account
for new data. A rather smooth behaviour of T _ is seen. It fast decreases with

increasing Z. The effect of closed deformed shells at neutron numbers
N =152 and 162 is visible in the form of local maxima of T at these numbers.

6.4. Spontaneous-Fission Half-Lives. Figure 8 shows a contour map [45 ]
of logarithm of the spontaneous-fission half-life Tsf , calculated dynamically

for even-even nuclei with Z = 100—112 and N = 140—166, as described in
{45 ]. A rather complex structure of the map is seep. Two maxima of Tsf are

obtained: one for the known nucleus ??Fm and the other for the not yet
observed nucleus 270108. The maxima are connected with the strong
deformed shells at N = 152 (and a weaker at Z = 100) and at N = 162 and
Z = 108, respectively, appearing for the ground-state configuration of these
nuclei. The shells result in relatively high fission barriers for these nuclei.
The shells at Z= 108 and N = 162, obtained in the calculations, are
especially strong, qualifying the nucleus 27°108 to be a good candidate for a
double-magic deformed nucleus.



306 SOBICZEWSKI A.

E(MeV) scale:1.0  min:B,(x=3,5,6)

08 T 1T 7 1 7 1 T 1
06|
0.4+
o 02t
00}
0zr ///Z/ﬁf/’%’/\{’_\;\E =SS
...0 ‘ T VA SN SUNNS SR SHN U N WU S S SN SR V1

00 02 04 06 08 10 12 14 16

B2

Fig.9. Contour map of the potential energy E calculated for 258 m. Numbers
at contour lines give the values of the energy which is normalized tozero at the
cquilibrium point I. Solid contour lines correspond to positive; and dashed
lines, to negative coergies [23]

6.5. Bimodal Fission. In this section, we illustrate results related to
bimodal fission of 258Fm, i.e., of one of the nuclei for which this process has
been observed.

Figure 9 shows a map [23 ] of the potential energy of 258Fm calculated as
a function of the deformations 8, and . At each point (8,, 8,), the encrgy is
minimized in the B5, B and B¢ degrees of freedom. Thus, the analysis is
performed in the 5-dimensional deformation space. A line L, which is close to
the static fission trajectory, is indicated. It starts at the first minimum (the
equilibrium point), passes through the saddle point A and comes to a shallow
second minimum. Then it splits (at the point D) into two trajectories: L; and
L,. One trajectory (L)) goes into the valley which (as will be shown in fig.10)
corresponds to more compact shapes (CS) of the nucleus and the other (L,) to

the valley which corresponds to more elongated shapes (ES). One can see that
both fission modes, proceeding along the trajectories L, and L, have the same

fission barrier, as no barrier appears behind the bifurcation point D. Thus,
the half-life for both modes is the same.
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Figure 10 shows the shapes [23 ] of 258k corresponding to the potential
energy given in fig.9. One can see that the shapes corresponding to the
trajectory L, are much more compact than the shapes corresponding to L, and

_they are reflection symmetric. Both results are in line with experiment [16—
18,51 .

One should stress the imgortant role of the reflection-asymmetric shapes
in the analysis of fission of % Fm, although the observed mass distribution of
its fragments is symmetric. Figure 11 shows the potential energy calculated
for this nucleus when only symmetric shapes, A = 2, 4, 6 are considered {23 ].
One can sec that the two fission valleys are separated in this case by a high
ridge. Duc to this, fission would proceed in such a case only to the compact-
shape valley, since to reach the other valley the nucleus would have to
overcome a high (of about 4 MeV) additional barrier. Thus, the bimodal
fission would not appear. Only the inclusion of the odd-multipolarity
deformations (4 = 3, 5) removes this additional barrier, as seen in fig.9.

7. MAGIC DEFORMED NUCLEI

A large shell correction to the energy of nuclei around the nucleus 270103,
scen in fig.5, indicates a formation of large shells in the single-particle energy
spectra of these deformed nuclei. It is interesting then to see explicitly these
spectra and also the cffect on them of the dimension of the deformation space
which is used to obtain them.

Figurc 12 shows the dependence of the single-particle spectra of the

nucleus 7°108 on the maximal multipolarity /lmax of deformations allowed o

the nucicus {46 ]. At each energy level, the projection of spin (multiplied by
two) of the nucleus on the symmetry axis, 28, as well as parity, =, aire
indicated. One can sec that a rather small gap at Z = 108, in the proton
spectrum, and a larger gap at N = 162, in the neutron spectrum, are created
by the quadrupoie deformation A = 2. Both gaps are importanily increased,
however, by the inclusion of the hexadecapole deformation 4 = 4: the gap at
Z = 108 is increased to about 1.2 MeV; and that at N = 162, te about
1.3 MeV. The inclusion of A = 6 does not practically change the gap at
Z = 108, but it still increases the neutron gap to about 1.4 MeV. The addition
of A = 8 increases the proton gap to about 1.4 MeV, bui it does not change the
neutron gap. The further inclusion of 4 = 10 leaves the spectra practicaliy
unchanged.

Thus, large shells in both the proton and neutron spectra, similar to those
observed in magic spherical nuclei, are obtained for well deformed nucleus
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279108. To get them, however, one needs to give to the nucleus enough
freedom_in choosing by it the deformation which is really best for it. The
nucleus 27°108, not obscrved yetin experiment, may be expected then to be a
double-magic deformed nucleus.

8. CONCLUSIONS

The following conclusions may be drawn from the analysis of the
properties of heaviest nuclei performed in recent years (and only partly
illustrated in the present short review):

(1) Shell cffects play a very important role in the properties of the heaviest
nuclei. They decrease mass of already known nuclei by up to about 5 MeV and
the alpha-decay encrgy by up to about 0.9 MeV. The effects increase the
aplha-decay half-lives of these nuclei by up to about § orders of magnitude
and of the spontaneous-fission half-lives by up to about 15 orders of
magnitude. Without these effects, some of the heaviest nuclei already
observed (like 2%°106 or 24108 with half-lives of the order of milli- or
microseconds) would not exist at all.
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(2) These large shell effects are obtained for nuclei which are, or are
expected to be, well deformed. So large effects were not expected previously
for deformed nuclei, which have less symmetry in their shape than spherical
nuclei.

(3) To get so large shell effects for deformed nuclei in theoretical
calculations, one needs to leave to a nucleus enough freedom in choosing the
shape which is really most comfortable for it. In other words, one needs to
analyze the properties of a nucleus in a sufficiently large deformation space.

(4) After the experimentally known deformed shell at the neutron
number N = 152, the next deformed shell at N =162 is predicted by
theoretical calculations. Also a proton deformed shell at Z = 108 is expected.
As both shells are rather strong, the nucleus 270108 may be considered as a
candidate for a doubly magic deformed nucleus.

(5) One of the consequences of large shell effects in deformed nuclei
(which increase their stability), is the expectation that the spherical
superheavy nuclei around the predicted doubly magic nucleus 298114 do not
form an island, separated from the peninsula of known nuclides by a region of
unstable deformed nuclei. Instead, they are rather expected to constitute a
part of the extended peninsula of relatively long-lived nuclides.

(6) Bimodal fission, discovered in recent years, may be theoretically
described in a rather natural way, if sufficiently large deformation space is
used for this description.

REFERENCES

I. Armbruster P. — Ann. Rev. Nucl. Part. Sci., 1985, 35, p.135.
2. Oganessian Yu.Ts., Lazarev Yu.A. — Treatise on Heavy-Iou Science, ed. D.A.Bromley,
vol.4 (Plenum Press, New York, 1985) p.3.
3. Munzenberg G. — Rep. Prog. Phys., 1988, 51, p.57.
4. Hoffman D.C., Somerville L.P. — Particle Emission from Nuclei, eds. D.N.Poenaru and
M.S.lvascu, vol.3 (CRC Press, Boca Raton, 1989), p.1.
5.Hulet E.K., Wild J.F., Dougan R.J. et al. — Phys. Rev., 1989, C40, p.770.
6.Seaborg G.T., Loveland W.D. — The Elements Beyond Uranium (J.Wiley, New York
1990).
7.Hofmann S. — Proc. 24th Zakopane School on Physics, vol.l, eds. J.Styczen and
Z.Stachura (World Scientific, Singapore, 1990), p.199.
8. Sobiczewski A., Gareev F.A., Kalinkin B.N. — Phys. Lett., 1966, 22, p.500.
9.Meldner H. — Ark. Fys., 1967, 36, p.593.
10. Patyk Z., Sobiczewski A., Armbruster P., Schmidt K.-H. — Nucl. Phys., 1989, A491,
p.267.
11. Krappe H.J., Nix J.R., Sierk A.J. — Phys. Rev., 1979, C20, p.992.
12. Randrup J., Tsang C.F., Moller P. et al. — Nucl. Phys., 1973, A217, p.221.
13. Randrup J., Larsson S.E., Moller P. et al. — Phys. Rev., 1976, C13, p.229.
14. Sobiczewski A. — Sov. J. Part. and Nuclei 1979, 10, p.1170.
15. Myers W.D., Swiatecki W.J. — Ark. Fys., 1967, 36, p.343.



PROGRESS IN THEORETICAL UNDERSTANDING 311

16.
17.
18.

19.
20.
21.
22.
23
24.
25.
26.
27.

28.

29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

Hoffman D.C. — Accounts Chem. Res., 1984, 17, p.235.

Hulet E.K., Wild J.F., Dougan R.J. et al. — Phys. Rev. Lett., 1986, 56, p.313.

Hulet E.K. — Proc. 5th Int. Conf. on Nuclei Far from Stability, Rosseau Lake 1987, ed.
LS. Towner (AIP Conf. Proc. 164, New York, 1988), p.810.

Brosa U., Grossmann S., Miiller A. — Z. Phys., 1986, A325, p.241.

Depta K., Maruhn J.A., Greiner W. et al. — Mod. Phys. Leit., 1986, Al, p.377.

Maller P., Nix J.R., Swiatecki W.J. — Nucl. Phys., 1987, A469, p.1; 1989, A492, p.349.
Pashkevich V.V. — Nucl. Phys., 1988, A477, p.l.

Cwiok S., Rozmej P., Sobiczewski A., Patyk Z. — Nucl. Phys., 1989, A491, p.281.
Sirutinsky V.M. — Nucl. Phys., 1967, A95, p.420; 1968, A122, p.l.

Nilsson S.G., Tsang C.F., Sobiczewski A. et al. — Nucl. Phys., 1969, A131, p.1.

Cwiok S., Dudek J., Nazarewicz W. et al. — Comput. Phys. Commun., 1987, 46, p.379.
Bolsterli M., Fiset E.O., Nix J.R. — Proc. 2nd IAEA Symposium on Physics and Chemistry
of Fission (1AEA, Vienna, 1969), p.183.

Soloviev V.G. — Theory of Complex Nuclei, Moscow, Nauka, 1971; Oxford, Pergamon
Press, 1976.

Sobiczewski A., Szymanski Z., Wycech S. et al. — Nucl. Phys., 1969, A131, p.67.

Brack M., Damgaard J., Jensen A.S. et al. — Rev. Mod. Phys., 1972, 44, p.320.

Pauli H.C. — Phys. Reports, 1973, C7, p.35; Nucleonika, 1975, 20, p.601.

Pomorski K., Kaniowska T., Sobiczewski A., Rohozinski S.G. — Nucl. Phys., 1977,
A283, p.394.
Pashkevich V.V. — Nucl. Phys., 1969, A133, p.400.

Larsson S.E. — Phys. Scr., 1973, 8, p.17.

Rohozinski S.G., Sobiczewski A. — Acta Phys. Pol., 1981, B12, p.1001.

Cwiok S., Pashkevich V.V,, Dudek J., Nazarewicz W. — Nucl. Phys., 1983, A410, p.254.
Boning K., Patyk Z., Sobiczewski A., Cwiok S. — Z. Phys., 1986, A32§, p.479.

Cwiok S., Sobiczewski A. — Z. Phys., 1992, A342, p.203.

Viola V.E. Jr., Seaborg G.T. — J. Inorg. Nucl. Chem., 1966, 28, p.741.

Poenaru D.N,, Ivascu M. — J. Phys., 1983, 44, p.791.

Hatsukawa Y., Nakahara H., Hoffman D.C. — Phys. Rev., 1990, C42, p.674.

Buck B., Merchant A.C., Perez S.M. — §. Phys., 1991, G17, p-1223.

Sobiczewski A., Patyk Z., Cwiok S. — Phys. Lett., 1989, B224, p.l.

Baran A., Pomorski K., Lukasiak A., Sobiczewski A. —Nucl. Phys., 1981, A361, p.83.
Patyk Z., Skalski J., Sobiczewski A., Cwiok S. — Nucl. Phys., 1989, A502, p.591c.
Patyk Z., Sobiczewski A. — Nucl. Phys., 1991, A533, p.132.



