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TWISTOR-LIKE APPROACH
IN THE GREEN — SCHWARZ D = 10
SUPERSTRING THEORY

LA.Bandos, A.A.Zheltukhin
Kharkov Institute of Physics and Technology 310108, Kharkov, Ukraine

The Lagrangian and Hamiltonian mechanics of & recently proposed twisior-like Lorentz
harmonic formulation of the D = 10, N = 1B Green — Schwarz supersiring arc discussed. The
equations of motion are derived and the classical equivalence of this formulation to the standard one
is proved. Presented is the complete set of the covariant and irreducible first-class constrainis
generating the gauge symmetries of the theory, including x-symmetry. The algebra of all gauge
symmeiries and symplectic structure characterizing the set of sccond-class constraints are derived.
Thus, basis for the covariant BRST-BFY guautization of D = 10 superstring in the twistor-like
approach is built.

H3y4uaicTcs NArpaHxesa M raMiJIbTOHOBA Mexauuks D = 10, N = HB cynepcrpybt Ppusia —
HIrapua B TBUCTOPHOM ROIXOAE. TBUCTOPHBIE NEPEMEHHBIC PERTUIYIOTCH B (DOPME CIIMHOPIbIX
JIOPCHLICBBIX TApPMOHMK. BbIBOAATCY YPABHCHHS JIBMAKCHMY CYNEPCTPYHBL ¥ ROKAILIBALTCH
KJACCHUECKAY IKBUBANECHTHOCTL TEHCTOPHOI 1 CTAHARPTHOI HopMYIMPOBOK Teopun. CrpoKies
NOJHBIN HA0OP HENPUBOUMBIX, KOBAPHAHTIBIX CBY3CH HEPBOIO DOAR, TEHCPHPYHOIHX Kanmbpo-
BOUHbIC CUMMCTPHH ACACTBIS CYNEPCTPYHLY, BKAOUAS K-CHMMETPHMED, W PUBOAMTCH X anrchpa.
TIpeacraeageTes CHMILIEKTHUECKAS CTPYKTYPa anre0pul KOBAPWAHTHBIX CBA3EH BTOPOTO POjiG.
Gbeyxaaerca nponeaypa xosapuantaoro 5PCT-IOMB gecatumepro Cyneperpy sl

1. INTRODUCTION

Superstrings in D = 10 [1,2,3] are discussed as the possibie basis for
building the sclfconsisient quantum theory of gravity and the Unified theory
of alt the interactions. However, its covariant quantization is hampered by the
problem of k-symmetry covariant description because this fermionic
symmetry [4]is infinitely reducible in the standard superstring formulation
[1,2]. Unfortunately, the cxisting modern schemes [5—7] of covariant
quantization have been developed only for the systems with the finite level of
the constraint reducibility. (Remember, that such a problem appcars already
in the superparticle theory {8,3 .
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The progress in solving the problem of covariant quantization is necessary
for the correct choice of the supersiring ground state, among the infinite
number of sclutions for D = 10 supersiring compactification. As a result the
infinitely many different effective 4-dimensional theories have appeared
instcad of the unique 10-dimensional one {9 ).

One way o solve the problem of covariant superstring quantization is to
usc the fact that the reducibility level of the symmetries is not invariant under
possible reformulations of the theory [5—7 1. In other words, two classically
cquivalent theories may have different level of reducibility of their
symmetrics. Thus some formulation of superstring theory, which includes
auxiliary variables and is classically equivalent to the standard formulation
|13 ], may have cither finite level of the reducibility of x-symmetry or even
irreducible A-symmeiry®.

This way has been opened in the pioneer works of Nissimov, Pacheva and
Solomon [14—16]. They have extended the phase space of D = 10, N = 2
Green — Schwarz superstring by adding the vector SO(1,9)/ [SO(1,1) ® SO(8) |
[£2] u(i) [£2]
moTm m
being replaced by the bilinear combinations of the D = 10 bosonic spinors

at: “rIntZI: vatamuﬂ i‘

harmonic variables (u ) (see {131 with two light-like vectors u

The characicristic feature of the approach [14—17 | is the formulation of
the action functional in the Hamiltonian formalism with using the Lagrange

multipliers method. The «harmonic» variables (V™ uf,';)) and the momentum

degrees of freedom canonically conjugated to them are involved into the
action principle through the constraints which arc chosen in such a way, that
the additional variables are pure gauge ones. Thus equivalence of the
«harmonic» superstring formulation [i4—16] with the standard Green —
Schwarz cnc is reached.

*Another way consists in attempts to extend the quantization scheme, developed by Batalin
and Viikovisky [6], to the case of systems with infinitely reducible symmetries (see [9—12] and
Refs. therein) . Such extensions use an infinitely reducible gauge-fixing conditions and produce free
type effective actions including infinite number of fields for superparticles and superstrings.

However, the straightforward extension of the BV prescription {6} for the systems with
infinitely reducible constraints leads 10 the weli-known troubles [10,11]. So, the cohomologies of
the superparticie BRST operator, calculated in this way differ from the state spectrum of the
Brink — Schwarz superparticle obtained from the guantization in the light-cone gauge (see
{10,11]). To achieve the correct BRST cohomology (i.e., state spectrum) it is necessary 10 modify
not only BV-quantization prescription, but also the initial superparticle or superstring formulation.
However, after this step, the second way is reduced 1o a variant of the first one.
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The use of these variables permits Nissimov, Pacheva and Solomon to
sclve the problem of the covariant decomposition of the Grassmannian
constraints into the irreducible first and second class ones. The second class
fermionic constraints were transformed into the first class constraints using
the introduced auxiliary fermionic variables, and the covariant quantization
of the Brink — Schwarz superparticle and Green — Schwarz superstring theo-
ries was carried out [14—16] (see also |17 ).

In parallel, the twistor approach [58] to superparticle and superstring
theories has been developed [24—40, 42,43,45,46 |. It is closely related with
the approach of Nissimov, Pacheva and Solomon, in particular, both
approaches use bosonic spinor variables as the auxiliary ones. However, the
twistor approach puts forward the new concept explaining the nature of the set
of auxiliary bosonic spinor variables necessary for the covariant decomposi-
tion of the Grassmannian constraints of superparticle or superstring theories.
This concept proposed in Refs. [28—30 | interprets the chosen bosonic spinor
variables as the «supcrpartners» of the target superspace Grassmannian
coordinate field 8 */ with respect to worldsheet supersymmetry.

Such a treatment of the bosonic spinor variables reduces the arbitrariness
in their choice and, in particular, fixes their number to be equal to N(D — 2),
where N is the number of the target space supersymmetries and D is the
dimension of target space-time.

On the basc of the twistor approach the «mysterious» x-symmetry is
presented as the nonlincarly realized worldshect supersymmetry when all
auxiliary ficlds are excluded using their equations of motion {28—301.

In the frame of the superfield realization of the twistor approach the
infinitely reducible x-symmetry with algebra being closed only on mass shell
is replaced by the local world-sheet supersymmetry transformations
128,29,30 ], which arc irreducible and have the algebra closed off mass shell.
So, the twistor approach seems to be a relevant base for the covariant super-
string quantization, altcrnative to that developed in Refs. 14,15,16,17.

The doubly supersymmetric superficld action functionals have been
proposed for the superparticic and heterotic superstring in D = 3, 4,0, 10
128—321, {34—40] as well as for D = 3, N = 2 Green — Schwarz super-
string {59 ]. There are some problems in the construciion of such superfield
action functionals for N = 2 Green — Schwarz superstrings in D =4, 6, 10
159D, and, up to now, this problems is open. Nevertheless, the component
twistor formulation [19,23,46 | exists for these cases. These formulations are
related to the discussed superfield ones rewritten in terms of components,
when all the auxiliary variables, except for the bosonic spinor ones, are
removed from the action using algebraic motion equations. Therefore, in
twistor-like component superstring formulations [19,23,46 ] the world-sheet
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supersymmetry is realized nonlinearly, i.e., is represented as a k-symmetry,
and its algebra is closed on the mass shell only. However, the x-symmetry
remains irreducible in this formulation, and the number of the auxiliary
bosonic spinor variables (twistors) is conserved to be the same as that in
superfield ones. Hence, the formulations [19,23,46 ] still give the possibilties
to investigale the machinery of the twistor approach in solving the problems
related to the task of the covariant superstring quantization.

D = 10, N = 11B, supersrting formulation [23,46 ], being invariant under.
the (nonlinearly realized) extended local n = (8, 8) world-sheet supersym-
metry, includes in its configurational space two sets of auxiliary Majorana —

Weyl bosonic spinor fields (twistor components) v;A(r,a) and v_ (1, 0)

(a=1,...,16; A=1,..8 A= 1,...,8) taking their values in 8-dimensional
s- and c-spinor representations of the «transverse» SO(8) group. These
twistor components are the superpartners of the Majorana — Weyl Grass-

mannian spinors 8 “'(z, o) and 6 “X(r, 6) under the discussed world-sheet
supersymmetry transformations.

Comprising the considered component twistor-like formulation with the
one proposed by Nissimov, Pacheva and Solomon [14,15,16,17 | we conclude
that they differ not only in the form of the action functionals, but also in the
sets of the auxiliary bosonic spinor fields. More exactly one may say that the
additional twistor variables in the set [20,21,23 ] can be obtained by taking

the square root of the transverse vector harmonic variables uf:l) belonging to

the NPS set [14—17]. In other worlds, the harmonic fields [14—17] are
composite objects constructed from the twistor variables [20,21,23]. The
importance of the latter difference for the problem of the covariant superstring
quantization may be shown only by further investigations of the classical and
quantum dynamics of supestring in the twistor approach. Now we note only
that the square root extraction operation leads to nontrivial consequences in
many cases [51].

Note that the auxiliary spinor variables similar to the discussed twistor
variables have been previously used by Wiegmann [57 | for the description of
N =1, D = 10 heterotic and Neveu — Schwarz — Ramond fermionic string
in the covariant light-cone gauge. The paper [57] is closely related to the
Lund — Regge geometric approach [60] and, especially, to its gauge
interpretation [61 ], where the 2-dimensional SO(1,1) and SO(D — 2) gauge
fields and the Cartan embedding forms used in [57 | have been introduced.
However, Wiegmann does not consider the problem of building the covariant
Hamiltonian formalism for the original heterotic string phase space extended
by the addition of the twistor variables in an arbitrary gauge. Instead of it the
author of [57] excludes original physical variables of the heterotic string
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6 “(, 0), i.e., the Grassmannian target space spinor coordinates, by means of
functional integration. On the other hand, the original phase space of the
heterotic string reduced in such a way is extended by the addition of the
effective gauge fields [61 | generated by the differential forms of embedding.
As a result the Hamiltonian structures of the twistor {22,23,46 ] and effective
[57 }actions differ in principle.

Taking into account all the above-mentioned reasons we regard the
investigation of the Lagrangian and Hamiltonian structures of the D = 10,
N =11B Green — Schwarz superstring in the component twistor-like
formulation [22,23,46 ] as a problem to be paid attention to. This is just the
problem suggested for studying in the present paper.

Here we follow the line of papers [18—23, 46 ] and realize the twistor
variables for D = 10, N = 11B Green — Schwarz superstring as the pure spi-
nor Lorentz harmonics which parametrize the SO(1,9)/ [SO(1,1) ® SO(8) |
cosct. These harmonics are obtained by taking the square root of the basic
vectors of the moving Cartan repere attached to the superstring world-sheet.
Newman and Penrose were the first to consider this interpretation of the
twistor’s components for D = 4 {44 ].

In papers [18,19,62,42,43 | the Newman — Penrose dyades were used
for the description of the massless superparticles, null superstrings and null
supcrmembrancs. In particular, in these papers shown was the principle role
of the component twistor formulation for the action of null super-p-branes
(i.c. massless superparticles for p = 0, null superstring for p = 1, null super-p-
branc for p = 2) in 4-dimensional space-time for the solution of the problem
of the covariant contsraint splitting and their conversion |7 ] into the Abelian
first class constraints. As a result of the component twistor approach the prob-
iem of the covariant BRST-BFV quantization of null super-p-brancs in D = 4
was solved {42,43 .

In the case D = 4 the Newman — Penrose dyades are used for building
the vector ficlds u™(r, o™) of the Cartan moving repere (an isotropic tetrade
[44 ] attached to the world hypersheet of (null) super-p-brane. And the
twistor-like null super-p-brane action is the first order form functional
constructed using the composed vector from these moving frame set.

This observation fcads o the generalization of the Lorentz-harmonic
approach {18,19,42,43 | to the description of superstring and other extended
supersymmetric objects (for example, supermembrane) in higher dimensions
D [22,23,45,46 ). The proposed generalization implies the necessity of the
consideration of the D-dimensional spinor harmonics as generalized
«dyades». Therefore, if the first order form action with auxiliary vector
variables is known, the problem of the twistor-harmonic description of the
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superstring (and super-p-branes) imbedded into the D-dimensional space-
time is reduced to constructing the realization of the Cartan repere (moving

frame system) us,':)(r, oM = uf,',')(E‘“) in terms of spinor 21D/20oD72]
harmonic matrix
vﬁESpin(l,D-—l), a=1,.,2" a=1,.,2 (1.D

with v = [D/2] or (D — 2)/2 for Majorana — Weyl spinors in D = 10 (mod8)
[18—23], [42,43,45,46].
But such task can be solved easily. The orthonormal repere

uMy"D = yWO = giag (1, = 1,...,— 1) (1.2

m
belongs to the SO(1, D — 1) group. The double covering of this group is

Spin (1, D — 1). Thus the connection of the repere uf}':), with harmonic

variable matrix 'UZ is defined by means of the «square root» type universal
relation

m

AV aff b -1
U = 2700 (T, )P ol (reTh, . (1.3)

As the result of Eq.(1.1), the relation (1.3) may be rewritten in the
following forms

) e l)aﬂ = Ui (r(ll)C“l)ab v[bi , (1.4a)

m

u (CF(N))ab =2 (CT

m

) ug . (1.4b)

m

This is possible because, in general case, the following identities

spe’er, |, vIMWeTh=o, (when k>1),  (1.5a)
k

.
1
Sp 'cr, v 1W-0e™ = o, (when £>1)  (1.5b)

are satisfied for the matrix v7 € Spin (1, D — 1) (1.

The relations (1.1)—(1.3) are the basis of the twistor-like Lorentz
harmonic approach to super-p-brane theories.

The discussed approach has been named harmonic cone, because the
condition (1.1) is not realized by expressing the matrix vz as an exponential
function of the Spin (1.9) Lie algebra gencrators; it is realized by the
requirement, that UZ matrix should satisfy a set of the so-called harmonicity

conditions
EM(v) =0. (1.6)
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These conditions provide the satisfaction of all the relations (1.5a), (1.5b), as
well as of the relations (1.3), by definition. And the use of them is more
convenient, than the use of the siraightforward exponential parametrization
(this fact was evident already in the case of the compact space SU(2)‘/ uch)
[47D.

For the case of D = 10 superstring, the mairix UZ has one SO(1,9)
Majorana — Weyl spinor index a = 1,...,16 and one 1 6-dimenisonal index a
of the right product of the SO(l,1) and SO(8) group. The latter may be
decomposed into the two SO{1,1) € SO(8) invariant subseis of indices

Q= (; /i) Here A= 1,...,8 and A = 1,...,8 arc the indices of (s) and {c)
spinor representations of SO(S) and 5ymbols denote the Weyl weight under
the transformations from SO(1,1) group (which is identified with the Loreniz
group of the world-sheet in the formulation [22,23,46)). Correspondingly,
the 16x16 harmonic matrices vg are decomposed into the two 16%8§ blocks
(20,21 ]

’UZ = l(:A’ '(ZA)
which transform covariantly under the left SO{1,9) and right
SO(1,1) ® SO(8) transformations.

The corresponding SO(1 ,Q)L® (SO, D) & SO(8) Ig invariant splitting of

the composed Cartan repere (1.3) has the following form

a.n

M,E":) = (uf:?), ug), , 14(9)) = (u i uf:l)) (1.8a)
Do (0 6 Loy =20 L2 -2 .
u ] (MSI)’ um)) (2 (um + L"m ’2 (l“m m )) (1.8b)
& = (D (8) ;
iy (l/m reees My ), (1.8¢)
whiere the vectors u,if?], bff:i) are defined by the relations [20,21 ]
R B AP SN G By, )
i, g (V40 V)= § Van ov i (1.92)
-a_ 1,
by =g 9,03 (1.9)
hoo 1l
) =g Wr a7 (1.9¢)

The contracied SO(1,9) spinor indices are omitted in (1.9b), (1.9¢) and in the
following formulas.

The harmonicity conditions (1.6) have the following form in the
discussed case [20—23,46]
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= ;i = _
_,n‘...m‘- u' (n) 77(")([)-5,[,)'.“,""”—— 0, (1.102)
E=up w2 =0, (1.10b)

where the expression

vo™y = vl (@

"l .

= = sp 75
"'nllu.rnj" Sp (v o

ap b My _— .
o m ms) (G ) =0 (.11
vanishes as the consequence of Eqgs. (1.10a) [46] The last expression of the
type (1.5a) vanishes identically because of the antisymmetric property of the

mamx (o ) ap

e under the spinor index permutations.
i

The repere orthogonality conditions (1.2) are satisfied as the common
consequence of the exprcssnons (1.9), the conditions (1.10a) and the famous
identity :
~a(ﬂ yoim ~aﬁ ~ydm

=3 (

m

+ cyclic permutations (a,8,7)) =0.  (1.12)

The normalization conditions for the composed repere (1.2), (1.9) arc
satisfied duc to the harmonicity conditions (1.10a), (1.10b) and due to the
identity (1.12).

Thus, the orthonormal repere in D = 10 space-time was constructed in
terms of generalized dyades. So, after the construction of the first-order form

superstring action using the auxiliary vector variables nl‘ I, which belong to
the moving frame system (repere), ,thL twistor-like form of the superstring
action can be achicved by the simplc replaccment of the n'[”i” by the

composed vectors u,l"‘21 (1.9.

In such a way the action for D = 10, N = 118 superstring was constructed
[22,23].

Here we continue the program outlmcd in Refs. 22,23.

Lagrangian and Hamiltonian mechanics' of the twistor-like Lorentz
harmonic formulation of the superstring are constructed. The cquations of
motion are derived. The constraints decomposition onto the covariant and
irreducible first and second class ones is carried out. We compute the algebra
of the gauge symmetries of the theory in the Hamiltonian formalism and
present the symplectic structure characterizing the set of the second class
constraints. Thus we get all necessary infdrmation for the conversion of the
second class constraints into Abelian first class ones (sce [7]), forthcoming
construction of the classical BRST charge and covariant quantization, which
are the subjects of future works.

The paper is organized as follows.
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To make clear the forthcoming description of superstring in twistor-like
formulation we consider the bosonic string formulation with auxiliary vector
variables in detail. This is done in Section 2, where the derivation of the
motion equation and the construction of the Hamiltonian formalism for
systems with harmonic variables are discussed using this simple example. For
the reader convenience, the description is closed in this section.

In Section 3 we describe the twistor-like Lorentz harmonic superstring
formulation [22,23] and discuss its equivalence to the standard one [1,3].
Here we derive all the equations of motion for the discussed superstring
formulation.

Section 4 is devoted to the construction of the Hamiltonian formalism.

The primary constraints are derived and the so-called covariant
momentum densities for the harmonic variable are introduced in Subsection
4.1. It is demonstrated that these momentum variables generate the current
algebra of the SO(1,9) on the Poisson brackets.

In Subsection 4.2 the Dirac prescription of the checking the constraint
conservation during evolution is carried out, the covariant and irreducible
first class constraints are derived.

In Section § the first class constraints are redefined. This redefinition
leads to the simplification of the algebra generated by them on the Poisson
brackets. Such algebra is presented in Subsection 5.1. The symplectic
structure of the second class constraint system is derived in Subsection 3.3.
The relation between the well-known Virasoro constrainis and the
reparametrization symmetry generators of the twistor-like formulation
122,23 ] is discussed in Subsection 5.3,

Our notations for the Majorana — Weyl spinor indices in D = 10 coincide
with ones from Refs. 14,15 except for another choice of metric signature (see
Eq.(1.2)).

2. BOSONIC STRING
IN THE CARTAN MOVING FRAME FORMULATION

2.1. Action Principle and Equations of Motion. To make more clear the
forthcoming description of superstring in twistor-like Lorentz-harmonic
approach we consider the bosonic string formulation with the following action
functional

S=[d*%LE) = [ d%e@®) (- (@) " Zetg X+ o). @D



1074 BANDOS LA, ZHELTUKHIN A.A.

This formulation uses two D-dimensional vector ficlds nm = (nfg), n, )

belonging to the Cartan repere (moving frame system) n(’) = (zm, f"l))*
attached o the siring world-sheet and defined by the orthonormalny
conditicns

(D) o (), m(D) _ ()
= =n,n 7 =0, 2.2)
(where the Minkowski metric tensor ,](")(1)= diag (+, —,..., —)). Other addi-

tional s¢t of the used auxiliary fields is the world-sheet zweinbein e;{(E)
(o ={t, a0y /=01

#,1 f fv _ v - f
€p €= .{; €= 6;‘, e = det (eﬂ). 2.3
The tw0~dln1en310nal Lorentz group SO(1,1) acts on the flat indices /, g of

the zweinbein eﬂf(g) as well as on the 2-valued index {/} numbering the veciors

from the set rsz(&)"*. The basis of a two-dimensional vector space may be

always chosen to be composed from two light-like vectors with the definite and
opposite weights under the SO(1,1) group. Thus it is convenient to work in
terms of the light-like zweinbein components

A (,’ (672 -2, L olei 1‘—21))‘

2

efi= (l (1724 or1+2]) %(eum;_, e,ul+2l))
2 " 3 3

el Herl+2 =g = ol Ao,
el F2 =21 g _ =20 ul+2]
€ €
N _me(‘,mny vi=21_ ul-2 v|+2|) 2.4)
0!
(=~ Eo1 = 1),

* The Latin letter [ in the round brackets n“) denotes the number of a vector from the moving
frame set "S)' nE;) . n(D U It is convenient to separate all the repere veciors nm into two sets
ad= (mm, n(i)), wherei=1,..,D-2and f= 0,1 (so0 nl%= pf n ) and nm-- n(D ‘))

Ll m m ”

**Thus the SO(1,1) subgroup of the target space Lorentz group SO(1,D-1) (acting on the
repere variables matrix "5;? from the right) is identified with the Lorentz group of the string world-

sheet in the discussed formulation {comprise with {22,23]).
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gH= %(em+21ev[—21+ et 121 1420y,

V_g=e, 8 = %( (+21 p1-21 e/i"zle”'”l), 2.4

k2 R R P
€y € =2/e,

and light-like vectors
e (Ltraig =y L2 12
Moy = (2 (n “m +n m b3 2 (nm Tin ))

al22 2 0 gl O (D)

m m m m ?

i+2]nml+2]= 0= n[*’llnm[—Zl’ n!+2]nml--2]= ) (2.5)
m . m m

n
(comprise with Egs. (1.8b)*.
The variation of the action (2.1) with respect to the inverse zweinbeins

e;‘ gives the following relation
"(E) =9 X nm/c(a )‘/2 (2.6)

which is the simple expression for the souldary form e/(df, & = d§"ef{(§) of
the world-sheet, induced by embedding of the world-sheet into the D-di-
mensional Minkowski space-time. Taking into account Eq.(2.6), we may
exclude the auxiliary zweinbein field from the action (2.1)

— (@)% ef'o X"n= — 2ce = - 2det (3,x™nP), Q.7

"
Sy =~ (ca’)™' [ d% det (Oﬂxmnf,’?). 2.8)

The resulting action (2.8) coincides with cne from Ref. 41, where the
auxiliary vector fields from Cartan moving repere had been introduced for the
first time for building string and superstring actions.

Thus the action (2.1) is the first order form representation for the
«antisymmetric» action from Ref. 41.

Now let’s discuss the relation of the discussed string formulation (2.1)
with the standard Dirac — Nambu — Goto and Polyakov ones.

*In such form the coincidence of the repere variables n() with the vector harmounics from

Ref.13 is evident. However, the repere variables were used for the first time for the string and
superstring description in Ref.41.
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It should be proved below, that the variation of the action (2.1) with
respect to the auxiliary vector fields nﬁ{?(&) leads to the following nontrivial
equation )

8,x"n() =0, 2.9
which means that the vectors nfp? are orthogonal to the string world-sheet.
Egs.(2.6), (2.9) and the completeness of the moving frame system

(0 O -
m Ty = Tmp

give possibility to express aﬂx (&) through nm(},—')

1/2
aﬂxm@) = ¢(a') eg Ny %} (2.10a)
and vice versa | 1/2 p
- g M
¢ Ha') e, aﬂxm (2.11)
Taking into account Egs.(2.7) and (2.11), as well as the definitions
efn 8 = g, e=V-g,

we may rewrite the action § (2.1) in the foilowing form
1 2
- (2ea')” [dEV- gg’“’aﬂxmavxm,

which is the known string action introduced in Ref. 48. From the other hand
Eq.(2.10) leads to the following expression for the induced metric

g,,= 0,5 0,5, &)/ a, (2.10b)
which results in the relation
- e 1/2 m ,
e= \/':g = det (a”x €3] avxm(.f,-‘))/c a'. 2.10¢0)

The substitution of Egs.(2.10a), (2.10c¢) into the functional (2.1) leads to the
Dirac — Nambu — Goto action

Spon—c =~ (@) [ d’& (det (3,5 ®) 0,%,EN',

At last, the variation of the action S (2.1) with respect to x™(&) gives the
equation

ol o
aﬂ(e ef n,)) =0, (2.12)
which may be rewritten in the standard form (see Ref. 48)
6”(\/ —-gg”x™ =0, 2.13)
using Eq.(2.11).
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However, the derivation of Eq.(2.9), which is crucial for the conclusion
presented above, is not so simple task. First of all note that the variational

problem with respect to nf'? fields is the problem with conditional extreme due

to the necessity to take into account the orthonormality conditions (2.2). It
may be reformulated into the variational prblem with absolute extreme if we

extend the action (2.1) by means of adding the conditions =™W® (2.2) with
the corresponding Lagrange multipliers (see [41 ]). Another way for yielding
the right motion equations is to restrict the class of admissible variations

6nf'? by the variations which conserve the orthonormality conditions (2.2).

The use of this method does not require the introduction of the Lagrange
multipliers and seems to be simpler for the solution of the variational
problems characterized by the sophisticated structure of constraints. The
same method will be used below for studying D = 10 superstring dynamics in
the twistor-like formulation [22,23 ].

2.2. Admissible Variations for Repere Variables. Let’s discuss arbitrary

set of D independent vector variables nf'? in D-dimensional space. The
condition of the independence has the form det (ns'?) # 0. Thus the set of the
variables nf'? discussed as DxD matrix belongs to the GL(D, R) group. An

arbitrary variation with respect to nf'?

& =na/an® (2.142)
may be rewritten in the form
8 = (n~'8m)Q (nDa/on(D). (2.14b)

In Eq.(2.14b) (n_ldn)g‘)) = ("_1)27() anfr? is the Cartan differential form,
which is invariant under the left GL(D, R) transformations. The differential
operators nf'?a/ anm(k), appeared in (2.14b), may be discussed as the
covariant derivatives (see [47)) for the GL(D, R) group.

Let’s restrict the right GL(D, R) transformations (acting on the numbers
(D) of the vectors nf'?) to be only from the Lorentz group SO(1, D — 1). Then

the invariant metric tensor
7™WD= diag (+, —,..., -)

appears and we achieve the possibility of lovering and of rising the indices in
the brackets. After this step we may transform Eq.(2.14b) into the form
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d = (n_lén)(k)([)(ng)a/art’n(l)) (2.140)

and to decompose the GL(D, R) covariant derivatives n(l)a/ an(k) onte the

symmetric and antisymmetric parts

(na/ an)(k)([) = %(A(D(k)+ K(l)(k)),

Dk Lk b
AV® = nfn)a/anm(n— nPa/on k)’ (2.152)

k ) k
K(l)( - n( )3/‘3".(@* n( )a/an o (2.15b)

The corresponding decomposition of the Cartan differential form is defined
by the relations

__l _ —
(n3m) iy n= Laayd@ + Syp©)>
Q =(n"! I PR I —1
Q@ = (17 3m) 4y =5 ((n 0m) iy~ Oy (2.16a)

)= (n ! =L, -1
S(k)(l)(a)"’ (n 5”)!(/()([)}'—' D) ((n 5”)(k)(,)+ {n én)(l)(k)). (2.16b)

Taking into account Egs.(2.15) and (2.16), the expression (2.14) fox
arbitrary variation may be presented in the form

I3 k
a_ (k)([)(a)/:\ = s ((a)x< Q.17

It is easy to show that AOW ang K(l)(k) operators generate the gi{(D, )
Lie algebra

Bapay Sapoy =~ 2”(1.>i<kl)’3(k2)1(12>+ 2”(12)[&!)13(1(2)1(1,)’ (2.182)
By KT = Hapiey Ky~ PaeKapay @18
(2.18¢0)

WKy Komp T = 2By ™ P Swnay
with the subalgebra (2.18a) of the Lorentz group produced by D(D — 1)/2
A([)( % operators. The operators K( Dk are related with the factor space
GL(D, R)/SO(1, D — 1)

and the number of them coincides with the number of the orthonormality
conditions Z®),
Now it is evident that the admissible variation may include A(l)(k)

operators only. This statement is true due to the faci that the Lorentz
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rotations are the only transformations which conserve the orthonormality of
repere. Let’s, however, arrive this statement in a more formal way. This helps
us to understand a more complicated case of spinor moving frame variables
(i.e., Lorentz harmonics {20-—23 D).

The action of A and K operators on the variables rz%} may be casily
determined (see Egs.(2.15))

By om= i) ey (2.192)
K(l,)(lz)n(n“)m: 2’7([)((19"(12)},,,- (2.19)
So we have
By i)™ T Zapwyt PaieSeey 320
K(l,)(lz)s(k|)(k2)‘—“: 4ﬁ(kl){(li}n(!2)}(k2)+
(2.20b)

* gy F ey Py y
Eqgs.(2.20) justify the statement that A(l)(é;) operators conserve the

orthonormality conditions (2.2)

0. (2.21a)

Au)EE ) o™
At the same fime

i

2.2i

KTt | sop™ ok,

Hence the operators K(i)(k) destroy the repere orthonormality. Moreover, the

differential form (2.16b), related to the operator K(l YA (see (2.17)), is
N R 3

reduced to the complete differential of the orthonormality condition E(l Y0

P72

on the surface (2.2)

| »
o 2P0y 2.210)

Say)

So the following variations

(2.14d)

are admissible (i.c., conserve the repere orthonormality conditions (2.2)).
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In Eq.(2.14d) the covariant SO(1, D — 1) derivative has the form (2.15a)
and the expressions for the Cartan forms (2.16a) may be reduced to the
following ones

QOO@) = ﬁ(*><’>(a)g2=0= n®on"O= — nDspm® (222

on the surface defined by the crthonormality conditions (2.2).
It iz interesting fo note, that Eq.(2.14a) may be discussed as the
definition of the covariani derivatives A([)(k)' So, A(l)(k) may be understood as

the derivaiives with respect io the Cartan forms Q(k)(l)(a).
If the repere variables become the fields living on the world-sheet

| = ni)E"),
then the variational analogs A(E) of the operators A should be used

8OO = nDiey8/on,, &) - n®@&) 8/6n,, @), 223

"l
and we should use the following form of the admissible variation

i 1 -
; ""‘(E)--Oz 2 / 4% Q([)(k)(a) A(k)([)(g) (2.24)

instead of one defined by Eq.(2.14d).

Now we are ready to discuss the derivation of Eq.(2.9).

Taking into account Eq.(2.24), it is easy to see, that the variation of the
action (2.1) with respect to the repere ficlds nf{? is defined by the relation

38 = [d%ESLE) = [ d* e(®) (- (a')““e;‘a x" 3n'M -

=—(a) V2 [ d%e ef's, x"Q0®(s) (B ey M. @2

We stress, that the simple covariant derivative (2.15a) is used in the last part
of Eq.(2.25). This is the result of application of the variational derivative
(2.23) included in the previous part of this equation.

Hence, we may conclude that:

i) The right equations of motion for tie repere fields have the forms of the
variations of the action (2.1) with respect to the Cartan forms (2.22)

35/6Q0®) 4y = 0. (2.26)
(These equations take into account the orthonormality conditions (2.2) auto-
matically);

ii) These equations may be presented in terms of the Lagnrangian density
and ordinary covariant derivatives as follows
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A®OOLE) = (D) 8/0n,, () ~ n®(&) o/ 0, E) LE) = 0. 2.2D)
This statement is true for cases, which are similar to the discussed one, where
there are no time derivatives of repere fields in the action;

iii) The equations of motion are defined by the result of the action of the
ordinary covariant derivatives (2.15a) on the ﬁelds,nf'?.

So the equations of motion for the nffl) fields have the form

ee"a x "A 0. (2.28)

=
®)"m
We may specify them as follows, using the Eq.(2.19a),

0 -
e efd, xn, 1 3% = (2.29)

Thus it is evident, that motion equations for the fields nfr? give nontrivial
consequences only for the cases (k) = {/} or () = {/}. The equations (2.29)
are satisfied identically when (k) = {/} and (§) # {/}. This is the consequence
of the gauge SO(8) symmetry of the discussed action (2.1). The operators
AOY generate these transformations.

Eq.(2.29) is reduced to the following relation

Va“x Mot = 0, 2.30)

when both the indices (k) and (/) belong to the {/}-set. Eq.(2.30) is satisfied
identicaily if Eq.(2.6) is taken into account. This fact corresponds to the
SO(1,1) gauge symmetry of the discussed action (2.1).

Hence the unique nontrivial consequence of Eq.(2.28) corresponds 1o the

varying of the action with respect to the Cartan form Qo describing the
variations from the coset SO(1, D — 1)/ {SO(1,1)xSO(D — 2)]. It has the
form of the relation

e e;‘ Gﬂxmnf,?= 0 2.3
and is equivalent to Eq.(2.9).

Hence, the equations of motion for the discussed bosonic string
formulation (2.1) are derived using the variational principle based on the
concept of admissible variation (2.22), (2.24) of the repere fields. It is a
simple task to derive the same equations of motion using arbitrary variations
and the extended action functional completed by the products of the

orthonormality conditions (2.2) =MD on the Lagrange multipliers (see [41 ]
for this approach applied to the second order form action).
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However, for the case of twistor-like Lorentz harmonic formulation of
superstring (see Section 3) the described form of variational principle
simplifies the calculation significantly.

2.3, Hamiltonian Formalism and Covariant Momentum Densities. Now
let’s discuss the Hamiltonian formalism for the bosonic string formulation
(2.1}, The first order form of the action principle results in the following fact.
All the expressions for momentum density variables

P (&) =~ oLl 9(d XM) = (P, (&), i), (2.32)
canonically conjugated to the configurational space coordmates of the theory
XME) = ("), i), (2.33)

result in some constraints. For the discussed formulation of the bosonic string
these primary constraints have the form

p,= (@) e enth (2.342)

P o=
([) 0. (2.34b)

However, the repere orthonormality conditions (2.2) should be discussed as
the additienal primary constraints

ZOHD = (M 5D < 2.35

if the canonical momenium densities PE’,’)@) for the repere variables nf'?(g) are

used. Such extension of the set of constraints makes the Hamiltonian
mechanics more complicated in the discussed case (see [41]. But the
corresponding complication for the case of twistor-like formulation of D = 10
superstring [22,23 | becomes drastic. Indeed, in the formulation {22,23 ] the
complicated harmonicity conditions (1.10), (1.11) appear instead of the
orthonormality conditions (2.2).

Henceforth, it is significant to work out the method, which allows one to
exclude the conditions similar to (2.2) from the set of constraints and to
discuss them as the strong relations. Such a method was used in fact in Refs.
13—17,20,21 and was grounded shortly in Ref.13 for the superparticle case
(see also Refs.49,18). Here we justify this method in detail for the case of
bosonic string formulation (2.1). Such justification makes more clear the
forthcoming discussion for the case of twistor-like superstring formulation.

Let’s return to the primary constraints (2.34). The first of them (2.34a)
may be decomposed into the two relations, using the orthonormality
conditions (2.2),

P(()j}E n"l{j}P"!z (a,)—-l/Z e ef'( = (ar)—l/zeque;’ (2'363)
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PPz "Op 0, (2.36b)

Egs.(2.36) mean that the repere variables may be discussed as the matrix of
the Lorentz transformations, which connect an arbitrary coardinate frame

with the fixed one, where the string momentum density P(()[) has only two
nonvanishing components (which coincide with the T-components of the

zweinbein density e ef")

PO = (P, POy = (@) %7, 0) = n"Op . (.37

Similar interpretation of the Cartan-Penrose representation rewritten in
terms of D = 4 Lorentz harmonic matrix was given in Ref. 18.
Let’s extend such interpretation to the case of harmonic sector and form
the SO(1, D — l)L invariant momentum densitics
Poy= Mo P (= = Mo/ (0,1 D). (2.38)
After the division of P(k)([) into the symmetric

— m m
Z(D(k)= nm(k)P(1)+ ”,;,([)P(k) ~ (2.39

and antisymmetric

—-— m m
M= "mayP i~ "y (2.40)

parts, we get D(D+ 1)/2 symmetric and D(D - 1)/2 antisymmetric
constraints cquivalent to (2.34b)

E*(k)([) = (), (2.41a)
n(k)(,) = (. (2.41b)
The Poisson brackets are defined by the relations
1Py(1,0), X"(x,0) ), = = XV, 0), P, (1, 0) 1, =
=48y 8 (o~ a'), (2.42a)

or
IF, Glp = [ do (8F/0P(0) 8G/8XM(0) — 8F/5xM(0) 6G/5P, (o)) =
= [ do (OF/3P, (0) 6G/3x™(0) ~ 8F/35™(0) 3G/3P, (0)) +
+J do (3F/8PY)(0) 3G/3n{(0) ——6F/6n(l)(a)6G/6P£';)(a)), (2.42b)

m
where F=F [XM(G), P (o)l and G=G [XM(a), P, (0)] are arbitrary
functionals defined on the phase space of the system.
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It may be justified that the variables E(k)(l)(‘f) and H(k)(l)(§) realize a

vector representation of the gf (D, R) current algebra on the Poisson brackets
(2.42)

L 1)@ ey )@ 1 =

=2 ("(1,)I(k|)n(k2)l(12)— ’7(12)[(/(1)11(/(2)1(1')) (0 -0, (2.43a)
T 50 ©@> ey ©) 1p =

= = 20 3ok, Zek i)™ Tk e 8 ) (243D)
20y Zak )@ e =

= = 2000 ) Tty Tk 6 © — o). 2430

The constraints n(k)(l) (2.40) form the representation of the SO(1, D — 1)

current algebra and, consequently, do not change the constraints (2.35) in the
week sense

M0y @ @) e = = Bty © =) 249
)@ S @) 1p =

= —2 (n(kl)l(l;):(lz)](kz)+ n(kz)'(ln):(lz)](kn)) d (o~ o'). (2.45)
So it is natural to consider Il 0 as the {(covariant) momentum variables for

the degrees connected with Lorentz subgroup SO(1, D — 1) of the GL(D, R)
group (i.e., to the orthonormal repere).
Contrary to I'I(k)([), the symmetric constraints E(k)(l) don’t conserve the

orthonormality conditions (2.35). Indeed,

=30 Ege k@ 1o = M it N © =90 F

+ 2O i Z et TooneSupey © © =0 (2.46)
or, in the week sense,
[2(1.)(12)(0)’ E(k;)("z)(o ) p z 417(,"){([‘)77(12)}(,(2) d(@-0). 24D

So it is natural to consider the combinations of the phase variables P?[l)

and nfr[l), presented by E(k)(,) and E(k)(l), as a new canonically conjugated
variables describing D(D + 1)/2 degrees of freedom. Due to their vanishing
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in the week sense, the phase variables o and 2( K ™ay be excluded from

. the string dynamics by the transition from Poisson brackets to the Dirac one
(see [SOD

[F,Gl,= [F,Gl, + %f do [F,200 )], 20 Glp=

- % [ do IF, 24 ()1, EDD@), G1,. (2.48)

The momentum variables, remaining after the exclusion of z(k)(l)' are the
covariant momentum densities H( B So it is important to express the Dirac
brackets (2.48) in terms of n(k)(l)' With that end in view let us discuss the

change of variables from PE'[') momentum densities to rI( 00 and E(k)( 1 ones. It
is based on the evident relation

PO™= (0= )7 n®) PO = (7! )y POO =
1, - 1, -
=7 (7 gy OO+ 77! oy 0O (2.49)
Using (2.49) we find that
8/8N0(6) = [ do'8POI™ ') 180 D (g) 818 POM(5ry =

= 3 7y 8780 — L nhy 678p0), 2.50)

Dt
8/82(0) = [ do'8 P (0') /32D ) 3/8P8)(0") =

=5 (0 Yy 818D + 2 (n7Y),, 1 818P) @.51)

Imit
and consequently

3/6pHm_ '!E,? 6/8m0D 4 o /82Dy, (2.52)

Using the representation (2.52), the change of the momentum densities may
be done in the Poisson and Dirac brackets. So Eq.(2.48) may be presented in
the form

[F, Glp= [ do (8F/8P,(0) 5G/3x™(0) — 8F/8x™ (o) dG/éP, (0)) +
+ [ do (8F/61O(g) KND(0)G — AOD(0)F 56/5PD (o)) +
+ [ do (8F/82000) KO(0)G — KND(0)F 5G/55PD(0)) +

1 -
+ 3 J do [F, 290, [Z4y5(©): Gp -
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1 - .
- 3 1 do 17, 20 @) 1p 15900, Gy, 239

where the variational covariant derivatives A are defined by Eq.(2.23).

Let us discuss some functionals f‘, G which are independent of the
Z(k)(l)(a) variables

i' = T: [xm("), Pm(U), ns,ll)(a), H(k)([)(a) l,
G = G 14"(0), P, (0), 1(@), T 3y p(@) ] (2.5%)

) The Dirac brackets (2.53) coincide with (the «covariant» version of) the
Poisson ones on the class of such functions

IF,G Ip=Jdo (6;‘/6!"”(0) 3G/8x"(0) —

— 8F/8x™(0) 8G/3P (o)) + f do (3F/8NIND(0) KO ()G -

m

~ AOD(F 3G/ D (o)) = |F, G1,. (2.55)

So, the ordinary Poisson brackets (2.55), together with the strong
relations (2.2), may be used for the function with the properties 2.54).

Therefore we are free from the necessity of the inclusion of the
orthonormality conditions (2.2) into the list of the Hamiltonian constraints if
the phase space includes only the covariant momentum densities H(k)(l)(a)

(2.40) for the repere variables. Such momentum densities are characterized
by the property.

T @) =®0@h 1, e 0. (2.56)

The similar prescription should be used below for the investigation of the
Hamiltonian mechanics for the twistor-like superstring formulation [22,231].
It gives the possibility of taking into account the complicated harmonicity
conditions (i.10), (1.11) as the «strong» relations and exclude them from the
list of Hamiltonian constraints.

To clarify the nature of the covariant momentum densities H(k)(l)(g) let’s

prove that they may be defined as the derivatives of ihe Lagrangian density
with respect to the T-components of the Cartan differential form 2.22)

M@ = - aL/ 8200 (o). .57



TWISTOR-LIKE APPROACH 1087

OO _ ok Oy _ ok
The components Ql(‘ D= (QS o, Qg )(l))zQ( )(1)(%) of the Cartan

differeniial form Q(k)(l)(a') (2.22) with respect to the holonomic basis
d&¥ = (dr, do) are defined by the relation

QWO = 1O = ge# QD= r QD4 4o 00O, (2.58)
n 1 T o

Indeed, using the completeness of the set of differential forms ﬁ(k)([)(é)
and S(k)(l)(é) (2.17), we may decompose the derivative with respect to g, n(l) as
follows

3/ (9 nDy = ag<’<)<’)/a (3,19 d/aQJ‘)(') +
+3 asj")(’)/ 8 (a,nDy a/asHD, (2.59)

Multiplying Eq.(2.59) by "S:) and taking the antisymmetric part of the

resulting expression, we get the relation

a/aQO0 = Pisy 00 (@,n0) = n /0 (9.7, (2.60)

m(l) T m

Henceforth, the expression (2.57) coincides with (2.40) (see also (2.35)), and
we conclude that the covariant momentum density characterizing the property
(2.596) is defined by the following expression

= — aL/3Q® (o) = n Q.61

m
Mo = w0~ MmOy

Finally, we should note, that the covariant momentum density (2.01} is
the «classical analogs for the variational covariant derivative (2.23). This
statement means, thai the Poisson bracket of H(k)(l) with any admissible

functional, defined on the configurational space (2.33), coincides with the
action of the variational covariant derivative (2.23) on the same functional

MO® ), F (1™, ' 11, = AO® @) F 1", nD1. (2.62)

The discussed properties (2.56), (2.61), (2.62) of the covariant
momentum density H(k)( 5 should help us to find the corresponding variable

for the twistor-like superstring formulation {22,23 ] and, thus, to simplify the
investigation of its Hamiltonian mechanics (see Section 4).
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3. =10 SUPERSTR‘NG IN TWISTOR-LIKE LORENTZ
HARMONIC FORMULATION

3.1. Action Functional. The twistor-like action functional for the
D = 10, N = 11B superstring has the form [22,23 ]

S=S,+S,_p 3.1
§d% e®) (~ (@' y~1/2 ;'w;"'n(,;’;}+ ¢) =
:fjr(lae{w{ai)*i/2(6}1l+2! 'l" 2l+ ﬂl 2] [+2])w"l+£}-=—
= n—1/2 2 -~ =
= fdtdae (c + -l-g(a )2 emlt lw;:’(vz\ a,vy) +
L, \-1/2 ul-2 ~ g
+ 75 @) 12 gml Iw/""(v:omvz}), (3.1a)
Syog =~ (@) [didoe® liw (3,6'0,0' - 0,6%,6%) +
+ 9 606" 3 6% 6%]. (3.1
7 vo o m
Here
wM=g X"~ i(d 9‘0"”9'+ P 020'"92) =
uooH K “
— m_ . Im gpl 2 m 52
=9,% —1(6,‘6'1 ogf’ + 6“8‘1 o’aﬂa ) 3.2)

are the coefficients of the pullback of the D = 10, N = 2B supersymmetric
Cartan form [51 ] on the world-sheet

W™= dx"— i (d6'0™9' + d6%"9?) = dEH Wl

xM™(m =0, 1,...,9) are the ordinary (flat) space-time coordinates and

'= ("', 6°%) (a = 1,...,16) are the fermionic (Grassmannian) coordinates
of the D = 10, N = 2B superspace which have the properties of Majorana-

Weyl spinors with respect to SO(1,9) group. aﬁ}, are the symmetric 16x16
Pauli matrices for D = 10 space-time (see [14,15] for the notations). The
conventions about the world-sheet zweinbeins e"‘ﬂ', e*!1*2 are collected in
Eqs.(2.4).

The action (3.1) differs from the trivial supersymmetrization
(aﬂx’"—- w,':') of the repere (moving frame) bosonic string formulation (2.1) by

i) adding the Wess — Zumino term (3.1b) and by
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ii) replacement of the fundamental moving frame vectors ng,? (2.5) by the

compound ones uf,? (1.8), (1.9) composed from the bosonic spinor variables
(1.D

=1 T =1 a~af b
nf'?-b ufr? =165p (v amva(l)) = Tavga'f‘lﬁvﬂ 0(02, 3.3
vo = (v}, v7.) €Spin (1,9). (3.4)

The orthonormality conditions (1.2) for the composed repere (3.3) are
the straightforward consequences of the relation (3.4). To arrive the
decomposition (1.8), (1.9) of the set of composed moving frame vectors (3.3)
the following o-matrix representation should be used

ol = diag (3 5,68 ,;) = 5%,

azb= diag(éAB, -—(5/'“';) = —(79ab,
0

~i

yi . 3.5
AB| _ _ 5(ab

o) =
ab 0

AB
oly= 0%+ 0%, = diag (23, 0) = (60— 5%P= 5 (-2,

oty 1= (0% 0%, = diag (0,28 ,;) = @+ 5 %)P= 5 [+2a,

In Egs.(3.5) y; p are the o-matrices for SO(8) group (see [3]), 7 ia 5= y; e

The presence of the Wess — Zumino term (3.1b) in the action (3.1) leads
to the invariance of this action under the k-symmetry transformations which
explicit form was presenied in Refs. 23,46. There are also evident
reparametrization symmetry and the gauge symmetry under the right product
of SO(8) and SO(1,1) groups.

The SO(8) gauge symmetry transformations result in the arbitrary
rotations of the eight spacelike composed vectors uffl) (see Eq.(1.8)) among
themselves. And the SO(1,1) ones result in the pseudorotations of the vectors
un{'?. To achieve the invariance of the action functional (3.1), they should be
identified with the world-sheet Lorentz group transformations acting on the
«flats indices of the zweinbeins e’{ (see Eq.(2.4)).

The relations (3.4) together with the gauge symmetry under the
right product of SO(1,1) and SO(8) groups permit us to identify the

space of harmonic variables {(v;A, v;’/;‘)} with the coset space
SO(1,9)/ [SO(1,1) ® SO(8) ] [22,23,46 |. We stress that the so-called «boost»
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symmetry is absent in the discussed superstring formulation (3.1) in
distinction with the formulations of the D = 10 Green — Schwarz heterotic
superstring presented in [38,39]. The cause of such distinction shall be
discussed below.

3.2. Harmonic Variables, Composed Moving Frame Vectors and
Admissible Variations. The relation (3.4) is realized by the requirement that

variables ”Z == (U vIA) must satisfy the harmonicity conditions (1.10)
[20,21,46 ]
Eml...m‘——’ unl(")n(n)([) n[x) mom =
T
Hn ~ n — P
= ( )'7(")([) (U U’I m‘mva( )) =0, (3.6a)

= = =21 ml+21_ 5 1 _
Eg=u, u 2= 8( 1 mUa) 8(v a"vA) 2=0 (3.6b)
(We stress that the equality

T
EE":I) . "155 Sp (U GI.’I, . ."lkva(n)) = 0

120,21 ] results from Egs.(3.6a) [40 ).
It is easy to sce that Egs. (3.6) kill the 210 + 1 = 211 degrecs of freedom
and reduce the numbers of independent variables included in vZ to

45 = 256 — 211 = dim SO(1,9). The equivalence of the restrictions (3.6) to
the relation (3.4) was discussed in Ref.[46 | in detail.
It is necessary to introduce the inverse harmonic matrix

-—a +a

ORI AT UL WE S CORRT A L (3.1
In contradistinction to the case of D = 4 {18,42,43,19}, its elements cannot
be expressed through the harmonic variabies vZA, v;;‘ in a simple and

covariant way. This is explained by the impossibility to trasnform the
subscript D = 10 Majorana — Weyl spinor index into the superscript one,
since they describe the representations with different chiralities. Therefore it

+a

is convenient to discuss 256 variables v;“, vy as the independent

harmonics and to complete the set of harmonicity conditions by the 256
relations of the mutual invertness of the matrices (v‘l)‘; and vg

-l\a b _
(v )ava_

- =l=2]_
ag =0 Eap =V4 ”aB 0,
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=+2) ta,+ =101 _ ta, -
Egp =V4 Vep=0 =ap=vYa Y

-0,5=0, 3.8

(256 — 256 = 0, consequently additional degrees of freedom are not included
in the theory).
Note that the distinction in the SO(1,1) weights * for the same SO(8)

((s) or (¢) spinor) index structure shall help us to distinguish the harmonics
'U;A, :A ( 3.4) from the (3.7) ones vA , UZ"‘ in the expressions, where the
S0(1,9) spinor indices are contracted and omitted (see, for example,
Egs.(3.11)).

It is easy to prove that the composed repere vectors us,':) (3.3) may be

v

expressed through the inverse harmonic matrix (3.7) as well as through the
ordinary onc (3.4) (sec Eqs (1.9
S’? = Sp (va vo' ’)) - Sp (v~ am(v DAY 3.9

+ +a .
ad’ Yai and v , UA Egs.(3.9) may
be specified as follows (sec Egs.(1.8), (1.9) and the a-matrix representation

3.5

In terms of the harmonic variablesv_

(1) (“m’“f;?) = (u'|"+21+ “;ln 2y, u(,) l(uf"*” ’[n—zx) _(3.10)
TR IOCENE 8(v,1 " A)Eg vi%,wif Gl
,',z_Z':%(“X""".UD =§(v,} ’ A) = l AU A1)
u) = 3!;‘ WiG,0 D) Yaa= — 3 (UA UV (3.11¢)

The orthonormality conditions (1.2) may be specified as follows
UMy = yE = giag (1, - 1,...,— 1): (3.12)
wlrHm2 = o, u,‘,,"”u""‘z' =0, (3.12a,b)
ul= " = 0, (3.120
bty = g, WD) = — 500, (3.12d,0)

To justify them explicitly the identity (1.12) and the consequences (1.4) of
the harmonicity conditions (3.6), (3.8) should be used (see [46 ] for details).
For the discussed D = 10 superstring case the relations (1.4) may be specified
as follows

u oty = vioQug: (3.13)
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ultigm

U "'zzﬂ 20, AUﬂA’
[=2} _m _ —ar.
Um oaﬂ =2 vaAvﬂA’

N + - i
S:a) :4!9 (v, AvﬁA Veala i) Yaa
s’[l)’vmaﬂ (v )zz ~(l)ab(v—l) /g .

[+2]~ma,8 +a +/3
m 2UA A’

[ 2]~ma,B 2‘U Aﬂ’
u(i)amaﬂ= - Aa +ﬁ+v ,3 +a

m ) yAA’

([) ab__ vi5 aﬁvb

([) a m B*
[+2]
um aAB ( m B)
u,[n”zld- = (v Emvg),
(l) i )

+ =T
UpVap = (V4 OV 5)s

~1\8.
Sr[z) U(I)ab v )aamaﬂ(v )IZ :

_.2 -— —_
“in ls 5= @40,Vp)
+2
Uy 035 = 49, 05),
RON
myAB (UA n B)

(3.13a)
(3.13b)
(3.130)

3.14)
(3.14a)
(3.14b)
3.14¢)

3.15
(3.15a)
(3.15b)
(3.150)

(3.16)
3.16a)
(3.16b)

3.160)

For the forthcoming derivation of the equations of motion let’s discuss the
concept of an admissible variation for the case of spinor harmonic variables.
This is the variation which doesn’t destruct the harmonicity conditions (3.6),
(3.8) (or, equivalently, the relation (3.4)). Such variation was discussed in
detail for the case of the fundamental repere variables in Section (2) (see
Egs.(2.14a)-—(2.14d)). Thus we may omit some evident steps in the .

discussion of the spinor harmonic case.

An arbitrary variation of the variables v? and (v~ 1)3 =v)

G.17
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may be written in the form

(3.18)

- i) a
d= v lav)b va"“b—'UZ*‘; ,
a f24 ava ava

where the conditions (3.8) were used explicitly. To specify Eq.(3.18) let’s use
Eq.(3.11), the consequences (3.13)—(3.16) of the harmonicity conditions
and the known identities (see, for example, Refs. 14,15).

1 ~ 1 m...m
S.= Siupy= ﬁa;'; Sp(@,,S) + &g (0 %) SP(

ml...m5

3176 8), (3.19a)

_ 1 m m_m ~
Aaﬂ=A[a/3]= -~ e " S)aﬂ Sp (a"‘.’"z”’aA)' (3.19b)
1 i
Fr =16 02 Sp(P) - 55 (™2 SP©,  F) +
+

4_'1%(0"'.-"'%)@ Sp(e,, . F). (3.19¢)
* i 4
Indeed, varying Eq.(3.15)

éuf’?ff(‘;)b = 2(6v”&'mvb) = (v 18v)2 5D (M 4 (v_lév)g?fmu(") (3.20

c (n)y"m (n)"m
and contracting the result (3.20) with the 10x16 matrix (“m(k)"(k)bd) we
obtain

u" R, D @y =10 (v '8v)7 + @ ovo®). @2
It is easy to see that the left-hand side of Eq.(3.21) may be presented in the
form u'"(")duf'? (a(k)(l))' This results from the vanishing of the expression

m(k)s. (D
u dum
orthonormality conditions (3.12). The righ-hand side of Eq.(3.21) may be

transformed using the identities (3.19¢) for v~ !8v and the relations

E(k)a Z,U(k)= (1() -— 4,-) &'ml...mzrz (_ 1)’(]0 - 4’_) aml...m ) (322)

ml.‘.m 2

=L sz - ich i
"(k)(l)‘za“ q(,‘)(,)_o which is the consequence of the

Thus we derive from Eq.(3.21)
k - -1
u™ )duf,? (U(k)(l)) =10 (v~ '6v) +

v 18y, (3.23)
Contracting Eq.(3.23) with the matrices 1/, a(k)(l), amr_.m‘, we produce the

1 mm - 1 m ..m
t3Ce IS, ,v 18v) + 22 (@™ 0@ m,
following relations

SP(@7'0) =0 = vidvt= —visv], (3.24)
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- %Sp ™ 1v 00Oy = "R3B = WD), (3.25)

Sp 'dve, | )=0, (3.26)
1 4

which are straightforward consequences of the harmonicity conditions (3.6),
(3.8). Taking into account Egs.(3.24)—(3.20), it is casy 1o derive from the

identity (3.19¢) the following expression forv™ 'év
~15,) = L 0O
(v ov) = ) Q ) (a(k)([)). 3.27

Thus the admissible variation which conserves the harmonicity conditions
(3.6), (3.8) has the form

= Lo
= 2 QUAY(S) A(l)(k)’ 3.28)
which coincides with Eq.(2.i4d). However, in Eq.(3.28) the SO(1,9) Cartan

forms Q(k)(")(é) are defined by Eq.(3.25) in terms of spinor harmonic
variables (3.4), (3.7), and covariant derivatives A(k)(l) are defined as follows

1 0 a 0
AO® = L ooy (ug L5 -5;&} . (3.29)
a

Taking into account the definition of the composed repere vectors 3.3 (or
Eq.(3.39)) we may obtain the action of the covariant derivatives A(l YR the
1742

Aupa“om™ 210 ayim (3.30)
Eq.(3.30) coincides with Eq.(2.19a). It may be also justificd that A(l L)
72

[24

operators generate the Lorentz group algebra (2.18a).
For the forthcoming discussion it is useful to specify Egs.(3.28), (3.2,
(3.29) as follows (the contracted spinor indices are omitted)

1
8 = 3 Q(k)(l)(a)A(l)(k) = Q®3)A®+
+ QiF2E)A122 % QD) ADD, (3.31)
Q0OE) = (- 2009), @F 1D @), QOV(8)): (3.32)
| 1200~ 1 mi—
QO) = -5 QI 21-2(g) = 5 W2y V20

-1 u'"!”]éu}"—m = —‘lf(v:‘év;—— vidvy) = Lozav®, (.32

2 A 27ATA
(21 (421, m@)_ b +=i o 4+ 1 ya~i s +
Q )_ u"l 6“ ’)— 4 vAy AAéUA - 4 vAa y AAévaA’ (3-32b)
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ol-210) = u[ 2l g,mH —_—UAYAACSU (3.320)

QO = um(’)dum = — = (vAy%BévB + vA ywév ) (3.32d)

Al )(k) = (- 200 AFAG) A(i)(l)) . 3.33)
AO= - 2A“2” H=vho/wh—vio/w;—v o/ +vie/ov}, (3.34)

421G) — y+of . a/ap= — pt il -
ABAD =yl alavy vl 77 0/ v, (3.34b)

(~21G) _ = i +
AFAD =y 7l o/t — vy 0/ ), (3.340)

ADWD = % (vaZB 3/ wg+vy )731; a/dvy+

+oy ol vl 7 0l (3.34d)
Ay om™ = 2Taie) am’
A2 — o 9, =2 ADLD = g, (3.35)
m m n
A@@u,‘:” =0, ADD, O = — 28" 5,01, (3.36)
[+21(), 1-2] _ ] {+2] [+21 _
A (‘)um - Zu('), A (i) iy, 0,
AH’ZI(') (J‘) — Uu(+2] 3.37
m °
Al-H@, =21 2 g, AP0, 2 9,0,
[-2]@ _ sij [-2]
ATHO0 = 512, (3.38)

In the notation (3.33) the Lorentz group algebra (2.18a), generated by the
operators A( DKy takes the form of the relations

(A®, AOD | = 0, (3.39a)

(AOD, AW | = 2810 AU 2811 AUV (3.39b)
A, AFUD | = £ 271720, (3.390)
[A(i)(j)’ A[$2](i’)] = — AR 51’5’A[$21i, (3.39d)

[AIFAD A0 = §IAO 4 2400, (3.390)
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The nature of the operators A(o), A[n]w, AO® becomes evident from
the Egs.(3.35—(3.39). ADD apg AO generate the SO(8) and SO(1,1)
transformations, respectively. The operators AlF20 generate the transfor-
mations from the coset space SO(1,9)/50(1,1) ® SO(8). One of them may be
associated with the «boost» symmetry appearing in the Lorentz harmonic

approach to superparticle theory [20,21 |. But in the discussed formulation of
D = 10 superstring theory such symmetry is absent [22,23].
Now we are ready to discuss the equations of motion for D = 10

superstring theory (3.1). The procedure is similar to the one discussed in
Section 2.

3.3 Equations of Motion. The equation of motion 95/ ae;‘ = 0 gives the
expression for the zweinbein eﬂf in terms of the imbedding functions (),

6%/ (&) and the composed repere vectors u}
m

RESIE w"'u’tzl/c(a')'l/z. (3.40)

1 im

This expression is similar 10 Eq.(2.6) since the zweinbein variables are absent
in the expression for the additional Wess — Zumino term 3.2).

In the straightforward analogy with the repere bosonic string formulation
(see Section 2, Eq.(2.28)), the equations of motion for the harmonic variables

UZA, v, 4 canbe presented in the form
i [+£2) m [£2] _ 41
§ ee’ w, A(k)(l)“m =0 (3.4

using the admissible variations (3.28), which conserve the harmonicity
conditions (3.6), (3.8).

Egs.(3.41) are satisfied identically when (k) = (§) and () = (j) (see
Eq.(3.10)). This results from the SO(8) gauge symmetry of the action (3.1)

generated by AU operators (3.33d). If (k) =1+2], () = [~ 2] (or vice
versa), then Egs.(3.41) are reduced to the relation (see Ea.(3.37))

wi (12— pul¥ 2, =20y _ g (3.42)

Taking into account Eq.(3.40) it may be justified that Eq.(3.42) is satisfied
identically. This fact is associated with the gauge SO(1,1) symmetry of the
theory. However, the generator of the corresponding symmetry includes
terms acting on the zweinbein fields in addition to the A® operator (3.33a)
(see Section 4).
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Since, Egs.(3.41) lead to the nontrivial results if and only if (k) = [+ 2],

(D = (i) (or vice versa). In this case they are reduced to the equations (see
Egs.(3.37), (3.38))

alx2l m () _
ee W, Uy = 0, (3.43)
which can be easily transformed into the form
m, () _
wrtul) =0 (3.44)

(comprise with Egs.(2.31), (2.9)).
Taking into account Eqgs.(3.40), (3.44), and the completeness conditions
(which follow from the orthonormality ones (3.12))

n_ 1 1-21 ni+2) I L2 =2 i), n(i
3, 2um + U, u v—ufn)u o,

the coefficients w""' (3.2) of the w-form pull-back may be decomposed on the

u'["izl light-like vectors

W = c(a )1/2( (-2l m|+21+el+2l mi=2ly (3.455
and vice versa
L2 e"“!izlw;l/c(a')ln. (3.46)
m|£2]

Thus the vectors u are tangent to the superstring world-sheet on the

shell, defined by the motion equations. Contrary, the vectors "D are
orthogonal to the world-sheet on this shell,

Using Eqgs.(3.40), (3.45), (3.46), the classical equivalence of the dis-
cussed D = 10 superstring formulation with the standard Green — Schwarz
one [1 ] can be justified easily. Substituting Eq. (3.46) into the functional (3.1)
and using the definition of the world-sheet metric (2.4), we get the standard
action functional |1 ] (comporise with Egs.(2.9)—(2.13)).

The equation of motion for the x"(¢) field, 8S/ax™(&) = 0, has the form
(2] [52]
9, (e Z (e = u )) -

~ ¢ (3,8'0,,0,8'- 9,08%,56*/c(a')?= 0, 347

which is similar to Eq.(2.12), except for the last term containing
Grassmannian degrees of freedom, and may be easily reduced to the stand-
ard form [1 |

3 (\/ ggw"y — e"(9 0'0™3 9'— 9 6% 61 =0,  (3.48)
(43 v [ v
using Eq.(3.48) (see also Eq.(2.1)).
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The equations 85/86 “/ (&) = 0 have the form
{aﬂé? I, m)a Q; PP 121, mIx2) _ 2(- l)le'“"w:") =0, I=1,2, (3.49

which may be reduced to the standard one {1]

;duf” iy m};a {»‘jm, gg,l“»’__ (_ 1)18;‘51‘) wf‘: s I = 1, 2 (3,5@)
if Egs.(3.45) are taken into account. However, it is interesting to use
Ea.(3.45;

derive the following ralations

ind {o exciude the fields " from the equations (3.49). Since we

e;‘i+2laﬂ8 a‘v;;—! = (), (3.51a)
-2} 2, o
e‘u 64“6 a vaA = 0’ (3.51b)

when the Egs. (3.13a,b) are taken into account.

Therefore ihe equations of motion for the D = 10, N = 118 superstring in
fwistor-like formulation (3.1) have the form of Egs.(3.40), (3.44)—(3.47),
(3.51). The relations (3.47), (3.51) are equivalent to the standard equations
of motion (3.48), (3.50) [1], however they have more simpie form. Thus the
twistor-iike formulation (3.1) is equivalent to the standard one |1] on the
classical level [23 | and simplifies the equations of motion essentially.

In the next seciions the Hamiltonian formalism for the twistor-like
D = 10 superstring formulation (3.1) is worked out. This formalism is
necessary for the covariant supersiring quantization using the BFV-BFF
scheme 171

4. HAMILTONIAN FORMALISM FOR D = 10 SUPERSTRING
N TWISTOR-LIKE FORMULATION

To simplify Hamiltonian formalism and to make the meaning of some
consirainis more clear, let us reformulate the action principle (3.1) in terms of
the zweinbein densities

pli= (_%(pp[_Z]é_p#HZi),_;_(ppl—ﬂ_P#Hﬂ))E ee}u/(a,)l/z, @1

l r —2 2
e=det(ef) =qae, pH M ===y, @)

(]
instead of zweinbein e “f , e;‘ themselves

S5=5+S, , “4.3)
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= wl+2], [ 2} (—2] [+2] m ul+2] v[—-2};_
§;=-— fdtda[(p +p# )w, + ca’ €y P p I=

= z T T - 5
= — 5fdrda [(p’“l+ 1 g(vAava) +p”[ 2 g-(vzamvj)) w}""+
+ ca'e vpﬂ[+2]pvl—2]] , (4.3a)

Sy-z=—(ca)"' [ drdoe liw] (3,0'0,6'- 3,6%,6%) +

+ 0 00" 9. 6% 62). (4.3b)
n v "m
Here (see Eq.(3.2))
m__ m__ . 1 _mgl 2 2
wi'=d,x 1(6”606+6”00’"9).

Of course, the Wess — Zumino term (4.3b) is not modified. However, the
twistor-like part of the action (4.3a) includes the terms which are dependent

#l*2]

on the densities p in a linear or bilinear way. At the same time, their

dependences on the inverse zweinbein variables e*1*2l are the more
complicated ones (see Eq.(3.1b)).

4.1 Primary Constraints and Covariant Momentum Density. The cano-
nical momentum densities

- 1 2 p—a pta pt+ [F2]\ —
Py=P mpmy, Py Py 'PaA*PaA’P(;)y)=
=~ (- hMaz/a (3 M) (4.4)

are conjugated to the configurational space (target space) coordinates of the
discussed superstring formulation (4. 3)

Mz (x™,6%,69% v plx2iny (4.5)

at Yair V2 VP
with respect to the standard Poisson brackets
12Y(0), Pp(@) 1, = = (= DMV [P (0"), M(0) 1, = = 83 3(0 — o). (4.6)

Here the multiplier (— l)MN is equal to (— 1), if both the indices M and N
belong to the fermionic variables, and is equal to (+ 1) in any other case.

The action functional (4.3) is the first order one on the proper time
derivatives (i.e., on the velocities). Hence all the expressions (4.4) for the
canonical momentum densities lead to the primary constraints. For the
nonharmonical variables such constraints are

o, (0)=P, - %p:[n]u[—z]_ _;_pz[—z]uin+2]+

m

i 7 .
+ g; (- 1Yo 60, 6'=0, (4.72)
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Dlo) = -nl+ i), IP

m_

— (-1 L ox,-iafo o) i=0, © @A.7b)
P =0, 470
pg)jl =0. 4.7d)
For the spinor harmonics
O N O e CR A LS

the set of the primary constraints consists of the completely trivial relations

- +a

P“a =0 PA“ =0, P =0, (4.8a)
~ 0 + o~ T

P =0 P, =0, P, =0, (4.8b)

(which reflect the auxiliary character of the harmonic variables in the
discussed formulation) and of the harmonicity conditions (3.6), (3.8),
discussed as the «week» relations {50 ]

= = M = =
=z =u = =
m...m, ﬂ(n)(l) m...mm
m(n), T (n)
=u n(n)(l)Sp v aml...m‘mvo ) =0, (4.92)
- _ [-2 2 b, 1 ~
Ep = u'[n Iymir2_ 9 = 3 Wi%,20 3 (v;amv:) -2=0, (4.9b)
=10l _ —a + _ ~ wl=2 o
EAB =V4 Vap~ 045 =0, Zap =V4 Yap=0
git2l o re A LA
Ep =vyv,,p,=0, Eag =V Y~ 0453=0. (4.90)

The expressions EE"') m_ 120,21 Jincluded in Eq.(49a) vanish as the result of
Mg

Eq.(4.9a) [46 ] and my be specified as follows

—_

=l=2]

1 -
"ml...ms= 8 Vaa oml"""svyA =0, (4.10a)
=i+21 _1 4+ ~a + _
"‘ml...ms— 8 vaA a"ll--.msvyA -~ 07 (4.10b)

=D A O~ v =
"'En‘...ms_ 8 Yaa’ a4 G:Z...msvyA = 0. (4.10c)
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The relations (4.9), (4.10) are complicated ones. So it is evident, that the
computation of the constraint algebra is a hard task if Egs.(4.9) are
understood as the «week» equality.

Hence, it is important to work out the method which allows one to exclude
the conditions (3.6), (3.8) from the set of constraints and to discuss them as
the «strong» relations [50]. Such method can be devised in the straight-
forward analogy with one discussed in Section 2 for the case of bosonic string
repere formulation.

This means that the concept of covariant momentum density should be
used. Now we discuss it for the case of the twistor-like superstring formulation
(4.3) using the experience obtained in Section 2 (and hence omitting some
technical details).

Let us remind some properties of the covariant momentum densities,
which was discussed in Section 2. Firts of all they should have the vanishing
(in the weak sense, see Eq.(2.56) Poisson brackets with the harmonicity
conditions (3.6), (3.8). From the other hand, it is known that the harmonicity
conditions (3.6), (3.8) are the realization of the relation (3.4) [20,21,46].
Since, the covariant momentum variables should be canonically conjugated to
some parameters of SO(1,9) group included in the spinor harmonics

+ R | -a -y-a — ..a :
Vo Vai) =V (v, ) =v, . Therefore, the covariant momentum

densities should be assoclated with the Lorentz group, too, and hence they
should generate the SO(1,9) group algebra on the Poisson brackets.

Another degrees of freedom included in the spinor harmonics v* adr Yanr
v~a vfa
A YA
the harmonic momentum degrees of freedom, which cannot be reduced to the
covariant ones, should be conjugated to the harmonicity conditions in the
week sense (see Eqs.(2.46), (2.47) for the case of bosonic string repere
formulation). Since we may understand the condition of vanishing of these
variables, together with the harmonicity conditions (3.6), (3.8), as the
«strong» equalities, if the corresponding Dirac brackets are used instead of
Poisson ones (4.6). These Dirac brackets should be analogous to ones pre-
sented in Eq.(2.48). However, if we discuss the space of functions dependent
on the covariant harmonic momentum densities only, these Dirac brackets

coincide with the Poisson ones (4.6).

The discussed situation is similar to the case, where the second class
constraints are solved explicitly (i.c., the superfluous momentum degrees of
freedom vanish and the coordinates conjugated to them are expressed
through the «physical» ones) [50]. The unique distinction is that the
256 + 256 harmonic variables are expressed through the 45 degrees of

freedom associated with the SO(1.9) group in an implicit way. Such implicit

are killed by the harmonicity conditions (3.6), (3.8). Henceforth,
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dependence is defined by the harmonicity conditions (3.6), (3.8). (See
[22,23,46 | for details).

Hence, the harmonicity conditions (3.6), (3.8) can be excluded from the
set of Hamiltonian constraints without changing the Poisson brackets if we
define the set of covariant momentum densities with the properties listed
above and exclude all other harmonic momentum variables from the phase
space.

The experience of studying the repere bosonic string formulation (2.1)
gives us the prescription for the extracting of the covariant momentum
densities from the set of canonical ones.

First of all, thesc densities are the classical analogs of the covariant
derivatives (3.31)~—(3.34) appearing in the expression (3.31) for the
admissible variation, i.e., they may be derived from the expressions (3.31) —

(3.39) by the simple replacement of the derivatives a/dv,,, 8/dv; by the
canonical momentum densities PZ, P

From the other hand, it may be derived as the derivatives of the
Lagrangian density L of the action (4.3) with respect 1o ng)([) (where ng)([)

are the t-coefficients of the pull-backs of the SO(1,9) Cartan differential
forms (3.32) on the world-sheet). Their form may be derived from
Eqs.(3.25), (3.32) as follows

QW= @WB G ) = "y 1) = - %Sp(u“‘atua(")(’ @1

or, equivalently, using the following representations
Oy = dr QOO 4 4o QD) (4.12)

T [4

for the discussed pull-backs.
Thus the general expression for the covariant monientum densities in the
whole phase space (4.5), (4.4) has the form

mO®= _ 5174 (Q,(k)(l )) =

= - -%Sp wa®Darsa @ v) - aL/o 0 v )o@l (413)

The Poisson brackeis of the covariant momenium density with any
functional F, living on the configurational space of the discussed dynamical
system, may be presented in the form

M), Flo,v™!, x,011, = AOO() Flo, v, x, 01 @14

Here A¢ )(k)(a) are the variational analogs of the covariant harmonic
derivatives (3.29), (3.33). Thus these covariant derivatives play the same role
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for the covariant momentum variables, as the ordinary derivatives play for the
canonical ones

[P, (0), FIZV 11, = 8/82M(0) FIZV].

Moreover, the covariant momentum densities (4.13) generate the current
algebra, associated with the Lorentz group algebra (2.18a), (3.39), on the
Poisson brackets (4.6)

[H(ll)(ll)(a), n(k,)(k2)(a,) Ip= [A(l,)(lz)’ A(k,)(kz)] 8o —0') (4.15)
A-T1(0)
and have the vanishing Poisson brackets with the harmonicity conditions
3.6, 3.8

=0, (4.16)
E=0
when the same harmonicity conditions are taken into account.

Thus we should leave only the covariant harmonic momentum densitics
(4.13) in the phase space, which is parameterized now by following variables

(x"(9), P, (0); 8 “'(0), x_,(0);

[n(l )(k)(a), 2(0), 1,

vy 4(@),v73(0), v 1%(0), v} %(@), OB ). @.17)

And only the primary constraints
n¢ )(k)(g) =0 (4.18)

should be taken into account besides ones presented in Egs.(4.7). Egs. (4.18)
replace the whole set (4.8), (4.9) of constraints for harmonic variables in the
discussed approach. The harmonicity conditions (3.6), (3.8) are understood
as the strong equality.

The Poisson brackets are defined by Egs.(4.14), (4.15) or by the basic
relations

NOOE), v, 1, =5 0 O @-0), @19

(2 r l !
M® ), 30", 1, = - 3 @D 8@ -0),  (4.19b)

which lead to the Egs.(4.15), when the Jacoby identities for the Poisson
brackets are taken into account.
Now let us discuss the form of the canonical Hamiltonian H,, density

which is consistent with the definitions of the Poisson brackets and the
Hamiltonian equations of motion
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9, f(0) = If0), [ do'H(0") 1. ' (4.20)

The standard expression for the canonical Hamiltonian

H®= — (- )Mo Mp, L (4.21)

has such consistency with Eqs.(4.6) and (4.20). This may be verified by the
following formal manipulation. The use of the density (4.21) in Eq.(4.20)

written for the simplest function f = z (r, o) leads to the identity
3,2M(0) = 1M(0), [ do’ HE*™ (0", =
= - [ do’' 3,2V(0") 12M(0), P\(0") 1, = 9 M ().

To achieve such consistency with Eqs.(4.14), (4.19), (4.20), we should
define the canonical Hamiltonian density in terms of covariant harmonic
momentum variables as follows

Hy= —3.x"(0) P (0) + 30 (0) m,(0) —
1
-3 QO ) Iy (@) — L(O), (4.22)
i.e., instead of the standard combination a‘zM P,, (which can be derived by

the replacement 6-»6t, a/ozM- P,, from the expression for arbitrary

variation 8 = 8z 3/az™) the expression

1 o
Qg M)

(which can be derived by the replacement foll2C )(6) - st)(l )(a),
A( I k)" II( ! )(k)(a), from the expression for the admissible variation (3.28))

appears in the canonical Hamilionian.

For the forthcoming discussion some specification of the relations (4.13),
(4.18), (4.22) is necessary.

Let us introduce the covariant momentum densities I, 11!+2 0, n®u,
which are the classical analogs of the covanam denvatlves (3.33). In terms of
the canonical momentum densities P, = P, I 34 # %) and P( y = = (P 4 Poi)
they are defined by the relations

nO®< (— 2O, giFA0, Oy -

=380 PP p By, 423
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NO= - o220y o yopt v pteulpy, (4230

A0 hi pt ot 7P (4.23b)

=202 4=

~j‘
a7 aaP

— —_— i 3
A" Va%anf

o (4.230)

i - -+ =i 4+ i -
a¥asPet vaY agPpt va¥aslst v, Y aPe) (4.23d)

It is evident (see Egs.(4.15), (3.39)) that the densities n® and pON
generate (on the Poisson brackets) the Kac-Moody-like extensions of the

SO(1,1) and SO(8) group algebras, respectively. The densities nF20 are
associated with the coset SO(1,9)/ [SO(1,1)xSO(8) |. -
The Poisson brackets (4.6) may be written in the following form

(F, Glp= [ do (8F/8P, (o) 8G/dx™(0) — SF/dx™(0) 8G/SP, (0)) —

noo = % @

— [ do (3F/86%!(0) 8G/dm (o) + 6F/dx (o) 8G/367 () +
+ [ do(dF/en1N )6y KO 0)G - A F G /6N (0))  (4.24)

for the functionals F and G living in the phase space (4.17) (comprise with
Eq.(2.55)). All the expressions (4.23) vanish in the week sense (4.18). Hence
the primary harmonic coustraints have the following form in the discussed
approach

n®= - OL/OQg)) =, (4.25a)
a0 = _ aL/aQT[ﬁ’U) =~ 0, (4.25b)
ﬂ(i)(j)E + aL/aQSi)(J) = (), (4.25¢)

At last, the expression (4.22) for the canonical Hamiltonian may be
specified as follows

Hy=~ 0, x™(0)P,(0) + 3,0 “/(0) my(0) —
— OO Q= ADRIFAV) 4 %ngwn(twy_ L (4.26)

where L denotes Lagrangian density for the action (4.3).
‘ Let us resume the results of this subsection which define the starting point
for the next one.
Hence, the phase space of the discussed system is parameterized by the
variables (4.17), Poisson brackets are defined by the standard relations (4.6)
for the ordinary variables and by the relations (4.14), (4.15), (4.19) for the
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harmonic ones*). The canonical Hamiltonian is defined by the relation
(4.26). And the set of primary constraints includes relations (4.7a-d) and
(4.25).

4.2. Irreducible First Class Constraints for the D = 10, N = 2B Green —
Schwarz Superstring. The first class constraints can be extracted by means of
the well-known Dirac procedure of checking the constraints conservation
during evolution {SO1.

The evolution of the dynamical variables of system with constraints is
defined by a generalized Hamiltonian, which is the sum of the canonical
Hamiltonian and the products of the primary constraints on the
corresponding Lagrange multipliers. For the discussed dynamical system,
with the primary constraints (4.7a-d), (4.25) the generalized Hamiltonian
has the following form

= [ do H'(1, 0),
H'(r,0) = Hy(r,0) + EA' _aD'(a) + §Al +"D’(a) +
+ [l tU =2 gl i a(num(:)m)m+ 4.27
OO 1 i, AF2li 20y gulF2] pl22)
+ N +2aﬂ+a n +p Pioyu

Here the canonical Hamiltonian H, is defined by the general expression

(4.26) for any dynamical system living on the phase space (4.17). For the
discussed superstring formulation (4.3) it has the following form

Hy= [ do H (1, 0),

- m 1 1 oo =
Hy(, 0)= - 3.x"P,+036%n, — _2-95 X )n(l OB L=
:_Ii(p[+2]ou,[n—2]+pl-—2]ou'["+2))wm+ & Mp,;|+21 V-2 (4.28)
t= ~ &=~ L.
The conditions of the constraint conservation
-‘-ld; (constraint) = [(constraint), H'], =0 4.29)

should lead either to the restrictions for the Lagrange multipliers or to the
appearance of the «secondary» constraints {50 ].

*Of course, the simple expressions (4.23) and the initial Poisson brackets definition may be
used for the calculations, because the Poisson brackets were not changed (see above).
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So, the requirement of the conservation of the constraints P(lp)z] =0
(4.7d) leads to the secondary constraints
WMl & capt ¥ & g, (4.30a,b)

m
{2}
o)

to express the Lagrange multipliers al* through the o-components of the

At the same time, the conservation of the constraints P = ( (4.7c) permits

world-sheet vector densities p# (%21 (or more precisely, vice versa)
al ¥ = ¢ = 2 @ ol¥2, (4.31a,b)
Owing to SO(1,1) ® SO(8) gauge symmetry of the discussed superstring
action (3.1), (4.3), the requirement of the conservation of the harmonic
constraints T = 0 and 1Y = 0 (4.25a,d) has no the nontrivial consequen-

ces. (Let’s remind, that [T and NY generate SO, 1) and SO(8) transfor-
mations on the Poisson brackets). However, the conservation of the other 16

harmonic consiraints TT'*21 = 0 (4.25) has nontrivial consequences for the
Lagrange muitipliers
p"ﬁziw;"uf:;)w ap"F¥ = 0, (4.32a,b)

This means, that the gavge symmetry under the tramsformations from the
coset space SO(1,9)/[SO(1,1) ® SO8)| are absent in the discussed
formulation. Such fact was discussed in Refs.22,23 in detail.

The consistency condition for Egs.(4.32a) and (4.32b) leads to the
relation

de= ai(p1|+2lpal—2!_pt{~2]pal+2!) =0
which results in the vanishing of the SC(8) vector Lagrange multiplier
d=0, (4.33)

in the case of a nondegenerate world-shect metric (or, more precisely,
nondegenerate world-sheet moving frame). Using Eq.(4.33), we can see that
Eqgs.(4.32a,b) produce the following secondary constraint

(') = wmu(0 = 0, (4.34)
which is the o-component of Eq.{3.44)*.

*1tis of inierest 10 note that for the case of a degenerate world-sheet metric, which corresponds
to the null-superstrings {52,53,42,43,19] Eqs.(4.32a) and (4.32b) become consistent without
using Eq.(4.33), and the secondary constraints (4.34) are absent (see [42,43,19]).



1108 BANDOS LA., ZHELTUKHIN A.A.

Together with Eqgs.(4.30a,b), Eq.(4.34) gives the possibility of
decomposing the component of the Cartan form pull-back w('," onto the basis of

[+2]

two vectors u, of the target space moving frame which, therefore, are

tangent to the world-sheet on mass shell (i.e., on the shell defined by the
equations of motion in the target space).
The requirement of the preservation of the Grassmannian spinor

constraints DL (o) =0 (4.7b) gives the expression for the Grassmannian

Lagrange muitipliers EZZ and E;l through the dynamical variables

+2 U[—- ] 02 +

E=lr g 0%t (4.352)
P
o[+2]

-1_P al

6= 00 v (4.35b)

The rest of the Grassmannian Lagrange multipliers 521 and 522 remains in-

dependent and plays the role of the parameters of the fermionic x-symmetry
in the framework of Hamiltonian formalism. We should stress that this
symmetry is present in the theory only for the definite choice of the numerical
coefficient @' included in the Wess — Zumino term (4.3b) of the superstring

action (4.3). If this coefficient is different from =+ —0—27, the conservation

conditions for the Grassmannian constraints (4.7b)
Di(o) = ~al+i(0, ), (P, — (- Va(@x, —idplo,p))=0
result in the relations
gt M (p — (- a9, — 200 00 80) +
+ & ™+ (- )M (0 x, - 2i0 600, 6T)) =
=p? "M gF% Ve (1-(= 1+ pot+2 o?‘ o (1+(=1D)'1). 4.36)

From Eq.(4.36) we may get the relations similar to Eqs.(4.35a,b) not only for
the 3;‘:2 and E;l, but also for the remaining Grassmannian Lagrange

multipliers §Il and 5;2. (The primary and secondary constraints (4.7a),
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(4.30) should be used in such computations). So the fermionic x-symmetry is
absent for the theory with the numerical coefficient in front of Wess —

, 1
Zumino terma’# * —;.
(604

. ., 1 . 1
If we choose this coefficient a' to be equal to | — 257) , instead of + o

.35a,b), but for the
Lagrange multipliers {-‘Zl and 1;‘/-:2. The Lagrangian miltipliers E:z and E;l,

then the relation (4.36) gives the expressions like Egs.(

which remain undetermined in this case, play the role of the parameters of the
x-symmetry transformations.
The conservation of the constraints (4.7a)

1 21 1~21 1 «1-2 2
d)mEPm--ip'H Iyl iwip'l M H l+z - (- 1)6810 6/=0

m

yields the following relation

u,!1,+21 I:%/irl—ﬂ_. % aapa{—ZI__ Q((,O)p"[_z’+ ORIE

.1 I} al, -
+2lg(—l)§ 89 aA] +

i

2! 1 .
ul l[iﬂr!n]_ iaapa!n}_ Q((10)pa(+2l_ la(O)prl+21+
1
+21‘L—‘&7( 1) .f”ae"’ ;A] +

+ uld (@ AOpTI=2 G2ty polF2gl2l)

<+

— 2 (1) €0 0 T £ Y0 A ) 1= 0. 43])

Here Q©), Q#3109 are the coefficients of the pull-back of the SO(1,9)

Cartan forms (3.34) on the world-sheet. They are related to the do
differential and their form may be derived from Egs.(3.34) using the relation’

Q(d) = dg"Q,‘(E) =dt Q (1,0) + d1Q (1, 9).

21, 0+2 0
*m ' Tm
(3.11) of the moving frame system (3.10) give us the following expressions for

the Lagrange multipliers

The projections of Eq.(4.37) on the composed vectors u'[n"

pl =g po172 1 QOp0l-2_ (0) -2 z—gA 8.0%_,, 4. 38a)
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iAoy poi+2l (0) o124 2 @)pi+21 4i— g 6‘“ + , (4.38b)
a

alFAF =20y =20, ri+2] 3 po[;‘2]Q£:2](z‘) _

+
—21’(%&:1)/14& 6%y~ +2t———,§A yAB 3 0% ot

1 [pel*2] o012

. 1 P aly Bt 4 4 pa2 ﬁz'
+2:m 1H2]ao 9.9 1{_2] 9,0%%0 0

+ o0, —
v oVaivsp- (4.380)
o o AV ABVBB

At last, we should verify the conservation of the secondary constraints

(4.30a,b) and (4.34). They may be presented as the projections of one
constraint

o

wM— ;ca ptltt2, = 2]+—é~ca'p1[ 2 [+2] ~0 (4.39)

onto the moving frame vectors u[ 2] ":2],

”5:1)‘ The requirement of the

conservation of this constraint leads to the equation similar to (4.37).
Moreover, the projections of the equation onto the moving frame vectors

ur[n_zl and qu] coincide with Egs.(4.38a) and (4.38b), respectively. How-

ever, its projection onto the moving frame vectors uft‘? differs from Eq.(4.38¢)
and has the form

aF A2 o =2 @r1+21

1 - (i -2)(i
= [p°! 219([,”](’)‘/’0“2]9([: 21D 14

TS al,, 2+
+21?a—§A Y4590 +2l-—§A 8,80 v p—
o[+2] [ 2} .
- 21—1— o0 0,00 - O 090,07 | vt vy (4.40)
p Pt

This relation corresponds to the requirement of the conservation of the
secondary constraints (4.34) and thusis absent in the case of null-superstring
(as well as the constraint (4.34) itself). Consequently the corresponding
«boost» symmetry [20,21 ], which characterizes the superparticle [18,20,21 ]
and null-superstring theory {19,42,43], is absent in the case of twistor-like
superstring formulation. This is because the discussed superstring action

(3.1), (4.3) contains spinor harmonic variables of both types: the v:A
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harmonics as well as thev_, ones. The eight «boosts symmetries [20,21 ]

consist in the shifting onc of these harmonics by harmonics of another type

6 —b‘[”} or dv ~b’[ 2]v+
ak

Yaabas V AAT

It is clear that such symmetry is present in the theories which formulation

contains only one of the types of the harmonics v; 4

satisfied not only in the twistor-like formulation of massless superparticie,
null-supersting and null-super-p-branes [18--21,42,43], but aiso in the
heterotic string formulations of the type of ones discussed in
[32,34,36,38,40 ).*

Eqs.(4.38¢) and {4.39) can be solved with respect to the Lagrange

orv - This property is

multipliers O gng o720
G20 1 el-21 L gi+216) 5, 1 24
@ pr{ 2] [p 29 ()“”l 4 At 50,6 Pt
ol~2] -
AP 5 g9 ght L
+ 2 e L ENY ﬂﬂ} (4.41a)
A0 Lol gi-21 g Lopr1i g gat,
PTHZ] [P 2 %o & ca’ §4 Vanddf
+2,__1_ al+2} 60,16 gﬂl + . (4.410)
lCaip[+2 4)/A} ﬁR . S

Thus the verification of the conservation of the consiraints under the evoin-
tion is completed and, hence, the complete set of the first-class constraints is
extracted (up to a transition to some lincar combinations of them). They may
be defined as the variations of the generalized Hamilionian &' (4.27), (4.28)
with respect to the generalized Lagrange multipliers, which set may contain
the undetermined field parameters of the canoniczl Hamilionian playing the
role of the Lagrange multipliers for the secondary constraints (besides the
original Lagrange multipliers). In the discussed case we may use as a gene-

*These formulations may be named half-twistor-like because enly one of the Virzsocro
constraints is «twistorized» {i.e., is solved using twistor-like prescription) in them. And just this fact
explains the presence of the (heterotic superstring) «boost» symmetry in them. Indecd, as itis easy
to see from the discussed superstring formulation (3.10), (4.3), the inclusion of both types of
harmonic variable is necessary just for the «twisiorization» of both Virasoro constraints. And so, the
formulaiions in which only cne of them ia «twistorized» may be constructed using only type of spinor
harmonics and, consequently, may have the «boost» symmetry.
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ralized Lagrange multipliers the moving frame density variables pa{;z],

which are related with the original Lagrange multipliers P by
Egs.(4.31a,b)*.

After the substiiution of the expressions for the dependent Lagrange
multipliers (4.31), 4.33), 4.35), (4.38a,b), (4.40) into the expressions
(4.27) and taking into account (4.28), the generalized Hamiltonian may be
written as follows

oo
£

H'(r,0) = p"H”L “2(1, 0) -———-—p"l 20 o) +

i . (0 (0 {fyyif ¥2 +2
+ & 70T+ @D O+ ia”ﬂ” +pF 'P([p)al. (4.42)
The first-class constraints has the following form

{-21 ,,_2._,__0.’_{_:_., ui=2im 2 1
L PTG Lm+ w1+ 2%
% p

al, = o +ypl
8.0% v, (v, Dy)+

l l ~2ligyd . ' -2
o i 0 A 4 feap R
i

aly grly, i+21_ 2 . pi-21 _ 2 ~Opl-2]_
x3,8719,8 vy Tl S0 Pon — = QPp =0, (4.430)
e L OH 2i alppl+2liy
Dyo)y= —y=vy Do) - o (+2;:7’AA ad 8,8 11
A cap
4: L+ pl-2l
73,8 v Pt <0, (4.43b)
L!+2|E_L_"”_'__=
ca’ g0l
=M{+21;:;Lfn__2_T 1 aeaZ + (v'yDzl _1__ _1 Qi+2lipgl-2i_
ca pl pl 21t *“o

*It is important to note that the choice of the generalized Lagrange multipliersis a very delicate
point. So, if we try to use the components of the world-sheet repere e"* 45 the generaiized
Lagrange multipliers (instead of components of vector densities p°!¥2! = (a')™1/? ¢ ¢?1¥2]), then
the extraction of the corresponding first-class constraint becomes problematic because of the
nonlinear dependence of the resulting expression for the generalized Hamiltonian on e“IF2 1n the
discussed case such problem may be solved by using the relations (4.31) of the discussed repere

variables with the original Lagrange multipliers and requiring that new generalized Lagrange
multiplier must be expressed by linear relation through the original one.
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+k 2.5 pira_ 2 Q(")p[”’ ~0 (4.430)
o (pF  ca ey = .
~+, . OH' 2 2i k 2 [~2}i
DA(Q)=a§_2 D((f)+—~————l eryAA aA 3 O©%I1 -
A ca'p
4 a2,~ pl+2] _
w7 0,97 Pl ~ 0, (4.430)
(0) — (0) (+2l150-2] _ 5 [=2]1pl+2] ~
D@ =n®4 2 Poye = %' MR =0, (4.43¢)
- pl=ni=o, (4.43D
pix2 <, (4.43g)

Yo
where the expressions DL , L’ln (1 = 1,2) are defined by the relations

o m

Do) = —J‘ri+’i(a"'9‘l)a [p - (-1 ——(a x,~ i, 9’)], (4.44)

L= [Pm*( 1)1 L 4—2( 1)’ 0 6’0 9’},/,1:1,2. (4.45)

The first-class constraints (4.43a,b) generate the reparameterization

symmetry with pararrieter_s p”[n’ on Poisson brackets. The first-class
constraints (4.43c,d), (4.43e), (4.43f) generate the xk-symmetry transfor-

mations (with parameters §:‘ and §;2), SO(1,1) symmetry (with parameters
a®, SO(8) symmetry (with parameters o”) and, finally, the symmetry
under the arbitrary of the repere density components p”[“tz] (with parameters
Jod [¥21) The ast symmetry means the Lagrange multiplier nature of the
variables p”1 ¥,

The connection of the reparameterization symmetry generators (4.43a,c)
with the well-known Virasoro constraints should be discussed in the next
section.

- Thus the complete set of the covariant and irreducible first-class
constraints for the D =10, N = lIB superstring in the twnstor—llke Lorentz
harmonic formulation (3. 1), (4.3) is derived.’
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5. ALGEBRA OF IRREDUCIBLE SYMMETRIES
AND SECOND CLASS CONSTRAINT SYMPLECTIC STRUCTURE
FOR GREEN-SCHWARZ SUPERSTRING

5.1. First-Class Constraints and Their Algebra. To simplify the algebra
of the gauge symmetries generated by the first-class constraints (4.43), let us
redefine them, using some linear transformations inside of the first-class
constraints set. To formulate the results of such redefinition in a compact
form, let us introduce the following bosonic and fermionic blocks

Tl o ! i
Ll=1!-94l, (5.1a)
D!(0) = D}(o) + 2i (0™8") 4], (5.1b)

72 . 42 2
L2=rl-54%, (5.2a)
DX(0) = DX(0) + 2i (o"6%) AL, (5.2b)

where ‘ .
A= uj"”'p};)f' — udpF A pred o 0, (5.3a)
2 =2pi420 _ (Dpyl=2biy vl-21

A=, TP~y I /p =0, (5.3b)

and expressions DL , Lf" (1 = 1,2) are defined by the relations (4.44), (4.45),
or by the expressions

1_ I N B |
Lm.-:. [Pm+ poo (aaxm— 2 600 amﬂ )] R (5.42)
1 - 1 . 1nl | , i 1
D (o)=—n +i(d"0'), [Pm+ g (8%, i a,‘B o6 )], (5.4b)

2_ 1 A S )
L= [Pm— poa (8x,—2id0%,80 )] , (5.53)

a m

20~ o2 e mp2 S o2 o2
Do)y=—n_+i(06), [Pm— poo (dx —~i 0”8 a,b )}. (5.5b
The algebraic structure associated with blocks (5.4), (5.5) is very simple
one

{D (o), D';(o')} p=1 é”aZ'ﬁLfn 8(0—a"), (5.6a)

(D4(0), L(0") 1p = (—1)'8" 4i(ca’)™" (3,8",),8 (0 — "), (5.6b)
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(L] (@), L)1, =2(=1)/8" (ca) ™'y, 0,6 (0~0).  (5.60

mn o

Their sets are decomposed naturally onto the two pieces (DL, L:n) and (Dﬁ,

Lfn), associated with the different light-like directions tangent to the
superstring world-sheet. Inside of any of such pieces the bracket for two
fermionic blocks produces the corresponding bosonic one (5.6a), the bracket
for the bosonic block with the fermionic one produces the derivative of the
corresponding Grassmannian variable (5.6b) and, finally, the bracket for two
bosonic blocks is equal to the product of the flat space-time metric on the
derivative of d-function (5.6c). The brackets vanish for any two blocks
belonging to the different sets (i.c., associated with different light-cone
directions).

In distinction with Eqgs.(5.6), the algebra of the blocks Af" has the
vanishing brackets for any two blocks from the same set and complicated
nonvanishing brackets for the pair A:", A'zn of blocks associated with the
different light-like directions

i T, r . 2
[Am(a), An(a ) IP =0, [A

m

2, 4 _
(), AX0)1,=0, (5.7a,b)
(4! (o), A20) 1, = "2 ) ! WOu¥ YD+ 20%) +
+ uDylripl=2i =2, Ot < o, (5.70)

It is important that the brackets (5.7¢) vanish in the week sense and include in
its right-hand side the harmonical constraints (4.43e,f) (which are the first-
class ones) and (4.25b) (which are the second-class ones) only.

Taking into account Egs.(5.6), (5.7), we can see that the algebra of the

blocks z:n(a), 5;(0) is defined by following relations

{D}(9), Dy p = 2 L} 8 (0 = o), (5.82)
1D (@), Li(0") I, = — di (ca) ' (9,8'0,), 3 (@~ ), (5.8D)
[z:,,("), Z:,(cf') lp=-2 (ca’)”lnmn 30 (c—0) (5.8¢)

and coincides with the algebra (5.6) writtenfor / =J = 1.
The same is true for the algebra of 52(0), Zﬁ(a'),

{DX(0), 5;(0')} p=2idg L2600, (5.9a)

(D2(0), L(0") 1, = + di(ca’) "0 0%,) 8 (0 —0"),  (5.9b)
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72
[Lm

(see Egs.(5.6) with [ =J = 2).

However, the «crossing» terms have the more complicated form and are
completely determined by the brackets (5.7¢)

{D(0), Dy(o")}p =

=4i(ca’) (0,00, (aaezan)ﬂ [4,,(0), A2(0") 1,5, (5.10a)

©), (@), =+2(ca’) 'y 98(@-0) . (590

mn o

(D (o), L2(0") 1, =

= 2i(ca’)? (3,0'3,) (@) 3, 1A} (0), A2 ()], (5.10b)

n
[L,(0), DX(0') 1, =

= 2i(ca’)? (9,6%,) (") 3, 1A} (0), A2(0") I, (5.100)

m

1L, (@), L2(0) I = — (ca’) 29 3, (4] (0), A20") 1, (5.10d)

m
as it is easy to see from Egs.(5.6), (5.7).
The first class constraints YJM= (lew szw) (4.43a-d), which generate

k-symmetry and reparameterization transformations, may be redefined as
follows

Yi,(0) = (L'(0), D} (0)):

L'(o) = 271 F 21212

= 2p" 2T () 4 4(ca’) '3 6°' D\ (0), (5.11a)
D, (0) =v,%0) bcll(a), (5.11b)

“+
Y3/(0) = (I3(9), D} (0)):
1¥0) = 27"+ 2 '
= 2" 2L () — 4(ca’) "9 877D (o), (5.12a)

D} (0) = v“(0) DX(0). (5.12b)

The distinctions in Egs.(5.11), (5.12) with respect to (4.43a-d) lay
i) in the adding of the expressions

2 1 al — . —yFl
c?’.p[+2]r 609 Vaa (UAyDy)
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and
2 1

a2+
_ca'p(“21’a"9 Vo4

which are proportional to the first class constraints (5.11b), (5.12b) (or
equivalently, to (4.43b), (4.43d)), to the constraints (4.43a), respectively and
ii) in the multiplying the resulting expressions on the overall factors
2072 and 2571721 respectively.
The algebra of reparameterization and Kk-symmetry transformations,

associated with the same light-like direction tangent to the world-sheet, is
realized in the form of the following bracket relations

+r
vy D,, I,

Ip = c;fNY}v: (5.13)

1Y,,, Y},

(L'©@), L' (0") 1= = 4 (ca’) (L' (0) + L' (0")) 3.8(c — '), (5.13a)
1L'(0), D (0") Ip = - 4(ca’) ™" D3(0) 3,0 (o - 0") +

+ 2™ 290 D ()8 (0 - o), (5.13b)

{D}(0), Dy (@) = 8, 40" * )™ (L) (o) -

— 4(ca’) 19 0710 D2 (0)) 8 (0 - o), (5.13c)
- 2K 2, \
[Yyy, Yo lp=CK ¥ (5.14)

[L2(0), L2(0") 1= 4 (ca’) " (L (0) + LE(0")) 3 8(c—a’), (5.14a)
[L%0), D}(0) I, = 4(ca’) ™" Di(o) 3,0 (0 — ') +
+2(ca’) ™' Qo) B;(o) d(o-0d), (5.14b)
(D}(0), DN, = 835" (L'(o0) +
+4(ca’) "0 8% ;. DE(@)) 8 (0 - o), (5.140)

where Qf,o)(n) is the o~component of the SO(1,1) Cartan form (3.32a); they

transform as the connection (or gauge field) component under the gauge
SO(1,1) transformations. .

The brackets of the reparameterization and k-symmetry generators,
associated with the different light-like world-sheet directions, have more’
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complicated structure. However they are completely defined by the relations
.70 -

(Y} (0), Yi(0') 1, = C32¥ 3(0 — o’) 37D+ 2D :
IL'(0), L¥(0") 1, = = 16(ca’) '@l 2liQl+21ix
x sip®4 9 DY) s(0 - o), (5.15a)
/\+ , . , _ — — . -
IL'(0), D}(0") 1, = 4i((ca’)%" 2y ~'QL 25 g o2ty ] x
(8D + 20% 8 (0 - o), (5.15b)

S 20 o on2 T[+2ly—151+21) =~ i
[D(0), L@} 1 = 4i(ca’)p™ ") 71T 2o 0“7

%100+ 2078 (0 o), (5.150
{D (O'), D+((7 )}P =4 ((ca )2 T[+2] 1[—2])—1 ) galv;By;Bx
X3 9a2 + yBA (é"'D(O)+ 2DU) 3(o - a), (35.144)

where Q}’”“, Q‘[;z]' are the components of the pull-backs of the covariant
Cartan forms (4.32b,c) (Q_= € (d,)) and

pO®=n®4 ZPHZ]IP([;),Z]_ 2p[—2]fp(lp4;2l =0, (5.16a)

pi=1'=0, (5.16b)
are the first-class constraints (4.43e,f) generating the SO(1,1) and SO(8)
gauge symmetries (on the Poisson brackets).

The fact of closure of the superparameterization symmetry algebra (.e.,
the algebra of reparameterizations and x-symmetry transformations) on the
SO(1,1) and SO(8) gauge symmetry transformations is a significant one. It
means that SO(1,1)xSO(8) gauge symmetry connects different light-like
directions, tangent to the world-sheet.

The bracket relations of the SO(1,1) and SO(8) symmetry generators
(5.16a,b) with another first-class constraints are defined by the SO(1,1)
weight and SO(8) index structures of such constraints

(DO), Y0, =w(¥]) Y] ()8 (0 - 0'):
[D(O)(a), B;(a') Ip=- B;(a) é(o — ), (5.17a)

(D), DY (@)1, = + Di(@) 8@ — o), (5.17b)
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109), L"*(0") 1, =0, (5.170)
(09, DY) 1, =0, (5.17d)
[DY(0), Y3(0") 1p = W)}y V(@) 8(0 — o'y :
1DY(0), D3(0") 1, = = ¥, Dy (0) (0 — o), (5.18a)
1DY(a), D}(0") 1, = + 1D} (0) (o - o), (5.18b)
(DY), L"*(0") 1, =0, (5.180)
(DY), D'V (") 1, = 26" D/ V(o) 8(0 - o). (5.184)

So, the algebra of the first-class constraints

Y\= (Y3(0), Y,3(0), Do), Do), P52 =
Fay . M~ + .o +
= (L'(0), D;(0), L), D3(o"), DV, DY(a), PIEY),

(Y,(0), Yy(0") ], = [ do”’ Cho(o,0"10"") Yyi(0') (5.19)
is completely specified by Eqs.(5.13)—(5.15), (5.18), except for the bracket

relations of them with the rest two first-class constraints P([pi)?]] = (4.43g).

All these brackets vanish because of the absence of the variables p 1219 §n the
expressions for the first-class constraints

‘*21(0) Ye(0) 1, -0 (5.20)
The symmetry generated by the constraints P(Ip)g] = 0 indicates the

Lagrange multiplier nature of the zweinbein densities p [¥219 i the discussed
formulation.

5.2. Second-Class Constraints, Their Algebra and Symplectic Structure.
The rest of the constraints (4.7), (4.25) are the second-class ones. They also
may be decomposed naturally onto the two sets

S;=(8;, ) =0 (5.21)
associated with different light-like directions tangent to the world-sheet
S =0: (5.22)
L“")(o) = ") L) (0) =
=u"D P + Lox -2 8,0'0,6'1= (5.22a)

o m
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v}%0) D (0) = 0, (5.22b)
n+20g) ~ o, (5.220)
plAT %u""“‘L}" (@) =0, (5.22d)
P[ 2'(0) | (5.22¢)

5 = 0; (5.23)

L‘“—"Ra} = u"(0) L2 (0) =

=" (P~ L (o x,~ 206% 621 ~0, (5.23a)
v;a(a) DZ(G) =0, (5.23b)
ni-20g) = o, (5.23¢)
pl=2r %uml—ZlL?"(a) =0, (5.23d)
P’”‘(o) (5.23¢)
A nondegencrate sympleciic structure Q}J
S, Sip =9 (5.24)

of the set of constraints (5.21), (5.,42) is the block-diagonal one and is defined
by the reiations

15}, S} p = Q. (5.25)
{v;aDtlz(o), v;o/’D;(a')}P= 2i6Abuml+2]L:n6(a —-a')=
~4id,,p"*M8 (0 - o), (5.252)

(L'P(0), v; DL(0") 1= - di(ca’)™'9 010}

AyAB d(o —a'), (5.25b)

[2'0(), L'D(07)), = = 2(ca’) (8%~ Q) 8 (0 - '),  (5.25¢)
mHz](i)(a),'Ll(‘D(a’) Ip = 6ijuml+2]L,]"(a) do-0)=

= 287?275 (5 - o), (5.25d)
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2 L mis2,0 o 10),
[(p[ lrb—iu I+ ]L )(a),L (’)(a)]

= (ca)"'Q* N5 0~ ), (5.25¢)

P

- l ’ 4
[P([I))'Zl(a)’k(pHZ]r -1 um[+2]L'1n) (© )L =8(c—d), (.25

2 2 A2,
1S}, Sg}’,’ = Qfgf (5.26)
{v;°DX(0), v, 2D (0")}, = 2i8 , w1211 2 (©)d(c—-0)=
A Ta\v' "B g P AB m
= 4i6ABp[_2]'d (c-a", (5.26a)
[L%D(0), v,%DX(0") 1= 4i (ca’) "6 9% ™y . 8(0 — a'),  (5.26b)
>UB Ta P o aA’ BA ’ :

(£'0@), L'y, =2 (@)%~ Qh s (-0, (5260

20, L2001, = 8" 212 ()6 (0 - o) ~

=208 (0 -0, (5.26d)
- 1 mi-2 Yy
[(p[ 2 Lyml 21L'2n) (©), L20)(o )} =
P
= (ca)'Q"H 5 0 - o), (5.26¢)

[P([;),n(a), (p'_zl' - % um[—zllﬁzn) (C”)] =d(c—0').  (5.26f)
P

All other brackets between the pairs of the constraints from the same set
(either (5.20), or (5.21)) vanish in the strong sense. The brackets between
the constraints from different sets are all equal to zero in the week sense

I o2y
S}, 82, = 0. (5.27)

All of these bracket relations, which are nonvanishing in the strong sense,
involve the constraints (5.22c), or (5.23c)

[S}, 82}, # 0 (= 0): (5.28)
i+ 20y, nl-210g" 1= (0"DO+ 207 8(c - 0y =0,  (5.28a)

2100), 05D 1= ~ D@8 0 - ) =0, (5.28b)
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[v:“Dl (), N0 |, =v4,D (@) (0~ o) =0,  (5.280)

= 8912y~ [L2(0)+ 4 0.8 Dty +

aAdt AN
4 2, + 2 4 -2 0)\ pl+2i
+ 50,870 ], 0 7D)) — e M0, - Q) P +
L4 Q*”‘"’ﬂ”“'] 8(o—-0)=0, (5.284)
ca a
1L'O(e), n!* oy, = a"fu""‘"’L‘m(a) d(0-o)=
= u(bH»er)—l [L (a) a ealv+ BA(G) _
- C%a 6, wiD) + — '*”’(a +QO) oM+
A Q‘“z“'nm“'] d(@—0a')=0, (5.28¢)
ca 4 .
[nuzu(a)’ (p"“‘—%u'""”Lﬁ,) (0,)] _
P
=~ LXN0)s (0 -0') =0, (5.28f)
(+21r_ 1 mi+21 50 =2k | =
{(p Tk Lm) (o), N (o )]P
=L'OG)é (0 ~a)=0. (5.28g)

Hence, the symplectic structure (5.24) associated with the irreducible
second-class constraints of the Green — Schwarz superstring is derived in the
framework of the twistor-like Lorentz harmonic formulation {22,23}.
Moreover, the second-class constraints algebra

15}, S0 1, = CMsi+ ¥ ve+ Q) = (5.29)
is described completely by the relations (5.25), (5.26), (5.28).

5.3. Reparameterization Generators and Virasoro Conditions. Let us
clarify the relation of the first-class constraints (5.11a), (5.12a) with the well-
known Virasoro conditions

= [P+ (ca) o x, 1 P+ (ca’) !0 x™], (5.30a)
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2E (Pm" (Ca')— d x llpm (cay)—lagxn! ], (5.30b)

g m

which generate the reparameterization symmetry transformation in the

standard bosonic string formulation (see, for example, Ref.3). The expres-
sions [P, + (ca' )“‘a x land [P — (ca’)" 'a X, | are included in the blocks

om
(5.43), (5.54) and may be xdenuhcd with thcm or with the blocks (5.1a),
(5.2a), up to the harmonic and Grassmannian constraints. Thus we may

discuss the forms of the Virasoro condition generalizations in terms of these
blocks.

It is sufficient to discuss the Virasoro condition (5.30a) only.
The expression Z'l” is included in the first constraint (5.11a) which may
be reformulated as follows
d"TUL (0) + 2eap™ )7 0,871 DL(0) = 0, (5.3

and remains first-class con?straim after multiplication on u"! +2'Z:1(a)

m[+2| nl ZIL (O)L ((7)+

m
+ 2cap™ YT AT Gy 0 4Dl (a) = 0. (5.32)

From the other hand, the second-class constraint (5.22a) may be transformed
into the following one

i

L (o) "D =0, (5.33)

because the block Z:"(o) (5.1a) differs from L:"(a) one (5.4a) by the sum of

constraints (see Eq.(5.3a)). The square power of the second-class constraint
(5.33) is the first-class constraint by definition. Thus, there is the following
(dependent) first-class constraint

L ) "Dy O L) (0) = (5.39)

in the discussed dynamical system. The linear combination of Egs.(5.32) and
5.349 :

u'"'”‘q"‘““ L (o) L\ - L (9) O IL) () +
2t WG Bl ) =0 (539
may be written in the form
Z:"(a) @) + 2(ca’pﬂ+2])—lu"Hz]Z'll(a) 3.0 alBL(G) =0 (5.36)

(if the completeness conditions
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n_ b2 ni-21, U (=21 al+21_ ) nG
6"1— 7 um u + 7 u"l u - ufﬂ u ( ) (5‘37)
for the composed moving frame variables (1.8), (1.9) are taken into account).
It is easy to see that the first-class constraint (5.36) coincides with the
Virasoro condition (5.30a) up to the Grassmannian and harmonic degrees of
freedom (which are absent in the standard bosonic string formulation).

6. CONCLUSION

So the classical mechanics of the twistor-like Lorentz harmonic
formulation of the D = 10, N = lIB superstring [22,23] is built in the
frameworks of Lagrangian and Hamiltonian approaches. The equations of
motion are derived (Egs.(3.40), (3.44), (3.47), (3.51)) using the concept of
the admissible variation (3.31) for the harmonic variables. The complete sets
of Lorentz covariant and irreducible first-class and second-class constraints
arc presented in Egs.(4.43a-g) and Egs.(5.28)—(5.33), respectively. The
algebra of the gauge symmetries (Egs.(5.13)—(5.15), (5.17)—(5.20) and
symplectic structure associated with the set of second-class constraints
(Egs.(5.25), (5.26), (5.28), (5.29)) are calculated.

Thus we have developed the machinery of the component twistor
approach necessary for the next steps towards covariant quantization of
D = 10 superstring, which consist in the providing of the conversion [54—
56,7} of the second-class constraints into the Abelian first-class ones and the
construction of the classical BRST charge (see [42,43,19 | for the case of null-
super-p-branes in D = 4). These steps are under investigation now.
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