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The harmonic oscillator basis for the description of the three-cluster systems is
constructed in the Fock—Bargmann representation. The transformation of basis functions
accompanying the nucleon permutaticn operation is found. The problem of constructing the
allowed states is solved. An algorithm of calculation of the Hamiltonian matrix elements in
the basis of allowed states is developed. The matrix elements of the kinetic and potential
energy operators are obtained for the 6He(“He +n + r) system in the state with zero orbital
angular momentum.

B npencrasiennu Poka — Baprmana cKOHCTPYMPOBaH FAPMOHHYECKUM OCLMIUTATOPHBIH
Ga3uc, TO3BOMAIOIIMI OMUCHIBATE TPEXKIAcTepHble cHcTeMbl. Hailaedo npeobpaioBadue
6a3ucHBIX (PYHKILMI, OTBeYarOllee ONepaLHK IePECTAHOBKR HyknoHon. Pelena npofiema
MOCTPOEHUs PA3PEelIEHHDBIX COCTOSHUM. PasBuT airopHT™M BEIYUCIICHAS MATPAYHBIX BlieMeH-
TOB laMWJILTOHMAHA Ha 6azuce paspeleHHbIX cocTosnui. [TonyueHsl MaTpAYUHEIE 2ICMEHTBI
OIEepaToOPOB KHMHETHYECKOHR ¥ NOTEHLHAILHON SHEPIUM A CHCTEMBI é %c(4§ie+n+n) B
COCTOSTHHMH ¢ OpOUTANBHEIM YTTIOBBIM MOMeHTOM (.

1. INTRODUCTION

The microscopic theory of light nuclei collisions that takes into account
only binary entry channels has proved its efficiency in a number of reaction
calculations. Its realization, at least in simple cases, with the resonating group
method (RGM) [1—4] or its algebraic version [5—7], does not meet now any
principal difficulties. However, the problem becomes much more complicated if
one tries to include into consideration three-body exit channels.

There appeared, however, papers where the three-cluster problems of the
discrete [8—11] and the continuous [12] spectrum were successfuily solved.
But in each ¢ase clusters were taken as structureless particles whose interaction
was modelled by some effective cluster-cluster potential and the Pauli principie
was taken into account only approximately. Of course, it allowed to simplify the
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calculations, but if we try to take into account other possible cluster partitions

of a nucleus (e.g., the channel r+1¢ together with *He+n+n in 6He), the
number of effective potentials needed for calculations becomes, as it seems,
excessive. Therefore, the natural desire appears, to solve the problems of this
sort using the same nuclecn-nucleon potential. The RGM algebraic version
could provide this possibility.

In the present work we present the basic ideas of the RGM algebraic
version generalization for the three-cluster systems, discuss the appearing
difficulties and outline ways to overcome them. The analytical resuits will be

obtained for the simplest three-cluster system, ®He (4He+n+n) in the state
with zero orbital angular momentum. Nevertheless, the ideas discussed below
are applicable to any system of three s-clusters.

Let us recall that this approach is based on the expansion of a nuclear wave
function over the multiparticle harmonic oscillator basis. We begin with the
construction of such oscillator basis that a) takes into account the intrinsic
structure of three clusters, b) reproduces the dynamics of their relative motion,
¢} has a certain permutation symmetry. The latter restriction, due to the Pauli
principle, causes the major part of computational difficuities.

As known, in the case of binary channels, the Pauli principle excludes from
the complete set of the harmonic oscillator basis states those which vanish acted
cn by the antisymmetrization operator and, therefore, cannot be used in
calculations (these states are called the forbidden states). In the case of three-
body channels, a number of basis states are also forbidden but their
identification becomes more complicated [13—15]. If the number of oscillator
quanta is not less than the minimal one allowed by the Pauli principle, the
allowed states can be identified as the eigenvectors of a density matrix with
non-zero eigenvalues, while the forbidden states correspond to its zero
cigenvalues.

The realization of the RGM algebraic version is based on the extensive use
of the generalized coherent states (GCS) [16,17,5] which are the generating
functions of the harmonic oscillator basis. The GCS also perform a
transformation from the coordinate space to the so-called Fock—Bargmann
space [18—20], where the basis functions have a simpler form making the
derivations less cumbersome.

The main steps in the implementation of the approach remain the same as
in the binary-channel case. First we construct the generating functions of the
three-cluster oscillator basis. Then we calculate their overlap integral and
perform its projection cnto the basis states. On this step we also discuss the
choice of the quantum numbers for the classification of basis states and
calculate the transition matrices between different bases. After that we obtain
the matrix elements of the kinetic and potential energy operators of the six-
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nucleon system between the generating invariants. Finally, we find the
Hamiltonian matrix elements between the basis states. The analytical
calculations conclude with the discussion of the Fourier coefficients asymptotics
and the derivation of the RGM algebraic version dynamical equations.

2. GENERATING FUNCTIONS
OF THE THREE-CLUSTER OSCILLATOR BASIS

We shall write the wave function of a system of N, clusters in a traditional
for the RGM form

W, 0, 1D = A{G(5 o) £ () qy ). )

Here {ri, o, T, i=1,.,A} are the spatial, spin and isospin coordinates of A

nucleons, A is the antisymmetrization operator; ¢(1),..., (p(NC]) are the functions

describing the internal structure of each cluster, these functions are fixed;

f(ql,._., qy _) is the function describing the relative motion of clusters
¢l

depending on a set of N~ I translation-invariant Jacobi vectors of a N -cluster

system. The latter are the dynamical variables and the wave function f
depending upon them should be found by a solution of the integrodifferential
equation obtained from the Schrodinger equation after the substitution in it of
the trial function of the above form and the integration over the rest of Jacobi
vectors (intrinsic cluster coordinates).

In the framework of the RGM algebraic version the relative function
B
f(ql,...,qN 1) is expanded in the basis states of the multiparticle harmonic
cf

oscillator

AC IR IV =2 Crapdim @y ) 2)
cl ¢l
{n}

and the dynamical equations are reduced to the set of linear algebraic equations
with respect to the expansion coefficients C{n]' Here {n} is the set of quantum

numbers characterizing the basis states. The basis functionsf{n}(q],...,qN _1) can
¢l

be written as some linear combinations of the products of N — 1 single-particle

oscillator functions

nl 12 12,2
x'e Ln (x )Ylm(Qq)’

Sum(@ = 1) rol (n+1+3/2)

3)
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where x=g/ry, 1, is the oscillator length, the parameter of the basis, Lfl(x) are
the Laguerre polynomials, Ylm(Qg) are the spherical functions. The exact form

of those linear combinations and the selection of the quantum numbers {n} will
be discussed in Sect.3.
The expansion (2) of f is equivalent to the following expansion of ¥

Y({r, 0,1, D=, Cim ¥ oy {rs G T, 4)
{n}
where the basis states ‘l’{n} are introduced in analogy to (1)

W 0 1) = A0 @ £, @y D) )

As it was mentioned, the idea of using the generating functions in work
with the oscillator basis turned out to be very productive for the calculations of
nuclear processes involving binary channels (see the reviews [5—71, [3,4]). The
well-known example of the generating function is that of Hermite polyno-
mials [21]

o3

2xt—12 tn
e =y — H ().
n=0
In our case, the generating functions for the basis states (3) are the
generalization of the above function. They are constructed as the Slater
determinants composed of the single-particle Brink orbitals [22]

1 = 1
oR,, r) = exp {— 3 2 +2 R - 5 Rz} C(o.1), k=1, N, (6)

Here {(c, 1) are the spin-isospin functions, R, k=1,.,N, are the generating

parameters. The generating function

® (R}, {r, 0, 7)) =det || 9®R, 1) Y

is not translationally invariant, but it allows an easy separation of the factor
describing the center-of-mass motion (see [23])

by introducing the Jacobi vectors {q,} and the corresponding generating
coordinates {Qk} (k=1,... Ny~ 1). The function (p({Qk}, {r,o, 'cl.}), as can be

shown, has the form similar to (1)
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O({Q). 1, 6, T1) = A (@(1)... 9N F({Q). (a1}, ©

where

(k) = exp {~ % p,f} ¢,

2 " CM,2 :
po= 2 o —R. =T o, (10)
ieA ie A
k k
(the summation and the multiplication run over the coordinates of nucleons
belonging to the k-th cluster),
N -1

¢l

1 - 1 2 l
Q) tan= T ewi-;a+2 Qa5 (1)
k=1
The function (p((Qk}, {ri, 0, T,}), which we have just constructed, is a

generalized coherent state [16,17,5] for the nuclear system under consideration.
In this quality it is a wave packet generating the harmonic oscillator basis
describing the dynamics of cluster relative motion. Indeed, as can be shown, the
function under the product sign in Eq.11 is the generating function for the basis
states (3)

exp{~%q2+ﬁQq—%Qz}=

_ z [ n32—2n—l+1
! T(n+1+3/2)
nim

1/2
} QMY Q) £ (@) (12)

nim

Furthermore, the function (p({Qk}, {r, G ‘cl.}) is a kernel of an integral

transformation which maps the wave function in the coordinate space into the
Fock—Bargmann space [18—20], where it depends only on N~ 1 vector

generating parameters (as we mentioned, the intrinsic cluster functions are fixed
within this approach).

Below, using the generating function (9), we shall find the Fock—
Bargmann images of the allowed by the Pauli principle basis states and,
remaining in the Pock—Bargmann space, calculate all necessary matrix
elements. The special attention will be paid to the overlap integral of the
generating functions with different generating parameters since it allows one to
get the comprehensive information on the harmonic oscillator basis for a three-
cluster system.
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Although the expressions for the basis functions will be obtained in the
Fock—Bargmann space, this does not hinder to achieve our main objective, to
obtain the Schrodinger equation in the harmonic oscillator representation.

Now we consider the construction of the generating functions and the
calculation of their overlap integral for the 6He, which we regard as a system of
three clusters, the alpha-particle and two neutrons. For each cluster we introduce
the Brink orbitals with the corresponding generator parameter or, in more detail,
four single-particle states for the alpha cluster

[1y=0,1pT. 120=6,1pd). [3)=0¢,1nT), [4)=0,|nl); (13)

and two states for two neuiron clusters

[sy=0,1nT), l6)y=9,1nl), (14)

where ¢, is the spatial part of ®(R,, 1), spin-isospin functions are denoted in an

obvious manner. We shall use also the states with other generating parameters
0,60, D=0R,, 1), k=123, (15)

Let now

o,aplpT) 6 lpTy el 6

o) lpby oeplply o oyrglpl)

(D (R1R27R3v{rl’clrrl}): ’ . '

o) lnd) e lndy oy lnl)

Then the overlap integral of two wave packets, @ and ®, where
¢=0R,R,,R;; {r,0,1}),

can be calculated as a determinant of single-particle overlaps [24]

(Y (lzy . (1le)y a7
2lTy (212) - (2]86)
(old)y=| - ' '

(61T) (612) .- (615)
Most of its elements vanish because of the orthogonality of spin-isospin
functions. Then
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(tlty o 0 0 0 0
0 202y o 0 0 0
oley=! 00 (3]3y (s[5 o o |_
(@ld)=) 0 <5l3><5’5> 0o o |7
0 0 0 0 (414) (416)
0 0 0 0 (6l4) (6]6)
I 6) (18)
=01l 2l2)x (513 (515 [(slay (6l6)l

Thus, the generating overlap integral has a multiplicative form. Calculating ihe
overlaps of Brink orbitals

(OR) | O(R) ) = exp (RR),

where the constant factor of 7 2 is dropped, we obtain the overlap integral of
the generating wave packets ‘

(old)=exp (4R R, 4 BLR, ¢ R R, -
~exp BRR +R R, + BB <R, ) -
—exp (3R B + R+ RR+RR }+
+exp {2R B + R R, +IL,R + R R JHRR (19)

In the calculations we used the generating functions with the fixed total isospin
of a system 7= 1, while with respect to spin coordinates it is a saperposition of
singlet and triplet states (S =20, 1). Later on we shall show how to separate basis
functions with the definite spin.

To separate the center-of-mass motion, we infroduce new generating
parameters, which we denote (a, b, Ky and (3 b, R

2 (. 1
azﬁ[lxl —‘i‘ (R2+ R3)\J,

M)

fal

= i_(n (ﬁ2+ ﬁi%)],
3 + R,

1 ~ 1 o~ 20
b=—(R—-R), b=— Ry~ Ry)
22 \2
1
Ry = =UR +R+R,), R MR+R+R)
/g 1 2 3 M (‘

After a transformation to new parameters, the overlap integral becomes

(DD )=exp (R Ry (ablab), 21
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(ab|ab)=exp (ad + bb) -
—exp {1/4aa + V6/4ab + V6/4ba + 1/2bb} —
—exp {1/4aa — V6/4ab — V6/4ba + 1/2bb} + exp {~1/2a7}, (22)

thus factoring out the center-of-mass motion. In the Fock—Bargmann space, the
generating parameters, vectors a and b (&, b), correspond to the Jacobi vectors
of a three-body system in the coordinate space describing the relative position
of two neutrons (a) and the relative position of the alpha-particle and the cen-
ter-of-mass of two neutrons (b).

Let us now examine the calculation of the overlap integral from a different
point of view, by explicitly considering the antisymmetrization operator A
Among all 61 =720 nucleon permutations composing 4 one should take into
account only those that involve nucleons in the same spin-isospin state. There
are four such permutations, the identical one, the transpositions P,q, P, and
thetr product P,¢P .. The antisymmetrization operator becomes

Azl =Pag = Pyg + PrsPyg

and we have four terms in the overlap (19) corresponding to these permutations.
If we write the first term (it is an overlap of unantisymmetrized generating
functions) as

exp (R,R, +R,R, +RR +RR,+RR,+RR,},

the other terms can be obtained from it by interchanging one of R, by R, or

R, or simuitaneously two of R1 by R2 and R3.

The action of the antisymmetrization operator A in the space of the
franslation-invariant generating parameters & and b is reduced to some linear
transformation of a and b. It can be shown (see [23]) that the matrices of this
transformation corresponding to the permutations Pyq, P, and PyoP,  are

35 357 46
1 43 1 3 1 (23)
w_| ¢ \E @ 4 8 3) {—5 0
T L TO= . T = ,
VoL BEVER. 00
8§ 2 L 8 2

respectively. Then, the overlap integral can be formally rewritten as a sum of
four similar terms

(ablab) =exp {aa + bb}— exp {aa + bb} —exp {;5+l=)l~)}+ exp {§§+ ls)f)}, 24)
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where
_ 1 A3 - 4/3 1
a—4a+ 8b, b= 8a+2b.
= 1 3 = 3 1
a—4a— 8b, b=- 8a+2b. 25)
= 1 =
a——za, b=0

We see that to calculate the overlap integral we need only to know the
overlap of the unantisymmetrized generating functions and the transformation
of generating parameters induced by the operation of nucleon permutation, i.e.,
the representation of the antisymmetrization operator A in the Fock—
Bargmann space. This idea will be applied also to the calculation of the matrix
elements of other operators, namely the operators of kinetic and potential
energy.

To make clear the subsequent transformations of the overlap integral
(ab|5b ), let us recall some facts on the generating wave packages. The
translation-invariant generating function ¢ introduced by (9) generates the
harmonic oscillator basis describing the dynamics of relative motion of clusters.
On the other hand, as it was mentioned, it is a kernel of the integral
transformation

¥, by =] ... [ o@b, {r,0, T )¥((r, o, 1, )dr,... drg, (26)

which maps a wave function of a system in the coordinate space Y(r, o, .1

onto its image ¥(a,b) in the Fock—Bargmann space. Indeed,

o b, {r,c,t)=2, o(n}ab¥ (r,c, 7)) @7)
{n}
where {‘I’{n}} are the orthonormalized harmonic oscillator basis states (5),

@({n}; a,b) are their images. Therefore, the expansion (4) can be rewritten in the .
Fock—Bargmann space

¥ b)=3, Cp, e(in};ab). (28)

{n}
and we come to the problem of constructing the image ‘¥(a,b) of wave functions
in terms of their expansion coefficients C{n} and the subsequent return to the

original

¥((r, 0, 1) =D, Ci¥ (T, 0, 7).
{n}
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Of course, the original replaced by its image ¥(a,b) would be only the
approximate solution of the Schrodinger equation. However, that solution gives
us an adequate information on nuclear phenomena that do not involve the
process of the alpha cluster decay.

The sense of introducing the image @({n}; a,b) is its simplicity and clarity
of representation compared with the original ‘F{n}. Just compare the simplest

oscillator function in the coordinate space (Eq.3) and its Fock—-Bargmann
image (extracted from (12))

sl 7t3 2—211—1+1 2
n _ -~
a, [Q Ylm(Q Q)’ where a,= .

For the three-cluster system, the image is a function of two vectors which can
be written explicitly for most cases, whereas ‘I’{n}({ri, 6, %;}) depends on all

Jacobi vectors and spin-isospin variables of the coordinate space being a quite
complicated construction. Various features of the latter become clear after its
image is found. Working with the basis o({n}; a,b) effectively reduces our six-
particle problem to the three-particle one, making thus possible to use some
techniques developed for the three-body problem [25—27].

So far we have not shown yet an algorithm of constructing the basis
functions ¢{{n}; a,b), althcugh we have obtained the expression for (ab|§b)
witich permits one to formulate this algorithm.

From the expansion (27) and the orthonormality of basis functions ‘Y{n} it

foliows that

(ablab)=3" o({n};ab)e({n); &, b), (29)
{n}
ie., the overlap integral (22) may be written as a convolution of the basis

functions to be found. This fact will be used later when we shall obtain the
expressions for ¢({#}; a,b) for the states with zero orbital angular momentum.

3. ON THE CHOICE OF THE OSCILLATOR BASIS

Having determined our objective as the derivation of the Schrodinger
equation for a three-cluster system in the representation of oscillator basis
states {‘P{”}}, we should specify what classification of the basis states will be

used. Among quantum numbers labeling the basis state there ace two evident
ones, the total number of oscillator excitation quanta n and the orbital angular
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momentum of clusters relative motion L. At the first stage we shall restrict
ourselves to the case L=0. Then only three dynamical degrees of freedom
remain and, therefore, besides n, two other quantum numbers must be specified.
Their choice is determined by the Pauli principle and the necessity to simplify
as much as possible the calculations of Hamiltonian matrix element between the
basis states. The Pauli principle requires that the basis states should be
antisymmetric with respect to transposition of nucleons. Therefore, it is
desirable to have quantum numbers which — along with n — remain unchanged
under nucleon permutations.

The choice of these quantum numbers is based upon the classification of
harmonic oscillator basis states provided by the SU(3) group [28]. It is known
that the space spanned by the harmonic oscillator states with a given n is a
direct sum of the subspaces spanned by states with a fixed SU(3)symmetry
(Aw). For L =0, n, A and it must be even, so the following pairs of indices are
possible

A=n, u=0; A=n—-4, u=2;.; A=n—4m, u=2m; ....

If n is fixed, only one of (A p) is independent, for instance p. Letting L =2m we
take m as the second quantum number of a basis function. It can take any
integer value from 0 to [n/4].

For the states with (A W) =(n—4m2m) we should also introduce a third
quantum number, since there are n — 2m + 1 states for each fixed n and m, with
the following n, and ny

n= 2m, My=1— 2m; n= 2m+1, ny=n-— 2m~1;...; n=n-— 2m, n,=2m.

This quantum number could be n1(2m <n, $n-2m) or n2(2m <n, <n—2m), but

we choose another quantum number. For this purpose we consider the action of
the antisymmetrization operator on the functions ’n1n22m ), which have no

certain permutation symmetry but maintain a simple algorithm of calculation of
the potential energy operator matrix elements. We shall work with the basis
functions nn,2m) in the Fock—Bargmann representation

(abt|nn2om)= W(n, ., 2m; abt), (30)

where a=1lal, b=1bl, 1 is the cosine of the angle between a and b. The exact
expressions for the functions ‘P(nl,n2,2m; a,b,t) can be found in Sect.4, now we

only say that these functions are proportional to a"‘, B and ![ab] |2"’.

Let us list the most important features of the basis functions (30). First, the
matrix elements of the potential energy operator in this basis have
comparatively simple form (they are reduced to two-fold sums, see Sect.6).
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Second, a transformation of these functions under nucleon permutations is also
simple, so that it is not difficult to find such linear combinations of the
functions (30), which are the eigenvectors of the antisymmetrization operator.
As for the third quantum number of the antisymmetric basis functions, it is
convenient to identify it with an eigenvalue of the antisymmetrization operator
matrix in the space of the basis functions (30).

This is not the only possibility of the classification of oscillator basis states.
The other choice, used in [23], is based upon the quantum numbers of two
single-particle oscillators {”1’ My 12, L, M} with their angular momenta

coupled into the total angular momentum L. This classification has clearer
physical interpretation, but the calculations with such a basis are more
complicated.

4. HARMONIC OSCILLATOR BASIS STATES
IN THE GENERATOR PARAMETER SPACE

The overlap integral (22) of generating wave packets is a natural way of
- constructing the harmonic oscillator basis states in the Fock—Bargmann repre-
sentation, i.e., in the space of the generator parameters a, b (a, b). In order to
construct these states we first consider the expansion in powers of a, b (a, b) of
the first term in the overlap integral:

exp (aa + bb) = 2 z

n=0 nn, =n

,1 , (a3) '(bb) 2. (31)
nz.

Each term of this sum is a homogeneous polynomial in the components of
vectors a, b, a, b of the same homogeneity degree with respect to a, b and with
respect to a, b. This polynomial may be considered as an overlap integral of
basis functions with n oscillator quanta. Naturally, the basis functions of states
with different n are orthogonal. Moreover, term in Eq.31 corresponds to a
convolution of basis states classified by the number of quanta. Meanwhile, our
aim is to construct a basis having such quantum numbers as total number 7,
SU(3) symmetry indices (A ), orbital angular momentum L and its projection
M.

The following important relation gives us a key to solving the problem of
constructing the basis states with the required quantum numbers:

(ad) (bb) 2=
min(nl/ 2,n2/2)

= Y Bnd 6 k) 1" 1y nyma T @R (32)

m=0
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where the normalizing coefficients

(n]+n2+ 1 —2m)!nl! n,!

2 _ 2
B, (nyn) = ml(n, +n, +1-ml(n, - m)l(n, —m)! (33)

determine the weight of overlap integrals
I(nl,nz,m) = nny(n, + n, = 2mm) | n!nz(n} +n, = 2mm) ) (34)

of wave packets (A ) = (n, + ny—2mm) of the SU(3) irreducible representations

when these integrals form the product (aﬁ)n'(bl;)"z. The overlap integrals (34)
are normalized so that when (), the cosine of the angle between a and b (2 and
b), equals 1, they take the well-known form first introduced by Elliot [28],

n +nz—-2m

I(n,n,my=d,| d;; (35)

where d., is the cosine of an angle between the normals to the planes passing

through a, b and a, b (these normals coincide with the axes { and E of the
intrinsic coordinate frames spanned by vectors a, b and a, b, respectively), d”

is the cosine of the angle between the axes £ and & of these coordinate frames.

In the present paper (as well as in {29]) we restrict ourselves to the
consideration of states with L =0 reserving generalization on the case of
arbitrary L for the next paper. The L =0 states contain only the terms with even
powers of expansion (31). Retaining only these terms and denoting other by
dots we rewrite (31) as

exp(aa+bb)=y Y - 'ln - (ad) I(bb) 2+ ... =
n=0 nl+n2=2n 172

z -2 -2
= Z z Nz(nl,nz;2m)anl "p m[ab]zmd) (n},n,;2m5t) X

n=0 n+ n2=2n

~n-2m~n-2m
1 2 |

X a b (3] | 2" (n ny2mit) + ..., (36)

where

2 PN ) 2
N (nl,n2,2m) = ", !"2! BZm(nl,nz)sz(nl,nz),
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T [% (n1+ nz)— m+1]F & (nj+n,)2m+ %] I [m + ]5] 37

2
C2m(nl’nZ)= 1 1 3Y)
2Ne m! T [5 (n+ ny)—2m+ 1]r [5 (n+ny)—m+ 5]

The functions <D(n1,n2,2m,t) are the eigenfunctions of the second-order Casimir

operator of the SU(3) group. They were obtained in Refs.30,31. For even n,

and n,

D (ny,n,,2m;t) = F (—n1/2 +m,—ny/ 2+ m; —(n+n,)/ 24 2m+1/2; 1- t2), (38)
where F (o, B; v, z) is the hypergeometric function [21]. For odd n, and n,
D (nl,n2,2m;t) =

=tF (—~(n,=1)/ 24+ m, —(n,=1)/ 2+ mi—~(n+ n, )/ 2+ 2m+1/2; 1—t 2). 39

So the basis functions are chosen in the form

W, ny2m) = N(nny2m)a" " B @bl (nny2mip). (40)
They are the orthonormalized basis functions lnln22m ) in the Fock—Bargmann
representation discussed in Sect.3. Their SU(3) symmetry is (n;+n,—4m,2m)

and the angular momentum L = 0. Besides, we have now a new expansion for
the first term of the overlap integral (22), since it is found terms of this
expansion (polynomials of a homogeneity degree n) can be written as a
convolution of basis functions
( ~)”1(b5)"2 min(nl/ 2,n2/2)
aa
)

n !”2! ‘I’(nl,n2,2m; a,b,t)‘I‘(nl,nz,Zm; a, b, t)y+..., 41)

m=0
where dots indicate states with L #0.

Under the operation of nucleon permutation the basis states (40), as well
as ln]n22m ), are subjected to a linear transformation that conserves their
SU(3) symmetry and mixes only functions with different values of n —n, but
not n;+n, and m. The transformation of states (40) is induced by a linear

transformation of a and b. The states (40), hence, do not have fixed permutation
symmetry, so our next task is to find such their linear combinations that have
permutation symmetry satisfying the Pauli principle (allowed states) and to
eliminate the other (forbidden) states. In order to do that, we expand the three
last terms of the overlap integral (ab | ab) (Eq.22) in powers of vector
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generating parameters. Then, in a polynomial of an even homogeneity degree
(n) we retain only terms with L =0 and a fixed m. In this case, we obtain the
following bilinear form with respect to basis functions (40)

> [Wnpny2m;a, b 1) - ¥(n

n1+n2=n

phy2m; a, b, 1) —

= W(n,np,2m; a, b, 1)+ ¥(n, ny2m; a, b (n ) 2m; @, b, 1) (42)

Since b=0, the term with triple-barred a, b, t vanishes for m=0; its
contribution for m=0 is

\n
(— %J N(n,0,0)a"N(n,0,0) a"

In order to find the transformation of basis functions under the nucleon
permutation we first consider the transformation of basis functions induced by
an arbitrary linear transformation of a and b performed by the matrix || o] .

a \z % %) (a
b J Oy O J (B )
This transformation, obtained in [32], is not very complicate
Wi Ay2ma b= Y, (npn2mlol A R 2m (n n,2miab,t), (43)
nl+n2=ﬁl+712
(nyny2mla i n2m ) =
N(ﬁlﬁz,Zm) (ﬁl—- 2m) ! (ﬁ2~ 2m) !
= — X
N(nn,,2m) P k n,—2m—k) ! (n,—2m-k) ! (ny—ni +k) !

= (det o)™

n —-2m—k n —2m—k n, n+k

x (0 Koy ) T o) T 0,)™ (44)

Applying these results to three matrices T (”), given by Eq.23, we obtain the
matrix of the antisymmetrization operator

| (nyn2ml LR 72myl| = || Cnyny2m | 1-TO-T@er O |5 7 omy)| | (45)

which gives us the expression for the overlap integral (42)



1362 FILIPPOV GF. ET AL.

(ablab)=

=Y Y ¥ n2mabnnn2m| Alfi2m) W i2mab.  (46)
n +n2=n n +n_=n
Later the transformation (43) of basis functions will be used to obtain the matrix
elements of the potential energy operator.
Now we can return to the problem of separating the singlet and triplet spin
states. The matrix (45) is symmetric, it has a block-diagonal structure with two
blocks corresponding to even and odd values of ny, Ny, ﬁl, 52. Basis functions

with odd n,, n, are antisymmetric with respect to the transpositions of spatial

coordinates of neutron clusters and, therefore, belong to the singlet spin state.
The spin of a neutron pair is an integral of motion and ‘the Hamiltonian does not
mix triplet and singlet states.
Here are some examples of the matrices (45) for simple cases.
Forn=n,+n,=n +52=2; m=0

1 2 I
1200y 1020)
9 3 (47)
(200] g "
3 1
(020| -5 3
Forn=4, m=0
l400) 1220) |o40)
_ 135 e 9 (48)
(400| 123_ - —3\%_ ,
W6 S W6
(2200 - 64 16 16
(040| _9- __ﬁ l

32 16 8

The diagonalization of the matrix (45) solves the problem of eliminating
the forbidden states and constructing the orthonormalized basis of allowed
states, which are obtained as linear combinations of basis functions
‘P(nl,n2,m;a,b,t ).

The problem of forbidden states in many-cluster systems, in general
features, has already been studied in {13,14] where some important results have
been obtained. The next task is to construct the basis of allowed states and to
find the Hamiltonian matrix elements in this basis. However, first we shall
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clarify the relations between the basis of allowed states and its generating
functions.

We have chosen as a generating function the wave packet
D(R,R,,R;; {r,0,,7,}) constructed as a Slater determinant composed of six one-

particle Brink orbitals (see Eq.7). In the center-of-mass system we have already
introduced the generating function .

o(ab;{r,c,T.}),

and now we introduce the corresponding unantisymmetrized function P,

o(a,b;{ ri,ci,‘c,,}) =4 (po(a,b; { rl.,O'l.,Ti}). (49)

It is also a generating function, but, compared to @, it generates the basis of
unantisymmetrised functions {Ilny)}, which contains both the allowed and the
forbidden states

P(ab;(r,o,T)) =3 oyn v ab)ny). (50)
ny
Here n is a number of oscillator excitation quanta, y is a set of additional
quantum numbers, ¢(n, ¥; a,b) is a Fock—Bargmann image of the basis states
lnvy).

We cannot content ourselves with the basis {jny)} and construct the
Hamiltonian matrix elements in it immediately for the Shrodinger equation
since this basis contains the forbidden states. Each of the functions |2 v ) has no
permutation symmetry and, in general, is a superposition of allowed and
forbidden states. Transition from the basis {|ny)} to the orthonormalized basis
of allowed states (i.e., statcs which satisfy the Pauli principle) is an orthogonal
transformation of the basis {|ny)}

v)=2 nyXnylnv). 1)
Y
Now we list the order of the procedures necessary to construct the
Shrodinger equation

A

Z' KnVIHAV )-ES§ , IC =0 (52)

n,v
in the representation of the allowed states of the harmonic oscillator basis
{In v )} for the general case. Let us remind that {|n y)} is the basis of states with
no definite permutation symmetry and y denotes all quantum numbers other
than n.,On the other hand, {|nv)} is the basis of allowed states (here the
quantum numbers additional to n are denoted by v). For L=0
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|ny)= |n1n22m)
Inv)z |n12m; )\.3) and |nv)= |n12m;k\1)) v=12,...,
where indices 1 and 3 of A correspond to singlet and triplet spin states.

1. First, the overlap integral of unantisymmetrized generating functions
{9yl is calculated and the basis states { |n v>} in the Fock—Bargmann rep-

resentation (@Qy(n,y; a,b)) are extracted

(9|8 =exp(@@+bb) =3 or(n.y; ab)p (ny; & b). (53)
ny
2. The overlap integral of antisymmetrized generating functions ((pl(ﬁ) is
calculated, then diagonalized in the basis {@,(n,Y; a,b)}

(013)=2, oynrabXnylaln¥) g n¥ ab), (54)
nyy
and is written as

(ablab)=Y A ¢'(nviab)p(nv;ib), (55)

. \Y —~ . e .
where A are the eigenvalues of the (n y|ﬂ|n ¥ ) matrix. The transition matrix

from {Iny)} to {Ilnv)} basis

o(n, viab) =Y (nylv ) (ny. ab) (56)
Y
is found by the diagonalization procedure. Note that lv(n) =0 for the forbidden

states, therefore these states drop out from the expansion (53).

3. After that, the Hamiltonian matrix elements between the generating
functions

Qgab; {r,0,7)) and @ @b {r.c,1})

are calculated and their projecting onto the basis states @y(n, v, a, b) and
@y, ¥ 4, b) is carried out

A ' A ~
(QHIBy)= D D gynyiabXnyHl 7). ¥, a.b), (57)
ny Ay A
what yields the matrix elements ( ny| H | 7y ).
4. Finally, the Hamiltonian matrix elements in the basis {Inv )} are found

(niHR Y=Y, S (nviny )y [HIT ) (R IRO ). (58)
Y ¥
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A
Of course, to extract the Hamiltonian matrix elements from (QHIP,) is

A
simpler than from { Q|H|® ).
Now we shall show how to realize the described procedure for the specific

case of *He+n+n system and states with L =0.

We start from determining the allowed states. This problem is solved by a
diagonalization of the symmetric matrix given above (45). We denote the matrix
eigenvalues and eigenvectors for singlet states as

A(m2m), and ®Ln2m) v=12,..m/2-2m+1,
and for triplet states as
Am2m), and ®X(n2m) V=12, .,n/2-2m+]1.
Then, instead of (46) we get
( ablEB )= Z Xv(n,Zm)(Dv(n,2m)<bv(n,2m). (59)

v
The terms with zero eigenvalues of Kv drop out from this sum, they correspond

to the forbidden states.
The simplest examples of the singlet eigenvalues and eigenfunctions are

1 13
;\11(2,0) = “8-"
2(2,0) = \/—% 1200 ) - —1~\[2_3 [020) = _\j']/:g (3d® - 2b7). (60)

<I>:(2,0) is the image of the shell-model ground function
A1(4,0) = 0,936,
®,(4,0) = 0,706[400) ~ 0,499]220) + 0,502/040); (61)
A3(4,0) = 1,306,
<I>;(4,0) =0,671}400) + 0,245]220) — 0,699|040). (62)

Transition from the basis ¥(n,n,,2m) to the basis ® (n,2m) is carried out by

the matrix( nn,2mn2mv )

D (n,2m) = Z ‘P(nl,n22m)( n n,2min2mv ). (63)
'l‘+’l2=ﬂ

A
The matrix elements of H in the new basis are calculated by means of the same
matrix
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A
(m2mv|Hn2mv ) =

A
=y (n2mvin n,2m X n n2m|H\i 7,2 ) ( non,2min2mv ). (64)

n_=n n_+n_=n
nl+2 ln2

After that the Shrodinger equation‘ in the representation {jn2mv )} becomes

Y, (n2my]| H- ER.2m,v )C (7,2m,9) = 0. (65)
nmy

In the end of this Section let us notice two important points:

1. Forbidden states correspond to zero eigenvalues of the anti-
symmetrization operator matrix. They are absent if m # 0. If m = 0 then for each
n there are two forbidden states, one singlet and one triplet. Eigenvectors of
forbidden states cannot be realized since they vanish after the
antisymmetrization. One discovers that obtaining A, =0.

2. Allowed states correspond to A, which are not equal to unity in general

case. Although all ?»v of allowed states are close to unity, they lic between

~1.25 and ~0.9375, even if n'—> o. So we see that the action of the Pauli
principle results not only in the emergence of forbidden states, but also in the
change of the normalization factors of allowed states in the Fock—Bargmann
space. These factors differ from ones which would have been obtained if only
the orthogonality of allowed and forbidden states were required (i.e., the
normalization factors extracted from the overlap integral ( (polff)o ).

5. MATRIX ELEMENTS OF THE KINETIC ENERGY OPERATOR

For the kinetic energy operator in the center-of-mass system

2 vie —— V2, (66)

" amP n oo 2AMr0

(M is the nucleon mass, o is the oscillator length) we first calculate the matrix

2

i 3 V 2 between the Brink orbitals (7)

2M L

elements of the single-particle operator

R? 2 B
R V R 3—-(R- R RR 67
(& )|2M'%) [6(R))=m '22)[ ( )]exp( ). (67)
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After some transformations, dropping the factor Tt3/2, we obtain the matrix

elements of the operator (66) between the unantisymmetrized generating
functions @, and (]30 for the case of ®He

A K2 - - o~
(9l T1$,)=—"— [15~ (a- &) (b—b)*] exp (aa + bb). (68)
M1}
Then, for the diagonal matrix elements between the basis functions we get

A 2 2
(nln22mlT|n1n22m)= h 5 (2n +2n,+15) = 5 2n+15). (69)
: 4Mr0 Mr0

There are eight different non-diagonal matrix elements, but it is sufficient
to write here only four of them which are contained in the following identities

N(n ,ny,2m)

2 . R S A
a™¥(n ,ny2m; a,bt) = Nin 2, np2m)

‘P(nl+ 2,n,2m; a,b,1) +

N(nl,n2,2m) (ny- 2m— 1)(n2— 2m)
TN+ 2, my, 2m 4 2) (npk ny— dm = D)(n g+ dm+ 1) <

XW(n+2,n,,2m+2;aby); (70)

N(nl,n2,2m)

2 . - &
b W(n.n,2m; ab,) = Neny, my +2, 2m)

‘P(nl, nyt2,2m; ab,t) +

N(nl,n2,2m) (nl—- 2m — 1)(n1-— 2m)
Y NGty y+2,2m+2) (g dm— 1) (n 4 n Am 4 1)

‘{‘((nl,n2+ 2,2m+2; ab,r). (71)
It is evident now that
h2 N(n 1y 2m)

A
n+2n2m| T|n.n2m)=— ; 72
( i 22mi Tln 2 ) 4M,.(2) N(nl+ 2,n,,2m) 72)
A £2 N(n,, n,, 2m)
(niny+22m| Tinn2m) =~ 4M,%) N(nj, ny+ 2, ny, 2m)’ (73)

r2 N(n My 2m)
X
4Mr(2) N(n1+ 2, n,, 2m+ 2)

A
( ny+2n,2m| T'inyny2m ) = ~
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(ny= 2m — 1)(n,— 2m)

- 74
*(npt ny—dm— (ntny—dm+ 1)’ 74)
_ A 72 N(n,, n,, 2m)
(nny+ 22m +2|Tin ny2m y=— 4Mr(2) Ni gt 2,2m+2) X
(nl—— 2m— 1)(n1— 2m)
(75)

(n+ ny=d4m—1)(n+n, —4m+ 1)

The matrix elements (72—75) are obtained as a result of the raising
operators (a2 and bz) acting to the basis states Inln22m> (these operators add
two to the total number of oscillator quanta). Similarly, the other four matrix

elements correspond to the action of lowering operators (52 and 132).
Transition to the matrix elements

(n2mvT 72y ) (76)

is carried out by using the rules formulated in the previous section.

The basis [n2mv ) of allowed states is, however, not very convenient for the
study of continuous spectrum states of three-cluster systems. The classification
of basis states optimal for the constructing the wave functions with the
asymptotic behaviour characteristic to continuous spectrum is that provided by
the basis of hyperspherical harmonics [25,33—36]. The hypermomentum
quantum number K is unchanged under the kinetic energy operator, therefore,
for the basis functions [nKx) (x is the additional quantum number of the
hyperspherical basis) one gets

A A
TnKx )= {n+2Kc| T |nKx )n + 2Kk ) +

2 A
P (n+ 15)nKx )+ { n—2Kx | T |nKx )n — 2Kk ). (17)
4Mr*

0
Transition from the basis [n2mv ) to the basis |nKx ) is carried out by the
orthogonal transformation

[nKx )= z [n2mv Y n2mv|nKx ). (78)
my
The transition matrix { n2mv|nKx ) should be determined at the final stage of
constructing the Shrodinger equation in the representation of the hyperspherical
harmonic oscillator

h (nKx|H-ER K%)C G KR =0. (79)

1743
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6. MATRIX ELEMENTS OF THE POTENTIAL
ENERGY OPERATOR

For the nucleon-nucleon potential with a Gaussian spatial dependence

el
Vv (rl—rz) = VO expi— 2 (80)
s

calculations of the matrix elements between the generating functions begin from
the evaluation of the integral

J=J‘exp{—rf—r§+\/7(Rl+I~{1,rl)+\/?(R2+fl2, ry)) -

2 V)
_%(R§+sf+R§+s§)—%Q(r‘ng dr dr,. 81)
After introducing the new vectors
rz—\/l—z——(rl—rz), q=—\/1—2—(r1+r2), drldr2=drdq, (82)
taking into account the relations
r%+r§=r2+q2,

V2 R, +R,r)+V2 R, +Rr,) =
=(R,+R +R,+R,, @)+ (R, +R, -R,-R,, ),
the integrand is factorized and can be easily calculated

2 1 - - - o
J=132"2 exp {E (R, +R;, R, +R)+ 2R, ~R,, R ~R)) +

+§(z— DIR, ~RY + (R, - fg)z]}, (83)

~1
277

where z =1+ 5| - (Below we shall omit the factor 7> as we have been doing
s

for the overlap integral).

The generating matrix element can be obtained easily after some
transformation of the overlap integral (19). Considering first only spatial de-
pendence of the nucleon-nucleon potential (80), we discuss the transformation
of the first term in (19). For the matrix elements corresponding to the
interaction of nucleons belonging to the alpha-cluster, this transformation is
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reduced to the product of the exponential, the intensity V, of the Gaussian

potential, the number of nucleon pairs and the factor 2 Denoting the
unantisymmetrized generating function before the separation of the center-of-
mass motion as @, (P = @), for six nucleon pairs of the alpha-particle we get

N E N2 = = =
(<DO|U“I<I>0 ) =6z VO exp {4R1Rl + R2R2+ R3R3} =

=622V, exp (R +ad + bb}. (84)

CM CM

The calculation of matrix elements corresponding to the interaction of nucleons
belonging to different clasters is more complicated. Again, it is necessary to
determine how many nucleon pairs are there and to take into account the
integral J. Then in the case of interaction of non-alpha neutrons (corresponding
to generating vectors R2 and R3 (R2 and R3))
A 32 =
{ DU,,lP, ) =2 Voexp {4R,R, } x

. _ ~
Xexp{E(R2+R3,R2+R3)+ uR,-R, R, -R,)+
+l( - DR, -R)*+(R, - R} =
4% 2 "R+ Ry -RyYp =
~ =~ 1 s
= 23/2V0 exp {RCMRCM+ aa+zbb+ ) @- D +b 2)}- (85)

The matrix element of interaction of alpha-cluster nucleons and the neutron
differs only in minor details

A - SO 17 5 5
(<D0|U12|<D0)—4z Voexp {3RR, + R,R,} x
i S~ ~ =
Xexp{E(Rl+R2,Rl+R2)+5z(Rl—R2,Rl—R2)+
LR -Ry?+ R, -R )| =
+4(Z— ) I( 17 2) +( 1 2)] =
—4,72 re=e 1 l 2,72
=4z VOexp{RCMRCM+aa +zb’b +2(z—1)(b +b )}, (86)

where in order to simplify both notation and subsequent calculation the Jacobi
vectors corresponding to another choice of Jacobi tree are introduced

4R +R
a__\/'i[ ] b'=vzg-(Rl—R2). 87)
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These Jacobi vectors are obtained from the old ones by an orthogonal
transformation

a'=—\/za—\/——?b, b’=\/za—\/2‘b. (88)

5 5 5 5
The third set of Jacobi vectors
4R, +R
»_Al2 173 w_ 2 .
a —\/;[Rz— 5 J, b —\/5—(R1 —R3), (89)

a"=—\/%_a+\/—-§b, b"=\/-g——a+\/%—b (90)

is introduced for the calculation of the matrix elements corresponding to the
interaction of alpha-cluster nucleons and the neutron R3

A ~
(DU P ) =

II~I, 3 7y’ r? 7?7,
= 4,23/2V0 exp {RCMRCM+ a (8 ; ]b b 156 (z-1)b b z)l. 91

(The tilded vectors @', l~)’, i”, b” are expressed similarly in terms of a and l~)).
Functions @ and @, are the products of single-particle orbitals, so the

matrix elements between them are calculated easily. Since

A ~ ~ A ~
(DU D) =exp Ry Ry} 91U, ), ). (92)

A ~
the expression for the matrix elements (@y|U,Jo, ) follows immediately from
the Eqs.(84—86,91).

The generalization to the case of central exchange forces with components
Vogi ore (S and T are the total spin and isospin of an interacting nucleon

pair) is shown separately for each of the four terms in Eqs.(84—86,91).

A ~ - ~
(@y) U,,19,)=2"2(3V,, +3V ) exp {ad + bb}; (93)

A ~ 1 - ~ ~.
(9g) Upsl @) =225 Vgt V,3) exp {ad + Byybb + D, (b%+ b%)}-

1 - , ~ -~
/22 (Vy5+ Vi) oxp (@ + Bybb + D, b+ b)) (94)
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A ~
(9l Upl0y) =

’ I /2
=72! 7OVt 35+ 3V, 4V ) exp (a'F+ B ,b'b+D (b b2) )
7% 1 r=r P 2, T,
=22 (SViyt 3V, 43V, 4V, ) exp {a@+ B b +D (b7 b)) (95)
A ~
(Qgl U3l 0y ) =
321 e

1yt ’’ 02
=207 OVyyH3Vy 43V 4V ) exp (2" 4B ;b"b 4D (b2 + b))

_vel 7(5Vag#3Vy 43V 4V, ) exp (a7a"+B ;b"b"+D (b2 b)), (96)
Here

By,=2, By=—2z, D,y=@-1y2, 97)

B,=(3+52)/8, B,=(3~5)R8, D,=5@~1)/16, (98)

By=B,, B 312' D;=D,,. 99

The generating matrix element of the potential energy operator of a six-
A
nucleon system U between the function @, and @, is a sum of the four matrix

elements given above

A~ A ~ A -~
(Ol U1y ) =@l Uy 1 9 ) +{ 9yl Uyl @)+

A ~ A ~
+(q,| Uil o) +{o 1 U5l 9, ) (100)

Now we turn to the final stage of our calculations: the projection of the
generating matrix elements (@) Ulcpo) onto the basis states ‘¥(n,n,2m) and
‘}’(n 2m) and the subsequent extraction of the matrix elements
(nyn,2ml lA] In n,2m ) of the three-cluster potential energy operator.

We start from writing Eq.(36) as

exp {aa +bb} = 3, W(n,n,,2m) P (7,20 + . (101)
nnm

where terms with L#0 are o;nzitted and ‘I’(nl, 2,2m) are given by Eq.(40),

¥ (nl,n2,2m) depends on tilded generating parameters a and b.
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The exponential _
exp {ad + B bb + D(b? + b%)} (102)

is the basic block for all matrix elements of the potential energy operator. After
being projected onto the basis states Y(n n,2m) and §(n n,2m), the expansion

of this block in powers of a, b, a, b takes the form

exp {ad + B bb + D(b% + b)) =

=3 3 W(ny.np.2m) nyny 2, (B.D)( 7 2)) ¥ (71, 20)+ .. (103)
nnm fl nzm
and our task is to find the matrix elements

(nyny2miu, (B.D)i 7, 25) (104)

which give us expressions for matrix elements of all terms of the nucleon-
nucleon interaction potential energy operator for different clusters.

Notice first a simple consequence of the expansion (101) applied to the
block (102)

exp {ad + B bb + D(b% + b)) =

min(nl/ 2.n2/2

- -2, -2
=Y X3 N 2w d T a0 (i 2mi x
n=0 n |+n 2:211 m={)
b2 N 2m~n <2m _~ -
x eP? 13"21\/(;11,,12,2,71)a"l "p" m[ab]2m®(n],n2,2m;t)+.... (105)

The constant B appears here in power n, in each term of the expansion as well

as moduli of vectors b and b. The next step is the expansion of exp {D bz} and

exp {D b? } in powers of b® and b2 respectively. Then the factors b>* and b2
appear before the basis functions. The products

b*¥((n,n,2m) and b*%((n, 1, 2m)
can be presented as a superposition of the basis functions
¥ (ny, nyt 2k, 2m+20) and P (n), ny+ 2k, 2m + 21)

with different [

=01 1 "2
=0,1,..., min —2——m,—2~+k—m .
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This fact can be proved using the Gauss recurrency relation for the
hypergeometric functions [21}]

Flo, B, Y, 2)=F(o,, B—1,y-1; z)+y—((;Y—%)zF(a+l B,y+1;2) (106)

from which follows the identity

2 2
I"(nl/2——m+ 1)F(n1/2—m+ 1/2)

n
k!
"Efo Nk-D! T(n/2~m~1+ DT (n/2-m—1+1/2) %

T(w/2+k-2m-21-32)T(W2-2m—1+1/2)
T(W2+k-2m~-1+32)T (W2 —-2m+1/2)

—2m-21 2k~-2m-21
T ab P (n , nyt 2k, 2ma21 1) =

n
n —2m-2l_n +2k—2m—2l
=2 k 'A(nl,n2,m n2+2k m+l)a b?

x [abl™2D(n,, n+2k, 2m+21 ; 1), (107)

n

n
where 7 = min [71 -—m, 72 +k— m], n=n, +n, and, by definition,

2—-2(m—@
A(n,, n,, m; n,, m)= — X

) —
(m—m)! ) -m+m|!

n1+ﬁ2 1 ntn, 3
(nl—zm)!r[ y Tmomy T\ 2mey

% (n,—2m)! n+ r_lz 1 ntn, 3) (108)
r -2m+|T —-m-m+
2 2 2 2

Finally, we can now write the matrix element (104). It has a form of a
two-fold sum and is expressed through the coefficients A(nl,ﬁzﬁ;nz,m) and the

normalizing factors N(nl,n2,2m)
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(nyny2ml uyo(B,D) i n,2m ) =

min(nz,nz)
n,= 0

min(m,m) N2 ("1 ;1_2, 2m) _

n. (n+nY2-n
= — B 2D 2 2 2 X
N(n,,ny,2m)N(n,,n,,2m)

x A(n, ny, m; n,, mA(n,, ny, 1; ny, m) 8"1;"1- (109)

Two order matrix elements similar to (109) can be extracted from the same
block (102) if Jacobi vectors a, b, &, b are substituted first by a’, b’, a’, b’ (See
Eq.(88) and then by a”, b”, a”, b” (See Eq.(90)) and the following definitions
are made

exp (@@’ + Bb'b’ + D(b? +b?)} =

= Z \y(nanZm)( n1n22mlu1'2 (B,D)Iﬁlﬁz2ﬁ )q’(ﬁl , 712, 2my+..., (110)
nnm ﬁl;izr?l

Cxp {aHEII + BBHBU + D(bli2 + BHZ)} —_

To return to the basis of initial Jacobi vectors a, b; a, B, the orthogonal
transformation of the matrices

( nlr122m|u1'2 (B,D)lﬁlﬁZZrﬁ ) and (nn,2mju/, (B,D)IEIEZZFﬁ )
should be made. The matrices of such transformation
| {nyny2mlat’|ng n; 2m Mo and || (nn,2mlo “In{ ny 2m Ml

are given by Eq.(44), where || o’]| and || o ”|| are the matrices transforming
a, b into a’, b’ (Eq.88) and a, b into a”, b”’(Eq.90), respectively.
After the orthogonal transformation we get new matrices

{ nln22m|u12(B,D)|ﬁlﬁz2r71 )=

= 2 2 (nny2mlo"Ing ny 2m ) X

’ ’ -~ ~ ~ -~
n' +n’ = =
1 7!2 -nl+n2 'll +n2 —nl+n2

x(n n) 2miu/, (D) fi,2/m ) (i i, 2imlo ] iy 20 ), (112)
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{ nyny2miu (B,Djjn, 7i,2m ) =

= 2 Z { nn,2mjo "|n'1'n'2’ 2m) X

I Il A d d
n1+ri2 nl+n2 nl+n2 r11+n2

x 'y 2mlu 'y (BD)iy'Ry 27 ) { 7 i, 27l i 2. ). (113)

Now, instead of the generating matrix elements (Egs.(94)—(96)) we have
the corresponding matrix elements between the basis functions

A
{ nn2m|U, n n,2m Y=

321 ~
=z {E(V31 + V) nyny2mluy(Byy,Dy )7 7,20 ) —
1 , N
5 (V31+ V13+ V“)( n1n22m|u23(B23,D23 )|n1n22m )}, (114)
A
{ nn2mU, Ll n,2m ) =

D), 7,27 ) ~

_ a2l
=z {4 (OVy3+3V3 + 3V 5+ V) Xy ny2mlu (B, ,,

1 ) , v )
=5 (5Vagt 3V, #3V 4V ) 2mlu (B) D IR iy 2 >}, (115)

N
( nny2mlU i, n,2m ) =

_ 321
=z {4 OV + 3V, +3V o+ VX nny2mlu (B 5,

DI, 7,27 ) -

1 . , ~
~2 5Vt 3V, + 3V,4t V11)< n1n22m|ul3(Bl3,D13)[n1n22m )} (116)

With this the derivation of analytic formulae necessary for the construction
of the Schrodinger equation is completed.
7. CONCLUSION
Summarizing the investigation we state the following basic results.

In the Fock—Bargmann space, the harmonic oscillator basis for a three-
cluster system with zero orbital angular momentum is constructed using the
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generating wave packets technique. The basis functions have a form of
homogeneous polynomials in two Jacobi generator vectors and can be expressed
in terms of the hypergeometric functions ,F,- Their quantum numbers are the

SU(3) symmetry and the degree of homogeneity with respect to each Jacobi
vector. '

The rule of basis function transformation induced by the nucleon
transpositions is established. Such linear combinations of basis states are found
that do not vanish after the antisymmetrization (the allowed states).

The matrix elements of kinetic and potential energy operators between the
generating wave packets are obtained, their projection onto the basis states is
performed. The explicit expressions for the Hamiltonian matrix elements in the
basis of allowed states and the Schrodinger equation for a three-cluster system
in the harmonic oscillator representation are obtained. During this procedure the
Pauli principle is taken into account accurately.

The research described in this publication was supported, in part, by the
Ukrainian State Committee for Science and Technology, as well as by a Soros
Foundation Grant awarded by the American Physical Society.
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