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A theoretical review is given of P- and (or) T-invariance violating effects in nuclear
reactions. It is demonstrated, that all of them are characterized by 2 major enhancement
factors — dynamical and resonance ones. The net enhancement effect reaches 5—6 orders
of magnitude. Both enhancements are caused by quantum chaoticity (complexity) of
compound-nucleus resonances. This complexity, however, demands statistical methods of
analysis of observed data in order to extract information on symmetry-breaking interaction
strength constants. These methods are also presented and discussed in the review.

Han reopetnaeckuit 0630p aththexTon P- 1 (Win) T-HECOXPAHEHHA B SACPHBIX DEAKLIMAX.
Hoka3ano, YT0 Bce OHM XApAKTEPH3YIOTCA IBYMS OCHOBHBIMM MEXAHWIMAMH YCHICHHA —
AMHAMHYECKHM ¥ PE30HAHCHHM. Tlontoe ycuneHue Npu 9TOM HOCTHTaeT 5—6 10pIaKos.
Ofa MexaHuMa YCWIEHHS SBISIOTCS CAEACTBHEM KBAHTOBOH XAOTHUHOCTH (CHOXHOCTH)
CTPYKTYpPhl PE30HAHCOB KOMIlayHA-fipa. DTa XaOTHYHOCTb, ONHAKC, HPHBOIHT K HeoH-
XOAMMOCTH MCTIONB30BAHUSA CTATHCTHIECKUX METOOB AaHAM3a SKCIEPUMEHTATBHbIX JTAHHAIX
WU M3BITEYEHMA U3 HiHX MHGDOPMAUMH O CWIOBBIX KOHCTAHTAX, HAPYIUAKIMX CHMMETDHIO
B3aMMOZNEHCTBMIA. DTH CTaTHCTHYECKUE METORBI TaKXe o6Cykaatorcs B ob3ope.

It is frequently pointed that discovery of America by Columbus nicely
illustrated transformation of scientific hypothesis into discovery. Colubmbus
cherished the idea that Earth is round and hoped to reach East India by sailing
to the West. Notice that:

a. His idea was by no means original, but he received new information.

b. He faced enormous difficulties both in search for subsidies and in
carrying on with his experiment.

¢. He did not find a new way to India, but discovered a new continent
instead.

*On leave of absence from St. Petersburg Nuclear Physics Institute, 188350, Gatchina, Russia.
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d. In spite of all the arguments to the contrary he continued believing that
he discovered a new way to the East.

e. He got neither special respect nor substantial reward in his lifetime.

[ Since then it was proved without doubt that he was not the first European
to reach America.

(«Physicists Joking». Mir, Moscow, 1966, p.66)

I. INTRODUCTION

The phase «fundamental symmetry» in the title is the frequently used
shorthand for P- and T-invariance. It just reminds us of old times, when both
those symmetriecs were considered to be most unbreakable. Since then P-
invariance lost a good deal of its glamour. Its fundamentality was shaken by the
discovery of P-violation first in B-decay and then in nucleon-nucleon
interactions. For a certain time it seemed possible that weak interaction which
caused P-violation in those two cases might be different for leptonic and
baryonic processes. This could have added interest to nuclear P-violation
studies. However the electroweak interacrtion theory of Weinberg and Salam
closed this possibility. The T-invariance fortress remains much more invincible.
The only experimental fact known by now is CP-violation in K-mesons decays
discovered 30 years ago. On the basis of the CPT-theorem this implies T-vio-
lation, which can be explained theoretically in an infinite number of ways. All
this makes further search of 7-violation a much more exciting problem of
general importance in physics. In other words, T-invariance is much more
fundamental nowadays than the P-one.

The present wave of interest to P-viclation in nuclear reactions was boosted
by the theoretical predictions [1,2] of possible huge (6 orders of magnitude)
enhancement of these effects in the vicinity of compeund-nucleus resonances
which were almost immediately confirmed experimentally [3]. A year later the
same huge enhancements were predicted [4] for the effects violating both P-
and 7-invariance. Similar enhancements of P-conserving 7T-violating effects
were predicted a few years later [5,6]. It seemed to us at that time (and still
seems to me now), that those huge enhancements should be primarily used in
experimental search of T-violating effects, since even establishing new upper
bounds on CP-interaction constanis might help a lot in selecting the most
promising models of CP-violation.

However this natural way of reasoning does not seem to be well understood
and shared. The major part of experimental and theoretical efforts up to now
was concentrated on P-violation effects. Even there a good deal of energy was
wasted on sensation-hunting and - theoretical re-discovering of facts known for
years.
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One of the reasons for this is, according to my experience, a poor under-
standing of basic and quite general physics, which governs the above
enhancements even by those, who work in the field. Lots of them naively
believe that one can professionally discuss and analyze symmetry breaking in
nuclear reactions without any knowledge of nuclear reaction theory or, at best,
with rudimentary knowledge of Breit-Wigner formula. This strange belief is
partially explained by bad traditions in nuclear physics, where nuclear structure
studies were always considered to be of major importance in spite of the fact
that most information for those studies was obtained from nuclear reactions. On
deeper level it comes from the fact that quantum mechanics of bound states is
in all respects much simpler than for continuum. Therefore it is quite tempting
(and often quite misleading) to oversimplify the description of the process by
using well-known bound-state analogies.

This unprofessional approach and naive clinging to the bound-state
analogies create a fragmentary and wrong impression about the enhancement
mechanisms for different observable quantities. For instance, very popular
interpretation of neutron transmission enhancement in terms of «structural»

enhancement factor (kR)'l does not allow one to understand the significance of
P-odd correlation asymmetry measurements in inelastic channels, where the
effects might be even larger [7,8] but could not be understood in terms of
bound-state parallels. Exactly the same applies to T-violation tests of detailed
balance in isolated resonance regime, where the net enhancements might be
orders of magnitude larger [6,9] than in transmission experiments and are
practicaily bound only by the experimental energy-resolution. All this leads to
prejudiced distortion of the «priority scale» for different observables and often
makes the experimentalists to choose rather difficult experiments, which in
reality promise no enhancements whatsoever.

Only when the results start to deviate from naive expectations, people start
reading papers on nuclear reaction theory. And the lack of professionalism
again shows itself — people start mixing one mechanism with the other, re-
invent models, which were longly discarded with by professionals or invent
«home-brew» models whose validity was never checked in description of
nonexotic reaction processes. This in turn often leads to aggressively
incompetent statements of the type — «Live me alone with all your fancy
reaction models, I had already wasted several days reading some of them and
I'm sure, that you are overcomplicating quite simple things».

In view of all this, my present review is primarily addressed to those
unprejudiced readers, who realize that nuclear reaction theory is a special
branch of nuclear physics developed by generations of professionals. It has only
few features in common with the bound-state spectroscopic theories, and 1 shall
try to emphasize them.
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Therefore [ shall start with brief reminding of P-violation theory in cases
of bound states (Sec.Il) with special emphasis on its specific enhancements.

Then I shall switch over to my main topic of nuclear reactions for isolated
resonances when the average resonance spacing 4 is much larger than average
resonance width T" (Sec.III).

I shall start this Section by short reminder of some results of nuclear
reaction theory for isolated resonances (III, 1), which will be essential for all
the further analysis, namely the structure of the wave functions for a system of
incident (outgoing) particle and a target (residual) nucleus. In doing this I shall
use the best and most physical version of nuclear reaction theory, namely the
shell-model with continuum, developed by Mahaux and Weidenmuller [10] as
the natural realization of Feshbach’s unified theory of nuclear reactions. The
advantage of this approach over the more popular R-matrix one lies in much
more physical treatment on continuum wave-functions, which allows one to
describe both the direct and compound processes in a unified way.

A fairly large Subsection I11.2 discusses all the aspects of P-viclation in
nuclear reactions. Paragraph 2.1 contains the analysis of possible P-violating
observables. In paragraph 2.2. a short historical background is given with
special emphasis on how erroneous the bound-state parallels might be. The
rather lengthy paragraph 2.3 contains the analysis of all the possible
mechanisms of P-violation in nuclear reactions (all the 32 terms contributing to
P-violating scattering amplitude). Mark that the absolute magnitudes of the
corresponding effects are defined by nucleon-nucleon weak-interaction
constants, on which up to now we have only educated guesses and whose
extraction from experimental observables should be the ultimate aim of our
P-violating investigations. Therefore only estimates of relative contributions
coming from different mechanisms and of their energy behaviour are
meaningful in the analysis of different competing mechanisms. For this reason
[ expand in paragraph 2.3 on this kind of analysis and emphasize the generality
of various enhancement effects specific for each mechanism. It turns out that
only 2 major enhancement factors govern the P-violating amplitudes —
dynamical enhancement v/d ~ VN (7 is the variance of strong interaction matrix

element between compound states and N~ 10° is the number of basic
components, which define the complexity of the compound state wave function)
and resonance enhancement d/I". While the former enhancement is well-known
in the bound-state P-violating theory, the resonance enhancement is a specific
feature of continuum spectra, which has no bound-state analogous. After
analyzing the energy behaviour of P-violating amplitudes we are forced to come
back to observables (paragraph 2.4) in order to investigate their rather com-
plicated energy dependence, caused by the combined influence of P-violating
amplitudes in their numerators and P-invariant ones in their denominators. This
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allows us to compare the specific enhancements of all the P-violating observ-
ables in different energy regions and to understand in quite general terms the
«priority hierarchy» of observables, which is confirmed by experiments. We

also show that the «structural» enhancement factor (kR)—1 is an artifact of
presenting the auxiliary quantities instead of the really observed ones.

Subsection I11.3 deals with T-violation. In paragraph 3.1 we discuss specific
hidden dangers, which make true 7T-invariance investigations much more subtle
than the P-invariance ones, and present the list of «true» T-violating observ-
ables. The theory of T-violation in nuclear reactions dates back to late 50-ies
and is rather dramatic. However only few people know about it. Therefore I
present a short survey of its development in 3.2. Paragraph 3.3 deals with the
most important theoretically P-odd T-odd «triple correlation» (TC). The ana-
lysis of possible TC enhancements is given in it together with analysis of spe-
cific difficulties in its experimental observation. In 3.4 we analyze the P-even
T-odd correlation (FC) in neutron transmission, demonstrating both its
advantages and drawbacks. In 3.5 we analyze the possibilities of T-violation
detailed balance tests (TVDB) for 2 close-lying resonances, when average
spacing d in much larger than average I'. In paragraph 3.6, we briefly
summarize our results on T-violation effects showing that all of them are
governed by the same dynamical and resonance enhancement effects as the
P-violating ones. In complete analogy to P-violation we present the «priority
hierarchy» of T-violating observables and conclude that most promising results
in the near future might be expected from TVDB tests of paragraph 3.5.

In Section IV the statistical approach to compound-resonance measure-
ments is discussed. In Subsection IV.1 it is demonstrated that both dynamical
and resonance enhancements are quite general consequences of quantum chaos
characteristic of compound nucleus, which was faced and physically understood
in «strong» symmetry-breaking from the dawn of nuclear physics. Therefore the
meaningful analysis of weak symmetry-breaking (WSB) matrix elements
extracted from experiments should be done with exactly the same mathematical
methods which were successfully applied in studies of «strong» symmetry-
breaking, namely with the use of randon-matrix theory and Gaussian ensembles
of Wigner and Dyson. Since historically such methods were first applied to
calculation of energy-averaged WSB quantities, I discuss in Subsection IV.2 the
practical disadvantages of «unbiased» energy-averaging and come to the idea of
«biased» on-resonance ensemble averaging, which is fully described in
Subsection IV.3. In IV.4, I discuss how should one apply the on-resonance
theory of IV.3 to the realistic case of necessarily imperfect experimental meas-
urements (small number of independent on-resonance observations with poor
experimental accuracy), concluding that the only appropriate way in this case is
given by Bayesian statistics (BS) based on the use of standard conditional prob-

»
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ability theory. 1 also discuss the parallels and differences between BS results
and empirical maximum-likelihood method (MLM), which is applied in
experimental analysis of P-violating effects during recent 5 years. Most obvious
disadvantages and nuisances of MLM are shown, especially in the typical case
when the spins of observed resonances are unknown. In view of this, I only
briefly analyze in Subsection IV.5 the sensational «sign-correlation» effect
observed in P-violating experiments on 27 target, and conclude that its
statistical significance was greatly exaggerated and is highly questionable.

In Section V, I present a short summary of the most important and general
conclusions and recommendations for future.

IL. P-VIOLATION IN THE CASE OF NUCLEAR BOUND STATES

We shall start with brief reminding of the «classical» P-violation
experiments in low-energy physics when only the mixing of bound states was
considered. Pretty early (see, e.g., [11]) it was realized that the experimental
observation of the interference-type phenomena (i.e., observation of P-odd
correlations in the amplitudes of different processes) has an advantage over the
«brute force» violation of probabilities (e.g., P-forbidden c-decay) because the
latter are quadratic in weak interaction strength constant F. There are several
possible P-odd correlations (see the list in [11]), among them the correlation
((ry~py) = hY between the spin and momentum of y-quanta emitted by the excited

unpolarized nuclei. The value & is called helicity and leads to circular pola-
rization of the emitted y-quanta which can be observed experimentally (see, e.g.,
[12]). Let us consider this experiment in more detail in order to demonstrate

various enhancement mechanisms, which might manifest themselves in it. The
wave function ‘¥, of the decaying excited state might be presented as a sum

‘Pi:\yl+aw2. €))]
Here y, and v, are the states of opposite parity, while the coefficient o
describes the admixture of the state Y, caused by P-violating weak interaction
Vy,- Standard first-order perturbation theory gives
vV, ) ]
R, @
Circular polarization appears as an interference of the electric E, and

magnetic M, transitions of the same multipolarity A. Therefore

A A
A=20 v, 10, hy, X \Z IO’XI\V2 ), (3)
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A
where 0, is the «regular» y-transition operator, which connects the main
A
component Y, of ¥, with the final state ‘}’f; O’ is the «irregular» transition
operator which, due to P-selection rules, connects only V, component with

‘I’f. Then the degree of circular pluralization observed will be defined by

A
h (W0 ly, )

6= x 5 " ey ;o X
K \uflollw1 W+ o< \quO Y (\yfIO}LI\q;1 )

It is important to note that & like any other observable, which measures the
degree of any symmetry breaking, is always normalized by the total transition
probability. Therefore, in general, the denominator of (4) contains a sum over

. )

A
all the allowed transitions ' K w10,y )
A

5= h (4a)

ph 20 o 2w 1oy 2
Z i \quO}‘I\;fl W+ oK q;fIOKI\yz )
A

Only this kind of normalization for observables has real physical meaning
-— the maximal value of § is unity, meaning 100% parity violation. This almost
trivial rule is taken for granted in all fields of physics, from optics to elementary
particles, and all the meaningful enhancements appear only within this
normalization. Of course some odd personalities might introduce the
normalization of their own by, say, retaining only the weakest term in the
normalization sum. If this term is really small, this would immediately enhance
the newly introduced quantity. But such a fictitious «enhancement» would have
nothing to do with the physics of the process. I have to mention this triviality
only because, as we shall see below, even this standard rule is unprofessionally
violated all the time in the majority of experimental (and, alas, even theoretical)
publications on P-noninvariance in nuclear reactions.

Coming back to ex.(4), we can analyze its structure in order to see the sole
of different enhancement mechanisms. First of all, we observe that o increases
with decreasing level spacing D= IE, — E,! — a natural result of perturbation

theory. Therefore naively one should expect the average effect to increase
linearly with increasing state density p = 1/d of the system (d here is the average
level spacing). However the increase of p is closely connected with increasing
complexity of the mixing states W, and y,. In terms of basic (so-called «simple

configurations») components, which build up the compound state wave function
y, this means increasing number N of this components and simultaneously the
random signs for their admixture coefficients in y. Therefore the average value
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of (y,lVyly, )Evp matrix element will be zero in proper statistical treatment

(see Sec.1V below), and we can speak only in terms of its variance
= (32
=) )
Using the simple scaling procedure we can express v, in terms of the strong

interaction matrix element v:
v,= Fv, (6)

where F is the characteristic ratio of the strengths for weak and strong inte-

raction, which is given by the phenomenological models as F = 107 + 1078,
The average value of v can be estimated from the usual expression for the

spreading width I“Spr of the single-particle resonance (which roughly equals the

imaginary part W of optical model potential and in the limit of black nucleus
approaches the single-particle level spacing d)):

2ny 2
or= g 7 =W~ d )]
This gives us
N L

Therefore the variance of o in (2) can be estimnated as:

=F \[—PL~FP\/§=FPW. )

v
=D~ mD

bim

Thus we see, that the many-body aspect of the compound nuclear system
manifests itself in the systematic enhancement of P-violating effect by roughly
a factor of VN, where N is the number of basic components forming the
compound states. The namber N increases with increasing excitation energy E*

and nuclear mass number and reaches ~ 10° for E* =B’l (Bn is the neutron

binding energy) in medium and heavy nuclei. This sort of enhancement was
considered several times [13,14,15,16] and received the name [15] of
«dynamical enhancement».

One can also see from (4) that increasing the value of «irregular» amplitude
and decreasing the value of «regular» one leads to the additional enhancement
of the effect. This usually happens, when for purely structural reasons the
«regular» component is strongly forbidden, while the «irregular» one is
favoured. Therefore this kind of enhancement was called (see [15]) «structural
enhancement».
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These enhancements made possible one of the earliest P-violating obser-

vation in y-channel [17] on the level of 6-10°. However even earlier [18],
similar experiments were done in (n,Y) reaction with thermal neutrons showing

the effects up to ~ 107*. As we shall see below, these more impressive results
can be easily understood in the framework of nuclear reaction theory.

As we see, the general trick of any enhancement mechanism is to make the
numerator of the observable (4) as large as possible and the denominator small.
The same trick will be used in case of nuclear reactions. Since however both the
numerators and denominators of observables in that case are rapidly varying
functions of energy, this allows a much larger varicty of situations and leads to
quite specific enhancements, with we consider in the next sections.

II. NUCLEAR REACTIONS (ISOLATED RESONANCES)

1. Elements of Nuclear Reaction Theory for Isolated Resonances. We
shall introduce the basic results of nuclear reaction theory which will be
extensively used in all our further applications. In doing this, we shall follow
the approach of Mahaux and Weidenmuller [10], which is a projection of
Feshbach’s unified theory of nuclear reactions on the realistic shell-mode! basis.

The most essential for our purposes result of this approach is that in the
region of isolated resonances, where " << d, the wave function of the system of
incident (outgoing) particle plus target (residual) nucleus is given by:

H) . + S P .
YEB =Y, al) (e, + 3 [ b Y EENOEE. (10)
k c

Here @, is the wave function of the so-called «bound state embedded in

continuum» (BSEC) or, roughly speaking, the wave furction of the k-th
compound state, where all the nucleons of the system occupy only the bound
states in average nuclear potential, but are not allowed to collect all the
excitation energy via pair-wise collisions on a single particle. The X(E) is the

continuum c-th channel wave function which, describes the (infinite) motion of
a particle in the average field of the target (residual) nucleus. In the particular
case of a neutron incident on the ground state target (elastic channel ¢ = i), X, 18

the antisymmetrized product of the target nucleus wave function in its ground
state times the wave function of a neutron moving in the average field of the
target. The @, and ) correspond to Feshbach’s projections on closed (Q) and

open (P) channels, respectively. Mind that unless you switch on the pair-wise
residual interactions V between the channels (PHQ = QHP in Feshbach’s
notations), you do not allow the incident neutron to share its energy with the
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target nucleons. This does not allow this neutron to form a compound
resonance. Therefore in the absence of pair-wise interaction V the BSEC’s
would never decay, while ’s would describe only potential scattering in the
mean field. This unphysical situation changes as soon as we switch on the
residual interaction V. Then each resonance k receives partial decay widths

I“,:‘f with amplitudes:

(A2 =y = 2m) V2 ( Xif BNV 19, ). (11

In other words, the pair-wise residual interaction allows the nucleons of
BSEC to collect their total excitation energy on one of the particles and emit it
into the open channel i or f.

For the expansion coefficients a and b in this case the theory gives rather
transparent expressions:
exp (+ i3, ol

V2% E_—Ek+il‘k/2' (12)

(1) -
@i pE) =
Here E, is the energy of a given compound resonance, I', = 2 I“kC is its total

width.
The open channel wave functions (second part of (10)) are governed by the
coefficients:

BENEE) =8, (8(E ~ E') exp (+i8) +
1
EXF

(13)

+ Y. a(E) (X (ENVIg,).
k

Here ET=E +ie is the usual notation for pole shifts in the complex energy
plane.

Let us now simplify the picture, neglecting all the BSEC’s in the sums of
(10) and (13) besides the one, whose energy E, is the closet to the energy E of

the incident neutron (this might always be done when I, is much smaller than

the distance between resonances of the same spin and parity). Let us also
consider the case when only the neutron elastic scattering channel is open
{c=i=f). In this case the continuum term in (10) can be written as:

i E’ i3,
)+ | 5 BN 10) =B+

+ [ 14 P BB } 14
+ap(B)| im (X (ENVIg, ) X (EY+ g (XEWle) |, (14

where P stands for the integral principal value.
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The first term in (14) describes the potential elastic scattering of a neutron.
The resonance behaviour of a,(E) (see (12)) shows that the two terms in square

brackets of (i4) are the «imprints» of compound resonance at E=E, on the

elastic continuun. Using eq.(11) one can express the first of these terms as
iNE o, (1)

Recollecting now that x (E) describes the single neutron (valence particle) in

the mean field of a ground-state target, we see that ex.(15) is exactly what
was called the single-particle (or valence) component u of the compound
resonance wave function in the simplified R-matrix theory. The wave function
X;(E) belongs to the continuum, as it should. However, if it has a potential

resonance at E=EO with (single-particle) width FO, one can use the

approximate expression (sec [19]) valid inside the nuclear potential radius R
(for simplicity we suppress the coordinates of the target nucleons):

FO uO(r)
XE)= N o ECE +iT/2°
—Ey+ily

Here wu(r) is the solution of the Schrodinger equation describing particle

motion in average field, which is normalized to unity inside the nuclear
volume r < R. Substituting this expression into (15), we get in the I, vicinity

of E=E,

r,’ 122
i\@ Y,fxi(b"):{r—k] uy(r), (16)
0

restoring thus the approximate result of R-matrix approach. The quantity

is usually called the spectroscopic factor. It defines the probability of finding
a single-particle (valence) component in the compound-resonance state, and is
equal in the black-nucleus approximation to 1/N ~(d/¥)?, that is, to the
inverse square of the dynamical enhancement factor of (9).

Adding up this term (16) to the BSEC’s wave function ¢ just gives us the
R-matrix compound resonance wave function:

D=0, +V S u, : a7n
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Therefore the wave function (10) of the system in the vicinity of isolated
compound resonance E, can be expressed as:

lFf‘i)(E) = af {B) [ o+ V5! u, ] + e (E) +

+a

- E, <x(E’)!VIq>k> GHED, + iy (E) +

N dE'X(E")
+a;’l.(E) TI o

(XLENWV g, ). (18)

2. P-Violation Let us consider now the case of P-violation in neutron-
induced reactions, which would demonstrate all the specific features of any
symmetry-breaking in them.

We shall first discuss the P-violating quantities, which might be observed
experimentally in these reactions.

2.1. P-Violating Observables in Neutron-induced Reactions.  Using the
polarized neutron beam, one can observe the P-violating correlation (cn-kn) be-

tween the spin o, and momentum k of a neutron. There are several possibilities

of doing it. One can consider the transmission of neutrons with opposite helicities
through a target sample and measure the difference of the corresponding total
cross-sections:

tot tot tot

4
AP =6t o =7<’5 Im(f, —f)- (19)

Here f,_ defines the forward scattering amplitudes for neutrons with opposite

helicities. To obtain the second equality we used the optical theorem.
The corresponding dimensionless measure of this transmission asymmetry
effect is
P P
pP= - tot ~ A tot (20)
o\ 0t Tt 204
One should point (see, e.g., [20]) that in reality the experimentalists do

measure the numbers N, of neutrons with opposite helicities transmitted

through the target sample with thickness x and calculate the ratio:

+
Pexp ™ N,-N_ @2)

Now for counter efficiency € =1

N@) =Ny e, (22)
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where N, is the intensity of the incident beam and p is the density of nuclei

in a target sample. Expressing O‘J—;m as

ot =gl + (23)

one can write

0 P P 0
X0 p, +xA’ p/2  —xg p/2 -G p
N+—- N_ = NO e ot (e tot —e tot ) ~ NO e ot A t’().)t.x'p' (24)
Therefore
P
tot
exp xp. (25)

It seems from (25) that since the experimentally observed effect increases
with x, one should use very thick targets. However (see (22)) the counting rates
N(x) go down exponentially with increasing x. The relative counting statistical
error equals 1/VN and increases exponentially with x:

1 1

o px/2
= e to . (26)
N :INO

In order to maximize (25) retaining the minimal possible error (26) one has
to choose xp = (1/0,,). Thus really measured quantity (25) coincides with the

expression (25):
=—=P, X))

One can easily see [21] that the same quantity could be obtained with
unpolarized neutron beam. Then P is just a measure of the longitudinal
polarization of the initially unpolarized beam arising after passing a distance in

the sample equal to mean free path (hence the symbol P, denoting this quantity).
Sometimes one measures the difference in radiative capture cross sections Gfl?
and gives the quantity:
+ —
g —0O
A=—1T (28)
+0
O+ Ony

The same (o, 'k,) correlation in the elastic scattering amplitude also causes
the rotation of the neutron polarization around k. The angle of this rotation per

unit length of the target sample is defined [22] as follows:
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ae 2
=T Re (), (29)

where p is the density of nuclei in the sample. For the same reasons of better
statistics the experimentally defined angle @ is measured for neutrons, which
travelled the distance z equal to mean free path 1o, in the target:

1 d® Re(f,-f)
®= . (30)

PO de Im (f,+f)
One can also look for inelastic reaction (n,f) and measure the P-odd
correlation (crn-kf) between the initial neutron polarization and the momentum

kf of the outgoing particle in channel f. This is done by measuring the

asymmetry of the final products with respect to o :

J _,z
A= 0 - . 31

The corresponding dimensionless degree of asymmetry is:

Anf (32)
nf dcn nf .
S

2.2. Historical Background. The possibility of using low energy neutron-
nucleus interactions and all sorts of neutron coherent scattering processes (neutron
optics) in studies of P-violation was considered long ago (see [21,22,23,24]). But
these theoretical investigations were concerned only with potential scattering
models completely disregarding the presence of compound-resonances. Some of
these approaches ([23,24]) made a point of possible enhancement of the effects in
the vicinity of potential (single-particle) p-wave resonance. The first theoretical
paper [25] mentioning the possible enhancement of y-ray circular polarization in
the vicinity of compound resonance remained unnoticed. The first simplified
approach to compound resonance analysis which really encouraged the
experimental investigations was done only in 1980 ([1], see also [26]). In this
approach the p-wave compound resonance was treated in complete analogy with
the bound-state case above (see Sec.II). Indeed, Sushkov and Flambaum took the
case of two closely-lying bound states (imitating p- and s-resonances) with
corresponding wave functions y, and y,. Then in complete analogy to (1), the

p-resonance wave function, which takes into account the possible parity
admixture, looks like: .

2 )= . 3
WE) =Y, +a, (33)
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Now one might just say that in case of elastic scattering both states decay
by neutron emission and substitute the Y-ray transition probabilities in (3) and

(4) by the corresponding partial neutron widths I'" and I“p". Then one immedi-

ately obtains for, say, P-value in analogy to (4):

N r=
P:(x Sn-. . (34)
FP

In slow neutron case F; = (kR)zl“x", where (kR)2 comes from the centrifugal

4!

barrier penetration factor. Thus

a
P=—". 3
R (35)
The typical value of (kR) for eV energy region in medium and heavy nuclei
is ~ 1073, Thus in addition to the dynamical enhancement contained in o, they

got a particular case of «structural enhancement» factor ~ 10°.

This way of arguing sometimes gives, as we shall see later, the correct order
of magnitude estimate of the effect, but is quite misleading. To start with, the
initial equation (33) for the continuum wave function is meaningless, since each
continuum wave function with f.ixed momentum k_ is always a linear

superposition of states with opposite parities (i.e., superposition of partial
waves). Therefore the compound nucleus wave function W(E) even in the
simplest case of slow neutron elastic scattering without any P-violating forces
is a sum of p- and s-compound resonance wave functions ‘I’p and ¥  with

corresponding «mixture» coefficients (see eq.(10) or any sound reaction
theory):

3, (T2 RN rm2
_ P — _—
E-E+iTt /2 ™ s 5iir/2
)4 14 s s

Thus even in the maximum of p-resonance (E=Ep) we have:

YE)~Y +a’'V
P P

s’

where
1/2
r (r”
o =iL2| -2
2D | 1T
p

Proceeding now with the bound-state arguments which lead us from (33) to
(34), we obtain
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1/2
(rr )y, 1, T
Pl=lol| == | =| = | L=—m L o105
rr I 2D (kRy? 2D D

For the famous La case this would give us P= 10 without any weak
interaction/!

There are also other striking absurdities in (34), (35): a) Consider its energy
behaviour. Since all the E dependence enters (34), (35) essentially through the
energy dependence of partial widths, we see that the effect (35) blasts to infinity
for very small E (small k). b) We know that neutron partial widths vary in a
rather wide range obeying Porter-Thomas law. Eq.(34) clearly indicates that the

largest P effects would be observed for the smallest Fp" possible — the less

observable p-resonance is in total cross-section the more it would stick out in
P-violation. Even more tempting is to repeat the whole above reasoning for
mixing of resonances in higher partial waves (say, /=3 ones) with s-wave
resonance. (This is perfectly legitimate if one considers the target with spin /2 2).
Then the «regular» neutron partial widths would be even smaller

(Fl"z(kR)ZZl“s") and for /=3 we obtain «structural enhancement» factor

1/(kR)3 ~10% in eq. (39). This allows the quantity P, which by definition (20)
cannot exceed unity, to reach the value 10°. Obviously Sushkov and Flambaum
were too good theorists to be caught into such traps, but I have seen an
experimental proposal with clearly stated intentions to hunt for the weakest
p-resonances in order to obtain maximal P effects. I also know experimental
group, which made special efforts to perform transmission experiments with
thermal neutrons and was quite disappointed when the effect turned out to be
about 10°® instead of huge increase predicted by eq. (35). To mix up things even
more, the above «structural enhancement» of Sushkov — Flambaum nowadays
is called in a lot of experimental papers «the kinematic enhancement» (origi-
nally this name was given by Shapiro [15] to the typical ratio of electric to
‘magnetic transition amplitudes, which might really cause additional enhance-
ment of P-viclating observables in y-transitions).

In spite of all these inconsistencies, these theoretical results, as I had
already pointed out, greatly encouraged the preparation of on-resonance
experimental measurements of the Dubna group [3].

The first proper theoretical treatment of the problem in the framework of
nuclear reaction theory was given by us in the beginning of 1981 [2]. We had

derived the expressions for Af;t and Re(f_—f,) essential for the description of

P-violation in neutron transmission. Since the Dubna on-resonance measure-
ments were still in preparation at that time, we had to check our theory [2] by
comparing the theoretical relations between P and @ values at thermal energies
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with the existing experimental measurements in Sn performed by the Grenoble
group [27]. A few months later Dubna group has performed the first on-
resonance observations in Sr [3] and checked our expression for P(E) by
comparing their on-resonance results with thermal-energy ones, obtained by
Lobashov’s group in Gatchina [28]. This was the first experimental
confirmation of the resonance enhancement mechanism. Ironically enough that,

although our expressions for Af;t(E) derived in [2] clearly manifested the

resonance enhancement parameter D/I°, we fully understood its physical
meaning and generality only a year later, while finishing a big paper on general
theory of P- and T-violating effects [7]. Some of our expressions obtained in
that paper were re-derived later on in the framework of R-matrix theory {29,30].
Quite apart stands the theoretical investigation [31] of the o f—type correlation

in the particular case of (p, ) reactions. The authors obtained fairly large
estimates, but did not realize that they hitted the new far-leading enhancement
mechanism for o, fcorrelation. This fact, together with principal possibility of

observing P-violating effects of the order of unity, was pointed out in [8].

2.3. P-Mixing Mechanisms and Specific Enhancements in Neutron-Induced
Reactions. Any proper treatment of P-violation in nuclear reactions consists of
two steps: 1. Expressing the observed quantity in terms of the P-violating part of
T- (or §) matrix Ty, 2. Calculating T, in the first-order Born approximation with

. . ;
respect to weak interaction V W

The first part of the task involves the standard theory of reaction kinematics
with polarized beams (see, e.g., [32,21,22]). As it is usual in any of anguiar
correlations, this gives rather awkward combinations of vector-coupling
coefficients, which are all of the order of unity and which do not coniribuie to
the understanding of essential physics. The general expressions for them can be
found in {7,29,30] (two latter references even give numerical values for some
target spins). We shall further on omit them in the majority of expressions. The
effects also depend linearly on the incoming beam polarization p, which will be
set to unity in all the further expressions. In case of slow neutrons one can also
restrict the neutron angular momenta by !, =0 and [ =1 .

With these remarks one obtains the following expressions:

A{i,f% Im [{ p, j = 1/2Ty)s Y+ (sITylp, = 1/2)], (36)
a2 . .
d—z:%fl Re [(p,j=1/2T,ls )+ (sIT, Jp,j = 1/2)], 37

2n
A == I L,fITl L+ 1), fIT I )}.
w2 l% m {( L, FITH, X U+ D, F 1T, ) 8
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Here (lf+ LfIT I ) means the parity violating element of 7-matrix
describing the transition from initial state with ln =0,1 (s-, p-correspondingly)
to the final state with angular momentum (lf+ 1); f means all the additional

quantum numbers defining the channel f (j in case of elastic p-wave);
(lf,fITIln) defines the corresponding P-allowed transition.

Now one can use the Born approximation to calculate the P-forbidden
transition

=YWV e®). (39)

To simplify the problem even more, we shall retain only one s- and p-wave
resonance in expressions (18) for the initial and final states. In this case the
first-order Born amplitude (39) contains 9 terms:

Ty =¥V ) = s EXCY V¥, dal (E) +

s SEX P [Vt (E)) +

+ @ EE) P[ (@ Vi (B XX (ENVig, ) +

+e¢ XNV, Ya*(Ey+ 'O +3)

PCLENVy) X (E) ) +
+e r)a+(E)T ﬂ(xlv X (EYX % (ENVIp )+
E-E ‘/Ap W is 5 s

+ a4 (E)al(E) 1’] <<p VI (E) X X EDViho, ) +

+atE®) e[ 2E (o Iviy () X EWyir, )+

dE'dE” ,
+ @B P i (VI (E))

X (X ENVX (ENV I, ). (40)

In order to understand the physical meaning of each term it is useful to
introduce the graphical technique with the following correspondence rules:
the wavy line with indices (p- or s-) means an /=1 or [=0 neutron in the
mean field of the target; thin solid line means the ground state target; empty

circles correspond to strong interaction amplitudes st exp i8s/ V2r and

'Y; exp i8p/\J2n; crossed circles correspond to weak interaction matrix
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elements; double solid lines with indices correspond to resonance propagators
1/[E—Es) +1i I“s/2] or 1/ [E—Ep) +1 Fp/2] for s- or p- BSEC’s @ or (pp; the

boldface solid lines mean the same propagators, but for the «full» compound-
resonance wave functions <I)Y or <I>p (see eq.(17)); the closed loop of neutron

and target lines implies the principal value integration over neutron energy.
The first term in (40)
5,

e I”Y 1 1 e v
\/? (E-E)iT, 72 { PV >(E E)+il /2 Vom @D

describes (see diagram 1 of Fig.1) the p-neutron strong absorption into
compound resonance <Dp, p-resonance propagation, its weak-interaction

mixing with compound resonance @, propagation of s-resonance and its
strong decay.
The second term
ei&py,, |
P (E-E)+iT /2 (@ IVyin (E)) (42)

describes (diagram 2 of Fig.1) the p-neutron strong absorption into compound
resonance d)p, p-resonance propagation and its subsequent «weak» decay into

the s-wave continuum state.
The third term

id
ey I dE'
3= "Tm (E-E)+iT /2 TIE~E<¢:»'Vw‘Xx(EV)>X

1 e fY
x(x(E')IVId) ) mz T— 43)

describes (diagram 3 of Fig.1) p-neutron strong absorption, p-resonance
propagation of d)p, its «weak» decay into s-neutron continuum with immedi-

ate strong reabsorption of s-neutron into the s-resonance state ® . Then
follows s-resonance propagation of @, and its strong neutron decay. We see
that this is another way of mixing p- and s-resonance (compare with T)) by

virtual emission and reabsorption of s-wave neutron. The processes of this
type were first encountered in isospin symmetry breaking, where they played
an important role. Historically they were first analyzed in terms of R-matrix
theory and called «external mixing» processes, contrary to the «internal
mixing» of T.
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:p S z P 3
P p >—p<
T, T,

1
p S s p s
2 P i \: s i ; S :
T3 T,

Fig. 1. Diagrams of possible processes contributing to p-violation in neutron-nucleus
elastic scattering
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The fourth term T, describes p-neutron «weak» absorption forming s-re-
sonance compound state ¢ which then decays in a normal «strong» way. It is
obvious (see Fig.1) that this amplitude closely resembles the T, amplitude.

The fifth term T describes just the potential scattering of p-wave neutron

in the weak mean field of the target. This type of process was historically
discussed in P-violation first of all (see, e.g., [22]) and is important, since all
the specific enhancements below should be defined with respect to this simplest
amplitude.

The term T, describes re-scattering of p-wave neutron in the weak mean

field of the target with subsequent «strong» absorption of the created s-neutron
forming the s-resonance BSEC ¢. This resonance propagates and then decays

in a normal «strong» way governed by st amplitude. This process is
topologically close to the process T, (see below).
The term T, describes strong p-neutron absorption into p-compound BSEC

¢, resonance propagation and strong decay, which is followed by «weak» re-

absorption of neutron into s-compound resonance state ®_. This state then
decays in a normal «strong» way. Obviously T, is very similar to the above
T, one.

We have already mentioned that T is very similar to T,. It describes the

strong formation of the p-resonance BSEC and its strong decay followed by
weak re-scattering in the target field. Exactly this amplitude was considered
recently by Weidenmuller and Lewenkopf [33,34].

Finally Ty describes «strong» p-compound formation of <bp and its «strong»

decay, which is followed by «weak» re-scattering in the target mean field. The
s-neutron created in this re-scattering is then «strongly» re-absorbed into s-
compound BSEC, which finally decays in a normal «strong» way.

Now, as we know all the essential mechanisms contributing to P-violation
in slow neutron-nucleus elastic scattering, it is high time to estimate which of
them gives the most important contribution and why. In doing this estimates we
shall drop all the phase shift exponentials because in the energy region of

interest to us 8S~ (kR) ~ 1073, 8p~ (kR)2~ 1075, Since the total resonance
widths in this region are defined essentially by y-emission we shall assume that
I = l"p =T. For simplicity we shall denote IE_ —Epl as D and assume that
D~d.

We shall tell the reader in advance the result of our analysis carried out
back in 1982 (see [7]) — the dominant contribution comes from the mechanism
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of T,, which is usually called compound-compound (c-¢) mixing. Other
mechanisms’ contributions are smaller by, at any rate, the above factor of

dynamical enhancement /D ~ VN ~ 10° (see eq.(9)). Therefore we shall
estimate the ratios of T, to all other amplitudes in (40).

We shall start with standard weak potential scattering T, which defines the
process in the simplest systems of n—p type. In order to estimate T we shall
first take the weak interaction scaling factor F out of (xp(E)IVWIxs(E) ). Then

we shall proceed by removing the extra barrier penetration factor out of the
amplitude, thus converting 75 into the strong interaction amplitude

(X (ENVIx (E)), which roughly equals the s-wave phase shift 8~ (kR). Thus:
(BN (E)) = F - (kR)?. (44)

The exact calculation of T5 done in [34] shows that ex.(44) is correct to

within a constant factor of ~7. Now we can estimate the ratio

ﬂ _ yp"ys"( (I)prWKDS ) 1 ~
Ty (E- E,+iT,/DE-E+iT,/2) F(kR)*

s &%y
- n 0
(E—E +il /2(E—E +iT /2)"
p p s s

(45)

Here we have done the scaling (see eq.(6)) of weak interaction matrix element
vp=Fv and used the standard estimates of neutron partial widths, factoring

20+1

out the barrier penetration (kR)™"", spectroscopic factor S and the «single-

particle reduced width» @g = 2h%/mR?. The resonance denominators of T, give
the smallest ratio (45) exactly between the E_and Ep. In this energy point (we
consider the case of D>>T):

» T SnG%v v v

= e — N, (46)

In estimating (46) we assumed that S ~d/d,, where the single-particle level

spacing d, was taken to be roughly equal to @% (see, e.g., [12]). Thus we see
that under the worst «off-resonance» conditions c¢-c mixing mechanism T,

gives us the dynamical enhancement factor. We also see that this
enhancement disappears for the simplest systems with N ~ 1. This, however,
is not the whole story. We also see from (41), (45) that in the vicinity of each
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resonance pole (EzE? or Ep) Tl presents us with extra resonance enhan-

cement factor D/T', providing thus for the overall enhancement of the ratio

( T1 vD v
LTSJ DI T “7)

res

The above resonance enhancement is a specific feature of nuclear reactions
which has no analogues in case of bound states. Its meaning is, however, quite
transparent — the magnitude of P-violating effects is proportional to the time
T spent by incident neutron in the weak-interaction field of the target. The role
of the complicated compound resonance is to capture the neutron and keep it
inside the compound system for a long time T=A/T. This kind of effect was
first mentioned by Mahaux and Weidenmuller [35].

Consider now the ratio of T, to T,

T, VD VD ) v
— = I__2 g ~ , i (48)
T, (E-E+iT /2 @ Vo ix,) (E-E+iT /2)

In performing the estimate we introduced the scaling (d)p!VWIxY)~

~F((I>YIVIXS )=F -y We see again that even in the worst case of E = Ep the
T, dominates by the dynamical enhancement factor v/D, while at E=E_the

resonance enhancement D/T is added.
Since T, amplitude is topologically close to T, the ratio T\/T, demonstrates

exactly the same enhancements with exchange of E_by Ep.

All the remaining diagrams in Fig.1 contain closed loops of principal value
integrals. In estimating those loops we shall follow the arguments of
Weidenmuller and Lewenkopf [34,35] carried for the case of Ty Crudely their

argument was that the main E’ dependence in the integral

P[0 IV i (B) X, BNVt () 49)

comes from the barrier penetration factor (kR)ZIH of IXP(E')Iz. This allows one

to drop the principal-value symbol and carry the integrands at E'=E out of
the integral. Thus (49) becomes:
2010
+ X(k'R)
S (50)
X2kR)
In case of square well potential xp(kR) ~J{(kR), and one gets the analytical

C0,IV (B XL, BNV (B)) |

result
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—yn
kR P (kR)

(5D

In order to obtain the final result we used the above estimate (44) for
weak-interaction amplitude. More exact numerical calculations of [34] for
Woods-Saxon potential show that instead of 3w one gets the value C=3.1. This
obviously does not affect our order-of-magnitude estimates.

Now we can estimate the ratio of T, to

F"F

Ty~ E_ E, +tr /2)(kR) (52)

We see that this ratio is

Tl Yn (kR)V v i

= = . (53)
Ty y' (E-E+il /2) (E-E+iT /2)

Again we observe that even at E=Ep the T is smaller by the dynamical

enhancement factor v/D ~ VN.
Since T is topologically close to T, the same dynamical enhancement is

lacking in T even at E=E, while at £= Ep the resonance enhancement of T,
is added to the ratio T/T .

Now we can use the above procedure for estimation of the principal value
integral in T, (see 43)):

2 [ (Vi (B X BNV I0,) = (@, 1V, (E)) X

J dE k'R Foyiy]]

X EHVI = 54
(x( ®.) E 2R R
Therefore
YO
T - : (55)
3 (E-E +iT /2(E-E +iT_/2)kR)
P P s s
and
T, (kR)v v dO Y
T3 I“s Sn®0 @0 d d

In doing this estimate we used the same factorization as in (45), (46) for
neutron width I‘s".

In the same way we get the same estimate (55) for T, and (56) for the ratio
T/T,.
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The only remaining term now is T, Each integral in it can be estimated in

the way we have already used several times, giving:

[ o (O W) X N (B X1,V g, )=

—h n_1 __ nn F
=1 ENV X (E) ), R A R (57
Therefore
FP"F FS”
Ty=—— : : (58)
(kR) (E—Ep +i Fp/Z)(E— ES+ i I“S/2)
and
T, (kR)zv v do Vo
—zhfr-l—n—zmgzé—z—zm—_ (59)
Ty vy 5,8, ©;d d

To finish with our analysis we shall recollect that some of the above
amplitudes (T, T,, T,, T, and T,) contained the «full» compound nucleus
functions (I)k=(pk+(Sk")1/2u. Substitution of ¢, instead of ®, in the above
amplitudes would not affect, as long as we see, the above estimates of their
relative contribution to (40). The additional valence terms (§ ")mu would give
us seven more amplitudes with the exchange of corresponding ® by (S ”)Vzu.
All of them would contain at any rate the additional small factor VS” = IAN
(inverse dynamical enhancement). Therefore in all the amplitudes but T, they
should be disregarded as small additions to the already small amplitudes. In the
case of 7, there will be 2 «mixed» terms containing the products ((p~® 1) and
one term of the form: :

re (u Vil ) rr

N

T, = .
10 (rg)lf2 (E-E,+il /DE-E+iT /2) T2

(60)

Since this term contains extra smallness S” ~ 1/N in comparison with T, it

seems that it should be dropped first of all. However the compound-compound
matrix element v, (to be exact, its variance i?p) of (41) goes down with

increasing complexity N of the wave function D, as dO/\fIV (see eq.(9)).
Therefore the «single-particle» matrix element (upIVWlus) should be larger than
\7p by roughly a factor of \ldo/d:\flv. Thus the overall ratio of T/T, is
17N rather than 1/N.



310 BUNAKOV V.E.

An important point is that, contrary to partial amplitudes y" of (41), whose
signs vary randomly from resonance to resonance, all the partial widths in (60)
are positive. Similarly, contrary to randomly varying sign of v, in (41), the sign

of single-particle matrix element in (60) (defined by U us) might vary only
over the energy range of single-particle levels spacing d;. The overall sign of
(60) at a given resonance, say Ep, seems to be also defined by the sign of
(Ep— E). If, however.we switch over to multi-resonance case, we should sum

T, at Ep over all the s-resonances which might mix with a given p-one:

r" {u IVWJu ) S (s) 60
(r")‘/2 (E~E,+iT,/2) (r‘))”2 Z E-E (0

)3 Tyy=

s

Since the spectroscopic factor saturates to unity over the energy range
I“Tp’ around the position E , of a single-particle level:

r (u IVWJu T? 172 1
T 7 —_—
Z 10~ (E I:+1r /2 10| E-E
s P s

(60b)

therefore the overall sign of the effect caused by valence neutron remains
constant over the range do. However the same is true for mechanisms of T,

and T8 (see (58), (52)). All these mechanisms, which essentially sprang to life

because of the single-particle (valence) contributions Y(E) to the BSEC wave
functions ¢, would provide for the constant sign contributions to the effect.

But as we pointed already in [7] all of them lack the factor of dynamical
enhancement v/ D ~ NN and should be dropped on this grounds. We shall
briefly come back to this problem in discussing the «sign correlation effect»
below (see Sec. IV. 5).

Up to now we considered (see (40) and Fig.1) only the case, when the
initial p-wave neutron is transformed by weak interaction into the final state
s-one — i.e., the second term in (36). Repeating the above analysis for the first
term of {36) will add 16 more amplitudes similar to those of Fig.l. One can
easily see that diagrams 1,3,5,7 and 9 are symmetric with respect to the ex-
change of s- and p-neutron states. Therefore such an exchange will just double
the contributions of corresponding mechanisms to (36). The same exchange in
amplitudes 2, 8 of Fig.1 would shift their resonance poles to E. However the

poles of T, and T after this exchange would be shifted to Ep. Therefore the

addition of the first term in (36) would just completely restore the symmetry of
the whole expression (36) with respect to the exchange of initial and final states,
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which is expected for any elastic scattering T-invariant amplitude. The relative
dominance of ¢—¢ mixture amplitude T, remains unaltered.

To sum up, we have seen that proper nuclear reaction theory allows us to
find all the contributions to the weak interaction elastic scattering amplitude of
neutrons on a nuclear target. The leading contribution to this amplitude comes
from compound-compound mixing mechanism T, of eq.(41). This mechanism

shows two kinds of enhancement factors: a) the dynamical enhancement factor
w D ~ YN b) the resonance enhancement factor D/ T". The physical reason of
both enhancements is the complexity (or quantum chaoticity) of the compound
nucleus resonances. The lack of symmetries characteristic of quantum chaotic
system (see, e.g., [36]) removes all the degeneracies of the independent
particles’ shell-model and thus exponentially decreases the resonance spacing.
At the same time it complicates the structure of the compound-resonance wave
function, hindering in this way all the decay processes and reducing the total
resonance width T

One should also mention that in our analysis we met no traces of the
mystical «structural enhancement factor» 1/ (kR). As is mentioned above,
theoretically this factor is a false result of inconsistent application of bound-
state theory to the continuum nuclear reaction case.

2.4. Back to Observables. In the previous paragraph we performed an
analysis of all possible P-violating amplitudes in the simplest case of elastic
neutron-nucleus scattering, understood the physics of their enhancements and have
chosen our «favourite» — c—c mixing amplitude T, which exceeds the others by

at any rate dynamical enhancement factor of YN ~ 10%.
Inserting Tl into egs. (36), (37) we obtain

n n
T .
p_27t Yp p's

= — X
ot k2 (E - Ep)2 + rpz/ 4 (E-E) +T 4]

Ci (SVY + 8,;)

x [(E-E) Fp +(E - Ep) rl (61)

n n i (6.Y + Bp)

d® _4np T % Y
d = B (E-E)+TY4[E~E)+T%4]

X

rr
x{(E—ES)(E—Ep)——';—B] (62)

Here v, stands for the weak interaction matrix element i((DpIVWI(I)X ). The

presence of Breit — Wigner denominators shows that both effects de-
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monstrate symmetric resonance enhancements in the vicinities of both s- and

p-resonances. A ft reaches its maxima at E_and Ep:

sn N v
1% r D

The quantity (62), however, changes sign at points E = Esp +
+T I“p/ 4D = Esp and reaches its maxima

AP (E

tot res) = (63)

Y
@ =+ &CZB ,ﬂ,TS_ v (64)
4z ) s k r D

at points EzEspil"sp/ 2. For the characteristic curves of the energy

behaviour of (61), (62) see our paper [2].

Provided that the asymmetry in total cross-sections A”_ is dominated by

tot
resonance-resonance mixture of Tl’ we can write (see, e.g., [2]) for the

asymmetry AZ v in the denominator of ex. (28):

r
P —gt —g TAP = AP

An,y_cn,y Gn,y r Atot Atot (612)
Mind that for other mixture mechanisms this might be not true. Even in this
case the last equality holds only for low-energy neutrons incident on non-

fissioning target.
We have not yet performed the analysis of the P-violating amplitudes in the
inelastic channels, which are essential for calculation of the quantity A y of eq.

(38). This can be easily done on the same lines as the previous paragraph.
Those, who are interested in more details, might look through our papers [7]
and [8]. The net result of such an analysis is again the conclusion that c—c
mixture amplitudes are dominant. For incident [ =0 and [, =1 those

amplitudes are (see Fig.2):
i (@&+38 )
vy i
v v, Yy e
(E-E+iT /2)(E-E +iT /2)°
s s p p

T(”—(l+lflTWI0>—z

i (8™+ 8 (65)
b4 !
,an. vp. 'st e f

(E-E+iT /2 (E-E, +iT,/2)’

2) _ .
TP =(l, fIT)1)=i
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1) :

T T2
Fig. 2. Two P-violating compound-compound mixing processes in (n, f)
inelastic channel

Both amplitudes demonstrate resonance enhancement of D/ T at E and Ep

plus the dynamical enhancement of v/ D. However their ratio is

T® Y v/ . v/
Ty v

Therefore for low-energy (E < I Mev) neutrons the second diagram contains
«the initial channel hindrance» factor (kR) (see [7]), which again has no
bound-state analogues, but can be easily understood in terms of nuclear
reaction theory. Contrary to P-violating elastic amplitudes of the above para-
graph the inelastic amplitudes are not symmetric with respect to the exchange
of s- and p-neutron waves, and it is highly preferable to excite the s-wave
compound resonance in the initial neutron channel rather than p-wave one.
This initial channel hindrance leads to even more general and important con-
sequences (see below), making the «inelastic» observables more preferable in
general than the «transmission» ones. The corresponding «allowed» reaction
amplitudes are:

i (8" Slf)
n‘ ;. e s f
(4, fIT10) = E E +il /2)’ (66)
i 8"+ 8
yhyle T Y
__pP_ P R
(%ﬂﬂ”'w~%+nym' (67)

Inserting (65)—(67) into (38) and retaining only the largest terms, we obtain:

nf k2 2

l

wv w
= EV+F%MKE Ef+r9ﬂ

i8-8 )
]. (68)

X Re[ (E - Ep) r“e o
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In this expression we already neglected the neutron potential phase shifts
BY, Sp. When the final channel is a y-emission one, we get:

vrvovS
A 22T P (E-E) T/ (69)
"y K [(E-E) +T7/4] [(E~E)*+T /4] pros :

Mind that v, here denotes the particular Y-transition (say, to the ground

state of initial nucleus). Mark also, that the effect changes its sign in close
vicinity to E = Ep in analogy to d®/ dz of eq. (62).

Generally speaking, the most nontrivial part of P-violation theory ends with
expressio'ns (61), (62), (61a), (68) and (69) for A P dd/ dz, A’:l v and A In

tot’ nf *
order to find the dimensionless ratios P, ®, A and o ¢ observed experimentally,

one should just divide those expressions by 20, ., 20, 4 Of 2donf/ dQ,

respectively. However it turns out that even this seemingly simple arithmetical
operation is full of intricate tricks, because, as we have already mentioned, the
denominators also exhibit rapid and sometimes complicated energy depend-
encies.

Indeed, even in the simplest case of one s- and one p-compound resonances
the simplified (i.e., without interference terms) expression for & is:

O (B) = 0, (E) + G, (B) + 0, (E) =

- T T rer
= S + 4(kR)* + Lb— . (70)
| (E-EP+T74 (E-E)+T7/4

Here o, o, and Opot &€ the contributions to total cross-section coming from

s-, p-compound resonances and potential elastic scattering. As is pointed
above, the numerators A {’Oﬁ d®/ dz display resonance enhancement both in s-

and p-resonances. However in the energy region of major interest to us (from
thermal neutrons to few eV) O\t (E) and ©, ; (E) are dominated by s-resonance

contribuiion: o, (EY (Smt(E) ~1; Gns,f (EY an (E) ~ 1. Therefore in this region
the resonance enhancement at E =~ E_ is completely cancelled from the «ob-

servable» ratios:

n . _ _ A
P - v, v, ’ (E-E)T +(E-E)T] | -
" (E-EY+T%4 2T, ‘
§ 14 14 ’
v v (E-E)E-E)-T.T/4
® (E) =~ < > LSl (72

v (E - Ep)2 + r}j’/ 4 T,
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Y,
" yh (E-EY+TY4 2

s p P
Since the p-resonance contribution to cross-section is usually only a small
bump on the large smooth tail of s-resonance (and Opor background of ¢, ) all

the observables demonstrate characteristic resonance enhancement in the
vicinity of Ep, although the latter two change their signs at £ = Ep and therefore

v (E-E)

(73)

display more complicated patterns typical of optical dispersion rather than
simple Breit — Wigner ones. The largest among them is the «inelastic channel»
observable (73) which reaches at F = Ep + TP/ 2 the value:

Y% v

v
L L (73a)

o ~ .
n, Y() ’Y ’Y() r
A

And here come a few more specific features of nuclear reactions. Consider
now the ratio of observables at maximum E = EP + I“p /2

n b Y
Eay o' D (k) %D
20 YJ T K/ T’
| e Jmax A 10
°® | B KD %D (730
(an(E) ‘f ~'Yn 'YO T ’ 'YYO r-
0 )max s r P

We see that both observables P and @ connected with the elastic ¢
correlation (o -k ) contain the already familiar entrance channel hindrance

factor (kR). This demonstrates a very general law — if any symmeiry-hreaiing
correlation contains a certain power of k , all the corresponding cbservsbies

will contain hindrance factors (knR) of at least the same power. (We shall return

to this point in our discussion of 7T-violation below). This fact puts all the
«transmission» observables of symmetry-breaking into unfavourable position
with respect to inelastic channel ones from the very beginning.

Thus we at last encountered the factor (kR) in the observables (71), (72).
But, contrary to naive expectations of bound-state parallels, it is a hindrance
factor rather than enhancement one.

On the other hand, we have a factor 'Y]{/ ysf in inelastic channel observables,

which in general might play both ways, but for some special cases might serve
a role of the only true «structural enhancement» factor (see,e.g.,[8]) increasing
the P-viclation effects in inelastic channels practically to 100% level.
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We also see that the interference patterns of resonance enhancement are
rather complicated, which often results in extra resonance enhancements D/ T’
(see, e.g., ® and P observables). These extra enhancement factors in most
favourable on-resonance situations (see below) might almost compensate the
general smallness (kR) pertinent to transmission experiments.

Since historically P-nonconserving effects were first observed at thermal
energies, it is instructive to classify the magnitudes of these effects at £ = E;:

y* v ET +ET Yy*v E +E
P(E)z—“l)—"p* s p_pSs__p P 5 P (74)
th np? r n E E ’
YT P s Yr 14 P
_Lnrl’, EE-TT/4 yr vEEv
~ K ! ~ LS 75
@y = 5
s p s s P S
VA
(XnYO(Em) R A E2 "2“ (76)
s P

We see that both P and & contain the above strong hindrance factor

'YP"/ Y ~ (kR) ~ 107, which is not present in inelastic case of o, - Therefore
s Ty

the «inelastic» value o, ¢ is the largest (10—3 + 10‘4) at thermal energies and was

experimentally observed for y's and fission fragments in almost «prehistoric»
times (see [18,37]). It was exactly those unbelievably large (compared to

1077 + 1078 effects in n—p scattering) effects observed in neutron-induced
fission that initiated the theoretical studies of Sushkov — Flambaum and
Bunakov — Gudkov, which led both groups to the prediction of p-resonance

enhancements. Next in magnitude (typically 10_5) comes the value of @, which
contains additional large factor E /T . The P value containing instead the

factor (E_+ Ep)/ Ep is usually smaller (typically 10_6). Consequently the first

experimental observations for them were done later (see [27,28]). Comparison
with experiment nicely confirms the above «hierarchy» of observables (see,
e.g., [2,7]).

Let us come back to the behaviour of P in the vicinity of p-resonance:

n oan
P(E)~2_nl}P_ r]’ Y[’ ¥s

K D (- Ep)2 + rpz/ 4 0 (E)

amn

Mind that this expression is valid only for D> T /2.
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Since even at its maximum p-resonance contributes only a small fraction to
Gtot(Ep), the overall behaviour of O E) in the vicinity of p-resonance is quite

smooth. Therefore the resonance enhancement of P (E), represented by Breit —
Wigner denominator of (77) fully displays itself in experiment. Seemingly
everything is clear — we have both this resonance enhancement mechanism-
plus a familiar factor vp/ D of dynamical enhancement in (77).

Nevertheless, here starts the «mythology» of experimentalists, which prefer
to stick to naive bound-state analogies, whose physical inconsistency we have
already analyzed at length. Instead of presenting the observable P, given by
(77), they prefer to introduce the auxiliary quantity P by relating observed

AP to a small fraction of the observed o

contribution GP(E) (see third term in ex. (70)):
P

tot? namely to the p-resonance

c
tof tot
2GP(E) op

The purely technical reason for such a renormalization is explained as
follows. We have already mentioned that the really measured quantity (25) is:

P B =AL (E)-C,

tot

where the constant C depends linearly on the target sample thickness x. In
order to optimize the statistical significance of measurements this x is chosen
in such a way that C = 1/ 20‘(“. While measuring chp(E) in the Fp vicinity of

Ep, the experimentalists do not re-adjust x for each energy point (again be-
cause the smallness of (Sp/ Cyot ratio allows this). Therefore the rmeasured
value Pexp(E) performs a «full-scale» resonance behaviour of Afm in the

vicinity of p-resonance:

AP (B = 252 LA/
tot ¥ D (E- Ep)2 + rlf/ 4’ (79)

In order to avoid quoting a whole set of numbers Pexp(E) at all the energy

point E measured on the resonance curve (79),the experimentalist prefers to
cancel the resonance behaviour of the effect by normalizing it to GP(E). This

allows one to present only one value of P instead of the whole resonance curve.
Of course this makes some sense, although one might rather use the know-
ledge of C to quote directly the measured matrix elements v, — that will be

again one number and exactly the only one we are looking for in performing
our experiments. One should, however, realize that this artificial normalization
by one of the weakest components of the total cross-section gives you only the
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auxiliary quantity without much physical meaning (see eq. (4a) of Sec.Il and the
discussion which follows it). The non-physical normalization of this quantity
produces fictitious enhancement which has nothing to do with reality — one

might as well normalize A fm by the neutrino cross-section and surprise the

world with huge uncbservable effects. To mix up things evea more, nowadays
all the experimental papers use for this auxiliary gnantity of eq. (78) the same
notation as for the physical observable P, which was defined already for 20
years by eq. (20). Dubna experimental group in the past at any rate bothered to
introduce different notations for those two quantities, although they never ad-
vertised the difference between them and always presented P as the observed
result. The main reason for such an «absent-minded» mixing of two physically
different quantities becomes quite obvious when one presents (78) in a slightly
different form:

P Xﬁ IL - fE ,__1_- (80)
D yn o D (kR)

This is exactly the result which was so easily obtained (see (34), (35) in a
simple but inconsistent attempt to apply bound-state perturbation theory to the
reaction continuum case. The physically meaningful resonance enhancement
mechanism is «swallowed» in it by the renormalization of 2P, while instead of it
out of nowhere appears the misleading factor of «structural enhancement»

(kR)‘]. If one recollects that the majority of experimental papers and reviews
practically start with quoting the simple bound-state expressions (33), (34), one
realizes how tempting it is to make a small step, substituting the observed P by
the auxiliary #: no need to study reaction theory with its strange terminology
of continuum spectra, all the theory you need to understand the results boils
down to the above 2 simple expressions (33) and (34). This is exactly the case
to apply the Russian proverb: «Simplicity worse than robbery».

To summarize, we have shown that the «structural (or kinematical)

enhancement factor» (kR)—l is an artifact produced by renormalization (78). It
immediately disappears when you come back to the observable

P "fPGp(E)~P 81
(E) = 6@~ exp : (81)

which always contains a small factor GP(E)/ O, (E) ~ (Fp"/ I“S") ~ (kR)?, over-

compensating the above «structural enhancement».

As to the resonance enhancement mechanism sitting in resonance deno-
minator of (77), one often hears naive statements: «Why, it is quite trivial,
everybody knows that compound-resonance effects are of Breit — Wigner
shape, and we do not need your fancy theories to prove it». This is again a
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wrong nonprofessional statement which might lead to erroneous conclusions.
To begin with, the energy behaviour of A :lm in eq. (61) is more complicated

than simple Breit — Wigner formula combined with bound-state perturbation
theory, as it might seem from, say, eq. (79). When one divides it by the energy-
dependent O, (E) the resulting expression becomes even more complicated (see,

e.g., [7,8]). For instance, the observable P at the p-resonance maximum is given by:

Y" v (E —E) o o 17! ,
PE)~8 L L—P—" )14 Ly Pu] (82)
v, s G, O

Suppose now that we face a situation when s- and p-resonances almost
overlap E =~ Ep (the normal Wigner repulsion does not apply to resonances of

opposite parity, so this can easily happen). Then the maximal observed effect
goes down linearly with decreasing spacing D = IE - Epl’ contrary to naive

expectations of bound-state perturbation theory and even to our eq. (77) which
was valid only for D > T/ 2. All these intricacies become quite essential in the
attempts to calculate the energy-averaged effects (see below). Another
illuminating example is provided by the «capture transmission» observable A of
eq. (28). In view of eq. (61a) we can write this observable at E = Ep as

_ On oY O fE)

s p
o) (E,)+ 0} (E)

A

One can see that, in analogy to all the interference type quantities, A would
be maximal when the s-resonance contribution ¢ ° to the (n, Y) cross-section at
E= Ep exactly cquals‘thc p-resonance one 6 . Then and only then A would
reach its maximal possible value

1%
AMX o ) ~r’1 :
The observable P (E) differs from A by a factor of S, Y/ Ot Therefore

P ™ would never reach 2v/T. However (see [7,8,38]) the most optimal

situation for P (Ep) happens again when Gs(Ep) = Gp(Ep). Then

P r Oot
The famous La resonance with P = 10% satisfies this condition:
()'p(Ep) = Gs(Ep) = Gpot(Ep), thus providing for the observed P ~ 3%.
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Egs. (78), (81) and above considerations show that for strong observable
p-resonances (present beam intensities force us to select just those for measure-
ments) the enhancement of P would be maximal. Since in those cases
o‘p(Ep)/ Gtot(Ep) is about 0.1 + 0.3, the difference between quoted P and

observed P would not be too large, although 2 values already sound more
impressive than the really measured P. However with increasing intensities
experimentalists will start observing effects on weaker p-resonances, and this
difference might rise to orders of magnitude. The impressive 10% effects,

recently observed in 23'zTh, when expressed in terms of physical observables P,
turn out to be more modest 1% effects. So it is high time to stop mixing the 2
quantities and fooling each other.

To finish this paragraph we should mention that we paid special attention
to transmission measurements of quantity P (E) since this type of experiments
is most popular nowadays. This feeds a constant stream of publications, where
the same physical errors in interpretation are repeated again and again.

A special case is P-violation in neutron-induced fission. I am not going to
expand on it for several reasons. First of all, this interesting subject is worth a
separate review. I shall only mention that there are 2 theoretical approaches to
it. Sushkov and Flambaum (see, e.g., [26]), likewise in case of P-quantites, used
intuitive bound-state analogies to construct o, . Gudkov and I (see [7] and

especially [39]) tried to apply the general expression (68) to this case. However

the most striking fact connected with experimental observation of o . dates

back to the midst of 50-ies, when it was discovered (see [40,41]) that, in spite
of the fact that all the experimental observables in fission are sums over the
encrmous amount of outgoing reaction channels seemingly with random signs
of Yo this summation does not destroy the interference effects in (n, fission)

cross-section. This difficulty was bypassed at that time by the fission transition-
state hypothesis of A.Bohr (see [42,43]). Now the same story repeated in the
measurements of o .. This quantity is also an interference type phenomenon

(see €q.(68)) and again the summation over all the outgoing channels ¥ does not

destroy the P-violation effects caused by c¢—c mixing mechanism in each
channel. In view of this common origin of the difficulty we tried to resolve it
by generalizing Bohr’s hypothesis of transition states. Sushkov and Flambaum
used instead of it a purely classical model of fission-fragments motion plus a
hypothesis of pear-like shape of the fissioning nuclei at the saddle-point. Both
approaches have their weaknesses. Applying the classical trajectory notion to
the analysis of quantum interference effects seems quite hazardous to us.
Moreover, while most people agree that for asymmetric fission the fissioning
nucleus has a pear-like shape near the scission-point, the same assumption on



FUNDAMENTAL SYMMETRY BREAKING 321

the top of fission barrier seems quite dubious and contradicts some
experimental evidence (see [7,39]). We are, however, not very happy with our’s
(or, rather, with A.Bohr’s) transition-state hypothesis because it seems up to
now a rather artificial construction in the framework of quantum reaction
theory. I am sure that P-violation in fission is just an additional guide-light in
search for yet nonexistant quantum theory of fission.

3. T-Violation

3.1. Specific Intricacies of T-Invariance and Observables. One of the grea-
test dangers in the analysis of 7-violation is to follow too closely the parallels
with P-violation -— these parallels might be quite wrong. To demonstrate this
point we shall consider the cases of P-odd and T-odd correlations. Everybody

knows the mnemonic rule — if the transition operator %changes sign under the
space reflection operation P (is P-odd), then it has nonzero matrix elements
between states of opposite parity. This is perfectly true. Therefore if you ob-
serve nonzero amplitude of P-odd correlation (say, ¢ - k) this means P-vio-
lation. However, if you observe nonzero amplitude of T-odd correlation, this
fact in itself in the majority of cases has nothing to do with T-violation. In order
to understand this let us see, how P-violation is mathematically connected with
P-odd operators (or correlations) T. Acting by unitary transformation operator 7
on a state A ) we get a number n, (parity quantum number) equal to + 1 or — 1:

PlUY =7, IA). (83)
For operators the space reflection looks like:
A A
PTP'=n_T (84)

Consider now the transition amplitude:
A A A
(BIT!A)=(BI1’_1TTT_IT|A)=anTnA(BITIA). (85)

The first line in this equation uses the fact that PP ! = 1. The second line
makes use of (83), (84) and the unitarity of P. The whole equation gives us
a selection rule:

T, anT=1. (86)

Thus the P-odd operator (n,=— 1) leads to nonzero amplitudes only in

case when |A ) and |B ) are of opposite parity.

However the action of time-reversal operator 7 changes the signs of
momenta and spins and exchanges the initial and final states. Therefore its
action on any state |A ) cannot be expressed in terms of eigenvalues, like (83).
If one also adds that T'is not unitary, one sees that it is impossible to construct
(85) for T and get selection rule (86).
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Therefore Finvariance leads only to 2 immediate consequences (see, €.g.,
[11,12]). The first is the detailed-balance principle. For binary process
A+ a— B+ b it looks like:

2
s, + 1) Qs, + ) K do,/dQ 1
’ 2 -
(25, +2) sy + 1) K2 do, / dQ2

Here s, are the corresponding particles’ spins.

(87)

The other consequence is the so-called P--A theorem which connects the
polarization P and asymmetry A. For elastic scattering of spin 1/ 2 particles it
states:

P=A (88)

However lots of papers seriously discussed 7-odd correlations, hoping to
measure T-vioclation. Was it completely meaningless? The answer is no, but the
arguments are quite subtle and tricky (see, e.g., [44,45,46]). We start with
unitarity of S-matrix:

ssT=1.
Inserting this into the expression
A
S=1+1iT
for the transition matrix, we get:
AA, AN,
T-T'=[(TT". (89)

In case of transition from the initial state Ii ) to final state If ) this looks like:
A A A A
ATy = (AT Ty =i 3 (FiTIny (AT T ), (90)
n

where In ) forms a complete set of all possible intermediate states. Up to this
point everything was quite exact. And now starts the approximation. Suppose
that the interaction which defines our transition T contains a small parameter
F. Then the L-h. side of (90} is linear in F, while the r.-h. side is quadratic.
Therefore in the first-order approximation

CFITH Y = (i 1T F). ©1)

This means that matrix 7 is Hermitean. Let us now combine (91) with the
condition of 7-invariance (see definition of Foperation above):

(FITHY = (= AT - £, 92)

Here minus signs mean changes of signs for momenta and spins.
Eqgs. (91) and (92) give us:

(FITNY = (- fITI= i Y, 93)
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or
K fﬁ" i WP = (-~ fl%l-'i )2, (94)

The last equation means that in case of ZLinvariance (92) the transition
probability should be an even function under the sign exchange of all spins and
momenta. Now (93) shows that sign-inversion operation for initial and final
states means just complex conjugation. Therefore the overall sign of transition
probability under this sign inversion is completely defined by the sign of

Il

transition operator T. If this operator is T-odd, (94) demands that transition
probability should be zero.

Thus we have seen that nonzero T-odd correlations are connected to T-vio-
A

lation only when the transition matrix T is approximately Hermitean and within
the accuracy of this approximation. The last point is very delicate. Consider it
in more detail, taking as an example the T-odd correlation 6, [k, xk ], which

is measured in neutron B-decay. Seemingly this is a weak interaction process,
which is governed by weak interaction constant F and therefore deviations from
Hermiticity are

T-T-F2

However we should not forget about final-state electromagnetic interaction
(Coulomb scattering of electron on proton). This means that the non-
Hermitean r.-h. side of (90) should contain terms of the type:

i{peViTlp'e’V ) {(p'eViT In) . (45)

While the second amplitude in (95) is really of the order of F, the first one

M

is proportional to the fine-structure constant o. Therefore the deviation of T
from Hermiticity is of the order of &F, and this would imitate T-violation even
when it does not exist (see also [44]). In principle one can calculate this final-
state interaction correction and subtract it from the experimentally observed
value of T-odd correlation. However all the existing experiments of this type
were giving only the experimental upper bounds on the effect. While
experimental accuracy is more or less easily defined, the accuracy of theoretical
estimates of final-state interactions is usually much less reliable. This makes the
estimates of the upper bounds on «real» T-violation correspondingly unreliable.
Therefore experiments of this type are gradually dying out.

If strong interaction is present in the process, the finai-state interaction
corrections become of the same order as the Hermitean part of the amplitude,
and situation becomes completely hopeless.

The only exclusion, when T-odd correlation is a direct evidence of T-vio-
lation, is the transmission-type experiment. Then the O, Quantity, which
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defines the transmission, is expressed via the optical theorem (see, e.g.,
eq. (19)) as the imaginary part of zero-angle elastic scattering amplitude f0). In
this case the initial and final states coincide li ) = |f) and the T-invariance
conidition (92) by itself (without approximation of (91)) immediately gives us
(93) and (94).

There exist 2 types of those «true» T-odd correlations in elastic forward
scattering amplitude, which can manifest themselves in neutron transmission
experiments with nonzero target spins I.

One of them is the correlation ¢, (k, X I) (k- . One can measure this

correlation in polarized neutron transmission through the oriented-nuclei
samples. Observing that this correlation depends on the angle 6 between k,_and

the target alignment axis as sin 20, one immediately sees that the best
observation conditions would be for 8 = 45° and neutron spins o, directed

parallel or antiparallel to (k, X I) axis. The presence of T-violating interaction

would cause the difference in o, for those two choices of neutron polarization

T
A—c_,—c‘_. (96)

Using the optical theorem, one can express this quantity in terms of 7-vio-
lating part of the scattering amplitude f.:

T_47t
A= 1mg, ©7)

in complete analogy with egs. (19), (36). Since the experimentalists would
always prefer to measure relative quantities rather than absolute ones (see
(20)—(27)), the experimentally observed T-violation effect will be:
B AT AT
6,+0_ 20

©8)

Observe that the above correlation is T-violating but P-conserving. The
conventional name for it is «five-fold correlation» (FC).
There also exists another correlation, namely c, (kn x I}, which is both P-

and T-violating. This «triple correlation» (TC) should be measured with
polarized neutron beam and polarized target nuclei. Performing transmission
experiments with beam polarization parallel or antiparallel to [k, X I] axis, one

might observe the cross-section difference:

4T
APT = O'T- - G~L = "I'(_ Im (fT —fl) 99)

and the corresponding P- and T-violation effect:



FUNDAMENTAL SYMMETRY BREAKING 325

ne—pr | Aer
°T+°L 2(7“)t

(100)

In complete analogy with P-violating effects (see (29)), this correlation also
causes the precession of neutron spin around the [kn x I] axis. The

corresponding value of the rotation angle ¥ per unit length in a target sample is:

ax _4mnp -
= 1 Re(r=1p. (101)

In the optimal experimental conditions z = 1/ No, , the corresponding angle

of rotation is:
Re (fs - )
X Im (v Ay

3.2. Historical Background. Although the general remark that nuclear
reactions of strong dynamical complexity are most likely to be sensitive to
T-violation was done by Henley and Jackobsohn [47] long ago, this remark
seemingly passed unnoticed till the experimental discovery [48] of CP-violation
in K-meson decay. In the framework of CPT theorem that meant T-violation.
This discovery brought a new wave of experimental and theoretical studies of
T-violation in nuclear reactions. First experimental tests of T-violation in
detailed balance (TVDB, see (87)) were carried out [49] in 1966.
Simultaneously appeared first publications on nuclear-reaction theory in the
presence of T-violation [50,35]. Mahaux and Weidenmuller [35] obtained the
theoretical expression for T-violating amplitudes in case of two near-lying
compound resonances and were the first to understand the above mechanism of
resonance enhancement. However both experimental and theoretical efforts at
that time were concentrated on the energy domain of overlapping resonances
I >> d (Ericson regime). Therefore Ericson [50] claimed the enhancement
parameter to be V(W/T) ~ 10, where W was supposed to be of the order of
spreading width of eq. (7). Mahaux and Weidenmuller [35] pointed out that W
should be much smaller, reducing the enhancement factor VW/ T to unity. Thus
the possibilities of isolated resonance region with really large resonance
enhancements d/ I" >> 1 remained unnoticed. Much later Pearson and Richter
[51] considered TVDB for one isolated resonance. This case (for its analogues
in P-violation see diagrams T, and T, of Fig.1) in principle contains resonance

(102)

enhancement but lacks the dynamical enhancement factor YN typical for 2-re-
sonance interaction. Moreover, in case of TVDB experimental observable (see
below) this resonance enhancement is completely cancelled by the resonance
enhancement of the 7T-invariant cross-section in the denominator. Therefore this
mechanism remained unnoticed and main theoretical investigations of TVDB
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[52,53,54,16] were centered on energy-averaged quantities for strongly-
overlapping resonances.

The full significance of both dynamical and resonance enhancements in
T-violation was first realized by Gudkov and the author [4,7] in 1982, when we
started the theoretical analysis of the newly suggested [55,56] P- and T-viola-
ting triple correlation in neutron transmission and predicted 5 + 6 orders of
possible enhancement for this effect on p-resonances interacting with near-lying
s-ones. Later on we [57,38] studied the resonance enhancement of P-conserving
five-fold correlations (96)-—(98). The same investigations were done inde-
pendently by Barabanov [58]. Ironically enough, in both investigations the
resonance-resonance T-violating term in the amplitude (analogue of T, term in

P-violation) was unnoticed and only analogues of T, and T, were considered.

This mistake was finally corrected in 1988 by the author [8], who realized the
possibilities of both dyramical and resonance enhancements for this type of
correlation. Since however the FC contains an extra Ikl factor in comparison to
TC, this results in the extra hindrance factor (see egs. (74)—(76) and the
discussion following them) of (kR) order which reduces the overall
enhancement of FC to more modest 2 + 4 orders of magnitude.

Detailed balance tests for a close-lying pair of resonances in isolated
resonance regime was first considered by Weidenmuller and the author [6].
Both dynamical and resonance enhancement effects were found in that case
together with possible «true» structural enhancement. However, the measured
quantities in TVDB show even more complicated interference energy behaviour
and the conditions for observing the maximal possible effect are even more
involved. The net enhancement in realistic conditions was found to essentially
depend on experimental energy resolution and was estimated by us as

10% + 10%. However, recently Mitchel and co-workers [9] generalized our
analysis by inciuding the angular dependence of observable quantities. This led
to even more complicated two-dimensional picture for the effect as a function
of energy and angle. However, this more complicated analysis brought even
more optimistic estimates. Analyzing their own high-resolution experimental
data on (p, p) and (p, @) reactions, obtained at Duke, the authors proved that it

is possible to obtain enhancements up to 10* + 10°. This fact together with
various difficulties characteristic of other types of T-violating experiments (see
below) makes the TVDB tests for interfering resonances perhaps the best
possible way of T-noninvariance observation in the nearest future.

3.3. T- and P-Violation (Triple Correlation). The triple correlation
quantities APT and dy/ dz of (99) and (100) can be analyzed in complete analogy

to P-odd quantities A, and d®/ dz (see [3,7]) by substituting the 7- and P-vio-

lating interaction iV instead of P-violating weak interaction Vy into the Born
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amplitude (39). Analysis of the resulting analogue of eq. (40) shows again that
¢—c mixing amplitude
n .
TPT T Ver Y
1 (E—Ep+in/2)(E—-Es+il“s/2)

(103)

dominates, since it contains both factors of dynamical v/ D and resonance
D/ T enhancement.
Inserting this amplitude into (99) gives [3,7]:

2n Y ver Y

Apr=—G g
TR E-E T IE-EY + T 4

X [(E - Es) l"p +(E - Ep) l"x] (104)
with

G )

1
772 2020+ 1)

\/ 3 [\/21+18

uU+3 Qs 12%s-yv2

N
Y 8./,1_1/280,l+l/2]' (105)
Here J is the total compound resonance spin and c is the channel spin.
In p- and s-resonance points we have maxima:
n n
sn ., Ver Y Y
BrPes= 2% p ~ 1 (106)
Exactly in the same way we obtain:
,Yn .y . ,Yn
éx‘:"d'_ncj Iy sy
dz K [(E - Ep) + Fp/4] [(E—-E) +T.74]
rr
x| (E~- Ep) (E-E) - —-—14 . (107)

Observe that (107) changes sign at E==Ep or E_and shows maxima at
E +T /2:
p.s p.s

d) _8n terh %
dz res 2 I D T - (108)

Introducing the scaling factor A between the P-, T-violating interaction
EPT and the weak one \7P, we see that in average the P-, T-violating observed

effects will be enhanced in the same p-resonances as P-violating ones:
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M= AP, (109)

¥ =~ AD. (110)

It is worth mentioning that all the present gauge-invariant theoretical models
consider only the simultaneous P- and 7-violation giving a wide range of A

between 10~* and 10713 (see, e.g., [46, 59]). Since the existing experimental
constraints on the theory are given only by the case of K-meson decay and by
the upper bound on neutron electric dipole moment (EDM), there is a special
branch of CP-violation theory called «model-building» — anybody can
construct his own branch of CP-violation theory provided that it does not
contradict the above 2 experimental constraints. Moreover, A enters those
constraints in a model-dependent way. Thus any additional constraint on A
obtained from TC measurements could help a lot in narrowing the class of
acceptable CP-violation models. It also seems that after 3 decades of constant
improving the methodics of EDM measurements, the experimentalists had
already exhausted their possibilities there. Mind also, that EDM does not
contain the above 6 orders of enhancement, which somewhat resemble the
good old Wolfenstein enhancement of CP-violation in K-mesons. Therefore
FC measurements might rank as highest-priority ones from the point of view
of its «fundamentality».

There are however grave difficulties with the idealized transmission expe-
riments we were analyzing above in search for FC, and we ourselves were the
first to realize their presence [60]. Indeed, the simplest way seems to choose I
and k directions along, say, x and z axes, while directing o parallel or anti-
parallel to y axis. However, in order to polarize the target we need external (and
rather strong) magnetic field H. This field would cause Larmour precession of
o around H as soon as the neutron enters the target. This precession in its turn
produces non-zero helicities (of different signs for initial cases of o TTy and
o Tly ). Those helicities would cause the P-odd difference in transmission
coming from «normal» weak interaction and considered in the previous sub-
section. Moreover, this weak interaction would start rotating ¢ around the k
direction as well (see ex. (62)). Therefore the neutron spin starts wobbling in 3
dimensions in almost unpredictable way. Since all the CP-violating theories
agree that A << 1, those effects would completely camouflage the T-odd cor-
relation we are looking for. To make the situation worse, even if we manage to
keep the target polarized without the strong external magnetic field, we still will
face the so-called «nuclear pseudo-magnetism» (see [61]). This is the pheno-
menon caused by ¢ - I dependent part of nuclear strong interaction, which
imitates the external magnetic field causing the ¢ precession around I. Since
this effect arises from nuclear interaction, it is quite strong (usually equivalent
to several KG of magnetic field).
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The only crude remedy we could suggest in 1984 (see [60]) was to
compensate the nuclear pseudomagnetic field by fine-tuning the external field
H (this is in principle possible since the direction of pseudomagnetic precession
is not correlated with neutron magnetic moment). We fully realized that such a
solution is rather awkward in practice, since one needs to control this
compensation by measuring neutron spin rotation angle with high precision

- 8¢ ~ 10763 I principle much higher precision of 107® was reached [27] in
measurements of P-violating value @ of eq. (75), but in our case one should do
these high-precision measurements simultaneously with the measurements of
FC itself.

On publishing this kind of «experimental» proposal [60] we expected to
hear the reaction of professional experimentalists. Our expectations lasted for
about a decade. Only in 1993 we received first response. One suggestion was
presented by KEK group of Masuda [62] and actually contains a refined version
of our magnetic field fine-tuning. The other suggestion came from PNPI group
of Serebrov [63]. It involves the simultaneous measurements of polarization and
asymmetry in transmission of initial longitudinally-polarized neutrons, and
seem to be free of the above camouflaging effects. It remains, however, to
check the energy dependence of the much more complicated observable
suggested in this experiment in order to see whether the above enhancement
effects survive in it and to estimate the accuracy of this experiment in realistic
conditions.

3.4. P-Conserving T-Violating Transmission (Five-Fold) Correlation. We
shall start with the T-violating part of the scattering amplitude frineq. (97). It

can be expressed (see [57,58]) for low-energy neutrons (I =0, 1, 2):

A 1 2 1 iy _ _
_k[3\/2_{1_1/2 . 1+1/2}[(1+1/2,1IT I-1/2,1)

(I-v2, T+ 1/2,1 )]+

+(-1 '\13 KI+12,2T™i-172,0) -

TJ
—(I-V2,0T ™ +1/2,2)18,,_,,,+
23 Thy _ _
D Vo K+ arfii-1/1,0)
TJ
~(I=-V2,0T ™+ 1/2,2)18,,,,,, (111)

A= (2‘] + 1) \/ E Ij (__ 1)14‘3/2—-].

QI+ 1)@ +3)
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Here T=1 - §, § being the scattering matrix. Notation { ¢’, I'lTlc, I ) is used
for transition matrix elements, where [ and !’ are orbital momenta of the initial
and final channels, ¢ and ¢” are the corresponding channel spins and J/ is the
compound system spin. Upper T indices denote 7-violating part of the
T-matrix.

One might introduce, following Mahaux and Weidenmuller [35], the
quantity SSX §= Sku - SM arising in the presence of T-noninvariant part Vyin
L in case of two
interacting resonances, using the wave function expressions (18) for the initial
and final channels W and A. This would give us the whole set of amplitudes
similar to those of Fig.1 — the role of parity quantum number is «mimicked»

the Hamiltonian, and consider the matrix 5Sw=~TT

in our case by channel spins. The analysis of different contributions to T;\ﬂ gives

us essentially the same results as in P-violation. This analysis was schematically
mentioned in connection with detailed-balance tests already in [35] and later in
[5,6]. As usual, it boils down [5] to the dominant contribution of c—c mixing
term, which demonstrates both dynamical and resonance enhancements:

Yip Yoo (VP 1 + Y Vi (V)
E-E+iT/) (E-E+ily/2)"

T;i = \2m-i (112)

Here E, , I“i are the energies and total widths of the mixing compound

resonances. The 7-violating matrix elements between the compound states
®, and (1)2 VP, = ( (IJIIVTJ‘I)2 Y= — (VT)2] are purely imaginary

(VT)12 = ivT. (113)
Therefore:

m 77 = (Y Yo ~ Yo Vi) ¥
M ™ T o2, 2 PSS TR
[(E — E\)? + T 4] [(E - E)? + TY 4]

X [(E - E)T,+(E- E)T]. (114)

Substituting (114) into (111) and (97), we get the terms of p—p resonance
mixing (we omit the geometrical factors):

4n M) Yo ~ 20 M) V1 o
B (E-E)?+T% 4] [(E-E)*+TY4]

Ay py) =

X [(E - E,) F2+(E«E2) Il (115)

and s—d resonance mixing terms:
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00 Yoo “ Ut ) V1
k2 [((E-E) +T 4] [(E - E)* +r2/4]

Als, d) =

XWE-E)T, +(E~-E)T]. (116)
The indices (+) and (-) stand for the cha;mel spins. The order-of-magnitude
estimates for the brackets with y-amplitudes in (115), (116) are (yp")2 and
Yg' ¥, respectively. Comparing this with the value AP of (61), we see that
in both cases A is smaller by roughly (kR) factor arising from extra Ikl value

in FC. Otherwise both (115) and (116) show dynamical and resonance
enhancements. However the optimal conditions for maximal observable B(E)
of eq. (98) differ from those of P(E). Detailed analysis (see, e.g., [5])
demonstrates that observations in strong isolated p-resonance (when ()'p(Ep) =

Gtot(Ep)) are most favourable. In this case the overall (kR)? smallness is

compensated by resonance enhancement (D/ T')? to give:

B (E)= 2 9. (117)
max" p D Gtot(E)

In the vicinity of s-resonance one gets from (116):
n

Yo Vr > Vr
Ey~=-% - _ P -T
B( x) ’an Dsp ( ) Dsp (118)

The additional small (kR) factor makes those observations impractical. The
main trouble with observations of (116) in d-resonance lies in the fact that

exceedingly small Fd" values make those resonances unobservable in O IF

only we knew E, in advance, then:

Yd zTDB (£ 2 gﬁ( :
BEE, an T o (E) ~ (kR) Dsd r |- (119

s tot

Observe that for very small D_, (119) decreases drastically and transforms
into (118) for Dsdzf‘. If the d-resonance lies sufficiently far away from
s-resonance (say, Dsd~ 10 eV) then the resonance enhancement factor
(Dsd/l“)2 in (119) might almost compensate the smallness of (kR)2~
~107% + 1070, Since, however, the Ed are not known in advance, the d-

resonance enhancement seems to be of purely academic interest, as it was
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pointed in my ref. [5]. This point was misunderstood by the authors of ref.
[30] who «re-discovered» the s—d mixing two years later (see also [64]).
Unfortunately the only known target of 165Ho suitable for FC measurements
does not show any p-wave resonances [64]. Therefore the above possibilities
of resonance enhancement (117) in FC were not used by the experimentalists
up to now.

3.5. Detailed Balance Tests (TVDB). The simplest quantity, which describes
the T-violation in detailed balance (TVDB) is (see eq. (87)):

c,(E 6) -0, (E6)
6, (E, 8) + o, (E 6)

App(E, ©) =2 (120

Since, as usual, the ADB value is a ratio of experimentally measured
quantities, we included the kinematic factors ki (2s,+ 1) (2s,+ 1) into the value

o, (E, 0) = kz (2s,+ 1) (28,+ 1) do ,/ df) (E, 6). To simplify our analysis we

shall also restrict ourselves with only E dependence of the cross section,
omitting the 8 dependence for the time being. Thus (120) would read:

o, (E) + o, (E)
Any statistically meaningful deviation of this quantity from 0 would mean
T-violation. However the experimental accuracy for absolute cross-section

measurements is much less than for relative ones. Therefore it is preferabie to
do measurements at any rate in 2 different energy points E, and E; and

Apg(B) =2 (121)

construct a quantity:
S(ED 6, E;) B
O (Epp Op(ED

Here one of the points, say E,, is chosen for the normalization of the ratio.

AppEp Ep) = (122)

This allows one to cancel out most of systematic errors. This can be seen,
since to first order in A(E) we have:

ApgEp Epp = Apg(E) = Apg(Eyp.

Therefore in most cases we shall proceed working with the simplest form

(121). In doing so we shall use the general expression obtained in [35] for the

difference &S, =S, — S,, between S-matrix elements, connecting channels

(123)

a and b and caused by the presence of T-violating part V.. in the Hamiltonian.

As usual, we shall consider the situation for only a pair of close-lying
compound resonances 1 and 2. As we have already mentioned in the previous
paragraph, the use of the wave functions (18) would give to first order in V.
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amplitudes similar to those considered in P-violation (Figs.1,2). These
amplitudes are characterized by the same dynamical v/ D and resonance D/ T
enhancement factors. Therefore the dominant contribution to SSab would come

from ¢—c mixing amplitude of type T,:

(g Yip = Yap 1)V
8S =4% 2.a ib 2b 'la T. .
ab (E-E +iT/2)(E-E,+iT,/2)
Here v, =—i( @IV, )=i(®,V,J®, ) is the matrix element of V.
interaction between the compound resonances’ wave functions ®, and D, (see

7).

Now, for the numerator of (121) we have:

(124)

G, ~O,, =2 [Re (85,) Re (S0) +Im (85 ) Im (S ). (125)

ab
While the corresponding expression for the denominator is:

2
Y1a Tip You Vo

; + ; .
E-E+il'/2 E-E,+il,/2

1
2 (c,t+0

—1¢ 02
v = Sl = (126)

Then for the case of two weakly overlapping resonances
I < IE1 - E2I = D) we get (see [6]):
_ r M Nl = Wy M) @) M Ml + 15 1, Yy
[(E - EZ) l'yla Ylb{ + (E — El) 'YZa YZb|]2+ 174 (leyla Y‘bl + FIIYZa yzbl)2
The analysis of this expression shows that it reaches its maximal value in

ApgE) . (127)

the interference minimum of the cross-sections ISa%IZ, i.e., when

W, Y. lE +ty, v,1E
E=f = la'lb 72 2a 26' "1

= (128)
0 Wy Vil + o o)
In case of I, =T, =T this yields for (127):

v Moy Yigd = Wy Yoyl
AppEg) =45 - “l = “l . (129)
Yia Yip' — Mag Yap

Supposing for simplicity I', T,

=T, T, (e, equally strong resonances)
we obtain:
il Y| | Ya||_tr
ApglEg) =2 N B Y, =T/ (130)
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where f=2 (o Yt — lYZa/ Y,4]> and the position of the interference dip of
o, is given by:

1
Ey = (E, +E)).

Thus we observe how the already familiar factors of dynamical and resonance
enhancement give in (130) the overall enhancement factor v/ . We also see
that (130) can be sometimes enhanced even more by the «real» structural
enhancement factor f (compare with eq. (73a) for the «inelastic channel» ob-

servable (xnf in P-violation). To be realistic however, one should take into

account the finite experimental energy resolution AE, which usually exceeds
I' and smears the whole interference picture, bringing the observed effect
down to (v,/ AE) f. Making now a conservative assumption f= 1, we get the

overall enhancement factor in ADB(EO) to be

v
AE (131)
Remember that v is the variance of strong-interaction matrix element (see (9))
which is of the order of 1 MeV. Therefore the net enhancement of TVDB is
about 10°.

This was essentially the result of our analysis with Weidenmuller [6]. As |
already mentioned, recently the TUNL-Duke group [9], which is the world
authority in fine-resolution experiments, generalized our approach to include the
6-dependence of eq. (120) in it. After performing a tedious analysis of their own
experimental data on (p, p) and (p, o) reactions, they concluded that there are
real experimental situations when the enhancement in TVDB reaches

10* + 10°. In view of specific difficulties which mark the TC and FC
experiments, this seems to be the most realistic experimental way of T-inva-
riance measurements in the nearest future.

3.6. Brief Summary of Possible Enhancements. Thus we have seen that the
dominant contribution to all the above effects of T-violaticn comes from c—c
mixing amplitude of the type T, in Fig.1. This amplitude contains two basic

enhancement mechanisms — dynamical enhancement ¥/ D and resonance
enhancement D/ T'. Since however the experimental observables are different,
those mechanisms manifest themselves in different manner. Therefore in the
optimal conditions we might have the following enhancements:

For TC in the vicinity of Ep, provided that os(Ep) = Gp(Ep) 20

(82a)):

pot (see

(132)

==

v
T]maXNF’ Xmax ~
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For FC in the vicinity of strong isolated p-resonance (Gp(Ep)Z
2 cs(Ep)+ Gpot(Ep)):

1%

Boax ~ D (133)
In this case the extra (kR) factor with respect to FC cancels D/ T.
For TVDB in interference minimum of two close-lying resonances:
v
A D - Z£0), (134)

where fl(()) might serve as an additional enhancement factor. In realistic

conditions, when experimental energy resolution AE > T, we have:

Amax . éfl(e). (135)

Of greatest interest to the «high-brow» gauge theories of CP-violation is
TC, since it is both T- and P-violating. However, I remind that estimates (152)
were obtained by us [4,7] for idealized experimental case without Larmour and
pseudomagnetic effects.

Among the remaining, purely T-violating effects, TVDB has obvious
advantages compared to transmission FC. Its enhancements (135) for already

known experimental cases reach 10* + 10°, while the only available target for
FC shows no p-resonances and therefore lacks even the enhancement of (133).

IV. STATISTICAL APPROACH TO COMPOUND-RESONANCE
MEASUREMENTS

1. Nuclear Chaos and Necessity of Statistical Approach. The analysis of
the previous section shows that in the isolated resonance regime I' << d (d is
the average spacing between compound resonances of the same spin) the
symmetry breaking interaction of a pair of close-lying resonances with energy
separation D leads to two major enhancements — dynamical enhancement
v/ D and resonance enhancement D/ T, which very often combine with other
specific factors of nuclear reaction theory to produce the net enhancement v/ T,
reaching 5+ 6 orders of magnitude. Both enhancements result from a
complexity of nuclear compound resonances and practically disappear in simple
nucleon-nucleon scattering (see eq. (47)). To be more specific, they manifest
quantum chaos, whose idea is still rejected by the majority of professional
«chaotists», but accepted (at any rate on intuitive level) by all the nuclear
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physicists. Establishing the connection between the fully recognized chaos of
classical mechanics and quantum chaos of nuclear physics is an interesting and
perspective problem (see, e.g., [36}), whose solution shows that a generic
feature of any chaoticity (both in quantum and classical mechanics) is the lack
of symmetries in the Hamiltonian of the system. In compound nucleus this lack
of symmetries is caused in the first place by the strong pair-wise «residual»
interactions, which remove practically all the degeneracies connected with the
mean field symmetries (let us call it «strong» chaos) and thus lead to the
exponential increase of level density 1/d. This chaoticity also increases the
complexity N of the compound resonance wave function and randomizes the
signs of its basic («simple») components’ amplitudes. In plain words this means
that the incident nucleon quickly distributes its energy among the target
nucleons and gets entrapped in a compound system. This, together with small
barrier penetration factors, strongly reduces the contribution of particle-
emission channels to the resonance total width T" leaving only the y-emission.
The same complexity of the resonance wave functions considerably reduces the
gamma widths. All this results in large compound-resonance lifetimes T ~ 1/ T
which enter the above enhancement factors. This seems to be a rare occasion,
when complexity helps us, leading directly to 6 orders of magnitude
enhancement of the experimentally observed effects.

However, one has to pay for everything. The above complexity of
compound resonance wave functions ® makes the head-on calculations of the
«weak chaos» symmetry-breaking (WSB) matrix elements ( @IV ID, )

completely hopeless. Therefore even if we observe the WSB effect and manage
to extract the corresponding vy, out of it (which might be a problem in itself),

we seem to learn nothing about the strength constant of the WSB interaction.
Coming back to the origin of strong chaos, we see that the above problem with
weak interaction matrix elements vy,c. differs from the same problem with

strong interaction ones only by the strength constants F (see (6)—(9)) which we
are hunting for. The problem of strong quantum chaos and strong symmetry
breaking matrix elements was faced and physically understood at the dawn of
nuclear physics and led to Niels Bohr’s hypothesis of compound nucleus, which
does not «remember» its formation, and to Weisskopf’s idea of black absorbing
nucleus. A more refined mathematical technique of nuclear Hamiltonian random
matrices was developed by Wigner, Dyson, Mehta and other outstanding
physicists in 50-ies. In this approach the expansion coefficients c; of @ as well

as the matrix elements { ®,VI®, ) are considered to be random numbers varying

from resonance to resonance while the value v for the ensemble of individual
" resonances obeys the normal distribution law with zero mean and variance

V= V(vz). This led to various statistical predictions concerning the properties of
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resonances which were all brilliantly confirmed experimentally: the Wigner
distribution law for level spacing, the Porter-Thomas law for neutron width
distribution and corresponding laws for y-widths distributions. Therefore the
problem of WSB presented practically nothing new to us. This fact was
intuitively recognized in the analysis of WSB for a pair of isolated bound states
or resonances from the very beginning (see, e.g., the conception of dynamical
enhancement factor ~ VN in [15]). Therefore all the order-of-magnitude
theoretical estimates of enhancements from the very beginning (see, e.g.,
[26,4,7]) were done actually for ensemble-averaged variance. We also predicted
the sign randomness of the observed effects in ¢—c mixing mechanism and
possible constancy of sign (connected however with loss of dynamical
enhancement factor) for -valence mechanism [7]. However the intricacies of
specific nuclear reaction enhancements for various observables discussed above
were so exciting, while the statistics of experimental observations was so
meager, that we were postponing the problem of meaningful analysis for
experimentally observed values.

2. Energy Averaging. In the meanwhile a highly professional and
sophisticated statistical theory of symmetry breaking in nuclear reactions was
developing. For purely historical reasons it was essentially concentrated on .
TVDB effects. After the observation was made [47] that in the two-channel case
detailed balance follows from unitary alone (without T-invariance), theoretical
[50,52,53,54] and experimental [49,65] interest shifted to the domain of many
open channels and strongly overlapping resonances (I' >> d). Even the explicit
appearance of I' in the denominator of TVDB energy-averaged expression [50]
remained unnoticed. Mahaux and Weidenmuller derived the two-resonance ex-
pression (112), (124) which allowed 2 decades later me [5], Weidenmuller and
me [6] to see the large enhancements in FC and TVDB, discussed in the pre-
vious section. But they also applied it to I" >> d regime of Ericson fluctuations
to show that the only enhancement in this regime is the structural factor f (see
eq. (130)). Later on Moldauer [52] obtained the same results in R-matrix
formalism, again sticking to I" >> d region. He also considered TVDB in direct
reactions (see also [66]) proving that direct reaction mechanism contribution to
T-violation is 3 orders of magnitude smaller than that of compound resonance
mechanism for I' >> d (unfortunately, on obtaining this result he formulated it
in a somewhat misleading way — the direct reaction sensitivity to T-violation
is 3 orders of magnitude smaller than that of compound resonance reactions).

A new wave of statistical approach to energy-averaged TVDB which
involved a full scale mathematics of random-matrix theory developed in [67,68]
started with the papers [53,54]. Only in 1989 the technique developed in those
papers was first applied by Davis [69] to numerical calculations of energy-
averaged FC and TVDB — numerical since the method involved the
computation of rather complicated multi-dimensional integrals. «An informed
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guess» allowed Davis to approximate in semi-analytical form the results of
exact numerical integration for the energy-averaged values of ( Ai) (see
eq. (115) for FC) and ( O~ Gba)2 ) (see egs. (124)—(125) for TVDB) in the
limit of isolated resonances I' < 0.1d. The corresponding expression for FC was
given (omitting the trivial 4/ K factor) as

2n? ( V2 ) _
(A2y=aT T 77 (035 - 0.17 In )

n-n g2 t ’ (136)

where the neutron transmission coefficients for channel spins (f) are given by

D 2n T

Tw="7 =74

Since by this time the resonance enhancement effect for 2 interacting
isolated resonances was already recognized, ref. [69] was the first recognition
of the fact that resonance enhancement survives also in energy-averaged effects.
Moreover, the necessity to pay attention to the isolated resonance regime
(" << d) was also accepted. However a statement was made in favour of using
energy-averages of observables for this regime as opposed to the statistics of
individual on-resonance observations, which I (and the experimentalists) kept in
mind all the time. It took me some time and a bit of reasoning to persuade the
author of [69] that his point of view is rather academic than practical. My
arguments were as follows: Consider the FC expression (115) in the I'-vicinity
of each resonance energy assuming the typical case (E; — E,) =d, I', =T, = I".

v.a
Sres _ 4 T 12
AT =4 T T (137)
Here a,, = er(l—) 72’('+) - 72'(’_) er(l+) and the 47/ k? factor is omitted for the sake

of comparison with (136). The same expression for (113) in a typical
situation between the resonances |E — EII = |E — E2I ~ d would be:

V.. a
~ _,.1r"12T
AT—Z——d R

p (138)

This expression is a factor of (& T)? smaller than AT”. Let us estimate in a
simple-minded way the energy-averaged effect (136) starting from (137) and
(138) and averaging their squares over an interval d. Then the (Am)2

contribution should be weighed by roughly a factor of I/ d, while the (1_3)2
should have a weighing factor (d - T/ d = 1:
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2 2 2
2 res2 T =2 Vr%r Vrr?
= - =16 —F——— — .
(Ap)=(A7r) 7447 6d F2d+4d y (139)
Thus we calculated the contribution to (136) from the interval d around one

particular resonance. It remains now to average the v% and 0%2 parameters over

all the possible resonances. Since Y's in a,, are uncorrelated random variables
( “%2 )= 21"(f) I“(:'_). Using the I’/ d smallness, we shall retain in (138) only the
on-resonance contribution. Thus
2 2 2
oo Doy V1) g m(vp) o

2y 4 R
(Ap)=32 d d 42T~ #)  n) d? 2

(140)

We see that this crude but simple picture almost exactly reproduces the

results of (136). The only marked difference is substitution of 2/t = 0.2 factor
for the (0.35 — 0.17 In ¢). This difference comes essentially because we took
from the start a fixed value d for the inter-resonance distance (E, — E,). The

actual distribution of this distance obeys a more complicated two level
correlation law (see the correlation function R2 of [70]), which, apart from

Wigner repulsion at very small distances allows for all the possible values be-
tween O and d. If one allows (E, — E,) to vary in this way, the distances smaller
than d will contribute more to the resonance effect (137) thus increasing the
value (A% ). Indeed, energy integration of (115) with the correlation function
(see [71]) gives the analytical result exactly equal to (136).

The main point of the above simple arithmetic is that only the small T-vi-
cinity of each resonance contributes to { A ). It turns out therefore that in order
to compare my theoretical value (136) with experiment and to extract { v% Wi
ask the experimentalist to make accurate measurements not only on the
resonance curve, but also in the whole «empty» interval d >> I' between the

resonances. At that I know for sure that all these tedious off-resonance meas-
urements would give null results. I also know that in this way I would decrease

the sensitivity of ( va) definition by a factor of &/T. In order to compensate
this loss the experimentalist has to increase the accuracy in measuring each null

effect by, say, increasing the beam flux by a huge factor (&/ F)z. One should
also recollect that transmission experiments around the strong s-resonances are
impossible, or, at best suffer poor statistics. All this almost devoids energy-
averaged calculation for isolated resonances of any practical meaning. I want to
stress this point because of repeated attempts to compare the energy-averaged
quantities in this regime with experimentally observed ones. Even in our joint
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paper [71], after reading the above critical comments on energy-averaging, one

meets a vague statement that it is still appropriate for 16540 case where there
are no observable p-wave resonances below 100 eV. This statement is again a
purely academic one* — if you observe no p-resonances in O, this just means

that either the p-resonance spacing d in this energy-region is anomalously large
or that Fp" are anomalously small. Both facts should be somehow taken into

account in the «unbiased» estimates (136) as additional biasing and this would
lower its value. Even then it would be necessary to drop out of thus biased
estimate (136) the unobservable regions around strong s-resonances. One might
still hope to get something from averaging the (s —d) mixture term (116).

Seemingly one should get for ( A;); (s — d) ) practically the same value as (136).

However here comes another very serious danger of energy-averaging. We had
already noticed that the (- In ) term in brackets of (136) which dominates in
our case of small t appears because unbiased energy-averaging procedure fa-
vours the situations when the mixing resonances lie anomalously close to each
other (Dsp << d). But exactly in those situations the denominators of observabie

B (see (98)) would exhibit strong s-resonance maxima which reduces the
resonance enhancement of the numerators practically to zero. Therefore the
averaged observed quantity B would strongly deviate from the calculated

(AN ¥ (s

tot
nominator. In terms of experimentally measured quantities of the type (21}—(25)
this means that experimental measurements would be impossible or give ex-
tremely poor statistics in exactly the same energy intervals (near strong s-re-

) because of the strong correlation of the numerator and de-

sonances) which mostly contribute to the calculated values of ( Al (s -d)).
Together with the above loss of sensitivity by a factor of I/ d and the abundance
of strong s-wave resonances in experimentally observed spectrum of Ho this just
means that Ho measurements might be a waste of time. Conclusions to the same
effect concerning the energy-averaged estimates of P-violation observables done by
Koonin et al. [72] with the aid of optical model functions were reached by
Weidenmuller and Lewenkopf [34] — thus averaged quantity lacks resonance
enhancement and bears no relation to the experimental observable P of eq. (20).

To finish the matter of energy averaging, I mention the recent publication

[73] on FC experiments with 2 MeV polarized neutrons in 165Ho, where the
theoretical analysis is done in the spirit of a very simple model of T-violation
in direct reactions considered almost 30 years ago by Moldauer [66]. I already

*[t is unusual to disagree with one’s own publication. The main conception and the analytical
part of [71} were finished before the end of 1989. However the final text was written only 4 months
later, when I was out of reach in Russia and 2 other co-authors in Arizona and Heidelberg, respectively.



FUNDAMENTAL SYMMETRY BREAKING 341

mentioned that actually Moldauer had shown in [52,66] that the contribution to
T-violating amplitudes from compound resonance mechanisms is about 3 orders
of magnitude larger than from direct interaction ones — the fact, which is quite
obvious in terms of resonance enhancement physics (time spent by the particles
inside the T-violating nuclear field is much larger for compound processes than
for direct ones). Therefore I cannot understand why (apart from its extreme
simplicity) the authors of [73} applied the direct reaction analysis to their data.
This is especially strange, since this experimental energy range might be the
most appropriate place to apply the «big guns» of complicated numerical
integration worked out [69,74] by one of the authors of ref. [73].

3. «On-Resonance» Ensemble Averaging. Having thus discussed the
drawbacks of «unbiased» energy-averaging in isolated resonance regime
I' << d, we are coming back to the natural idea discussed in Subsection IV.1,
namely, to follow the lines of well-developed statistical approach to «strong»
chaos of neutron resonances and consider the ensemble of weak-interaction Vi

values, measured in different p-resonances as an ensemble of random numbers
obeying the normal distribution law with zero mean and variance
TJPEM= \J(vp2 ):

v2

I W (.
P (Vp) = V—zn—M A €exXp K M "N E (141)

Thus any particular value of v, obtained from one on-resonance measurement

is of minor importance and the main interest is shifted to the variances M. If
we are able to extract the value of M from a set of on-resonance observations
(and we shall see below how intricate this extraction might be), then we can
use the scaling trick (see egs. (6)—(8)) and compare this value with its
equivalent v for strong interactions, obtained from a well-established quantity
of the spreading width I“Spr of eq. (7). This comparison would give us the

scaling constant

F=

<X

, (142)

or, at any rate, an upper bound on it.

Everything seems fine in such a simplified scheme. However, the realistic
situation is much more complicated. To begin with, in deriving all the
expressions for weak symmetry breaking quantities of the previous Section we
retained for simplicity only one resonance in the initial and one in the final
channel. In principle all the observables of Sec. III should contain a double sum
over all the mixing resonances. Since we consider the on-p-resonance measure-
ments in the isolated-resonance regime, the contributions of all the other p-re-
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sonances to the observed effect would be smaller by at any rate a factor of

d/ F)2 and can be discarded. However the other sum still remains, and the
; p .

correct expression for, say, Ay at Ep would be:

81! ( SIVWJp )
A{:)t(E) _LZ "2 Ats l’
R ) (143)
A= 2 —LEP “E (Vp)i = (sVplp, ).

Assuming that all the parameters Y 'y and E, are known, AP tot (Ep,.) is a

sum if Gaussian distributed random variables (vp),. with fixed coefficients.
Sincc a sum of Gaussian random variables is also a Gaussian random variable

mt (E ) itself is a Gaussian. However it is not ergodic in the sense of ref.

[75]. Ergodncnty here means that the statistical ensemble average of an observ-
able (whose behaviour we know theoretically) is equal to the running average
of the same observable taken over a set of experimentally observed

resonances. For A {’ot (Ep) to be ergodic, it is necessary that it should be inde-
pendent of the parameters of the actually investigated resonances. In plain
words this means that we should get rid of all the trivial constants known for
each particular resonance p, , and consider the new value whose variance is
given by (vi ). Since all the (vp)‘. in (143) have the same variance, such an
ergodic variable in the present case would be

(E J
AP = '°‘ (144)

i |Z A2 ll/ 2’
In the one s-resonance appr0x1matlon A"'.’ = (vp),. .
Let us now slightly complicate the situation. Before doing this, we shall
step back to the original expression (61) for Afot. In order to simplify the

derivation we considered the case of zero-spin target / = 0. In this case the total
compound-resonance spin J is completely defined by j =1+ s of the neutron,
and the partial width of the p-resonance admixed to s-one is simply

Fp"—Fp”l ,p» Where 1/2 is neutron j-value. If, however, we remove the

restriction /=0, then the p-resonance partial width would contain two

components I‘ = Fp"l /2 Fp 32 In the channel spin representation (see, e.g.,
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{111)—(116)) this corresponds to 2 different values () of the channel spin c.
Since T-invariant interaction conserves c, only the Fp"l /2 widths (and

corresponding amplitudes yp"l ,2) would enter the A fot expression. However in
the majority of cases we know only the total Fp", while the values anl ,, and

n
YP

Af would be
ot

3/ are unknown. Therefore for I # 0 even the simplest form of on-resonance

P ( _ 8n st n

er___ s v ¥

n =
tot\“pi’ T~ ;2 T . (E -E . Ypl/2. p=Bpi pi Vp," (145)
kK T, (E-E)

A
i.e,, the product of a known constant Bp and the unknown Ap = anI/Z Yy Now

for different choices of p-resonances anl/z behaves as a Gaussian random
variable with zero mean and variance <rp"l/2 ), which can be easily related

to, say, neutron strength function. The p-wave amplitude anl/z and the matrix
element v, are independent random variables. Thus we can introduce on-

resonance ensemble of ergodic values:

AP (E )

A

A =P (146)
pi B.

i
This random values are, however, distributed according to the law which
governs the distribution of a product of 2 independent Gaussian random
variables:

A 1 A
P (Ap) = ;CB KO (Ap/ w), (147)
where K, is MacDonald’s function and w?=(r" Y{v?) defines the
A pl/2 p

variance of Ap.

In the many-level generalization we have (see (143)):

P =
A tot (Ep) - anl/Z Z Bpx(vp)s (148)
s
and can introduce the ergodic variable:
A ALE)D .
A _ ot ¥ pr (149)

P 21/2°
1y, B

! s
which obeys the same distribution law (147).
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Observe how the lack of knowledge of only one additional parameter
anl s Of «standard» nuclear spectroscopy complicates the statistical analysis of
WSB and data interpretation — instead of the well known analytic Gaussian
shape of (142) for A f, we get the much more complicated low (148) for 21. .

One can also be sure that statistical confidence levels of variances, extracted
with the help of (148) would be much lower than those obtained using (142).

The case of T-violating FC (eq. (116)) generalized for many levels gives the
on-resonance expression:

16 1
Ap) = 2T 2 WYy~ Ny Yk 2
Pk

) (v E,~E)T
2 2
(E,~E, ) +T %4

In a rather optimistic case we may know in this expression the parameters
of the p-resonance, where we do the measurements, namely Ep, Fp = Fpk =T,

(150)

n n s . . . .
Yp1/2 and Y32 Since our information about p-resonances in general is very

poor, the rest of parameters in (150) are very likely to be unknown. The
analysis of this situation in [71] demanded numerical Monte-Carlo simulation
for the distribution of distant Epk and allowed one to built two approximate

analytical expressions for the distribution of ergodic variable 8, corresponding

to (150). Both of them contain two-fold integrals (see [71]) for details).

This strikingly increasing complexity of distributions with the increase of
unknown spectroscopic parameters serves a good lesson for experimentalists. If
they want to extract useful information on WSB interaction constants rather
than surprise the world with large P-violation effects, then they should try to do
a good deal of dull job in «standard» spectroscopy in order to define as many
spectroscopic parameters as possible. We shall have to strengthen this statement
in the analysis below.

4. Analysis of Realistic Imperfect Experimental On-Resonance Mea-
surements. The distribution analysis of the previous subsection concerned only
the statistics for the «theoretical» values of observables arising from the chaotic
nature, of compound-resonances. However each on-resonance measurement of,
say, A, value can be done with finite experimental error ©;, and the

experimental results x; of the measurement in majority of cases would obey the

normal distribution law: N
P (xIA) = —= & =47
(xja) = e A 2 : 151
2n o 20; 151)
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Here we introduced the notation of conditional probability P (alb) of a
given b. In our case the measured value A itself is randomly dxstrlbuted in
accordance with the Gaussian law (141), which we shall denote as P (A IM).
Therefore the connection between the measured value x; and M will be given
by:

P (M) = [ d(a) P (xJA) P (AIM) =

2

1 X
= - 152
an(c,th) CXP{ 2((5’.2+M2)] (152

For an infinite set of experimental measurements, x,, with small errors, o;,
one could plot the curve (152) and extract the M value by applying, say, the
least square method. Even in this idealized case the problem of finding the
confidence intervals AM for M is not clearly defined. However the realistic
situation of imperfect measurements is much worse. In practice we might hope
to get only few experimental points x; with accuracy not exceeding a few ;.
To dramatize the problem even more, consider a case when after years of hard
experimental work we shall finally get an upper bound x, < o, in the triple-
correlation measurements on La resonance. What shall we do then in order to
connect this upper bound with the corresponding upper bound on M?

Up to now denoting {(151), (152) as conditional probabilities might seem to
be an unnecessary terminological complication of simple things. But when we
start considering the above case of imperfect measurements, only the
conditional probability theory allows to solve our problems. Indeed, the exact
formulation of the problem is: We have a theoretical expression (152) defining
probability of experimental result x;, (with &) for a given M value. We need to
«inverse» {152) and find a probability P (Mix;) of M given an experimental
result x,(a,). This problem is in principle easily solved by using the well-known

Bayes theorem of standard conditional prebability (CPr) theory:
P (MIx)-P (x) = P xIM)-P (M) (153)
and putting it into the form:

P (dM)-P (M)
P (x)

According to the same standard CPr theory the «unconditioned» probability

P (x) = | P (xiM) P(M) dM = N(). (155)

P Mlx) = (154)
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Expressions (153)-—(155) are given in any textbook on CPr and accepted
by all the mathematicians. However the interpretation of (154) given by Bayes
himself makes a special branch of Bayesian statistics (BS), which is criticized
by the representatives of the more orthodox «frequency» school in mathematical
statistics for its «subjectivity» (see an excellent and very brief review of this
topic in [76]). Unfortunately BS is practically unknown to physicists.
Unfortunately, since every physicist who ever worked with experimental data or
with any kind of the above «inverse» problem intuitively felt the necessity of
BS or even tried to apply it without realizing that this is BS. Bayes supposed
that before we do any kind of measurements x of the physical quantity M, we
often have some «a priori» knowledge concerning P (M) — e.g., before
measuring the mass we know that it is positive. Bayes theorem (154) formulates
in a mathematically precise way how to combine this «a priori» knowledge with
the results x of our measurement in order to obtain the «a posteriori» probability
P (Mx). One might associate this «a priori» P (M) with considerations of
common sense, which prompts to a physicist that application of orthodox
statistical prescriptions to, say, negative experimental x; obtained in the mass-

measurement experiment leads tc nonsense — he is sure that mass is positive,
and that only poor accuracy of his measurement produced the negative x, . But

without BS the physicist does not know how to get out of this trap. The best
solution might be to throw this result away and take a more precise measuring
device. But what to do if this is the best at your disposal (and often the only
one in the world)? In BS approach you just suppose the «a priori»
P (M) =06 (M) and go ahead through (154), (155), obtaining a sensible upper
limit on mass as an «a posteriori» result of your imperfect measurement (see
[77], where Philip Anderson describes BS as «the correct way to do inductive
reasoning from necessarily imperfect data»). In case when nothing is known «a
priori» about M the standard assumption is (see [76]) that P (M) is uniform and
constant.

There is a close, but sometimes misleading connection between the
Bayesian post probability (BPP) given by (154), and the maximal likelihood
method (MLM) described in numerous manuals on statistics for the experi-
mentalists (e.g., [78]). One might characterize MLLM as an attempt to use
Bayesian statistics without recognizing it. Indeed, the P (xIM) function of (154)
is often called «likelihood function» L(M) and MLM says that the best estimate
of M is the value M__, which maximizes P (xIM) considered as a function of

M. One easily sees from (154) that in case of complete «a priori» ignorance
(i.e., P (M) = const) BPP coincides with the likelihood function to within the
normalization (155). Therefore the BPP in this case has exactly the same
maximum. As to the definition of the confidence, the MLM usually prescribes
to assign the errors of M by finding the values of M for which L (M) is reduced
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from its maximal value by a factor of exp (— 1/ 2). This prescription is
obviously based on the assumption that L (M) is a Gaussian centered at M
For this (and only for this) assumption the above prescription indeed gives the
conventional «one o» confidence level of 68%. What is even more important,
the ratio of confidence intervals AM for 99% and 68% confidence levels in this
case is only a factor of 2.6, and this is known to everybody. We shall see,
however, that for a small number n of independent experimental measurements
L (M) is highly non-Gaussian — in terms of BPP this means that AM for 99%

confidence might be larger than AM for 68% by a factor of 10% + 10° (see, e.g.,
[78])! Therefore for small n the MLM confidence prescription becomes sense-
less. For this reason the most accurate manuals on MLM warn against the use
of this method for small n cases and vaguely state that the actual accuracy of

Mmax definition in MLM should not exceed the characteristic width (whatever

it is) of the L (M) function maximum (see, e.g., [80]).

Thus we sce that standard MLM coincides with BS only when
P (M) = const and the ensemble of experimental measurements # is large. In all
the other cases MLM strongly deviates from BS and should not be applied to
data analysis at all.

Since most physicists do not know the ordinary CPr theory (not to mention
the BS) I shall briefly mention most dangerous peints, where CPr and BS
disagree with our «intuitive» expectations based on rudimentary knowledge of
the ordinary (non-conditioned) probability in its «frequency» modification.

First of 211, the BPP of eq. (154) (as well as any conditional probability) for
2 independent measurements is not equal to the product of BPP’s for ecach
measurement;

P (xlszM) P (m)

P (Mixx) = TNein) # P (Mix,) P (Mlx,). (156)

Here N (), x,) = [ P (x,, x,}M) P (M) dM.

Thus for n independent on-resonance measurements Xy Xy X, = {2, ) we

obtain:
P (M{x. }") =

oMy 1

with normalization

oo n x2
=] am — exp i~ ——t—— |
N ({x, }%) { ,l} SNV exp [ 20? + M) ] (158)
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Expressions of this type were used by us [79] for the analysis of TVDB
experiments [49,65], which were unfortunately done in the regime of strongly
overlapping resonances long before the discovery of resonance enhancement.
Our analysis revealed the already mentioned highly non-Gaussian shape of

P (Mlx:’) curves for small n. Therefore in case of [49] with its n = 2 we got at

confidence level 85% the upper bound on 7-violation constant & < 4-10'3,
which is comparable to 3.1073 quoted in [49]. However at confidence level 99%

our result was § < 8.81072 = 0.1. Mark 2 orders of magnitude difference be-
tween confidence levels 85% (not even 68%!) and 99%. Only after combining
the n =6 independent observations of [49,65] the BPP curve started

approaching Gaussian and allowed us to obtain § < 3.5-107 at 99% confidence
level.

We also observe that for one measurement the N(x) integral of (155)
diverges logarithmically at the upper limit M, even for infinite accuracy ¢ = 0.

This means that a single experimental upper bound (however accurate) would
never allow you to extract the upper bound of random variable variance M. This
is obvious, since observed x, = 0 might emerge both in case of M = 0 and for

large M — as an unlucky fluctuation of random variable.
All this was true for p,,, resonances. For p, , ones, which can’t mix with

s-resonances, we know «a priori» that M =0. Here the BS results differ
drastically from our naive expectations. Since now the «a priori» probability
P (M) = (M), we get from (152)——(155):

- P (x0) -
P (Mix, 3/ 2) = P (xi0) S(M) = d(M). (159)
The meaning of this purely Bayesian result is also quite simple — if we
know for sure the exact value of M, before the experiment, this knowledge
would not be changed by any further measurements.
The sitnation becomes much more complicated if we do not distinguish
between p,, , and p,, , resonances. Then we can only use their statistical

weights and claim that while probing p-resonances at random, one gets spin
1/ 2 with probabiliy p = 1/ 3 and spin 3/ 2 with probability ¢ = 2/ 3. If only one
measurement is done, we can use the ordinary CPr expression:

P (Mx) = 2 P Mix, B PP (160)

B
in order to combine the BPP’s of (157)—(158) (for n = 1) for spin 1/ 2 and
(159) for spin 3/ 2 with the aid of corresponding probabilities P (B) (equal to
p or q). However, the trivial 8(M) arising in (160) from the J=3/2 term of
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(159) is not of interest for us. Therefore we can easily subtract it from (160)
and consider only the P (Mlx 1/ 2) term given by (157).
The case of 2 measurements Xy, Xy is more subtle. Then we should consider

different possibilities. With probability A both resonances might be J=1/2;
with probability B only one of them is J =1/2, and it is equally possible that
this is either x; or x,. Therefore:

P (Mix, x,)) = A-P (Mix, x), 1/2) + B [P (Mix, 1/2) + P (Mix,, 1/2)]. (161)

The coefficients A and B are well known in statistics of Bernoulli trials and
are closely related to the binomial distribution coefficients. The general analysis
of [81] gives for a case of n measurements:

n
P (MI{x, }") = Iil—q; Y P Y Pix 1, 1/2). (162)

r=1 Kr
Here r denotes the number of 1/2 resonances which we might hit in our n
trials, and coefficients in the first sum give the probabilities of this to happen.
However for each given r we need to find all the possible combinations K of

. oK . . K
r particular x, values {x; }r' . For each particular combination {x; }r' the BPP

K
P (Ml{xl. }r’ 1/ 2) is given by (157)—(158). The number of K, increases with

increasing r < n in a factorial way. Therefore trying all the options in the
sums of (163) for, say, n = 30 takes weeks of fast-speed computer time, while

K
the calculation of each particular P (Ml{x, }r’ 1/ 2) defining the M-distribution

for a chosen set of 1/2 resonances takes only seconds. This is another
example of how the lack of elementary spectroscopic information on
resonance spins enormously complicates the P-violation analysis.
Unfortunately this is not the whole truth. Much worse is the fact that this lack
of information on spins makes the results of all P-violation measurements
practically meaningless. We shall show below that without the spin

assignment all the measurements performed on 2384 and *’Th in receut 6

years allow only to find the statistically significant upper bound F < 107 on
the strength of P-violating weak interaction in those nuclei. It is just a lucky
chance that the purely phenomenological expression used for likelihood

function in the analysis of these data produced for 233 the results close to
those obtained with the spin assignment.

Before showing this, let us summarize the difference between Bayes
method and MLM prescriptions of the orthodox statistics in application to our
problem. When resonance spins are known the only principal difference for
J = 1/ 2 resonances is that BPP of eq. (157)—(158) are normalized to unity,
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Fig. 3. Likelihood function L(M) for seven J= 1/2 p-resonances in?®U  based on
experimental data of {83] and spin assignment of [84]

while the MLM functions are not. This seemingly insignificant detail leads in
case of small ensembles n to quite different results: in case of one measurement
the BPP cannot be normalized (and we have seen the deep physical reasons
behind it), while standard prescription of the MLM still gives the 68%
«confidence level» which is quite meaningless. In case of n 2 2 measurements
the BPP curves are normalizable, but the MLM prescription for 68% confidence
remains misleading since: a) The exp (— 1/ 2) prescription deviates from actual
68% confidence level; b) The AM intervals for confidence levels of 68% and
99% might differ by several orders of magnitude. With increasing n the
difference between BS and MLM becomes less marked because L (M) gradually
approaches the Gaussian. To illustrate this we show in Fig.3 the L (M)

behaviour for seven P(1/ 2) Tesonances in 238U based on P-violation measure-

ments of [82,83] and spin assignment of [84] together with «one-G intervals» of
MLM prescription. Mark that even for n =7 the L (M) is still not Gaussian.
Therefore the correct definition of 99% confidence would raise the upper limit
of M to Mup = 1.5 meV.

In case of J =3/2 the BPP would always give &(M) distribution, while

MLM will not — see L (M) for nine 3/ 2 resonances in 238U of ref. [84] shown
in Fig.4. This case shows how misleading the MLM prescriptions might be even
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Fig. 4. Likelihood function L(M) for seven J = 3/2 p-resonances in?3®U based on
experimental data of [83] and spin assignment of [84]

for the case of n = 9. We all understand that for 3/ 2 resonances L (M) results
should be compatible with M = 0 and that all the extra maxima of L (M) curve
should be associated only with poor statistical ensemble (small n). The Bayesian
results agree quite well with the above natural expectations — on normalizing
the L (M) curve of Fig.4 and looking for 99% confidence level we obtain only
the upper bound of M < 1.5 meV. Definitely this upper bound is a rather poor
one, but this reflects the basic fact that n =9 ensemble is still a poor one.
Bayesian statistics can’t produce miracles and heal this drawback,but it warns
that the positions of L (M) maxima are much less important than the correct
definition of their confidence levels.

In case of no spin assignment the purely empirical expression was
suggested for L (M) in [82]:

" 2
3
LM)= ———eXpi- 5 5 ¢+
,I} [\lzn(ol?ﬂwz) p{ 2(0,-2+M2)]
&
L —exp -5 | |. 163
+\E1tcfcxp[ 20,-2H ‘ (169

We see that this expression is built in violation of both Bayes statistics
(since the 3/ 2 term with g coefficient should be 8-shaped — see (159)) and the
rule (159) of conditional probability theory (conditional probability of n inde-
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Fig. 5. Likelihood function of ex. (163) for 16 p-resonances in 28y without
spin assignment (see [83]) .

pendent measurements differs from a product of »n conditional probabilities).

The plot of (163) for 16 resonances measured in 2384 as given by [83] is shown
P

in Fig.5. When a similar plot of ref. [82] was first demonstrated at 1989 Alushta
School, the response of the experimental audience was: «How do you manage
to extract the M values so precisely, when only 6 out of your 17 measured x,

deviate from zero by more than 267» (One should add that now we know that
only 3 of those 6 non-zero results are actually J =1/ 2!) This perfectly sound
remark aroused my interest to imperfect data statistical analysis and led finally
to the above Bayesian results. These results, given by (162), are demonstrated

for the case of 28U measurements in Fig.6. Their obvious meaning is (compare
with Fig.4) that without spin assignments the extracted value of M is compatible
with zero and gives only the upper bound M <3 meV at 95% confidence level,
in complete agreement with sound expectations. The oscillations of L (M) curve,
likewise in case of Fig.4, result only from the poorness of the statistical
ensemble. . ‘

The problem now is to understand the striking similarity between the curves
of Fig.5 obtained by using the erroneous analysis (163) and Fig.3, whose
analysis (besides the above remarks on confidence levels) is correct. The plain
answet is — the occurrence of several lucky and unpredictable coincidences.
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Fig. 6. Bayesian post probability of ex. (162) (normalized to p = 1/3) for
16 p-resonances in 238y without spin assignment

Let us compare the phenomenology of (163) with the Bayesian ex. (162).
By removing the constant factors exp - (x?/ 20’?) out of each factor in the

product of (163) and presenting (163) as an n-th power of binomial we can
simplify this comparison. Now we see that the main difference between (162)
and (163) lies in the fact that each term of the binomial expansion in (163)

contains an extra weight factor exp (xf/ 2(1?), which exponentially enhances the
contribution of each significant deviation x?/ 20‘? of the effect from zero. In
particular 238y, case a single 63.5 eV resonance with x, = 70, contains an

enormous enhancement factor AO = 10!, Therefore the maximum of this term

Mrgax = ,30 - O'g = 0.65 meV practically defines the maximum of the whole

expression (163). The remaining 4 statistically significant results, whose
maxima lie on both sides of M, only slightly shift the overall maximum to
0.58$:§ meV of ref. [82]. In order to estimate the influence of those remaining
terms, observe that omission of one of the 20 effects at 57.9 meV in [83] shifted
this maximum to 0.56+_3:; meV. Naturally, all the abundant zero-effects,

mentioned above, produce no influence whatsoever on the L (M) curve of (163).
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Thus the phenomenological construction (163), built in violation of
conditional probability theory, has a surprising feature of artificial
«exponential» selection of the most statistically significant results, or, to put in
the other way, exponential suppression of all the null results. Intuitively one
might expect that this lucky feature of (163) (quite unexpected by its creators)
is a strange but reasonable way to select 1/ 2 resonances, since we expect that
in average only those resonances would show marked deviations from zero. To
a certain extend this is true, but only to a certain extend. Let us come back to
our basic expression (152) to undersiand how sound this selection might be.
First of all, we observe that for any value of M (that means 1/ 2 resonances!)

the most probable result is x; = 0. 238 case is not an exclusion — 4 out of 7

resonances J = 1/ 2 show zero results. However, the width of the distribution
curve (152) depends both on M and o, values. Consider first a limiting case of

extremely high experimental accuracy (M/ Gi)z >> 1. In this case practically all
the non-zero results x, would come from 1/2 resonances with M # 0. The

«contamination» from 3/ 2 resonances would be negligible because of small ¢
values. Therefore in this idealized situation the suppression of null results is
perfectly correct and the ex. (163) might be a reasonable approximation of
(157).

Consider now the case (M/ 0’)2 ~ 1. In this case the distributions (152) for
M =0 and M # 0 would come closer to each other and 3/ 2 resonances would
considerably «contaminate» our measurements contributing a lot of non-zero
results x, . However, if we have a very large ensemble of resonance-measure-

ments # >> 1 and exponentially select the most significant resulis, we can still
be sure that more x; # 0 would come from 1/ 2 resonances. Mind that for small

n ensembles this will not work and a «degree of contamination» coming from
3/ 2 resonances would randomly vary from ensemble to ensemble.

Finally consider (M/ O'i)z << 1. Then the distributions (152) for M = 0 and
M # 0 would practically coincide. Only by taking the unrealistic limit of infinite

ensemble n — oo plus some kind of selection of largest results one might hope
to select the 1/ 2 contributions.

Coming back to B8y results, we know only after spin assignment that
M =0.56 meV. Comparing it with o, of [82,83] we see that experimental
accuracy parameter (M/ ‘0'1.)2 is more or less evenly distributed between 400 and

0.05. Therefore the chances that non-zero effects come only from 1/2
resonances are roughly «fifty-fifty». Indeed, as we know now, 4 out of 7 non-
zero results in U were coming from 3/2 resonances. Therefore the above
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coincidence of 2 maxima positions is an unpredictable chance coming
essentially from the fact that the main 76 contribution to (153) alone was giving

the value MOH“’lx already within o, of the true M-value of [84]. Therefore it

would be much simpler and honest to say plainly: «<We have reasons to hope
that 70 effect is a 1/ 2 resonance one, while with the rest we have no guaranties.
So we identify the matrix element of this large effect with the variance M».
Obviously, the statistical significance of such a statement if quite unpredictable,
but so is the statistical significance of results obtained with the much less
transparent ex. (163).

We can also understand now the results of Monte-Carlo simulation [85] of
Th case. The authors of [85] considered the ensemble of n = 7000 resonances

with non-zero effect in case when (M/ (51.)2 parameter was distributed in the

range from 10° to 1. We have already shown above that for such a choice of

M/ 0)2 the unrealistically large ensemble of 7000 non-zero observations would
almost certainly produce the correct results, which was the outcome of [85]. The

trouble is that in actual 232Th of [86,87] we have only 7 non-zero effects and
do not know in advance the (M/ (51.)2 values. Therefore without the spin

assignment we cannot even make a clever guess how many non-zero effects

arise from «contaminating» 3/ 2 resonances and how many null effects come

from 1/ 2 resonances (in U those were 4 out of 7 resonances with J = 1/ 2).
Therefore in realistic measurements even the correctness of M., derived

from (163) would be always unpredictable without spin assignment, not to
mention the confidence levels given by (163). This unpredictable character of
(163) is mathematically reflected in Bayesian expressicn (162) and in the results
of Fig.6.

5. Sign-Correlation Effect. Returning back to the multilevel ex. (145) for

A fot, we see that the signs of the observed effect should vary randemly from

resonance to resonance. This comes from sign-randomness of 3 quantities in it:
matrix element (vp)l. , partial amplitudes ys" and Yp", and energy denominators
(Ep —-E).

However the measurements in 2-°Th (without spin assignment)
demonstrated that 7 out of the 7 statistically significant (x; 2 20)) effects have

the same positive sign (see [86,87]). This poses a question — is it a fluctuation
or it comes from some systematic effect, which is not included into (143) and
which has constant sign. The answer to this question might be best found on the
lines of Bayesian statistics (see [77], where Anderson demonstrates how
efficient BS is in «null-hypothesis» tests, discarding with notorious «fifth-



356 BUNAKOV V.E.

force» experiments). However authors of [88] preferred to introduce «ab initio»
the constant-sign term in addition to (143). This resulted in constant-sign
addition B V1 eV/ E (%) to the quoted effect P (see (78), (81)). The magnitude
B of this addition was defined in the 2-dimensional MLM analysis, using

L (M) of (164) modified by the presence of the B term. The result of this

analysis was B = 8*_2:(2) %, i.e., of the same order of magnitude as the effect P

itself (which ranges between 1% + 10%).

This highly sensational result was taken for its face value as an
experimental one by a lot of theorists and experimentalists and produced an
avalanche of publications with attempts to explain it theoretically. Since it
might take a special review to analyze (and even mention) all of them, 1 will
just classify the main trends in those publications. Some of them concentrated
on the analysis of possible sign-correlation between matrix elements (vp)i,

completely ignoring the random signs of v's and (Ep - E). Others re-discovered

our old statement (see, e.g., [7]) that valence mechanism leads to sign
correlation of the P-effects (see ex. (60) for valence part T, of T, amplitude),

ignoring however that we discarded this mechanism in [7] because it lacks the

dynamical enhancement factor VN = 10°. Apart stand papers [33,34] which
concerned the amplitudes of T type. Since all the diagrams containing the

wave function (see wavy lines in loops of T,, T.—T, in Fig.1) describe the
P » f5779 &

motion of valence particle in target mean field, we called them all «the valence
mechanism» in [7]. We estimated them with a crude procedure similar to that
of eq. (15), (16) and, on discovering that they lack the dynamical enhancement
factor VN, simply stated this fact in [7]. Weidenmuller in [33] developed a
much more elegant technique of principal value integrals evaluation which I
borrowed from him in the above estimates of Sec.Ill.

Practically all the authors concluded that valence mechanism needs extra

enhancement of 10% + 10 in order to explain the above B-value. Practically
nobody mentioned that this extra factor is exactly the same dynamical
enhancement which provided for large observed effects in complex nuclei in the
first place.

Nobody also questioned the reliability of the above huge B-value, obtained
from MLM analysis, whose drawbacks we have just discussed. To those, who
do not believe in Bayesian approach, I can suggest to compare the above

B = 8’:2(2) % value with MLM value M = 0.07):3:(3)2 meV in Fig.4. It is believed
by all that the results of Fig.4 should be compatible with M = 0. The same must

be said about B even by the MLM adepts. So the actual statistical significance
of sign correlation effect remains an open question which could be solved, if
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really necessary, in terms of Bayesian approach. Since this approach gives only
the upper bounds even for M-values without spin assignment, the same will be
even more true for B-values. Therefore spin assignment in Th is essential also
if one really wants to consider the sign-correlation problem seriously.

V. SUMMARY

Thus we have seen that the enhancements of all the symmetry-breaking
effects in nuclear reactions on isolated resonances comes essentially from
dynamical factor v/ d ~ VYN and resonance enhancement factor d/ T, which com-
bine in most optimal situations to the overall factor ¥/ T. For inelastic channels
(including TVDB) there might be an additional structural enhancement factor
f~ /' 7,) (see egs. (73a), (130)). For «elastic channel» observables probed in

transmission experiments the situation is more complicated. All of them contain

instead of the above f the barrier penetration hindrance factors (kR) or (kR)2 (for
FC). However, they also contain an extra resonance enhancement d/ I (see, e. g.,
eq. (73b), (73c)) which might almost completely (in case of P-odd correlation)
or partially (in case of FC) compensate those hindrance factors. ,

We have also seen that the «structural (kinematic) enhancement factor»
1/ (kR), so often used to explain the enhancements for the «elastic channel»
P-odd correlations, is merely an artifact of misleading "analogy with bound
states in theory and of quoting the auxiliary value 2 instead of the really
observed P in experiment.

Both major enhancements (dynamical and resonance) are quite general
results of quantum chaoticity of compound resonances, which increases the
complexity N of the compound-resonance wave function and reduces their total
widths I". This reduction is most efficient in the low-energy region of isolated
resonances I << d.

The same chaoticity which produced huge enhancements also necessitates
the use of statistical methods for the analysis of observables and their proper
connection with strength parameters of the symmetry breaking interactions. This
does not lower the reliability of information obtained as compared to simple
nucleon-nucleon interaction processes, provided that one obeys certain general
rules and uses the correct statistical methods. In theory this boils down to using
the methods of random matrix approach, whose reliability was established
during half a century in neutron-resonance spectroscopy. In processing the
experimental data one should use Bayesian statistics (BS), whose significance is
gradually realized by all the physical community.

Both statistical approaches (in theory and experiment) show an important
general feature — lack of information on «standard» spectroscopic parameters
immediately complicates the analysis and enormously lowers the statistical
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significance of the symmetry-breaking observations. BS also strongly vouches
for the increase of independent experimental observations rather than their
individual accuracy.

In this review 1 had to concentrate essentially on reaction aspects of
symmetry breaking and on proper statistical analysis, paying much less
attention to the ultimate aim of on-resonance experiments — analysis of new
information on symmetry breaking interaction constants. As mentioned in
Introduction, since the creation of Weinberg-Salam electro-weak interaction
theory nobody would be surprised by P-violation caused by weak components
of nucleon-nucleon interaction. Therefore in P-violation one should try to study
the systematic behaviour of F (e.g., its A-dependence). Evén from this point of
view P-violation is only a particular case of symmetry breaking in nuclei.
Studies of «strong» symmetry breaking (see Sec.IV.l) are by no means less
important — they are only much more advanced. Even in those studies there are
still open problems whose solution might be of major importance for P-vio-
lation — see Weidenmuller's comments on isospin-violating spreading widths
and their implications in [89]. Therefore even more important is to use P-viola-
tion as «test sites» for future T-violation «on-resonance» experiments by
developing most reliable experimental and theoretical technique.

I have to point that although on-resonance enhancements were continuously
predicted for various 7T-violating observables since 1982, the experimental
situation in this field lacks dynamics. Perhaps too much experimental energy is
wasted on P-violation, especially on creating and discussing «quasi-sensations».
The same applies to FC correlation measurements in almost hopeless Ho. In
view of the facts stated in the end of Sec.lll the on-resonance TVDB
observations seem much more promising than the FC ones in general. I must
also repeat that discussion of all the experimentally realistic modifications of
TC measurements should be a highest priority. In planning the experimental
strategy of 7T-violation measurements one should especially follow the rule
resulting from BS — more independent on-resonance observations even with
smaller accuracy. Mind that in the optimistic case of non-zero effect one meas-
urement would only produce a sensation, telling nothing about the interaction
constant. In the more probable case of experimental upper-bound observation
one point, however accurately measured, would be quite meaningless.
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