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A new method is proposed for systematic approximate calculations of a large class of
non-Gaussian functional integrals beyond the region of perturbative expansion. This method
provides a good accuracy of the lowest approximation, obtained in a simple way, which
represents a generalization of the variational estimation if the functionals are real. In cont-
rast to the variational approach, this method is applicable to complex functionals and theo-
ries with ultraviolet divergencies. Higher-order corrections to the lowest approximation are
evaluated by a regular scheme. This method is applied to different problems of theoretical
physics: the polaron problem in solid states, the phase-transition phenomenon in quantum
field models and the investigation of wave transmission in randormly distribuied media.

Hpenioxken HOBBH, HEIEPTYPORTHBHEIN METOR CHCTEMATHUECKOTO BLIMHCNEHNS Wrpo-
KOIo KJ1accd (PYHKUMOHATEHbIX HHIEIPATOS, NPHMEHSEMBIX B KERHTOBON dusike. Meron
O0ECTICUHBACT XOPOLUYIO TOYHOCTS B HH3LIEM NPUGIHKEHAY, TIONYUACMOM HECHORELIM [1y-
TeM. B crydae BeiecTBEHHRIX (DYHKIHOHATOB OHO npeactasnser coboi obobwenre rapua-
HMOHHOTO NpuHIMNa. HpennaracMpiil METOR BBHITORHO OTIMYAETCE OT BapUalMONHBIX TOAX0-
HOB IPHMEHUMOCTEIO IS KOMIUIEKCHBIX (BYHKUMOHANIOR H B TEOPUAX C PACXOMMMOCTIMY.
Honpaex#y BEICUIMX TIOPS/KOB K HU3LIEMY TIPHOIHKEHHIO BEHMHCISIOTCS 110 PETYJSIDHOY CXe-
Me. MeTox npuMeHeH K psiy 3agau M3 pauTUYHbIX 067acTeil TEOPETHYECKOH DU3HKH: Teo-
PHH DOApoHA B DH3KKE TBEPIOTO TeNa, H3y4eHHio (asosoro NePEXoia B CKAPHOR Mo-
AClH ¢ B TCODUM I10111 ¥ K HCCNENOBAHHIO PACTIPOCTPAHEHMS BOJIH B CTOXACTHUECKHX cpenax.

INTRODUCTION

In modern theoretical physics the formulation of quantum theory relying on
the original classical system is mainly distinguished in two mutually comple-
mentary ways. One of them is the method of canonical quantization (CQ),



460 EFIMOV G.V., GANBOLD G.

where the field dynamic variables are considered as operators satisfying certain
commutation relations and defined on a Hilbert space of states. Many papers
have been devoted to CQ and for history and details we refer readers to [1,2].

The second formalism of quantization is Feynman’s method of path
integrals (PI) [3,4]. The basic idea of the Feynman formulation of PI is that the
quantum motion of a particle is considered as the sum of all quantum transitions
along all possible classical trajectories with amplitudes proportional to

A[x]acexp(iS;X] ],

where § [x] is the classic action taken on a given trajectory Xx. The total
transition amplitude is supposed to be proportional to the integral

i
Aoc{Srcxp{ES(t,x)}, ¢}
where the classical action
! 2
S(t, )= j dt { L"2-— (D)% = V [r(1)] } 2)
0

is taken along the given path r(t). Integration in (1) is performed over the
space " of all possible «path-trajectories» r(t) with 0 <1t <t for which
r(0) = X, and r(r) = x. This representation attracts much attention because it is

close to the classical theory, having both the physical clarity and the fine
compact mathematical formulation. These advantages stimulated applications
of PI to various problems in quantum physics [4].

From a technical point of view, the Pl formalism of quantization represents
an essential attempt to go out beyond the perturbation expansion and becomes
effective for describing systems with infinite numbers of degrees of freedom.

In mathematics Wiener [5] was the first to introduce in 1920, the
conception of PI to describe Brownian motion. Dirac first suggested a repre-
sentation of a particle propagator in terms very close to PI techniques [6]. The
systematic development of quantum mechanics (QM) within the PI approach
belongs to Feynman.

In quanturn physics, Feynman [3] formulated non-relativistic QM on the
language of PI (in other words, the functional or continual integrals) and
showed that this approach is completely equivalent to the solution of the Schro-
dinger equation. One of the main reasons for the popularity of «path integrals»
is the understanding that classical mechanics becomes an approximation of QM
in Feynman’s formulation if one applies the method of «stationary phases» to
the latter. At the classic limit # — 0 the leading contribution to PI is given by
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the stationary points of the phase function S (¢, r) in (1), which is the solution
of Newton’s classical equation of motion.

In 1949 Feynman used the functional integral (FI) for construction of
covariant QED (the Feynman diagrams) [4]. After that, acknowledging the
dignity of this new approach, Kac (1951) suggested a FI of Wiener’s type for
representation of the evolution operator in Euclidean space {7].

Path integration has come a long way since the 1950s. Probably the most
famous early application of FI in statistical physics was to the polaron (a
nonrelativistic electron «dressed» by the surrounding quanta of lattice vibrations
in ionic crystals). In polaron theory, FI not only helps to formulate the answer
qualitatively, but also remains the best way to calculate the answer more exactly
than other methods. It is a tractable field theory; the benefits obtained from

using FI are entirely analogous to those gotten in quantum field theory (QFT).
~ But contrary to the polaron problem, all steps for QFT are more difficult
because of the divergences, the vector character of the fields and also gauge
problems.

A number of investigators [§,9] independently came to the formulation of
QFT in terms of FI considering variational estimations for Green functions.

A relatively simple way to represent the Green function of a quantized field
within FI was suggested in [10], where the equivalence of FI over bosonic fields
to the averaging over vacuum states of these fields is proved.

A new understanding of FI occured in [11,12], where the evolution operator
of the model P(¢), in Euclidean metrics was represented in FI form as follows

exp {~ BH) = [ do, exp {~ [ dx: P(@) 1},
_ [1 2, .22 ..
dcsO—C&pexpl2 dx [(Vo)" + m 9] §, (3)
where dGO is a Gaussian measure of integration, generated by the action

so(cp)=%jdx [(Vg)* + m*¢*] of a free bosonic field and fdx:P(q)):

introduced for a certain renormalization of the classic interaction '[dx P(g).

This definition of FI in (3) which allows the removal of interaction
divergences coming from low-order «tadpole-type» diagrams 1is the
essentially new and important feature of construction by Glimm and Jaffe.
Next important step in the application of FI in QFT was made in the
quantization of Yang-Mills fields. A consequent scheme of quantization for a
massless Yang-Mills field was constructed in 1967 by Faddeev, Popov [13] and
De Witt [14] within the PI approach. FI turned out to be the shortest and most
convenient method for constructing the Feynman rules for perturbation
expansion in gauge field theories. This method played an important role in the
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investigations of Slavnov [15], Taylor [16], Lee and Zinn-Justin [17], t'Hooft
and Weltman [18]. In these papers a generalized Ward-Takakhashi identity was
obtained, various methods of invariant regularization were developed and a pro-
cedure renormalizing the perturbation series was built. Within FI there has also
been an attempt made to construct a quantum theory of gravitation [19].

In the 1970s, techniques based on the original ideas of Peak and Inomata
[20], and Duru and Kleinert [21] for solving certain non-Gaussian FIs occuring
in QM have attracted much attention. Standard examples of QM considered in
this approach are defined by using Bessel- and Legendre-type diffusion
processes, other than the Wiener process often used on these subjects. These
results do not require the machinery of stochastic analysis and can be treated in
a quick, transparent way. A development of this method is assumed in [22],

where certain non-Gaussian integrals with potentials like ~ 1/ r? or of the
Morse-type have been derived rigorously by using techniques of changing
dimension and time in Fls.

Excellent monographs and review papers have been devoted to FI in
quantum theory [13], {23—-29].

Although many points concerning the correct mathematical definition and
practical calculation of Fls still remain open, it becomes clear that the
description of a quantum system within the FI method is as convenient as using
linear operators acting on vectors of Hilbert space within the method of CQ.

We summarize the above, stressing in particular that:

— the FI is a convenient conception for the qualitative consideration of
quantum theories owing to the simplicity of using the WKB approximation, the
evident relativistic covariance of the fomulation and the ease with which some
specific constraints can be taken into account (e.g., introduction of «ghosts» in
Yang-Mills theory);

— the FI can, serve as a practical tool for the quantitative estimation of
characteristics of quantum systems because of the possibilities of reducing some
dynamical variables by exact integration (e.g., in the polaron problem), chan-
ging space/time (for the inverse-square potential in QM) and the convenience of
computer calculations for imaginary-time sum over paths [32], etc.

In the present paper we consider mostly the second aspect of the application
of Fls in quantum physics.

1. APPROXIMATE METHODS
FOR CALCULATING FUNCTIONAL INTEGRALS

A great number of problems of modern physics can be formulated in terms
of the FI approach. These problems have a common feature: their solution can
be obtained in the form of a functional integral, which is defined on the
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Gaussian measure. The most general form of a typical functional integral can be
written as follows:

2@ = [0 exp{ -3 o050 + W tal] @

where
o0 a4y 00
(®Dy ") = ] dx | dy ((x) Dy " (x, y) 9(»))
r r
andT e R? (d=1,2,..). The Gaussian functional measure
1 -
do, = G d¢ exp {— 5 (D, l(p)} 5)

is defined by a Green function D(x, y) corresponding to a differential

operator Do—l(x, y) with appropriate boundary conditions. The normalization

constant C, is chosen in such a way that

Jdoy=1 or, z0)=1.

In the standard nonrelativistic quantum mechanics the interaction functional
W is usually defined by a potential gU (¢):

Wiel=g | drv (o), ©)
r

where the coupling constant g is real. In other and more interesting cases (for
example, polaron, bound states in QFT, stochastic processes, etc.) the
interaction functional W [@] usually represents more complicated dependence
on @(x).

Up to now exact calculations of functional integrals of this type are known
[30] only for a quite limited class of interaction functionals: for quadratic forms
of interaction leading to the pure Gaussian integral and very limited numbers of
potentials (Coulomb potential and some others), for which the path integral can
be reduced to the Gaussian integral after a definite change of variables. For
others various approximate methods should be applied.

The contemporary progress in the computer hardwares and effective
softwares for the numerical simulation technique enables onme to obtain
numerical calculations of (4) with sufficient accuracy although the practical
implementation of this approach is very laborious. Besides, direct numerical
(lattice) simulation is bound up with the difficulties of the continuous limit in
lattice discretization and limited computer resources.
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The development of analytical methods is very important because only
analytical methods permit us to investigate qualitative features of quantum
physical systems and indicate effective ways for improvement of numerical
algorithms. Much efforts have been devoted to construct analytic methods for
calculating the characteristics of quantum system within the FI formalism.

Among numerous approximate analytical FI methods we can list the
following popular approaches: the standard perturbation expansion over g, the
quasi-classic WKB approximation, the I/N expansion, the instanton
approximation and the variational methods (e.g., the Gaussian effective
potential and space time transformation).

However, these methods have some limitations. For example, the WKB
method cannot be used to study high-order quantum effects, the 1/ N expansion
gives a low convergence of the approximation series at real space-dimension
numbers N = 3.

The standard perturbative method usually provides the perturbation series

z@=Y 'z,
n=90

having the practical sense for a weak interaction g <<l when only a few of
the lowest terms Z is enough for getting Z (g) with an acceptable accuracy.

In addition, the calculation of Z_ for large n really is not more a simple task.

If the FI (4) is real, then the problems of such kind are studied by means
of variational methods, which are popular due to their clear physical meaning
and relatively simple calculations. However, the variational technique does not
provide a regular prescription for choosing the trial functionals and it also does
not allow one to control the accuracy of the estimation. Moreover, there is a
class of problems (most of the QFT models with ultraviolet (UV) divergencies,
complex and nonhermitean functionals, and so on), where the variational
methods cannot be applied at all because the Jensen inequality no longer holds
for these nonreal actions.

Our goal is to develop a universal method to calculate this path integral for
any and especially large g. Sometimes it is possible to hear an opinion that in
the strong coupling regime g — oo the integral of the type (4) loses its Gaussian
character and another non-Gaussian measure should be introduced. For
example, it can be like this

do = C 8¢ exp {~ [ dx ")},
r

We want to claim that it is not true in the case of integrals of the type (4),
where
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* the highest derivative of the differential operator DO_l (x,y) is 2v, ie.
D, y) ~ 3% forv 2 1

* the interaction functional W [¢] depends only on ¢(x) and does not contain
derivatives like d@ (x).

Really, let us bring semiqualitative arguments. Let f (x) is an orthonormal

system of eigenfunctions of the operator DO_I:

D7 0 =5 1,0,

Gof)=laxfmem=5_ . %
r
The eigennumbers D, satisfy the following asymptotics

1

D 0( 2V] for n — oo,

Let us introduce the representation

ox) =, fND u, (®)

where {un, (n=0,1,...)} are a new denumerate set of variables. We have

@p; ' =3 Wl

n

Z(g):Co_f H duncxp[—%z lu"I2+gW[(p]

n

We expand ¢(x) as follows
O() = Gplx) + 6, (1),

oD =Y, £®VD u, C))
n<N

£,
¢>N(x)=2 fn(x)@un~z 5 un=0[—l‘J,
>N

N 7

where N is a large number. Then we have
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1 2
do=CoI1 duyexp| -3 % wf|=doydo,y,

n { n

1 2
dO'N=CNH dunexpk——i 2 lae, | },

n<N n<N

1 2
d(S>N = C>N H a’un exp { -5 2 Iunl ] s
n>N n>N

Jdoy=[do =1

The interaction functional can be represented as follows

X .
Wil =g | drU(¢N<x))+0[—v]. (10)
I‘ N
Thus the functional integral under consideration can be approximated
Z(9) ~ Zy(g) = | doy exp {gW [0,]) (11)

and
Z(g)= lim Z\(g).
N—yeo

One can see that the existence of this limit does not depend on the value of
the coupling constant g and for any large g there exists a number N (g) so that

Z(g)=ZN<g>+0(§], (12)

i.e., the functional measure can be considered as a Gaussian measure.

As a result we can conclude that the path integrals of the type (4) for any
g can be considered as functional integrals over a Gaussian measure. Thus we
can expect that there exists a representation of the initial functional integral (4)

z@=c,[ soexp{ -5 00 9+ W,iol | (13)

with another Cg, Dg_1 and Wg[(p], for which the main contributions from the

interaction functional gW [¢] should be accumulated in the operator Dg'1 and
the perturbation corrections over the new interaction Wg[(p] should be small.

Our problem is to find this representation.
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For this aim we shall use the idea that the normal ordering of the
Hamiltonian means essentially that the main quantum contributions to the
ground state or vacuum of the system are taken into account.

In the language of the FI it means that the conception of normal ordering
with respect to a given Gaussian measure should be formulated and next prob-
lem is to represent the functional integral (4) in the form (13), where

» the Gaussian measure is defined by the operator Dg_l,

* the interaction functional Wg[(p] is written in the normal form with respect
to the Gaussian measure with Dg”1 and it does not contain quadratic terms
over @, i.e. Wg[(p] =0 ((p4) for 9 — 0.

This representation we shall call the Gaussian equivalent representation of
functional integrals. In section 2 all definitions will be formulated.
This method will be applied to the following problems:
* investigation of the behaviour of the polaron in ionic crystals in quantum
statistics,
* phase transitions and phase restructure in quantum field models,
* propagation of waves in a stochastic medium with stochastically
distributed centres in radiophysics.

2. GAUSSIAN EQUIVALENT REPRESENTATION
OF FUNCTIONAL INTEGRALS

The main content of this Section is the development of the method of
Gaussian equivalent representation (GER) of FIs and its application to the
investigation of the ground state (vacuum) of various QFT and QM models in
order to study nonperturbative phenomena such as the strong coupling regime,
phase structure and phase transitions.

The GER method is a type of generalization of the variational technique,
but in contrast to the latter, it is efficient for QFT models with UV divergencies
and to theories with nonhermitean and nonlocal actions (stochastic and dissi-
pative processes), where variational methods cannot be used.

This method is characterized by a high accuracy of the lowest appro-
ximation, which can be obtained by simple and rapid calculations. It gives a
regular prescription for calculation of higher order corrections to the lowest
approximation and can be considered as the next step in the development of
approximate calculation methods.

2.1. General Formalism. Considering many theoretical problems in
statistical physics [33], quantum field theory and mathematical physics one
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deals with a class of functional integrals defined on a Gaussian measure. We
shall consider functional integrals of the general type (4) as follows

1 -
Zr @ =Cy [ 80 exp { -5 (@D; o) + gWolol } =
= [ o, exp {gWle)}. (14)

Here we have introduced the following notation for the Gaussian measure

1
do, = C, 8¢ exp{—i((pbol(p)}=

=Vde:D IT dow °"P“%”dxdyq>(x) Dy l(x, y) (P(y)J. (15)
0 5 r

The Gaussian measure is normalized in such a way that Idoo-l =1. The
integration in (14) is performed over functions @(x) defined on a region

rcr? (d=1,2,..). Usually the region T is chosen as a multidimensional
box: = {x: aijijj, G=1,.,d}.

A differential operator Do—l(x, y) is defined on functions @(x) with
appropriate boundary conditions. For example, the operator

D, y)=(——éa—j-2-+m§]8(x-—y) _ (16)

acts on functions satisfying some periodic boundary conditions. The
corresponding Green function D(x, y) satisfies the equation

| &y D', y) DY, 2) = 8x - 2)
r

and ensures definite boundary conditions.
The parameter g is a coupling constant. The interaction functional Wylol

can be written in a general form

Wolol = [ du, ¢ @, a7
where we have introduced the notation

@9) = [ dy a) o0,
r
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and dj_ is a functional measure. For example, for a potential having a Fourier

transfrom one can write

Wolol = | axtU 191 = [ dx [ T ) exp (i [ dy ko) 86— ).
r T ’ r
FI in representation (14) is well defined as a perturbation expansion over
the coupling constant g. Thus, physically acceptable results can be obtained
only in the weak coupling regime g << 1. In this case the Gaussian measure
do,, (15) gives the main contribution in FI and corrections can be calculated by

using a perturbation expansion.

The task is to give a representation of this integral in the strong coupling
regime [34]. Our idea is that the FI beyond the perturbation regime remains of
the Gaussian type but with another Green function in the measure. In other
words, we want to obtain a representation in which all main contributions of
strong interaction are concentrated in the measure.

Let us perform the following transformations of the integral (14):

P(x) = @(x) + blx),
D'y - b7, ), (18)

where b(x) is an arbitrary function and D (x, y) is an appropriate Green
function of the differential operator D -1

J dy D 7\, y) D (3, 2) = 8(x - 2)
r

providing the same boundary conditions.

Transformations (18) represent in a certain sense a functional analogue of
standard canonical transformations made in the Hamiltonian formalism. The
functional integral (14) takes the form

Z. (g) = Ndet Dﬂo exp { - % (bDO‘lb) } . _[do‘ exp {ng[(p, b, D}, (19

where -
d6=C6cpexr>{—%(<pD‘1<p)},

_ 1 - _
dW,[p, b, DI = W [9 + bl - 6D;'9) - 3 (@ 0y =071 @), @0

with the normalization condition Jdc-l =1.
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The tadpole Feynman diagrams give the main quantum contributions into
background energy of the system under consideration or, in other words, into
the formation of the background state or vacuum. The mathematical problem is
to take them into account correctly. In the quantum theory the main divergences
given by tadpole vacuum diagrams are efficiently eliminated out of
consideration if the normal- ordered product of operators is introduced into the
interaction Hamiltonian. Following this, the interaction functional in (19)
should be written in the normal-ordered form. Thus we should introduce in
W, the concept of the normal product according to the given Gaussian measure

do. It can be done in the following way

1

s et @9 . = o (40) g2 (aDa).

(21
This definition leads to the following relations
_[ do:e @ =, J'do':(p(xl)...(p(xn):=0.
After these transformations the functional in the integrand can be rewritten
i (ab) - % (aDa)

W, =g jdua e : e;(“") D+

1
i {(ab) — = (aDa) i _ _
+[gfduae 2 —5([1)0‘—1) ‘]D)]+

i (ab) ~% (aDa)

+|ig [, e (@9) - 4059 | -

1
i (ab) - — (aDa)
:[gfduae 2 (a¢>2+(<p[00"—0“‘1w)]: (22)

B

2

z_ 21, _%
whereez—e 1-z2 5

Now we introduce the concept of the «correct form» of the action in the FI.
We demand that the linear and quadratic terms on the integration variables
¢(x) should be absent in the interaction functional W, in (22). This requirement

is argued in the same way. The system under consideration should be near its
equilibrium point so that any linear terms on the variable ¢(x) must be absent.

The quadratic configurations ~ (p2 determine the Gaussian oscillator character of
the equilibrium point and all of them are concentrated in the Gaussian measure
do only. Therefore, they should not appear in the interaction functional and
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W1~(p3 for ¢ - 0.

Thus the «correct form» requirement is satisfied if the following equations
are held
_ i(ab)—% (aDa) .
g [ du, ia e - [ ay Dy 3 b0 =0,
r

i (ab) - % (aDa) (23)

g [ du_ a( a@) e +D. ) - D M y) = 0.

These equations provide the removal of the linear and quadratic terms from
the interaction functional. Let us introduce the following functional and its
correlation functions:

Wb = [ dyu_ exp { i (ab) - % (aDa) } ,

_ 8" Wb o
© (x,..., X)) = 8b(x,) - ... - 8b(x,) (61

Equations (24) can be written in the form

b(x) = g | dy Dy, ) 0,0,
r

D(x;, xp) = Dy(x,, x)) + & ” dy; dy,Do(xy, y) 0,001, ¥) DOy, xp). (25)
r

These equations determine the new Green function D (xp x,) and the function

b(x) in (22). Finally the new representation for FI in (14) can be rewritten in
the form:

Z;-(8) = exp {E,) [ do exp (W o1}, (26)
where
1 D 1 -1 | —t -1 A
Ey=5In det[B—J—E(bDo b) =5 (D5 = D ~'ID) + g (0],

i (ab) - % (aDr)

gW ol =¢ | dp, e re) 49 (27)

The representation of the interaction functional in the normal product form
means that

j do W le]=0.
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The function E; defines the «energy» of the zero approximation. Next

corrections to the leading term in (26) can be calculated by using a perturbation
expansion over the new interaction functional W, .

It should be stressed that representations (14) and (26) are equivalent.
Therefore the mathematical object Zy. (g) has at least two different repre-

sentations (14) and (26). In principle other representations may exist if equation
(26) has a more distinct solution. In this case we give preference to the repre-
sentation in which the perturbation corrections connected with gW or gW, are

minimal for given parameters.

All our transformations are valid for real and complex functions and
functionals in the FI.

In the case of real Fls representation (26) leads to the following conclusion.
Using Jensen’s inequality one can get

Z.(8) Zexp {Ey}, (28)
so that E0 defines the lowest estimation for our FL.

On the other hand, one can easily check that (26) defines the minimum of
the function E,. Thus, inequality (28) is the variational estimate of the initial FI.

Moreover, representation (26) makes it possible to calculate the perturbation
corrections to E; by develeping the functional integral (26) over W, .

2.2. The GER Method for Calculating the Partition Function. In this
Section we develop the main techniques of the GER method especially for
calculating the partition function in QM and QS. In other words, we deal with
integrals where the field variable is the coordinate of a particle r(t) which is
parameterized by the one-dimensional parameter . For simplicity one can
choose the symmetrical interval — T < t < T. The parameter T is connected with
time in QM or the inverse temperature 27 = [ in QS.

The partition function plays an important role in QS. For a wide class of
quantum mechanical and quantum statistical problems describing the interaction
of a quantum particle with a field or the propagation of waves and quantum
particles through a media with random or stochastic admixtures the partition
function can be represented in the form of a FI of the following general type

Z8)=

T T

¢, | erexpl- —;— [ e + £ [[ardsvaw-rw -9, @9
r(~T) =xr(T) ~-T -T

The standard normalization is ZT(O) = 1. The integraticn in (29) is performed

over all «paths» in a d-dimensional space satisfying periodic boundary

conditions.
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The kinetic term in the Gaussian measure can be written in the form

T T
[ ari?w =] drds vy Dl s re),
-T -T

2 (30)
-1 d
D, (t,5) =——= 8t — s).
0 ot 2
The Green function D((t, s) corresponding to the differential operator

DO*I(t, 5) and satisfying the periodic boundary conditions is

1 s
Do(t,s)=——2—It—s|—ﬁ -——~——+—5|t—sl. 3D
The Fourier transform of this Green function is
Byt = | dr ™Dy _l[ ! 5+ 1 5 ] - lz (32)
b 2l p+i0)* (p-i0) P

The parameter g is a coupling constant. In QM and QS, the potentials
describing the influence of a field interaction or media on a quantum particle
usually have a general form like V (r —r’; t —t’). So, we will consider this
class of potentials further. The potential V (r(f) — r(s); t — 5) in (29) is assumed
to have the Fourier representation

V@ - (s 1= 5) = | T s 1 - ) RO =[x (ks 1 - 5) IRE),
(2m)
dx (1= 5) = —2= 7 (ki 1 - 5,
(2n)
R (¢, 5) =r(t) — x(s). (33)
Thus the initial FI in (29) can be rewritten as
Z.(g)= | do, exp {gW,[rl}, (34)
where
T
doy = C, 8r exp | — % [ atds vy D' ) v | (35)
-T
T -
gW,irl =€ [] drds [ axc; ¢ - 5) *RED 36)

-T
and the normalization condition is | do, 1= 1.
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Now we are ready to apply the GER method to this FI. Note that for the
potentials V (r; ¢) of type (33) having their maximum at r = 0 we do not need
to introduce the function b(#), i.e., b(f) = 0. According to the GER method a
new Gaussian measure should be introduced into the integral (34) as follows

T
do =C drexp ! - % H dt ds r(t) D '1(t —5)r(s) ¢ . 37N
-T
The normalization constant C is _[dc-l =1.

Second, we introduce the «normal-ordered» form of the potential (33) in
the following way

eKR(5) = . KR S) oxp [~ KPF (- 5), (38)
where
Ft—-s)=D (@) -D (t-s),
[dok @) R, 5) =25, F (t - ).
In particular, the next relations are valid:
Jdo‘ KR - g
ri () rj(s)=:ri ® rj(s):+8ijD(t—s), Lj=1..d

A
The functional W [b] in (24) becomes

7
A . .
W [b] = % If de ds | azca; £ - 5) exp [ K2F (1= )] OO 20D (39
-T
Its second correlation function is

_____ W b}l po =" 8, 1805 [anom-0¢-51, o

00

where
@ (1) = % [ d%k; v K2 exp [~ K2F (1)),

Equation (26) defining «the correct form» of the interaction functional
becomes

oo

j dt {1 = cos (p1)] fdx(k 7) k% exp [~ K°F (1)), (41)

Tdp1-
Foy=] 2= s (1) “2)
0

SphH=

&. |

p* +gE(p)
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Equations (41) and (42) define the Green function D (7). For the asymptotic
cases of weak (g — 0) and strong (g — o) interaction regimes, these equations
may admit analytic solutions because one needs only that their behaviour be

within the accuracy of the first several leading order terms such as ~ g, g2 or,

~1/g I/ g2. In general, these are not solvable analytically as they are nonlinear
integral equations over functionals, but their solutions may be obtained by
developing some numerical techniques. For example, the fixed-point method of

consequent iterations can be used. Starting from guess function }Eo(pz) we can

calculate the iterations:
E =2 [ @il - cos o) | a% ;) K2 exp (- K2F (1))
n+1 d h ’ p n ’

= (43)
Fn+l(r) - J' 51.2 . JM)_

2 = o2

o ™ PP+eZ ()
This procedure can be developed for numerical solutions of (41) and (42). In
this case, however, the initial guess functions F(t) and fﬁo(pz) should be

chosen reasonably, i.e., the iteration process (43) has to converge to solutions

2eH=%_(pH) = lim z o, (44)
n~—oc

F()=F (= lim F (). (45)
n-—yoo

For a reasonable choice of guess functions, it is useful to investigate
asymptotics of solutions for equations (41) and (42). An example of analytic
and numerical solution of (41) and {42) is given in Section 3.3 within the
polaron problem.

Substitution of (37)—(42) into (34) and the requirement that the new
interaction functional to be written in the «correct form» (see Section 2.1) lead

to the new representation of the initial FI
Zy (8) = exp (- 2TE(9))J; (g),
I1(8) = [ do exp (gWr1), (46)

where the interaction functional looks as

T
gWir) = £ IJ deds [ a1 s)exp = K2F 1 - ) MRS 47
-T
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The function E(g) being «the leading-order energy» or the energy in the zero
approximation is

00 ~ 2
dp Do(p) )
E(g)=d Inh——=+p°"D@EH)-1|+
° 52" D ()

+£ [ & [ dx ;v exp (- KF @1 (48)

Thus the Gaussian equivalent representation of the initial FI in (34) is
defined by (46)—(48). For a given potential V (r) we have a pure mathematical
problem to solve (41), (42) and find the Green function D (¢, 5). Then we can
compute the leading-order energy E(g) (48) and the highest corrections to it by

perturbation calculations over the new interaction functional Wl @a7.

Below, in the following sections of this paper, we apply the GER method
to different problems of theoretical physics:

» the problem of the polaron in QS,

+ the phase transition phenomenon in the QFT model,

» the solution of the wave differential equation.

Each of these subjects reflects a feature of the GER method. High accuracy
is reached in calculation of the ground state energy of the d-dimensional

Frohlich polaron. One effective scheme of mass renormalization in the g(p';_3

theory, suggested within the GER method, leads to the correct prediction of the
nature of phase transitions in this theory. Finally an estimate of non-Hermitean
path integral arising in the theory of wave propagation in media with Gaussian
noise is obtained. The reduction of the initial PI to the new representation
generates a certain constraint equation determining this state and one should
give preference to the representation, that is efficient for solving a given task.

3. THE POLARON PROBLEM

The study of the physical properties of a particle interacting with a quantum
medium is common to many branches of physics. A classic example of this kind
is the Frohlich model of the polaron, — an electron moving with the
polarization distortion of ions in a crystal. The polaron’s popularity as a model
is due to its similarity to many field-theoretical constructions where bosons
couple linearly to fermions (the meson-nucleon interactions inside nuclei, the
«dressing» of quarks in the nonperturbative vacuum of QCD, etc.). The polaron
problem is treated most straightforwardly in the FI formalism which allows one
to reduce this problem to an effective one-particle task and, ieads to new results
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not given by other conventional techniques. However, despite its long history
and importance, the exact solution of the Frohlich Hamiltonian is still lacking
due to a high nonlocality (in time) and a Coulomb-like singularity in the
polaron action. The application of the GER method to the d-dimensional
polaron in this chapter resuits in highly accurate estimations of the main quasi-
particle characteristic of the polaron — its ground-state energy.

The polaron problem embraces a wide range of questions concerning the
behaviour of the electron of conductance in polar crystals {35—37]. The first
field-theoretical formulation of polaron theory was proposed by Frohlich [38] to
describe the interaction of a single band electron with phonons, quanta
associated with the longitudinal optical branch of lattice vibrations. Since that
time, the Frohlich polaron model has attracted interest as a testing ground of
various nonperturbative methods in quantum physics. One of the main quasi-
particle characteristics of the polaron is its ground-state energy (GSE) E (o).

Historically, the GSE of the polaron has been investigated in the weak [38],
intermediate [39] and strong coupling regimes [40,41] using different methods.
The first attempt to build the polaron theory, valid for arbitrary values of o, was
made by Feynman {35] within the path integral (PI) formalism using variational
estimations. As a result, Feynman’s PI approach gives good upper bounds of
E(o) in the entire range of o in a unified way.

There arises the question, whether the Feynman’s estimations of the
polaron GSE can be improved by introducing some trial actions, more general
than the quadratic action with two variational parameters used in [35]. This
question, in particular, has been studied within different variational approaches
[42,43]. But giving variational answers, it could not estimate the next
corrections to the obtained values.

Traditionally, the polaron problem has been investigated i three-
dimensional space (d=23) [44,45]. In recent years, however, polaron effects
have been observed in low-dimensional systems [46], and certain physical
problems have been mapped into a two-dimensional {d = 2) polaron theory [47].
The possibility that an electron may be trapped on the surface of a dieleciric
material has attracted much interest [48]. The GSE of the polaron for d=2 is
discussed in [49,50].

In the Section, we investigate the GSE of the polaron in the case of
arbitrary space dimensions (d> 1) and try not only to improve Feynamn’s
result, but also to estimate the next corrections that allow one to test the
accuracy and reliability of the obtained values.

3.1. Polaron Path Integral in d Dimensions. The Frohlich longitudinal-
optical (LO) polaron model for d =3 is determined by the Hamiltonian

1

1 1 i .
H=2mp2+ﬁ(1)z "L%*VT{Z gk(ale’kx——ake'kx), (49)
k k
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which describes the interaction of an electron (position and momentum
vectors x and p, band mass m) with the phonon field (creation and

annihilation operators alT‘, a,, quantization volume €, Plank constant %)

associated with a LO branch of lattice vibrations (wave vector k and
frequency ®) in a polar crystal. The electron-phonon interaction coefficient
for coupling with the wave vector k in (49) is defined as follows:

_ ot/ 2mw) “an o)V

& o : (50)

where the dimensionless Frohlich coupling constant o takes the value
o~ 1 +20 in most of the real ionic crystals (e.g.,0. >~ 5 for sodium chloride).
In the following, units will be chosen such that i=m=w=1.

Untii now, no nontrivial solution of H‘}‘"=En‘}’n was known. It has been
shown [51] for generalized Frohlich models that the function EO(OL) has no

points of nonanalyticity for an arbitrary > 0. Various methods [35,40,52,39]
have been used to approximately calculate the spectrum of H, especially to
obtain its GSE E0 for selected (weak, intermediate or strong) regions of o

To extend the Frohlich Hamiltonian (49) written for d=3 to arbitrary
spatial dimensions d> 1, we follow a physical approach [53,54] inspired by the
formulation of a lower-dimensional polaron preblem obtained from the Frohlich
Hamiltonian of a higher-dimensional system by integrating out one or more
dimensions. Following [54] we assume that the form of the Frohlich
Hamiltonian in d-dimensions is the same as in (49) except that now all vectors
and operators are d-dimensional and the electron-phonon interaction coefficient
8, 1s redefined as follows:

22
2 Td 2_~(8=1\ad-3/2_(a-1y2
=5 xd_r( T )2 n @2 (51)

Accordingly, we write the FI representation of the free-energy F(B) of a
polaron with a given temperature © = 1/8 as follows:

exp (—BF) = Tr [exp (-BH)], (52)
where the Hamiltonian 4 in (49) should be written in terms of the coordinates
and momenta. The «Trace» Tr= TrelTrph here is assumed to be taken over the
whole space of states of the «electron + phonon» system.

It is well known from the famous paper by Feynman [35] that the path
integral approach to the polaron has an advantage because the phonon trace
Trph in (52) can be adequately eliminated and as a consequence, the polaron
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problem is reduced to an effective one-particle problem with retarded
interaction. The result reads

Ziw=exp(-BR= [ Sxexp(stx, (53)
: x(0)=x(B)
where the action S[x] is
1 elt—sl te B —le—sl
Ix(6)— x(s)! ePo

i p ., 22 B
Six]= ) I dt )kz(t)+ # ﬂ dtds (54)
0 0

The free energy F(B) tends to the GSE as B — o (zero temperature case)

. 1
E =-lim = InZ (o). (55)
The path integral in (53) is not explicitly solvable due to the non-Gaussian
character of §. For its variational estimation for d =3, Feynman proposed [35]
a quadratic two-body trial action §  instead of §:

B
St > g 11 =~3 [ dric +
0

p
+ % H dids[x(t) — x(s)]2 exp {— it —sl}, (56)
0

where constants C and o are variational parameters. With the trial action S
one gets an exact solution for path integral in (53). A variation for finding of
the absolute minimum of EOF (w)=F () for B — = over parameters C and ®
leads to a rigorous upper bound of the polaron GSE at arbitrary «, that is
Feynman’s known result [35]. '

Here we will show that the application of the GER method improves
Feynman’s estimation. We consider the polaron GSE in the case of arbitrary
space dimension d> 1 and start again from the FI in (53)—(54).

For further convenience, to get a symmetrical region over ¢ [56), we change
the variable of FI in (53) to

X(t)>re-T), T=p/2 (57

with the electron motion r(f) embedded in d-dimensional space. Accordingly,
the GSE of the Frohlich polaron E(0o0) (it will hereafter be denoted by E(a))

can be defined as follows:

E(0)=-lim

T oo

1

T In ZT((X),

(58)
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where a FI is introduced [55]

T
Z{o)=C, J drexp ——% (rDSlr) +% J I dtdsV [r(t)y— r(s); t—s]} ,
r(-T)=x(T) -T
1 1 T 1 (59)
c,=VaetD,', ¢, D5'ny=] [ duds rD;'e, 5) x(s).
-T

The standard normalization E(0)=0 in (58) is satisfied under the condition
Z0)=1

The free-electron system is described by the kinetic term (rDalr), where the

differential operator Dal and its Green function D, are given by (30)—(31) in

the previous Section as T — oo.
The Coulomb-like interaction part, the electron self-interaction, is given by
the retarded potential

L T@2-V2) [ _dk ,
VIR; t—s] = i———4 @ © | a7 xR KR,
R=r()—r(s). (60)

with the electron position vector r(f) embedded into d-dimensions.

The path integral in (59) is not explicitly solvable due to the non-Gaussian
character of V[R; t—s] in (60).

3.2. Bounds for the Polaron Ground-State Energy in 4 Dimensions. For
o not too large, the PI in the initial presentation (59) may be estimated by using
a perturbation expansion in . The problem is to estimate Z (o) beyond the

weak coupling regime. Accordingly, we can apply the GER method to this
probiem.

Our key steps will be the same as those in the previous Section. We
remember that these are:

(i) the introduction of new Gaussian measure dc (20) standing for the
kinetic part of the FI, which forms a new representation of the initial FI, and

(ii) the requirements of the «normal-ordered» and «correct» form of the
interaction part of the FI in this representation, that is reached by introducing
constraint equations (41), (42). This scheme results in a new representation of
the initial FI: an exponential with the leading term of energy factorized out as
a free multiplicand (48) and all the corrections to it are defined by another FI (47).

Performing this scheme and using formulae (41), (42) and (46)—(48), we
obtain the new representation (47) of the GSE of optical polaron within the
GER method as follows:
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E(0) = E (o) + AE(av), 61)
where the function E () being the «leading-order energy», or the GSE in the

zeroth approximation, is (see Eq. (48))

1T 25 2 O T exp(—f)
Ego)=—d{ - jdk[ln(k D)) K2D(ky+11+ Tor | [ ar 2 i [+ ©

The function F(f) in (62) is defined by the equatlons (see Eqs (41) and
(42))

F(t) = J dk — Dl - =1 j e == osk) (63)
—co 0 K+ o, Z(k)
s _w ikt _ 1 R ., 1 —cos(kr)
By =] are™30)=5 { diexp(-) =~ P (64)
Here we have introduced the «effective coupling constant»
W I(/2-1/2) (65)
ad=a-Rd, Rd= 2d T/ 2) .

Our leading term (the zero-order approximation) Ej () gives an upper

bound to the exact GSE of a polaron E(0). Actually, applying the Jensen’s
inequality to (61) one gets

exp {—2T - E(a)} 2 exp {-2T - EO(OL)}. (66)
Consequently,
E(0) 2 E(av). (67)

The high-order corrections AE(o) in (61) can be obtained by evaluating the
Pl

T

exp (2TAE@)}=C | &rexp -—;-H dids (YD1 (t,5) r(s)+W[r] | . (68)
r(-N=r(T) ~-T

Here, the interaction functional written in the new representation is

Wir] = I'(d/2)d J‘J‘ dids &5

“ Nam @

exp{~ K*F(t - 5)} : e;k[r(')"r(s)] N (69) -

dk
xj k4!

where e;=ex— 1-x—%7/2.
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Due to equations (64) and (63) in the new representation, all the quadratic
terms in the polaron action functional are concentrated only in the new Gaussian
measure do and do not enter W[r].

It should be stressed that representation (61) is completely equivalent to the
initial representation (58) for asymptotically large T - eo. The Gaussian
equivalent representation (61) gives the origin of various approximations
differing from each other in the accuracy of deriving equations (63)—(64).

As a simple approximation of Z(k) obeying the necessary asymptotics, one
can take the function:
Bl =t s, (70)
0y B+
where | and & are parameters. Then, (62) becomes

Eo=-4) g1+ “—} ] I e
0 3uvn V1- exp(~At+ At E24°

A=Vl +E2, (71)

Minimizing the obtained energy over the parameters | and &, one easily finds
a variational upper bound in d dimensions. For d=3 (o, =a) it explicitly

reproduces the well-known Feynman’s variational upper bound to the polaron
GSE [35]:

Ef(0) = min mgin E(o, d=3). (72)
n

We stress that the extremal conditions on parameters W, & in (72) are
equivalent to a particular choice of the function X(k) in (70). However, the
function in (70) is not an exact solution of (64) and (63). It means, that
Feynman’s trial quadratic action does not represent entirely the Gaussian part
of the polaron action for d =3. Exact numerical solution of equations (64),
(63) by the iteration procedure allows us to obtain E (o) more exactly, which

improves Feynman’s result EF(OL) in the entire range of o. The obtained
numerical results E (o) for d=2 and d=3 as compared with Feynman’s
variational estimation are displayed in Tables I—VI.

The correction AE(cr) should be evaluated from the functional integral in
(69) by expanding ¢”in (68) in a series

AE@) =Y AE (0)= - lim 51; Idc{W[r]}

n=1 n=1

(73)

connected’
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We stress that (73) is not a standard perturbation series in the coupling
constant o, as o, enters into W not only explicitly as a factor, but also
implicitly through the function F(¢). The first term in (73) with n=1 equals
zero due to normal ordering. Nontrivial corrections are given by terms with
n 2 2. For the second order correction to E (o) we get

oo

D, QR (a), (74)

n=2

__ 2. Maad
AE,(0) =~ oc; - 18732

where
__@nT(n+1/2)
" 16" T+ d/2)
T —ac [F(atby+F(b+c)—F(a+tb+c)—F(b)]2"
R =||| dadba. N
n J.y cye (F@)F ()2

¢o-2b-c [F@+F(c)-Flatbto)-FB)I™

+
[Fa+b)F(b+c)]™V 2

(a-2bc [F@+b P F(b+c)—F(a)—F ()
[Fla+b+c)F(b)]"HV 2

+

We stress that expression (74) can further be simplified, but we keep this
form for clarity.

Finally, we get the following expression for the GSE of the polaron
E® (@) = Ej() + AE, (), (75)

which can be evaluated numerically for arbitrary o and different space
dimensions d.

Notice that Ey(0) in (62) is of an order of (xi, (i=0,1,2,..) while AE, (o)
in (74) is only of an order of (xj, (=2,3,..).

The theory under consideration has two parameters o and d. In general, all
our expressions should depend on both of them. Notice that key expressions in

(64) and (63), completely defining the functions F(t) and Z(k), depend only on
the effective coupling constant o 4 This means that the following relations

F"o, n=F e 1), 2"a k)= ™o k) nm>1 (76)

take place, where the numbers of space-dimensions n and m are in square
brackets [...]. In the particular case of d=2 and d = 3, we found

FOgp = F[31(3_739_ ’,J’ 2ok 22[31[3% ,k)‘ 7
J
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Table 1. Comparison of known weak coupling results for the polaron ground
state energy E(o)=0o-C,,+02-Cy+ 0(3) in two-dimensions

Authors Cot Coa
S.Das Sarma, B.Mason [58} -2 -0.062
R.Feynman’s theory [59] -2 -0.04569
4th, 6th order pert. theory [59] -2 -0.06397
O.Hipolito [60] -2 -0.0245
Present Ey(Qt) ~1/2 -0.046626
Present Ej(a) + AE, /2 -0.063974

Table II. Comparison of known weak coupling results for the polaron
ground state energy E(a)=a-Cg+0% Cyot 0(c®) in three-dimensions

Authors Coi Cua

S.Das Sarma, B.Mason [58] -1 -0.016
R.Feynman'’s theory [59] -1 -0.012347

J Roseler [61] -1 -0.0159196*
T.Lee.... [52] -1 - 0014
D.Larsen [39] -1 -0.016
Present Ey(ct) -1 -0.012598
Present Ey(at) + AE, -1 -0.015919

*The exact value

Then, considering (62) one easily finds that this scaling relation is also valid
for %Eo(a - We have

EZ(@) =% 59 (2‘4—‘1 ] (78)

Note that the relation (78) was obtained earlier in [54,50]. But this scaling is
not valid beyond E; because the interaction functional W[r] depends not only

on o, but also on d in a complicated way.

Let us consider the asymptotic limits of spatial dimensions d at fixed finite
o. We get

1imad=;3%—+m, lim ad=3“‘f’;ﬂ_e—+o. 19)
d—1 - d—yoo \2d
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Table III. Comparison of obtained estimations of the coefficient C, of the
polaron ground state energy E(o) = (x2C +0() for d=2 as (X—)oo

Authors C,
S.Das Sarma, B.Mason [58] -0.392699
R.Feynman’s theory [59] : -0.392699!
W.Xiaoguang, ... [59] -0.40472
O.Hipolito [60] -0.392699
Present Ey(o) -0.392699
Present Eq(a) + AE, -0.400538

IEstimated in [59]
2Adiabatic approximation

Table IV. Comparison of obtained estimations of the coefficient C, of the
polaron ground state energy E(0)= oc2C+0(1) for d=3 as oz—)oo

Authors C,
Feynman, Schultz [65] -0.1061
Pekar (by Miyake) [41] -0.1085041
Miyake [41] -0.1085132
Luttinger, Lu [62] -0.1066
Marshall, Mills [67] -0.1078
Sheng, Dow [68] -0.1065
Adamowski, ... [57] -0.1085128
Feranchuk, Komarov [69] -0.1078
Efimov, Ganbold [56] —0.10843

YEstimated in [41]
2The exact value

Taking into account (79) we can conclude that as d becomes larger, o,

decreases rapidly and in fact we deal with the effective weak-coupling regime
0o, << 1 even for o not too small. For example, the second-order corrections

AE, (o) behave as follows:
AE,(0) = — o 5 0 (80)
2 4 00 g d

In other words, our leading-order energy term E () tends to the exact GSE

E(a) as d grows because the role of AE(ar) becomes insignificant.
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Table V. The obtained estimations of the poralon ground state energy E(o)
and E@(o) for d=2 in the intermediate range of o compared with known
results obtained in [60,70,58]

o Feynman* | Hipolito [60] | Huybrecht [70] | Das Sarma [58] Present
E, Ey+E,
0.6364 | -1.0198 ~1.0266 -1.0201 -1.0405 -1.020 -1.028
1.909 | -3.2247 -3.2263 ~3.2263 -3.5690 -3.231 --3.250
3.183 | -5.9191 -6.0902 -5.9193 -6.9688 -5.928 -6.039
4.450 | -9.6935 -9.8723 -9.7154 -11.388 -9.710 -9.871

*Qur estimation by Feynman’s variational method

Table VI. The obtained estimations of the poralen ground state energy Ej(c)
and E®(a) for d=3 in the intermediate range of o compared with known
results obtained in [57,65,64,39]

o | Osc. [57] | Feynman [65] | Smondyrev [64] Larsen [39] Present
upper upper upper lower upper lower E, Eo+ E2
0.5 -0.5 -0.5032 -0.5041-0.5041|-0.5040 | -0.5052 | -0.504 | -0.5041
1.0 -1.0 -1.0130 1.0167 | -1.0175|-1.0160 |~1.0270{ --1.014 | -1.017
1.5 -1.5 -1.5302 — — -1.5361| -1.576 | -1.532 | -1.539
2.0 -2.0 -2.0554 —— — -2.06401 -2.172 | -2.058 | -2.071
2.5 -2.5 ~2.5894 — — -2.5995| -2.872 | -2.593 | -2.614
30 -3.0 -3.1333 ~3.1645-3.2122 | -3.1421 —_ -3.138 | -3.167
4.0 -4.0 —4.2565 —- — —4.2771 — -4.265 | —4.305
5.0 -5.0 ~5.4401 --5.49451-5.7767 — - -5.452 | -5.528
7.0 | -71.356 ~8.1127 ~8.0406 | -8.8832 — — -8.137 | -8.255
9.0 | -10.72 ~11.486 -10.834 | -12.654 — — -11.54 | -11.69
11.0, -1494 -15.710 -13.905 | -17.165 — — -15.83 | -16.04
20.0f -44.53 —45.283 — —_— — — -45.33 | -45.99
30.0] -97.58 -98.328 — — — — -98.52 | -99.86
40.0] -1719 -172.60 — — —- -— -173.4 [ -175.1

3.3. Numerical Results. In this Section, we present numerical values of
E(0) and E(z)(ot) estimated ' within the GER method and compare them with

known results obtained in various ‘(weak, strong and intermediate) ranges of o.
Obtained results are given in Tables [-IV.

A. Weak Coupling Limit. Among known numerical results, concerning the
GSE of the polaron, the more accurate are those obtained for a — 0. Below, we

calculate the exact GSE of the d-dimensional polaron for the order o in the
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weak coupling limit and compare the accuracy of the obtained results with exact
perturbation estimations presented in [52,58,59,49,60,54] for d=2 and d=3.
For a not too large, the polaron self-energy E(o) has the form

E@=a-C, +a’ C,_,+0(c). 81

2

The coefficients C, and C,, are known with a good accuracy for d =2
[54] and d=3 [58,54]. In our approach, the coefficient le arises only from
Ey(a) in (62); whereas the €, from both E (o) and AE,(a) in (74). We get

the coefficients €, and C,, exactly as follows

Rd
Cor=—73 d (82)

ol
and

2 2 2 oo

Ryd 8 Ril@d @n)rent1/2)

027 36 | T 3g 3R ne 2 n
9n & AT/ 2)

(83)

T ] 1 1
B =| [ dudy [ + " }
n 1 (x+y)2 (x Ay)n+l/2 (x+y— l)n. 172

The behaviour of these coefficients with respect to the space-dimension
number 4 is shown in Fig.1.

For comparison, in Table I we give the known results for d=2 as o — 0.
One can see from Table I that our C,,, obtained only from E (o) improves

Feynman's estimate about 2 per cent. Adding the next correction calculated
from AE, results in C, 2 =-0.063974 which is in good agreement with the exact
value in [54]. Note that /3.E2 contributes about 40 per cent to the total value of
(’w 2

For three dimensions, obtained results are displayed in Table II together
with the known results of the polaron GSE for the weak coupling limit. Qur
leading term of energy Ey(0) improves the Feynman variational estimation of

C, 2 by 2 per cent. Next correction results in C,,=-0.015919 which is in good

agreement with the exact value in [54]. Note, for d=73 our AE2 contributes
about 29 per cent (smaller than for d = 2) to the total value of C,, .- Comparing

the obtained results for d=2 and d=3, we conclude that higher-order
corrections (the second-order one in our case) coming from J o) are

substantially more important for d=2 than for d=3. In other words, the
polaron effect is stronger in low space dimensions (see Eq. (80)). This effect
was noted earlier in [54,50].
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Fig. 1. The behaviour of the coefficients C,; and C, of the polaron
ground state energy E(0)=o-C, +02Cy, +0(@?) at the weak

coupling limit o — 0 in dependence on the number of space-
dimensions d

B. Strong Coupling Regime. The GSE of the polaron in the strong electron-
phonon coupling regime has been considered in [41,58,59,57,56].
It is well known that at this limit
E() = o C+ O(1). (84)

For large o (75) becomes

oo

d 2T(d/2)d* (2n)'T(n+1/2)
on ¥ 372 2 n 2
o 9x o 16" nl(n+d/ 2)
For comparison, in Table III we give our result with the known results of
the polaron GSE for d =2 in the strong coupling regime 0 — ee.
For three-dimensions the estimation of the next higher-order corrections for
the coefficient Cx was obtained by the authors earlier in [56]:

C <-0.108431. (86)

A

E‘z)(a) =— ocg

+0(1).  (85)

A comparison of the known results for the coefficient C_for d=3 is displayed
in Table IV.
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C. Intermediate Coupling Range. In the intermediate-coupling regime the
main tool for obtaining polaron properties is the variational approach {35,52].
For d =3, the Feynman variational method based on a trial oscillator-type action
gives an upper bound of the polaron free energy, valid for arbitrary o.
Generalizations of the Feynman action for d =3 to the arbitrary density function
[42] and arbitrary quadratic action [43] have improved this upper bound. In our
opinion, the result [43] obtained for d=3 is the best variational upper bound in
the whole range o. But this variational method does not give the next
corrections to this bound. Other numerical methods dealing with this problem
[62,63] require specific complicated schemes of calculations which may
introduce statistical errors. Estimations of both the upper and lower bounds for
the polaron self-energy obtained in [39,64] should be improved.

Considering intermediate values of o, we have derived equations (64) and
(63) numerically, by the following iteration scheme:

Fro(=9[L,],
T (K)=QJF,), n20, (87)

starting from reasonable assumed functions Fo(t) and f.o(k) (see (70)). Both
the series F (f) and in(k) turn out to be rapidly convergent and the value of

the leading term Eo(a) does not change after n > 6. The results for Eo(oc) and
E(z)((x) in two dimensions are presented in Table V.

The values of E (o) and E(z)(a) for d=3 are given in Table VI (and

displayed in Fig.2) in comparison with the known data [39,65,43,64]. Our
E (o) for d =3 coincides with the upper bound obtained in [43] and improves

the variational results calculated in {71].

We have made preliminary estimations which indicate that the decreasing
series in (73) is alternating. Then one can expect that the third-order correction

AE.(o) may slightly increase the value of E(Z)((x) and inclusion of higher-order
corrections AE _.(o) might result in an insignificant oscillation of E(">2)(0c)

between Ej(c) and E (2)(()(). In other words, the obtained E (2)(0() may be accep-

ted as a lower bound of the ground state energy of the polaron. Note that
numerical results obtained in [66] at three points (o= 1,3,5) by the method of

«partial averaging» lie exactly between our curves for Ej(a) and E (2)(0(). Recent

exact Monte-Carlo calculations [72] are in good agreement with our results for
d=3.
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Fig. 2. Some known results of the polaron ground state energy
E (in three-dimensional space) displayed as a function of the
electron-phonon coupling constant o. For clarity, the ratio
R=(E . —E, VIE _ is shown, where E, are estimations
obtained in [86,52,89,97] and E,,  is the «harmonic-oscillator»

approximation [86]. In these units the curve for E, coincides

harm
with the abscissa axis. Curves correspond to estimations: 1 —
Feynmans’s upper; 2/3 — Larsen’s upper/lower; 4/5 —
Smondyrev’s upper/lower; 6 — our Eq(ot) and 7 — our E@)(a)

Our results obtained with the proposed method provide a reasonable
description of both two- and three-dimensional polarons at an arbitrary coupling
o. The consideration could be extended to computing the other characteristics
of the polarom the effective mass and the average number of phonons, as well
as to estimating the energy of the polaron in the presence of a magnetic field
due to the validity of the proposed method for the complex functionals.

4. CHARACTER OF PHASE TRANSITION
IN TWO- AND THREE-DIMENSIONAL (p4-THEORY

The phenomenon of spontaneous symmetry breaking, or in other words, the
vacuum structure rearrangement is an important part of many quantum field
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constructions. In this Section, we will investigate this phenomenon within the
GER method. The problem, of course, can also be studied within the canonical
quantization method. However, the functional representation has an advantage
of calculating the whole effective potential (EP) in this theory, which allows
one to get more information ahout phase transitions in the system under
consideration. k

4.1. Statement of the Problem. The scalar (p4 theory in two- and three-
dimensions has been intensively investigated [73,74] as a simple, but nontrivial
example, on which the problem of spontaneous symmetry breaking or, in other
words, the phase structure of quantum field models is studied. It has been found
[75] that the highest order Quantum corrections can give rise to the instability
of the classical symmetric vacuum. There are two phases in this system and PT
phenomena take place at certain coupling strengths. The most difficult problem
here is to determine the order of the PT.

The simplest example, where the vacuum exhibits a nontrivial structure, is
the (pé4 theory. Many papers [73—76] are devoted to investigation of the nature

of PT in this model. We shortly treat some nonperturbative methods that seem
to be basic among the investigations on this subject. An original approximation
[73] using the Hartree-type renormalization exhibits the first order PT in this
theory. A similar result was obtained [77] within the Gaussian EP approach.
The dimensionless critical coupling constant, for which the first order phase
transition takes place is G =1.62 in both papers. These conclusions disagree
with the mathematical theorems [83,84] proving that the second order PT

should occur in the (pg model. There are papers [76—85], where different

variational methods have been used for solving this problem and the second
order PT has been observed in the region G ~ 1. In the previous studies (88,89]

A

we have shown that the critical coupling constant leading to a second order PT
cannot exceed the value G, =1.4392 and may be found near G~ 053

We study this problem using the method of the EP. The absolute minimum
of the EP V(@) at the point @ = @, determines the true ground state (vacuum)

of the theory. If a PT takes place at a certain coupling g = 8, then for g < 8, the
system is still in the original unbroken symmetry phase with ¢.=0. At reaching
& =g, the origin 9, =0 is no longer the absolute minimum of V(@,) and the
System goes to a new state with ¢, #0 corresponding to the lower energy. The

first-order PT means that the point ¢ =0 remains local, but is not the absolute
minimum of V(@g). In other words, the first derivative of V(@) is zero and the

second one is positive at the origin @,=0. In the case of the second-order

transition, the point =0 is a local maximum of EP at § > 8, The second
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derivative of V(@) at ¢, =0 becomes negative. Thus, the coefficient a(g) in the
representation of V{@,) for small 9,

V(9,) = E(g) + o) ¢F + O(¢D) (88)

plays an important role in determination of the character of phase transition.
If a(g) is zero at certain g =8, and negative for g > 8. up to g —> e, then one

can say that the second-order PT appears here. On the contrary, the
positiveness of a(g) for any g excludes the second-order transition. Rigorous
calculation of o(g) at an arbitrary coupling constant is a complicated problem.
However, we know that at large g, the coefficient et(g) remains negative in
case of the second-order PT and is positive if the transition is of the first-
order. »

We study this problem qualitatively by using the GER method, described in

Section 2.1. We will show the possibility of the second order PT in gq); and

give an estimation for the corresponding critical coupling constant 8, For the

model g(pg our result excludes the occurrence of the second order phase
transition.

4.2. Renormalized Lagrangian of the cpg y-Model. We consider the g(p4
scalar field model in two- and three-dimensions. We will use throughout this
Section the Euclidean form of the model*. This theory contains ultraviolet
divergences, but it is superrenormalizable, i.e., it has only a finite number of
divergent Feynman diagrams. In order to remove these divergences we should

introduce appropriate counter-terms into the Lagrangian. In this section we
consider the superrenormalized scalar field theory with the Lagrangian:

1
=5 01~ Mo - § N (o' m) - R, (89)
where we have introduced a «normal-ordered» form of interaction as follows:
N_{0°0)} = 9" - 69(wD,_(0) +3D2(0),
4% exp {ikx}

D (x)= .
) ‘{ en? m?+ k2

(90)
Here x e Q, Q is a large but finite volume in Rd, (d=2,3) and m and g are the
mass and the self-coupling constants, respectively. In two-dimensions (d=2)
all divergences are only of the «tadpole»-type and are readily removed by

*In the case of the Euclidean metrics a separation of the coordinates into space and time is

unimportant, so the accepted notation for the «space-time» is R? where d relates to number of space
coordinates plus Euclidean (imaginary) time as well.
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introducing the normal product N, of the fields @(x) into (89). In this case
R =0. In the three-dimensional theory there arise additional divergences

which are cancelled by counter terms

R = 2A N, {9°(x)} +3E, , oD

where

A, =6g" [ >0 (),
92
aEm=— Zjdxp (x) — 3 g (:ka{_‘.dxe'kxD (x)} ©2)

At small g the Lagrangian (89) describes a system invariant with respect to
the transformation ¢ <> —¢. The question is whether this symmetry remains
for increasing g.

4.3. Effective Potential in the ¢) ,-Theory. The EP is defined as

1
V(o) =~ hm o In 1@y,

1@ =C, [808] 05 J a'ow) b exp [ ailol, 03
Q

—Naet 1 .

All integrations are performed in BEuclidean metrics.
According to the GER method, we transform the field variable as:

O(x) = 0+ b(x) + O(0), (94)

where the new field variable ¢(x) corresponding to the new mass 1 and the
function b(x) satisfy the conditions:

[ a%0mw=0, [ d%bx)=0, 5*x)=5 = const. 95)
Q
Let us go over to the normal ordering in the new fields ¢(x) using the well-
known formula [75]

}3_2
N, {exp{B o(0)}} = { exp { B0y + b(x) + 0(x) + - A(m,p) }}
A=A(mu)=D,(0) - D, (0), - (96)

J‘ d% exp{zkx} 1

D (x :
u®= en? 2+ ulQ
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First we substitute (94) and (96) into (93) and perform integration over d¢0.
Then, following the key steps of the GER method, we obtain

Ig(9p) =@ [ do,

X exp [ Ja‘sn, {4 16'0 + 40°Corayr b)) + 1200b00%(0) -
Q

- [ —;— Au¢2(x) +4,b(0)0(x) + 8E + = (b + (pO)A }H

I dou- 1= Cu I 8¢ exp [_% -[ ddx¢(x)(—82+ |J.2)¢(x) =1, o7
Q

where the new counter-terms concentrated in the second square brackets in
(97) coincide with (92) if we substitute m — |.. The leading order term of the
EP is obtained as the «cactus»-type part V,(¢@,) of the EP as follows:

d 2 2 2
Vo(%)=—lj dk[ [1+m_“] mou }+~(%+b2)+

en? Wk | p K
+ f ((pg + 6cp(2)b2 +b* - 6A(cp(2)+ b2) + 3A2) +

<p§+ b2

+ (Am—Au)+[8E —sE-La A] (98)

no2

The requirement that the linear term Nu{q)} must not arise in the interaction

and the quadratic field configurations be concentrated in the Gaussian measure
d(Su leads to the following constraint equations for the parameters b(x) and p:

2 2 2 _
b(x)[-m"+ 3g(A — @p)— gb"— A + Au] =0,
2 2 2 ;2 —
W-m+3g(A-@—b)-A +A =0. 99
Thus, we finally obtain the formula for the effective potential
V(oy = V(9y) + V(9

. 1 100
V(@) ==lim = InJ (@), (100

Qoo

where the new path integral is introduced:
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-QV_(9)
Jg@g=e =% =

| do, exp ‘s{ d%x N, {— £ (o*0o+ 400+ b0o) +

+12¢,b(x) ¢7(x)] - [ A0 )+ A WD) + BE,+ 5 L s oHA ]H (101)

Equations (98) and (99)—(101) define completely the EP at an arbitrary
coupling g. Below we will investigate the EP in (100), whose parameters
b(x) and [ are limited by the constraints (96).

For further consideration, it will be convenient to work in units of m
dealing with numerical results. We define

E=(wm*?, @ =dnm> 2 and B = dnm® 2. (102)

4.4. The «Cactus»-Type Potential as the Leading-Order Term of the
Effective Potential. In two-dimensions, the «cactus-type» part of the EP
becomes as follows

2
m
v0(¢0)=8—n{§—1—1n§+<b§+32

G 103
+ ¢ [@g+ B 43I0 + 6807 - B In &~ ©2 In &)]). (103)

We note that the potential (103) is invariant for (Do & B.
The parameters § and B in (103) are limited by the following equations:
B¢ - GB) =0,

104
26 -2+3G(In & - @} - B =0. (104)

Let us consider the constraint (104). A pair of «trivial» solutions:
B=0 and §=1—§2£(1n2;—<1>§) (105)

can be found for an arbitrary coupling constant G. Since G > G,=1.4392 an

additional pair of «nontrivial» solutions
_& = 2436 e g?
B——G and E=-2+ 2 (Ing 2] (106)

appears here, too. So for G < G, the only solution to be substituted into (103)

is the «trivial» one, but since G > G0 there is an alternative: one can choose
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Fig. 3. The Gaussian part Vy(®p) (in units of m%8m) of the
effective potential as a function of @, for different values of the

constant: crosses, G = 0.5; triangles, G = 1.5; squares, G = 1.6251
and rhombs, G=2.0. The dashed lines represent the
«nontrivial» branches. The «trivial» branches are denoted by
the solid lines

either (105) or (106). We choose the pair obeying the lowest value of
VO((I)O) for certain fixed @,

All necessary calculations can be performed numerically. The obtained po-
tential V,(®) is plotted in Fig.3. Near the origin ®;=0 the potential V(@) is
presented by the «nontrivial» branch (if G> Gy B#0 as it is situated lower
than the «trivial» one. But for larger values of @, the «trivial» solution B=0

provides the lowest value of the potential. This picture leads to an interesting
result. Let us consider the local minima of both branches. For B=0 the
minimum point ®;=A in Fig.3 is given by the equations

{B=0,
{2—3clng+cq>§=o. (107)

On the other hand, the minimum of the «nontrivial» branch B #0 is fixed at
the origin @ =0 for any G> G, and (104) becomes

j ®,=0,

|2-3GImE+GB =0. (108)
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Due to the invariance of the potential VO((DO, B) in (103) for Q)OHB

Eqs.(107) and (108) are identical. In other words, the minima of the potential
(103) corresponding to different solutions of (104) are equal. The vacuum
with (<D(x))=<b0¢0 is not lower than the initial one located at the point

(<D(x))=(D0=O. There is no reason for occurrence of the first order phase
transition.
4.5. Non-Gaussian Correction in the (pg-Model. In the previous Section,

we derived the expression for the EP consisting of two parts. Considering only
the «leading» term V(@,) one can say nothing about the nature of the PT in the

theory. To answer this question one should also consider the remaining part
V(®,) of the effective potential, defined in (100). In the weak coupling limit

one can estimate it expanding the exponential in (97) in perturbative series. But
explicit calculation of the non-Gaussian functional integral Jo(®y) in (97) at

arbitrary values of the coupling constant g and @, is a complicated problem.

However, we are able to estimate it for infinitesimal values of @, at arbitrary g.

We rewrite (97) in the form correct for infinitesimal ?y:
d 4 3
Jo(@p =] do exp l -& {fl d N, [605) + ab()0" )] +

2.2
+ g—-zﬁ [ | dN (@%00) + 3b(x)¢2(x))ﬂ . (109)
Q

This representation can easily be obtained due to the validity of the following
transformation in the integrand of (97):

1
exp (- @, W) = cosh (¢, W) ~ exp { 5 (pin + 0((pg) }

for infinitesimal @, and a finite functional W.
Applying to (109) the Jensen’s inequality we get upper bound

2.2
89, d d
Vel@9) S Vi@ =-S5 [ d% [ a% [ do, x
Q Q

X (N0 (N, °0) + 96()bGIN, 9 (N 6°0)). (110)

It is easy to show that
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[ do N * N 8% 0) = 6D3(x - 3),
| dcuNu¢2(x)Nu¢2(y) = 2Di(x ~y). (111)
Then, we rewrite (110) in the form

2 3G2¢2
( =" 2 (Q+3B)

4min2 (112)

du
Q=5 - 4] 3ln(1—u) 2.3439...

Substituting the parameters £ and B in either (105) or (106) into (112) one
gets the behaviour of VS’;((DO) for small values @, ~ 0. Omitting the details of

calculations we write the results

2

m” [ 30 2.2 2 (113)

Vsz(cpo):—g{—TG (D0+O(<I>0)} for G<G,

and
2
m 3QG 9G | .2 4
V‘;(‘DO)=—Q{—[ 2% —}CDO-fO((DO)} for G>G,,

3GInE-&-2=0. (114)

From (103) we get the following asymptotic behaviour:

2
ERLENPV 4

V(@) = P {@;+ 0P )} (115)

as @, — 0 at any G.

Finally, taking into account (100) we obtain the following behaviour of an
upper bound of the EP in the region of small @, ~ 0:

2
VD] = V(@) + Vii[®@y] = T ()] + O(®5), (116)

where

o,(G)=1-30G%2, G <1.6251,

A6y = 0,(G) =1-30G 2/(2§) -9G/2, G>1.6251,

3Glng-&-2=0. (117
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One can easily check that the coefficient o, (G) in (117) becomes negative as
G> G_;=05333 and remains negative for increasing G. But 0,(G) is

negative at arbitrary G > 1.4392. In our opinion, it indicates an occurrence of
the second order PT in the model under consideration.

4.6. Strong Coupling Regime in the (pg-Model. In the three-dimensional

case the counter-terms defined by (92) play an important role in the behaviour
of the EP in the strong coupling regime. We have

Du(x)=w, A=4L"n—(é~1). (118)

47tlx]
Substituting (118) into (99) we get
Bx)[2+3G (@, -E+ 1)+ GB*+3G2In &) =0,
—2E*+2+3G (@2 -E+ 1)+ GB* +3G I E=0. (119)

A non-trivial solution B#0 exists only for 0 <& < 1. Let us consider the
solution B=0. In the strong coupling regime we obtain

E=GYV % InG+0(GVInln G). (120)

In other words, the effective coupling constant

g _G \/T{Ho[l"l"cj} a21)

Geffzznu=€= 3InG InG

becomes small as G — o and one can successfully develop a perturbation
expansion in G, series for the functional integral (101):

V(@)=Y GavPipp. (122)
n=1

Here Vs(cl) =0 due to normal ordering in the exponential in (101). After some

calculations we obtain:
(n ~yv® _
Vsc ((pO) - Vsc ((90) =0,
m> 18C (123)

3 = 1 342
V@) =g 5 G,

where the constant is
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M; fIf d>kd’pd’q
- 6 2
(1+k )(1+p )(1+q Y(I+Hk+p) )(1+(k+q) )

16 |
= J 2 (arctan u) =1.7593..

Taking into account the «cactus»-type potential

3

Vo(@9) = { Eo@ +27 (GInE-5)9)+ 0@ | (124)

we finally obtain the effective potential

3
V(@) = V(D) + V, (D) = —8’% (E(G) + w(G) @ + 0@}, (125

where the desired coefficient
3G2 V96 C, 1
(Gy=——InG 2 = (126)
2 (In G) (n G)

is positive. This result excludes the second-order phase transitions in the ¢g

model. It can be accepted as an argument in favour of either existence of the
only first-order transition or absence of any PT in the three-dimensional case.

Comparing the results (117) and (126) for d=2 and d =3 we find that the
effective mass renormalization is crucial for this problem. In two-dimensions
the mass renormalization includes the «tadpole» divergences only and the

behaviour of o(G) in (117) indicates a favour of the second-order PT in (p;n For

d=3 the mass renormalization contains an additional term of the second
perturbative expansion’s order which has the opposite sign comparable with a
«tadpole» contribution. As a result, the function a(G) in (126) remains positive
for all G>0.

5. WAVE PROPAGATION IN RANDOMLY DISTRIBUTED MEDIA

Theoretical investigation of the propagation properties of waves in a
randomly distributed environment reflects certain interest due to its many
practical applications, including calculation of electronic conductance in crystals
[90], wave localization [91] and dumping of signals in the atmosphere or water
[92]. A series of different methods has been applied to this problem, among
which path integral techniques [93]1—[95] reflect considerable interest.
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In this Section we investigate wave transmission in a randomly distributed
media using the GER method.

5.1. The Green Function of the Wave Equation. The propagation of a
wave u(x) (e.g., electromagnetic) in a time-independent environment can be

described by the wave equation given in real 3-dimensional space x € R>:
[A+ 0%(1 + e(x))]u(xle) = J(x), ® 0. (127)

The constant ® is the «dielectric constant» and defines the frequency of
unperturbed waves. J(x) is the source function.

The random noise is described by a random stationary field e(x), which is
assumed to vary stochastically with a certain correlation function (e(x)e(y)). For
simplicity we shall consider Gaussian noise

(EMEM), =AP(x —y) =
i} CGeWP ) AR [ 2 XY ,
—Kexp{ e ]mxj nyzexp{ K+ ik } (128)

where the interaction coefficient A shows the intensity of noise described by
the distribution function P(x-y) with a correlation length [. These two
constants define the influence of the Gaussian noise on the propagation of
waves in media.

The solution of (127) can be represented in the form
u(xle) = [ d yGeyle) (),
where G(x,yle) is the Green function of wave equation:
[A + 0°(] + e(x)]G(x,yle) = §(x — y). (129)

The problem is to find the solution of (127) and then average it over
random fields €(x) to find the wave amplitude:

u(x) = (u(xle)),.
For this the Green function should be averaged over random fields g(x):
G(x—y) = (Gxyie),

Thus we consider this problem solved if the averaged Green function G(x) is
found and its asymptotic behaviour for large distances Ixl —» o can be
calculated.

Let use proceed to solve the equation (129) for the Green function. It is
essential that the operator
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K=A+ o1 +&(x)

is not definitely positive. We shall consider the solution
G(x.yle) = —— 8( )

corresponding to the so-called causal Green function. This solution can be
written in integral representation like (29) as follows:

L (k+iOyu

G(x,yle) =— du e2 dx—y)=

L
2

[y a— ]

2

- é (j) duT exp‘ jdx[[ axtj ro(+ex)) |1 8x—y).

Here we have used the «time-ordering» operator T.. Omitting details of

calculations we display the results:

1 T i 2 L (x- ![2
Gxyey=—74§ —— 72 SXP [ - [u) u+ ]] I (x,yle),

2 g (2r tu) 2 u “

where a FI is introduced:
u
- i T 1),
I (xyle) = | do exp l x5 { dte [x Ty (1 - u]+v(t))}, (130)

with the measure defined as

. u
do,=C,dvexp [ % I d 1‘\}2(1)] .
0

The integration in (130) is taken over «paths» v obeying the condition
v(0) =v(u) =0.
Here the normalization is chosen as
Jdog=1 or, 1xye)_o=1.

Now we can average the functional / (x,yle) over the random fields &(x):

Ix—y) = xyle), =
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4 K ’
= [ do exp { -2 % [[aa t’P[ V(1) V(T') + (x—y) T—;l M .
0

The averaged Green function is

| meo] e

- G(x)=—

B |—

where

1m=c, | &exp[%]dn}z(n—
0

v(0)=v(u)=0
4 M ’
_x% Hdth’P[v(‘c)—v(r')+xTuT ]} (131)
0
For further convenience we introduce the following notation:
2
r=Ixl, u=Lz, B =ro, T=Lt, ‘c’=is, g=£
® w? w? 4

and change the variable of the FI:

v(1) = i—z: p(1).

Then we have

@ T E
o= ﬁ I(21:: i " 2[“ J]I(B’Z)’
where
; B
1B2)=C, j 8pexp[—2- J dt",Z(t)_
P0)=p(B) 0
p
-£ Ve o t=s
5 J(I) dtdfP( o PO—pE)+n— )] (132)
where
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5.2. Calculation of the FI by the GER Method. In order to apply the GER
method to this problem, let us introduce into (132) symmetrical limits by
redefining

2T=P, t—=t-T, s—>s-T, pO—-pt-T).

Then we rewrite (132):

T
1{2)=C, j dpexp Jlé j dt pz(z) -

P(-T)=p(T)=0 T
T -
N _
—°§ | —jT dtdsP[;Z [p()—p(s)] +n ’TSJ]

Let us introduce the operator

1 o
Dt —s)=i 2= 8(t—s5).
) %)

Note that it differs from (30) by the factor —i. The Green function Do(t,s)

corresponding to this operator satisfies some periodic conditions and reads

[ ts i
Do(t,s)—— 5 It —sl— 2T—>~ ” It — sl.
Its Fourier transform is
~ i
Do(p) =
p

Then we rewrite
T
. 1 i
Lo=c, | % expi—7 [[ dusoDy t-sp)-sWipl}
p(=T) =p(1=0 T
C,=(det D) 2.
The free «kinetic» term is diagonhl:
O, (=) p() = (1) 8; Dy (1= 5) py(s))-

The interaction is given by
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i vz
gwipl =5 [ dtdsP[ (@) —p(s) +n L }
-T

T
=3 IJ s | 25 e {12138 0 G-peopenie-s) |

-T

We find that the measure dX of momentum integration now becomes
2 i
4%, (k, 1 - 5)= L% exp { &+ (i~ 5) }

Following the GER method, we define the new measure

T
do = C8 p exp [ —% [ atds oy D™t = 5) p(s)) } ,
-T

where
(1) D™\t =5) p(s)) = (b, (DD}t = 5) p, (5)).

Notice that, the operator Di_jl has nondiagonal elements owing to the presence
of the vector n in W [p].
In the following we will use the notations

J. do exp { i% kip(t) —p(s) } = exp { - a ;)2 (kF(t - 5)k) } ,

(kF(t = 5)k) = (kF,; (1 = 5)k),

F(t—5)=D(0) - D(t - 5) = | iff— [1 —cos p(t — 5)] D(p?),
0

Ao el dk z (133)
g =£ | _JTdtds | Saew { [ KT+ Bk ]} x

Z., I—s
. Nz R ik LTS
X exp{ i / k(b() - b(s)) + i kn ; } ,

(g ) qD; =g
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(I)(t«s)-zg— J' 1 1 ) qix

xexp{—[q[l+(lmi)2F(t—s)]q]+iqn L;—ls}:
=@ (t—5)+n X nl, (1 —5),
q)ij (t—s)=5ij Ot —s)+n; n D (1 -3).

Then we get

Wbl

0 (1= =8 5 1) ob 8, (1) 8b, (s) = 0= [5’,-]- 0) - (t-s)l.

Following all the steps described in section 2 we finally obtain
1(z) = e—ZTEo(Z)JT(z),

r B (134)
J7(z)=CJ8p exp{—%j J dtds(pD—lp)—g:W[p] :l
-T

where the leading-order term (or the zeroth approximation of the GER
method) is

co

Ey2) = g [ln(1+[)—2(p)ﬂ

oo

d z . t
% —J;dtj ﬁz—exp{—{q[l+(lw)2 F(t)jlq]+zqnal}.

The interaction functional in the new representation is

T
Wip1=—£ [ [ aras [ arc (g, 1- 5%
-T
Nz
Z . t~s i——[qp® —p(M
Xexpi— I+—F(t—s)}q +zqn—~}:cl‘° : (135)
p{ [q[ (1? } ol |2

2

TN S N AN
where.ez.—e 1-2z 5
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The requirement of the «correct» form for the interaction functional is held
if we put

D(p) =Dy(p) + Dy P)Z(P)D(p),

or
- Dy (p) :
Do(p)= ~0 - l-I .
I+D,(mZ(p) p°+iZ(p)
Then (41) and (42) become .
X(p) = — w(p) = | di[1 - cos (pt) D) (136)
and -
Fio=i | 9 izcosp®) (137)

o T PPHIZp)
5.3. The Green Function for Large Distances. The initial (131) and the
new (134) representations are equivalent. The next step is to solve (136) and
(137) which allows one to calculate the function E(z). The explicit form of the

interaction functional (135) allows the highest corrections to be calculated. In
principle, these calculations are similar to those in the polaron problem except
that now all functionals are complex. Nevertheless, all transformations of the
GER method applied here are valid. In the future we plan to solve these
equations and investigate the behaviour of the Green function G(x) for different
values of the parameters A and I.

So the main problem is to solve the integral equations (136) an {137).
However this represents a laborious task and one can by-pass this difficulty
considering the large distance’s behaviour of the Green function G(B).

We now consider wave propagation for large distances B~ ec. Then by
analogy with the polaron problem, where the similar asymptotics have been
studied, we can expect that the following behaviour of the FI occurs

152~ o oxp {-BEC: 2 D).

Consequently,

G(B%E‘% ;j: —dfzexp{ﬁ[%[z+%]—ﬂz; X,ml)”~

I o0
- 5 J 55 exe (B, (138)
0



508 EFIMOV G.V., GANBOLD G.

where

i 1
S(z)= 2 (z+ . ]—E(z, A, ol).
The main contribution to the FI in (138) for large B can be obtained by

using the saddle-point method:
8(z) = S(zq) — L §"(z,)(z - 2)* + Oz — )’
0/ " a2 0 0 0

with the conditions
S’(zo) =0, S”(zO) >0.
Finally, one gets

GB) ~ ﬁ exp (BS(zy)].

CONCLUSION

We have formulated a regular method for calculating a wide class of
functional integrals beyond the region of perturbative expansion. Providing a
good accuracy of the lowest approximation, this method has the following
advantages compared to the variational approach: the possibility for obtaining
higher-order corrections in a regular way and the validity for complex
functionals and theories with divergencies.

We have applied this method to different problems of theoretical physics,
namely:

(i) the polaron problem in QS,

(ii) the PT phenomenon in the QFT model,

(iii) the solution of the wave’s differential equation.

These subjects show the efficiency of the GER method. High accuracy is
achieved in calculation of the ground state energy of the d-dimensional polaron.

An effective scheme of mass renormalization in the gcp;3 theory, suggested

within the GER method, leads to the correct prediction of the nature of the PT
in this theory. At last, an estimation of the nonhermitean path integral for the
Green function in the theory of wave propagation in media with a Gaussian
distribution is performed. '

The developed approach opens up new possibilities for estimating, with
high accuracy, the bound states of few-body systems under any potential as well
as for investigating static characteristics of the polaron in magnetic fields, when
the action of the system is complex and any variational method becomes
inapplicable.
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