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The one of the main points of the investigations in*high energy physics is to study the
next chain: a law of the quark and lepton mass spectra — the puzzles of the quark and
lepton family mixing —> a possible new family dynamics.

‘The new family symmetry dynamics might be connected to the existence of some exotic
gauge or matter fields or something else. For this, it will be better to study the possibilities
of the appearance of this gauge symmetry in the framework of the Grand Unified String
Theories. In the framework of the four-dimensiona! heterotic superstring with free fermions
we investigate the rank eight Grand Unified String Theories (GUST) which contain the
SU3)ygauge family symmetry. We explicitly construct GUST with gauge symmetry

G=8SUB)x UM x (SUGYx U(1))y and G=30010)x (SUB)x U(1), < SO(16) or
E(6) x 5U(3),; < E(8) in free complex fermion formulation. As the GUSTs originating from
Kac-Moody algebras (KMA) contain only low-dimensional representations, it is usually
difficult to break the gauge symmetry. We solve this problem by taking for the observable
gauge symmetry the diagonal subgroup GS™ of the rank 16 group
G x G < SO(16) x SO(16) or (E(6) x SU(E)_,,)2 < E(8) x £(8). We discuss ihe possible
fermion matter and Higgs sectors in these models. In these GUST, there has to exist
«superweak» light chiral matter (mé <My} The understanding of quark and lepton mass
spectra and family mixing leaves a possibility for the existence of an unusually low mass
breaking scale of the SU(3),, family gauge symmetry (some TeV).

OnHO ¥3 OCHOBHBIX HAPABIEHWH UCCACHOBARHVM B (DM3MKE BBHICOKMX BHEPrHE — 310
M3YNCHHUE CHEYIOLIeH [ENOUKH B3auMMOCBRIeH: 3aKOHOMEPHOCTH CIIEKTPA MACC KBAapKOB #
JIEATOHOB —» 3arajika CMELIMBAHUE KBAPK-JICHTOHHBIX TOKONEHMH —> BO3MOXHAN HOBas
JUHAMEKA TOKONEHUH.

HoBasi guuaMuKa CHMMETPUH TIOKONEHMHE MOXET OBITh CBA33aHA C CYIUECTBOBANMEM BK-
30THHYECKMX NOeH MATePUR W KaBpOBOdHEIX nosteil. [To3TOMY MONC3HO HIYUUTE BOMOX-
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HOCTD BOSHMKHOBEHHA TaKOH KannGpoBouHOi cummerpun B Ctpynneix Teopusx Benuxoro
O6venunenus (CTBO). B pamkax 4-MEPHOM reTepoTHIECKOi CYNIEPCTPYHEI CO CROBOIHBIMU
tepmuonamu ucenenyores CTBO panra 8, conepxaiie SU(3), KamuGpoBouHylo cHM-
MeTputo noxoneHHd. Mel sBrO Koncrpywpyem CTBO ¢ KaTHGPOBOYHOH CcUMMeTpHeit
G =SU(5) x U(1) x (SU(3) x Ul))y u  G=S5S0(10) x (SU(3) x U(l)y < SO(16)  wunm
E(6) x SU(3);; € E(8) B hopMyTHpOBKE CBOGOMMBIX KOMILIEKCHBIX thepmuoHOB. Tak Kak
CTBO, ocropaunple na Kaun-Mymm anre6pax (KMA), cogepXar TonnKo npecramieus
HU3KHX Pa3MEPHOCTEH, TO OGBISHO HMEETCS TPYNHOCTE C HApYLIEHHEM KaHOPOBOYHOM CHM-
MeTpiH. Mel peluaem 3Ty npo6reMy BLGHpas B KadecTse HabmonaeMoil KaTMGpoBoYHOI
CHMMETDHH JHaroHaibHylo noarpynny G Y™ rpynnsl pasra 16 Gx G < SO(16) x SO(16)
nny (E(6) x SU(B)H)2 < E(8) x E(8). Msi obcyxmnaem JOMYCTHMBIE CEXTOpa (PEPMHOHOB Ma-
TepuH ¥ Xurrca B 9THX Mofenax. B takux CTBO Bo3nukaer «cynepcnabas» nerkas Ku-
paibHasg MaTepus (m[;<Mw). AHanu3 KBapK-NENTOHHOTO MAaCCOBOTO CNIEKTpa M CMeLIK-
BaHUsA IOKONEHUH OCTAB/ISET BOIMOXHOCTh CYLIECTBOBAHHA HCOOBMHO HM3KOTO maciuraba
Hapyenus SU(3)y; kanubpoBo4HOH CHMMETPHH TTOKOJEHHUE (neckosbko TaB).

1. THEORETICAL TRENDS BEYOND THE STANDARD MODEL

L.1. The Family Mixing State in SM and Quark and Lepton Mass Origin.
There are no experimental indications which would impel one to go beyond the
framework of the SU(3)C X SU(2)L X U(I)Y Standard Model (SM) with three

generations of quarks and leptons. None of the up-to-date experiments
contradicts, within the limits of accuracy, the validity of the SM predictions for
low energy phenomena. The fermion mass origin and generation mixing,
CP-violation problems are among most exciting theoretical puzzles in SM.

One has ten parameters in the quark sector of the SM with three gene-
rations: six quark masses, three mixing angles and the Kobayashi — Maskawa
(KM) CP-violation phase (0 < 8" < ). The CKM (Cabibbo — Kobayashi —
Maskawa) matrix in Wolfenstein parametrization is determined by the four
parameters — Cabibbo angle A = 0.22, A, p and n:

Y Vs V) (1-ym2 A AM(p—im)
Ve =| Vea Ves Ve |=[ =2 1-1/222 g2 W
Va Vs Vi | (AP0-p-im) -2

In the complex plane the point (p, 1) is a vertex of the unitarity triangle and
describes the CP-violation in SM. The unitarity triangle is constructed from the

following unitarity condition of Ve V:b-f« VM:A?‘?.
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Recently, the interest in the CP-violation problem was excited again due to
the data on the search for the direct CP-violation effects in neutral K-mesons
[1.2]:

Re(i— ): (74+6)107%, | @)

Re[i— )=(23i7)-10‘4. 3)

The major contribution to the CP-violation parameters £ . and ¢ 'K
0_pxpo Am(Bd)

(K O-decays), as well as to the B i By mixing parameter x ;= is due to
B)

the large f-quark mass contribution. The same statement holds also for some
amplitudes of K- and B-meson rare decays. The CDF collaboration gives the
following. region for the top quark mass: m, = 174 + 25 GeV {3]. The complete

fit which is based on the low energy data as well as the latest LEP and SLC data

and comparing with the mass indicated by CDF measurements gives
m,=162+9 GeV [4].

"The main drawbacks of SM now are going from our non-understanding the
generation problem, their mixing and hierarchy of quark and lepton mass
spectra. For example, for quark masses p =1 GeV we can get the following
approximate relations [5]:

m, = (@) ¥my, k=012 iy=u, ij=c, =t

=d, i, =s, Ii,=b, 4)

A2k _ . :
mik~(qH) mg, k=0,1,2; i 2

0 1

A2 od 4 & e
whereq"H~(q‘;1),qH~4 5=1/A and A=sin8..
Here we used the conventional ratios of the «running» quark masses [6]

md/ms =0.051 + 0.004, m/mc =0.0038 £ 0.0012,
m/my, = 0.033+0.011, m(u= 1 GeV) =(1.35 £0.05) GeV, &)

and mP"Y* = 0.6m (= 1 GeV).

This phenomenological formula (6) predicts the following value for the
t-quark mass: '

mP"® = 180—200 GeV. (6)
In SM these mass matrices and mixing come from the Yukawa sector:

— - * 7 | 7 ;
L,=QY gk +QY,q,h+LY Lh+hc, )
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where Q. and L; are three quark and lepton isodoublets, ¢ , g, and e, are
three right-handed antiquark and antilepton isosinglets, respectively, h is the
ordinary Higgs doublet. In SM, the 3x3-family Yukawa matrices, (Yu)ij and

(Yd i have no any particular symmetry. Therefore, it is necessary to find
some additional mechanisms or symmetries beyond the SM which could
diminish the number of the independent parameters in Yukawa sector L,

These new structures can be used for the determination of the mass hierarchy
and family mixing.

To understand the generation mixing origin and fermion mass hierarchy
several models beyond the SM suggest special forms for the mass matrix of
«up» and «down» quarks (Fritzsch ansatz, «improved» Fritzsch ansatz,
«Democratic» ansatz, etc. [7]). These mass matrices have less than ten inde-
pendent parameters or they could have some matrix elements equal to zero
(«texture zeroes») [8]. This allows us to determine the diagonalizing matrix
U, and D, in terms of quark masses:

diag _ + diag _ +
Y;®=D Y, Dp, Y, uyug. (8)
For simplicity the symmetric form of Yukawa matrices has been taken, there-
fore: DLzDR*, U, = UI;. These ansatzes or zerc «textures» could be checked

experimentally in predictions for the mixing angles of the CKM matrix:
VCKM=ULDL+‘ For example, one can consider the following approximate

form at the scale M, for the symmetric «texture» used in paper [8]:

0 A% 0 0 2* o
Y, = A8 0 a2 Y,=lat ol aad | ®
0 Az 1 0 3 1

Given these conditions it is possible to evolve down to low energies via the
renormalization group equations all quantities including the matrix elements of
Yukawa couplings Y, the values of the quark masses (see (4)) and the CKM

u, d

matrix elements (see (1)). Also, using these relations we may compute UL

(or D)) in terms of CKM matrix and/or of quark masses.

In GUT extensions of the SM with the family gauge symmetry embedded
Yukawa matrices can acquire particular symmetry or an ansatz, depending on
the Higgs multiplets to which they couple. The family gauge symmetry could
help us to study in an independent way the origin of the up- (¢)) and down-
(D) quark mixing matrices and consequently the structure of the CKM matrix
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Verm = UD". Due to the local gauge family symmetry a low energy breaking

scale gives us a chance to define the quantum numbers of quarks and leptons
and thus establishes a link between them in families. For the mass fermion
ansatz considered above in the extensions of SM there could exist the following
types of the SU(3) x SU(2,) Higgs multiplets: (1,2), (3,1), (8,1), (3,2), (8,2),

(L,1),..., which in turn could exist in the spectra of the String Models.

In the framework of the rank eight Grand Unified String Theories we will
consider an extension of SM due to local family gauge symmetry,
Gy :SU(3)H, SU(3),, x U(1),, models and thier developments and their possible

Higgs sector. Thus, for understanding the quark mass spectra and the difference
between the origins of the up- (or down) quark and charged lepton mass
matrices in GUSTs we have to study the Higgs content of the model, which we
must use from the one hand for breaking the GUT-, Quark-Lepton-,
GH=SU(3)H,...-, SU(Z)LX U(1)- symmetries and from the other hand — for

Yukawa matrix constructions. The vital question arising here is the nature of the
V mass.

2. TOWARDS A LOW ENERGY «EXACTLY SOLVABLE»
GAUGE FAMILY SYMMETRY

2.1. The «Bootstrap» Gauge Family Models. The underlying analysis for
this family symmetry breaking scale is lying on the modern experimental prob-
ability limitations for the typical rare flavour-changing processes. The estimates
for the family symmetry breaking scale have certain regularities depending on
the particular symmetry breaking schemes and generation mixing mechanisms

(different ansatzes for quark and lepton mass matrices with 3yor3,+1,

generations have been discussed in [5]). As noted there, the current under-
standing of quark and lepton mass spectra leaves place for the existence of an
unusually low mass breaking scale of non-abelian gauge SU@3), or
SU3)® U(D)y family symmetry ~ some TeV. Some independent experiments
for verifying the relevant hypotheses can be considered: light (m, K), heavy
(B, D)-meson and charged lepton flavour changing rare decays [24, 25, 26, 5],

family symmetry violation effects in e'e”, ep- and pp-collider experiments
(LEP, HERA, FNAL, LHC).

’ The including into the model of the Higgs fields which are transformed
under the SU(3)H X §U(2), symmetry, like H=(8,1) (or H; =(8,2), p=12)

and Xi=(§,l) (or X;=(_3_,g), p=1,2), gives the following contribution to the

family gauge boson mass matrix:
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8
Mg =g X £ H ey (m Y, (10)
d=1
3 A4 b. . .
MDY =gh 3 XY ()

1
The lowest bound on M, can be obtained from the analysis of the

branching ratios of W, n, K, D, B, ... rare decays (Br 2> 1()_15_]7).
In the paper [5] we investigated the samples of different scenarios of
SU(B)H—breakings down to the SU(2)H>< U(l),,, U(l),,, x U(l)g,, and Ul)yg,r

subgroups, as well as the mechanism of the complete breaking of the base group
SU(3),,- We tried to realize the SUSY conserving program on the scales where

the relevant gauge symmetry is broken. In the framework of these versions of
the gauge symmetry breaking, we were searching for the spectra of horizontal
gauge bosons and gauginos and calculated the amplitudes of some typical rare
processes. Theoretical estimates for the branching ratios of some rare processes
obtained from these calculations have been compared with the experimental
data on the corresponding values. Further we have got some bounds on the
masses of Hu—bosons and the appropriate H-gauginos. Of particular interest was
the case of the SU(3),,-group which breaks completely on the scale M, . We
0

calculated the splitting of eight H-boson masses in a model dependent fashion.
This splitting, depending on the quark mass spectrum, allows us to reduce con-
siderably the predictive ambiguity of the model — «almost exactly solvable
model».

We assume that when the SU(3),-gauge symmetry of quark-lepton

generations is violated, all of the 8 gauge bosons acquire the same mass equal

to M, . Such a breaking is not difficult to get by, say, introducing the Higgs
0

fields transforming in accordance with the triplet representation of the SU(3)H

group. These fields are singlet under the Standard Model symmetries: (z € (3,

L1, 0)and Ze (3, 1, 1, 0), (T'*) =38, (20)y =8V, i,a=1,2,3, where

V=M, ). We understand that here we need a more beautiful way to break this
0

symmetry like dynamical way. But at this stage it is very important to establish
a link between the mass spectra of the horizontal gauge bosons and known
heavy fermions like t-quark. The degeneracy of the masses of 8 gauge
horizontal vector bosons is eliminated by using the VEV’s of the Higgs fields
violating the electroweak symmetry and determining the mass matrix of up- and
down-quarks (leptons). Thus, there is a set of the Higgs fields (see
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corresponding Table 1): H(8, 2), k(8, 2), Y(g, 2), X(3,2), x; 4(1, 2) which could

violate the SU(2) x U(1) symmetry and could determine the mass matrix of up-
and down-quarks. On the other hand, in order to calculate the splitting between
the masses of horizontal gauge bosons, one has to take into account the VEV’s
of this set of the Higgs fields.

Now we can come to constructing the horizontal gauge boson mass matrix

Mjb (a,b=12,...8):

— A2 2 2
M —MHOSab+(AMd)ab+(AMu Dab - (12)

2
H)ab
Here (AMdZ) and (AM;‘)ab are the «known» functions of heavy fermions,

2 —
AM, Dap=
vacuum expectations of the Higgs bosons that were used for construction of
the mass matrix ansatzes for d-(u-)quarks.

For example in the case of Ng=§+l families with Fritzsch ansatz for

Fub(mt,mb,...), which mainly get the contributions due to the

quark mass matrices and using SU(3H) x SU(2) Higgs fields, (8,2), [5], we can

write down some rough relations between the masses of horizontal gauge
bosons («bootstrap» solution):

2
g 1 mm
2 g2 g2 a2 H ct
My »M”2~MH3~MH0+ { }+

1 4 |2 1-m/m.
M2 om? om? = =m2 L s (13)
H H H H H W4 |52 »
4 § 6 7 0

7\'2- t
where A and A are Yukawa couplings.
We were interested in how the unitary compensation for the contributions

of horizontal forces to rare processes [5] depends on different versions of the
SU(3),-symmetry breaking. The investigation of this dependence allows one,

firstly, to understand how low the horizontal symmetry breaking scale M, may

be, and, secondly, how this scale is determined by a particular choice of a mass
matrix ansatz both for quarks and leptons.

We would like to stress a possible existing of a local family symmetry with
a low energy symmetry breaking scale, i.c., the existence of rather light
H-bosons: m;, 2 (1—10) TeV [5]. We have analyzed, in the framework of the

«minimal» horizontal supersymmetric gauge model, the possibilities of
obtaining a satisfactory hierarchy for quark masses and of connecting it with the
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splitting of horizontal gauge boson masses. We expect that due to this approach
the horizontal model will become more definite since it will allow one to study
the amplitudes of rare processes and the CP-violation mechanism more
thoroughly. In this way we hope to get a deeper insight into the nature of
interdependence between the generation mixing mechanism and the local
horizontal symmetry breaking scale.

2.2. The N=1 SUSY Character of the SU(3)-Gauge Family Symmetry.

We will consider the supersymmetric version of the Standard Model extended
by the family (horizontal) gauge symmetry (and if one will need, we will also
extend this model by the G,=SU(2), right-hand gauge group). The

supersymmetric Lagrangian of strong electroweak and horizontal interactions,
based on the SU(3).x SU(2), x U(1), x SU(3),, (where the Gp-gauge group

and the Abelian gauge factor U(1), also can be taken into consideration), has

the general form:

A
2 ngVk

V=1 =[aTrwiwh + [ateste b s+

A A
2¢.V _ZKHVH

+fdteTi@te " oe T

A 2 A A A

20 V. +y28 V. 2¢ V -2 .V
+Jd49Tr(H;e 22T T o

+(Ja% PGS, @, H n.&..)+hc) (14)

(see for comparing L N=2in Appendix A). In formula (14)Athe index k runs

over all the gauge groups: SU(3)., SU(2),, U(1),, SUB3),, V=TV where
V% are the real vector superfields, and T are the generators of the
SU(3)C, SU(2)L, U(l)y, SU(3)H-groups; SI are left-chiral superfields from
fundamental representations, and I=4,1,2; Si=Q, u¢, d¢ L, e, v¢ are matter
superfields, §, =n, SZ=E_, are Higgs fundamental superfields; the Higgs left

chiral superfield ® is transformed as the adjoint representation of the
SU(3),-group, the Higgs left chiral superfields Hy: H (=H, H | =h
Y=+- Y=
2 2
are transformed nontrivially under the horizontal SU(3),- and electroweak
SU(Z)L—symmetries (see Table 1). P in formula (14) is a superpotential to be
specified below. To construct it, we use the internal U(1),-symmetry which is

habitual for a simple N=1 supersymmetry.
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Table 1. The Higgs superfields with their SUBy), SUB) SUQ2),, UQ)y
{(and possible U(1),-factor) quantum numbers

H c L Y Y,
@ 8 1 1 0 0
H 8 1 2 -112 = h,
h 8 ! 2 112 YH,
13 3 ] 1 0 0
n 3 1 1 0 0
Y 3 I 2 12 " Vu,
X 3 1 2 RY/) Y,
X, ! 1 1@ 0 (172) ~n,
) 1 1 e 0 (-172) Ya,

In models with a global supersymmetry it is impossible to have simulta-
neously a SUSY breaking and a vanishing cosmological term. The reason is the
semipositive definition of the scalar potential in the rigid supersymmetry
approach (in particular, in the case of a broken SUSY we have Vigin > 0. The

problem of supersymmetry breaking, with the cosmological term A =0
vanishing, is solved in the framework of the N=1 SUGRA models. This may
be done under an appropriate choice of the Kaehler potential, in particular, in
the frames of «mini-maxi»- or «maxi» type models [27]. In such approaches,
the spontaneous breaking of the local SUSY is due to the possibility to get
nonvanishing VEVs for the scalar fields from the «hidden» sector of SUGRA
[27]. The appearance in the observable sector of the so-called soft breaking
terms comes as a consequence of this effect.

In the «flat» limit, i.e., neglecting gravity, one is left with lagrangian (14)
and soft SUSY breaking terms, which on the scales M <<M_, have the form:

1 22, L 2o 1o o
‘CSBZEZ I+ mi Trlhl® + 2 m3 TrHE +

i

oo 1 orn 1.9 2
+2ullni +2u2|§l +2M Tridi* +

1
+ ) z M, }‘Z XZ + h.c. + trilinear terms, (15)
k
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where H =H, H,=h and i runs over all the scalar matter fields é W, de, L
€, V¢ and & runs over all the gauge groups: SU(3),, SUG) SU2),, U, . At
the energies close to the Plank scale all the masses, as well as the gauge

coupling, are correspondingly equal (this is true if the analytic Kkinetic
function satisfies faﬁ~8aﬁ) [27], but at low energies they have different

values depending on the corresponding renormgroup equation (RGE). The
squares of some masses may be negative, which permits the spontancous
gauge symmetry breaking.

Considering the SUSY version of the SU(S)H—model, it is natural to ask:

why do we need to supersymmetrize the model? Basing on our present-day
knowledge of the nature of supersymmetry [27, 28], the answer will be:

(a) First, it is necessary to preserve the hierarchy of the scales:
Mgy, < Mgy <M, < ...?...<MGUT. Breaking the horizontal gauge symmetry,

one has to preserve SUSY on that scale. Another sample of hierarchy to be
considered is: M, < Mgy ~ My, In this case, the scale M, should be rather
low (M <afew TeV).

(b) To use the SUSY U(1), degrees of freedom for constructing the super-
potential and forbidding undesired Yukawa couplings.

(c) Super-Higgs mechanism — it is possible to describe Higgs bosons by
means of massive gauge superfields [28].

(d) To connect the vector-like character of the SU(S)Hv—gauge horizontal
model and N=2 SUSY (see Appendix A).

Since the expected scale of the horizental symmetry breaking is sufficiently
large: MH >> MEW’ MH >> MSUSY (where MEW is the scale of the electroweak

symmetry breaking, and M is the value of the splitting into ordinar
¥ g SUSY p g y

particles and their superpartners), it is reasonable to search for the SUSY-
preserving stationary vacuum solutions.

Let us construct the gauge invariant superpotential P of Lagrangian (14).
With the fields given in Table 1, the most general superpotential will have the
form

P:AOHTr(&\ﬁ)+%M,Tr(c%2)}+x}[n<%§+M'n&]+

AAA

+ szr(h(DH) + (Yukawa couplings) + (Majorana terms vY), (16)

where Yukawa Couplings could be constructed, for example, using the Higgs
fields, H and A, transforming under SU(3)H>< SU(ZL), like (8,2):

A A A
Py,=MQHd* + )\, LHe + A Qhu, (17
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Also, one can consider another type of superpotential P, using the Higgs

fields from Table 1.
Note, the fields @, H, & can be obtained on the level 2 of Kac-Moody

algebra g or effectively on the level 1 of algebras g!, gl after «integration» over

heavy fields, when G!x G — G Y™ (see section 3). Higgs fields X and Y are
very important in models with fourth SU(3),-singlet generation. In the

construction of the stationary solutions, only the following contributions of the
scalar potential are taken into account:

= 2 2 _
V=Y IFP+ Y ID4P =V, + V], 20, (18)

where

2
oP,

oF
i

P,
OF 40

aP

The case (V)=0 of supersymmetric vacuum can be realized within
different gauge scenarios [5]. By switching on the SUGRA, the vanishing scalar
potential is no more required to conserve the supersymmetry with the necessity.
The different gauge breaking scenarios do not result in obligatory vacuum
degeneracy, as in the case of the global SUSY version. Let us write down each
of the terms of formula (19):

BP

Vp=2

(19)

. __i_abcabc__l_abc ch_ CC
PF(Q,g,n)_xo[4x3f VDS + - d DD+ M, D ]F+

M [T R M ] ¢

[ f“”‘h”d)bH s’f+d i@ H; e’!} +he. (20)
F

The contribution of D-terms into the scalar potential will be:
= g%lh.]+Ta,n _ §+T(l§ + l'/ZbeCq)bq)C+ + i/zfab(‘hbhc+ + szﬂbCH bHC |2 +
+ gAR™TY/ 2 + H'T/ 2H! + (g YAl 20 h - 1/ 2H HI%. 1)

The SUSY-preserving condition for scalar potential (18) is determined by the
flat F, and D¢ directions: (F;);=(D %o =0. It is possible to remove the
degeneracy of the supersymmetric vacuum solutions taking into account the
interaction with supergravity, which was endeavored in SUSY GUT’s, e.g., in
the SU(5) one [27] (SU(5) — SU(5), SU4) x U(1), SU(3) x SU(Z) x U(1) .

The horizontal symmetry spontaneous breaking to the intermediate sub-
groups in the first three cases of [5] can be realized, using the scalar compo-
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nents of the chiral complex superfields @, which are singlet under the standard
gauge group. The ®-superfield transforms as the adjoint representation of SU(3),,.

The intermediate scale M, can be sufficiently large: M, > 10° — 10® GeV. The
complete breaking of the remnant symmetry group V,, on the scale M, will

occur due to the nonvanishing VEV’s of the scalars from the chiral superfields
n(3H) and ?’;(3H). The Viin again, corresponds to the flat directions:
(Fn é>0 = 0. The version (iv) corresponds to the minimum of the scalar potential

in the case when (d))o =(.

As for the electroweak breaking, it is due to the VEV’s of the fields 4 and
H, providing masses for quarks and leptons. Note that VEV’s of the fields 4 and
H must be of the order of M, as they determine the quark and lepton mass
matrices. On the other hand, the masses of physical Higgs fields h and H ,
which mix generations, must be some orders higher than M, , so that not to
contradict the experimental restrictions of FCNC. As a careful search for the
Higgs potential shows, this is the picture that can be attained.

2.3. The Superweak-Like Source of CP-Viciation, the Baryon Stability
and Neutrino Mass Problems in GUST with the Non-Abelian Gauge Family
Symmetry. The existence of horizontal interactions might be closely connected
to the CP-violation problem [5]. This interaction is described by the relevant
part of the SUSY SU(3),,-Lagrangian and has the form

— o Al + b
LH—gH\ydI“u[D—z—D }\ydoabz“. (22)

Here we have (a,b=1,2,...,8). The matrix Oab determines the relationship
between the bare, H:, and physical Z;, gauge fields and is calculated for the

mass matrix (Mg)ab diagonalized; v, = (wd » W \;Ib); 8y is the gauge coupling
of the SU(3),, group.

After the calculations in «bootstrap» model with the Higgs fields

— — o P, 0 0 0 0
Hy=(00,V2, ()=, 2 the expressions for the (K, —~K7), (B, - B

ar ~ Bag):
(B:l)L - B&), (D[? - Dgo),... meson mass differences (pure quark processes) at tree

level take the following general forms:

2 2

M, )K g a a

127 | 1 SH ~ A 2

( mg } C2om} (pa[DdD+} } J{%[DdlﬁJ } fKinK’
H ij ij

Hy
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M, G (15 (u¥ ) | ‘) ]
k] |5 e [ oe(e5e) T |8,
D H H() = i L v

(23)
where i, j =(1,2), (1,3), (2,3) — the K or D, Bd or Tu, BS or T -meson systems.

The coefficients in formulas (23) are calculated from (22) using formula
(10) and the following useful relation

; 1 |
+ iyt ~ =
2 (DTDNOTDY,, =3 8,8, 35,8, (24)
a
For example, for K-meson systems we find the following contribution

(if D, =D,=D)
g2, /4DN0 D)t S (DAOPD*
Mo + AMb

)=

2 2
g AM o
41 M
0 0

2
8n + 2
=— ;M—(? (DADY) ,AM 2 (DADY) |, =
4
8H apt kaickel’ J=I"/ ) c
=———(DAD"),, fHF%" @'¢" (DAD
aM,

Ny =

4 . 4
, . 8
an, PONTIDY,, 5 DA™MD, = (DeD") , (09D, @5)
Mo
It is interesting, that if a difference between the gauge boson’s masses is
generated by Higgs fields in representation (3, 2) (see (11)), then the contribu-

4M

tion in [%] is equal to zero in considering order (for case D, = Dy), since
m
H

we will use Higgs fields (8, 2) for these evaluations. However, for processes
including three equivalent indices (like @ —»3e), Higgs fields (3, 2) give
nonzero contribution ~ ((pD+)l.~(D‘(§)j .

Note, that formula (25) is true for the case when D, differs from Dy by

diagonal phase multiply too. For us the case D, =-D, which corresponds to
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axial-vector terms is important. In general if D, #Dy (or U, #Upg) then in
formulas (23) there is a quadratic term g%,/MO2 (DLD;)U (DRDDij’ i#].
Substituting in formula (23) the expressions for ¢, ¢ and the elements dij

of the D mixing matrix («bootstrap» solution), we can obtain the lower limit for
the value MH (MH < O (some TeV)). So, we could analyse the ratios (similar
0 [§]

for Bd ,meson system):

Am g2
— % =2 Re[C,] f2R, <7107 (26)
0
and
ImM g2
12 =% o Im[C ) 2R < 210717, 27)
me |2 2m?

0

In these formulas the expressions for Cx p are known functions in

«bootstrap» models [5], namely

glzq mt2 m'P mgown
==L (28)
K.D 2 2 up ' down
27»), Mg mem

where f’s are known complex functions and their forms depend on quark
fermion mass ansatzes [5].

Here noteworthy are the following two points: a) The appearance of the
phase in the CKM mixing matrix may be due to new dynamics working at short

. ] . .
distances [r<<M—J. Horizontal forces may be the source of this new
w

dynamics [5]. Using this approach, we might have the CP-violation effects —
both due to electroweak and horizontal interactions.

(b) The CP is conserved in the electroweak sector (SKM=O), and its
breaking is provided by the structure of the horizontal interactions. Let us
consider the situation when 8% =0. In the SM, such a case might be realized

just accidentally. The vanishing phase of the electroweak sector (%M = () might
arise spontaneously due to some additional symmetry. Again, such a situation
might occur within the horizontal extension of the electroweak model.

In particular, this model gives rise to a rather natural mechanism of super-
weak-like CP-violation due to the (CP =-1) part of the effective Lagrangian of

horizontal interactions — (g7 &g < 10™*. That part of £ . includes the product
of the SU(3)H—currents Iui ; IW. (i=1,4,6,3,8; j=2,5,7 or, vice versa, i) [5].
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In the case of a vector-like SU(3),-gauge model the CP-violation could be only
due to the charge symmetry breaking.

In electroweak and horizontal interactions we might also have two
CP-violating contributions to the amplitudes of B-meson decays. But it is
possible to construct a scheme where CP-violation will occur only in the
horizontal interactions. The last fact might lead to a very interesting CP-

violation asymmetry Af(t) for the decays of neutral Bdo- and E(? -mesons to final

hadron CP-eigenstates, for example, to f=(J/ ‘I’KSO) or (nm)

e (p _AB -
Af(t) sin (Adet) Imk p XPrls Py AB ) (29)
In the standard model with the Kobayashi — Maskawa mechanism of

CP-violation the asymmetry of the decay of B:— and EL? -meson to the
J/‘PKSO averaged by time is:
x

X
Oy o - d__2nd-p)
A(J/‘PKS)~nfl+x251n2(1)3——1+x2(1_p)2+n2,
d d

where ”qf= —1 for a CP-odd J/‘PKS—final state; ¢3 =arg th is one of the angles
(0, 1= 1,2,3) of the unitary triangle. Let us compare this asymmetry with the
analogous asymmetry of the BY and Eo—decays to the CP-even final state
(n*, ©7), the latter being known to depend on the phase magnitudes of V , and
V- Then:

X X 2 2
Ay == ne = d 207N —pl
) anrZsm & L+22 [(1 - +n2)[p? + 1]

where ¢, =~ 0, — ¢, and ¢ =arg V., = 8,,(8M =0, +0,).

The contributions of CP-violating horizontal interactions to the asymmet-
ries for both B O-decays could vary large (10% — 30%). They are identical for
both decays but the signs differ.

The space-time structure of horizontal interactions depends on the SU(3),

quantum numbers of quark and lepton superfields and their C-conjugate
superfields. One can obtain vector (axial)-like horizontal interactions as far as
the G, particle quantum numbers are conjugate (equal) to those of antiparticles.

The question arising in these theories is how such horizontal interactions are
related with strong and electroweak ones. All these interactions can be unified
within one gauge group, which would allow one to calculate the value of the
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coupling constant of horizontal interactions. Thus, unification_of horizontal,
strong and electroweak interactions might rest on the GUTs G =G xSU(3),
(where, for example, G = E(8), G =SU(5), SO(10) or E), which may be further
broken down to SU(3),, x SU3) . x SU(2), x U(1),,. For including «vector»-like
horizontal gauge symmetry into GUT we have to introduce «mirror»

superfields. Speaking more definitely, if we want to construct GUTs of the
G=GxS8U3), type, each generation must encompass double G-matter

supermultiplets, mutually conjugate under the SU(3),-group. In this approach
the first supermultiplet consists of the superfields f and f € 3,, while the

second is constructed with the help of the supermultiplets f¢ and fa € 3H. In this

scheme, proton decays are only possible in the case of mixing between ordinary
and «mirror» fermions. In its turn, this mixing must, in particular, be related
with the SU(3),,-symmetry breaking.

The GUSTs spectra also predict the existing of the new neutral reutrino-
like particles interacting with the matter only by «superweak»-like coupling. It
is possible to estimate the masses of these particles, and, as will be shown
further, some of them have to be light (superlight) to be observed in modern
experiment.

A variant for unusual nonuniversal family gauge interactions of known
quarks and leptons could be realized if for each generation we introduce new
heavy quarks (F = U, D), and leptons (L, N) which are singlets (it is possible to
consider doublets also) under SU(2),- and triplets under SU(3),-groups. (This

fermion matter could exist in string spectra. See all the three models with
SU(3,) x SU3,,) family gauge symmetry). Let us consider for concreteness a

case of charged leptons: ‘I‘lz(e, M, T) and ‘PL:(E, M, T). Primarily, for
simplicity we suggest that the ordinary fermions do not take part in SU(3),-

interactions («white» color states). Then the interaction is described by the
relevant part of the SUSY SU(3),-Lagrangian and gets the form

a

A
6x6 b
L, =g LYp 5 ¥, 0,2, (30)

where '
A =[S(L7J‘L+)S —S(L}.“L“L)C}
66 | —cALhHS cUrLHC |
Here we have ¥, = (¥ ¥,). The matrix O, (a, b=1,2,3..8) determines
the relationship between the bare, H:, and physical, Zﬁ’, gauge fields. The
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diagonal 3X3 matrices S=diag (se’ Sy s) and C=diag (¢, Cypo ¢,) define the
nonuniversal character for lepton horizontal interactions, as the elements s;
depend on the lepton masses, like Si“\/m(; (i=e,u,7). The same
suggestion we might accept for local quark family interactions.

For the family mixing we might suggest the next scheme. The primary

3x3 mass matrix for the light ordinary fermions is equal to zero: Mf}} =0. The

3x3-mass matrix for heavy fermions is approximately proportional to unit
MIQF:MOYX 1, where MOY:O.S— 1.0 TeV and might be different for Fup-,
F

down
heavy fermions in each class FY (Y =up, down, L) is small and, at least in quark

-quarks and for F,-leptons. We assume that the splitting between new

sector, might be described by the t-quark mass. Thus we think that at the first
approximation it is possible to neglect the heavy fermion mixing. The mixing
in the light sector is completely explained by the coupling of the light fermions

with the heavy fermions. As a result of this coupling the 3x3-mass matrix Mf(}
could be constructed by «democratic» way which could lead to the well-known
mass family hierarchy:

0 0 N
M6(Z<6~(Zf(f) ng J
\Fr MFF
where
Mﬁ ~ Mf"em + M 31)
The diagonalization of the M -mass matrix XprX+ (X=L-, D-, U-mixing

matrices) g1ves us the elgenvalues which define the family mass hierarchy —

4 Y

ny <<n, << n3 and the foilowing relations between the masses of the known

light fermions and a new heavy mass scale:

= \lmlj/[;f, i=1 o 2 3 Y =up-, down-fermiocns.

In this «see-saw» mechanism the common mass scale of new heavy
fermions might be not very far from the energy ~ 1 TeV, and as a consequence
of it the mixing angles s;-might be not too small. There is another interesting

relation between the mass scales n[Y that might be in this mechanism, at least for
the quark case:
— _ U u o 2
nt/nc—nc/nu_qh,, gy =1 A,

nb/ns=nj/nd=q;11, q;l,zl/k.
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An explicit example of nonuniversal SU(3H)><SU(3H) local family

interactions will be considered later (see model 3 section 2).

3. THE HETEROTIC SUPERSTRING THEORY
WITH RANK 8 AND 16 GRAND UNIFIED GAUGE GROUPS

3.1. Conformal Symmetry in Heterotic Superstring. In the heterotic string
theory in left-moving (supersymmetric) sector there are d — 2 (in the light-cone
gauge) real fermions y¥, their bosonic superpartners XM, and 3(10 — d) real
fermions X’- In the right-moving sector there are d ~ 2 bosons X * and 226 -d)
real fermions.

In the supersymmetric sector world-sheet supersymmelry is non-linearly
realized via the supercharge

Tp=y¥ox +f,, x'%'x", (32)
where J;;x are the structure constants of a semi-simple Lie group G of
dimension 3(10 - 4).

The possible Lie algebras of dimension 18 for d=4 are SU(2)6,
SU3) X SO(5), and SU(2) x SU(4). However, N =1 space-time supersymmetry
cannot be attained in two last cases [34].

If we take the moments of the energy-momentum operator we will get the
conformal generators with the following Virasoro algebra:

(L.L1=(n-ml _ + {; n(n?~1)8 (33)

n+m -m’

Using Virasoro algebra we can consiruct representations of the conformal
group where the highest weight state is specified by two quantum numbers,
conformal weight A, and central charge ¢, such that:

Loik, ¢y=hlhc)

L lh, c ’=0, n=1.23.. (34)

For massless state the conformal weight 4= I.

A Sugawara — Sommerfeld construction of the Virasoro algebra in terms
of bilinears in the Kac-Moody generators [17, 18] allows one to get the
following expression for the central Virasoro «charge»:

c _2kdimg xdimg
g_2k+Qq!_ x+h

(35)
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In heterotic string theories [9, 10] (N=1 SUSY), with (N=0
SUSY) ED/\/IC .

L; R
sector are canceled by the conformal anomalies of the internal sector Mc oo

LR
where ¢, = 15-3d/2 and CR=26 —d are the conformal anomalies in the left-

right with d <10, the conformal anomalies of the space-time

and right-moving string sectors, respectively.

In the fermionic formulation of the four-dimensional heterotic string theory
in addition to the two transverse bosonic coordinates Xll’ X“ and their left-
moving superpartners Y the internal sector ML-L; ¢, contains 44 right-moving
(cR=22) and 18 left-moving (CL=9) real fermions (each real world-sheet
fermion has ¢p= 1/2).

For a couple of years superstring theories, and particularly the heterotic
string theory, have provided an efficient way to construct the Grand Unified
Superstring Theories (GUST) of all known interactions, despite the fact that it
is still difficult to construct unique and fully realistic low energy models
resulting after decoupling of massive string modes. This is because of the fact
that only 10-dimensional space-time allows existence of two consistent
(invariant under reparametrization, superconformal, modular, Lorentz and
SUSY transformations) theories with the gauge symmetries E(8) x E(8) or
spin (32)/ Z, [9,10] which after compactification of the six extra space

coordinates (into the Calabi — Yau [11, 12] manifolds or into the orbifelds) can
be used for constructing GUSTs. Unfortunately, the process of compactification
to four dimensions is not unique and the number of possible low energy models
is very large. On the other hand, constructing the theory directly in 4-dimen-
sional space-time requires including a considerable number of free bosons or
fermions into the internal string sector of the heterotic superstring [13,14,15,
16]. This leads to as large internal symmetry group such as, e.g., rank 22 group.
The way of breaking this primordial symmetry is again not unique and leads to
a huge number of possible models, each of them giving different low energy
predictions.

Because of the presence of the affine Kac-Moody algebra (KMA) § (which
is a 2-dimensional manifestation of gauge symmetries of the string itself) on the
world sheet, string constructions yield definite predictions concerning repre-
sentation of the symmetry group that can be used for low energy models
building [17, 18]. Therefore the following longstanding questions have a chance
to be answered in this kind of unification schemes:

1. How are the chiral matter fermions assigned to the multiplets of the
unifying group?

2. How is the GUT gauge symmetry breaking realized?



THE FAMILY PROBLEM IN THE 4D SUPERSTRING GRAND 1159

3. What is the origin and the form of the fermion mass matrices?

The first of these problems is, of course, closely connected to the
quantization of the electromagnetic charge of matter fields. In addition, string
constructions can shed some light on the questions about the number of
generation and possible existence of mirror fermions which remain unanswered
in conventional GUTs [19].

There are not so many GUSTSs describing the observable sector of Standard
Models. They are well known: the SM gauge group, the Pati-Salam
(SU@) x SU(2) x SU(2)) gauge group, the flipped SU(S) gauge group and
SO(10) gauge group, which includes flipped SU(5) [16].

There are good physical reasons for including the horizontal SU(3), group

into the unification scheme. Firstly, this group naturally accomodates three
fermion families presently observed (explaining their origin) and, secondly, can
provide correct and economical description of the fermion mass spectrum and
mixing without invoking high dimensional representation of conventional
SU(S5), SO(10) or E(6) gauge groups. Construction of a string model (GUST)
containing the horizontal gauge symmetry provides additional strong motivation
to this idea. Moreover, the fact that in GUSTs high dimensional representations
are forbidden by the KMA is a very welcome feature in this context.

3.2. The Possible Ways of E(8)-GUST Breaking Leading to the Ng=3or
Ng=3+1 Families. All this leads us naturally to consider possible forms for
horizontal symmetry G, and G, quantum number assignments for quarks (anti-

quarks) and leptons (anti-leptons) which can be realized within GUSTs frame-
work. To include the horizontal interactions with three known generations in the
ordinary GUST it is natural to consider rank eight gauge symmetry. We can
consider SO(16) (or E(6) x SU(3)) which is the maximal subgroup of E(8) and
which contains the rank eight subgroup SO(10) x (U(1) x SU3))y [20]. We will

be, therefore, concerned with the following chains (see Fig. 1):
E(8) — SO(16) — SO(10) x (U(1) x SU(3))H —

— SU(S) x U(1), X (SU(3) x U(1)),,

or
E(8) = E(6) x SU(3) —» (SU(3))X4.

According to this scheme one can get SU(3), x U(1), gauge family
symmetry with Ng =3+1 (there are also other possibilities as, e.g.,
E(6) x SU(3)y < E(8) Ng =3 generations can be obtained due to the second way
of E(8) gauge symmetry breaking via E(6) X SU(3)y, see Fig.1), where the
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248 — 120 $ 128
E(8) —_— SO(16)
248 —— 120 — (45, 1)° @ {1,8)°®
::u;;;e (1,.1)° ®(10,3)? ®(10, )%
@2 o~ te .t
", 3) 128 — (18,3)"' @ (18,3)* '@
(18,1) — (45, 1)° @ (1,1)° @ (16, )+ B (16, 1)~ (s, 1)+ @ (18, 1)

(27,3) — (16,3)"! @ (10,)*? @ (1,3)7*
#7,3) — (18, )+ @(10,3)" 7 @ (1. 1)+

E(6) x SU(3)x SO(10) x SU(3)y x U(1)g

78 —me

::::;: . 45 — (24,1) @ (1,1) @ (10,1) B (10,1)
(1,1,8)® 16— (1) 4572 ®(5)_372 B (10)41/2
(3,3,3)8 18— (1) _572 B (34372 @ ()_y/3
3.3,9)

27 —
3,310
1,338
3.1,3)

SU(3)® SU(5) x U(1) x SU3)y x U(1)y
N,=3,N,=3+1

Fig.1. The possible ways of E(8) gauge symmetry breaking leading to the 3 + 1 or 3
generations

possible additional fourth massive matter superfield could appear from 78 as a
singlet of SU(3),, and transforms as 16 under the SO(10) group.

In this note starting from the rank 16 grand unified gauge group (which is
the minimal rank allowed in strings) of the form G % G [21, 22] and making use
of the KMA which select the possible gauge group representations we construct
the string models based on the diagonal subgroup G ™ < G x G c §O(16) X
x SO(16) (cEgxEg) [21]. We discuss and consider G ™™= SU(5) x U(1) x
X (SUB)x Uy, < SO(16) where 'the factor (SU(3) x U(1)), is interpreted as

the horizontal gauge family symmetry. We explain how the unifying gauge
symmetry can be broken down to the Standard Model group. Furthermore, the
horizontal interaction predicted in our model can give an alternative description
of the fermion mass matrices without invoking high dimensional Higgs repre-
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sentations. In contrast with other GUST constructions, our model does not
contain particles with exotic fractional electric charges [23, 21]. This important
virtue of the model is due to the symmetric construction of the electromagnetic

charge Qem from Ql and QII — the two electric charges of each of the U(s)
groups [21]:

0,,=0"®Q" (36)

We consider the possible forms of the GH=SU(3)H, SU@B), x U(1),

Gy %X Gypg...-gauge family symmetries in the framework of Grand Unification

Superstring Approach. Also we will study the matter spectrum of these GUST,
the possible Higgs sectors. The form of the Higgs sector is very important for
GUST-, G, and SM-gauge symmetries breaking and for constructing Yukawa
couplings.

3.3. The Superstring Theory Scale of Unification and the Estimates on

the Horizontal Coupling Constant. Really, the estimates on the M, -scale
0

depend on the value of the family gauge coupling. These estimates can be made
in GUST using the string scale

Mg, =073g _ 10'8 Gev (37)

string
and the renormalization group equations (RGE) for the gauge couplings, o,
05, O, to the low energies:
o, (M,)=1/128,
0y(M) = 0.11,

sin’0,, (M) ~ 0.233. (38)
The string unification scale could be contrasted with the
SU(3%) x SU2) x U(1) naive unification scale, MGUT= 106 GeV, obtained by

running the SM particles and their SUSY-partners to high energies. The
simplest solution to this problem is the introduction of the new heavy
particles with SM quantum numbers, which can exist in string spectra [16].

However there are some other ways to explain the difference between
scales of string (MSU) and ordinary (MGUT) unifications. If one uses the

breaking scheme G'xG!— GY™ (where GIU=y(s)x UB3), <Eg) des-
cribed above, then unification scale Meur~ 10'® GeV is the scale of breaking

the G X G group, and string unification does supply the equality of coupling
constant G X G on the string scale Mg, ~ 10'8 Gev. Otherwise, we can have an
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addition scale of the symmetry breaking MSym > M- In any case on the scale
of breaking G x G — G Y™ the gauge coupling constants satisfy the equation

gfym = 1/4(g7 + g1)- (39)

Thus in this scheme knowing of scales Mg, and M, gives us a principal

possibility to trace the evolution of coupling constant of the original group
G x G to the low energy and estimate the value of horizontal gauge constant

831

The coincidence of sin26W with experiment will show how realistic this
model is.

Let us consider some relations which determine the value of sinzew for

different unification groups and for different ways of the breaking.

Firstly let us consider the case of SO(10)x U(3)— SU(S) x U(1) x
x [SU3) x U(1)],, breaking, which can be illustrated by Model 2. In this case

matter fields are generated by world-sheet fermions with periodic boundary
conditions. Consequently all representations of matter fields can be considered

as the result of destruction of 16 and E representations of the SO(10) group.

If we write the general expansion for a world-sheet fermion in the form

flo,n=>, [b* l_mexp[—i[n+l—;—g](cs+‘c)]+

n=0 n+—2~'

, 1+
+d l+aexp|:t[n+ : ](0+r)]J, (40)
n+“li_

where the quantization conditions are given by the anti-commutation
relations

+ - -
{ba’ bb} - {d:l-’ db} - 8ab ’
then the representation E of SO(10) in terms of the creation (b()i+) and
annihilation (boi) operators will have the form
16 — 10 _ ‘ i+ j+ i+ jtg, kty
E—l+_lg+§—(1+bé bé +b0’ b(f)’ bo bO)IO, 41)
where i,], k, 1=1,...5.

The Clifford algebra is realized via the 7y-matrix for SO(10) group
yk=(bk+b;) and Y5, =-i(b, — bZ). Generators of the U(5) subgroup can be
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written in terms bé as T{US)I=12 [bi , bj+]. Then the operator of the U(l)s
hypercharge is
* _ +1 +
Yo=1/2), [b,,b}1=5/2-), b}, b,. (42)
i ’ i
But this generator is not normalized, since Y5(l E 5)=5/2,1/2, -3/2,

correspondingly, and Tr = 20.

16 5
In our scheme the electromagnetic charge is
Oen=Ts- /57, (43)
where T5=diag(1/15, 1/15, 1715, 2/5, -3/5). For representation 5 of the
SU(5) this means that

Q{3 ) = [diag (0%,1/2,~1/2) + diag (2 30%,-3/30%)}- 2/5:(-3/2) =

= diag (03, 1/2, =1/2) + 1/2[diag (2/ 153, =3/ 15%) + 6/5] =
=ty + 1/2[t, =4/ SY ) =t, + 1/ 2diag (4/ 3%, 1%) =1, + 1/2y, (44)

where y is the electroweak hypercharge.

Now let us write down the principal equation for coupling constants

gStOAu +(kg)YA ,l»l = glyBu + g’ly'B ,ll' (45)
In this equation (k85) is U(l)g coupling constant on the scale, where U(5) is
breaking down (on the SO(10) — U(5) scale k = 1); operators th~ t Y-~ Y and

have equal norm; A and B are gauge fields.

Diagonal generators can be written in terms of creation-annihilation
operators as

5
diag (A)=Y, A(1-btb)==1 Ab'b,. (46)
i=1
Consequently Tr16 o =8/15. If we shall normalize generators as Tr16 02

=Tr, Y *=8, then ¥(5)-V2/5Y(5)=-3/V10 and t,=1/V15 diag(2*,—3%).

Now after rewriting the equation (45) separately for three up components and
two down components, and substitution Bu = cAu + sAu', Bu' = —sAu + cAu’

where c2+ 52 =1, we find from equation (45)

2
g 2
sin2@, =—t . 1k =

w gr+gs 16k2+24 |2,

(47)

00 | W
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Now let us consider the breaking E¢ — U(5) x U(1), which corresponds to
models like Model 4. The expansion of matter representation 27 of the E, group
under the group SU(S) x U(1)s 1s

27=(55,+10_,,, 1 o) +(5,+5_)+1,=

= [(bf + b bI bE + bg+bg+b’5+b0’+bg"+) +(d,}, + b )+ 1110). (48)

The generalization of the formula (42) for the case when representation
contains states from different sectors with different boundary conditions is

L -
=3 [7’ + 3 150D - Bl } “)
i E

and analogically for formula (46)

diag (4) = E[A 2 @R — b3 b, ))} (Z'A,:OJ.

1

Now we have Tr27Y52 30 and Tr27 o =4/5. By comparison with preceding

case both norms are 1.5 times greater, hence formula (47) is true for this case,
too. But now the B’ " is some linear combination of gauge fields.

Further, let us consider the Model 1. This case corresponds to breaking
SO(16) — U(8) » U(S) x U(3). The matter fields arise from sectors with
o=+ 1/2 and correspond to chips of the SU(8) representations

8- 1[(1,3)]+(5,1)
56 — [(1, 1)+ (10, 3)] + (10, D+(5, 3)
56 - [(10, )+ (5,31 + (1, D +(10,3)
865, DI+(1,3)

- 12830(16) ’

where only the fields in square brackets survive after the GSO projection.
For these model it is necessary to change Y5—9?5=—1/4(Y5+5Y3) in

formula (44). Now we can calculate the norms of 2;) and f’s operators for this

model.
128Y52—160 20 x 8,
m_64_8
Trugt0 15 15)(8.

Hence we find again formula (47), but A ' is linear combination of gauge

fields, which corresponds to Y hypercharge and kg5 is his coupling constant.
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Finally, let us consider the model with following chain of the gauge group
breaking E X SU(3)H-—> SU(3) XSU(S)H Then representation 27 of E6 group
looks like 27 =(1, 3, 3)+(3 3, 1)+(3 I, 3).

Let us write down quantum numbers for breaking: SU(3)C X SU(3)L X
xSU(3), — SU(3)C X [SU2) x Ui, x U(l);é (we consider one generation). For

this construction the electromagnetic charge is
—+L _ L
Opy = ty+ 1/2(YL +Y) = 1+ 1/ 2y,

where t31‘ =diag (1/2,-1/2, 0), Y, =diag (-1/3,-1/3,2/3), Y, =diag(2/3,
2/3,-4/3). This corresponds to the following set of fields:

(V l)L v
= LY D V& = ,
(1v3&3)~ 1 L] L > (3a 3, ])~3X[(d-—u)LDL],

U

Ly LP e
D§

3.1,3)~3x|df |,

Ug

where capital letters correspond to additional heavy quarks and leptons.
Now we can calculate norms of Y, Y,

2_
Tr,, YL 4, TryYe=16,

and write down the equation for gauge coupling constants

YA“+ 1/2gRYRAF glyEWB“ +g 1yB (50)
where 8= kgL and on the scale of the breaking SU(3)L X SU(3)R —
= SU(2), x U(1), x Ul k=1.

For example, for (v, e, v;) we have YL= diag (-1/3,-1/3, 2/3),
Yo=-2/3 and Ypw=diag (-1,-1,0). Then from equation (50) (analogically
with (45, 47)) we find

2
) gl k2
sm9W= 7 =T, -
gy+g;, 2k"+4

(D

The analysis of RG-equations allows one to state that horizontal coupling
constant g,,, does not exceed electro-weak one &y
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For example, if below the MGUT scale in non-horizontal sector we have

effectively the standard model with four generations and two Higgs doublets
(like Model 1, 2) then the evolution of gauge coupling constants is described by
equations

o (W) = o5 (M ;) + 8TbyIn (W M) (52)
o (uy sin®0,, = o (M ;) + 8T, In (W M, ) (53)
15 - -
IV L) cos?8,, = (Ko (M)~ +8mbIn W Mg,),  (54)
where
b= -3 __ 2
3Taem®’ 7 aem?’ ' dom?

From these equations and from (38) we can find

16 - -1 _
M= 1310 GeV, =09, of'=14. (55)

Now we can get the relation between g, =g and M n from RG equations
for gauge running constants g™ =g, g5 and g" on M 7~ My, scale. For

example, for Model 1

b;ym=_i ple_—S . pu__3

ax?’ S aem®’ O 16n?’
and from RGE we find the following relation

&
an? +6g5 In Mgy /My,
st -gIn(M_ /M)
=g2 sym —SU (56)

(872 —5g% In (Msym/MSU)]-[Srrz +3g%In M,/ Mg,)] ‘

According to this equation we obtain that if M, = 10'® GeV and the scale of
breaking down to symmetric subgroup changes in region Msym+ 1.510'6 GeVv
— 10" GeV, then 8gtr ™ O(1). Note that these values agree with formula (37).
Using RG equations for the running constant g,,, and the value of the string
coupling constant g, we can estimate a value of the horizontal coupling
constant at low energies. For Model 1 we have
psym _ 5 1 21 n_ 13

a2’ 3HT T qem?’ S 16n2”
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and taking into account the relation (39), we find from RGE for 84y that

83,(0(1 TeV)) = 0.05,
and this value depends very slightly on the scale M, g . However, note that for

all our estimations the presence of the Lreakmg Gx G group to diagonal
subgroup Gsym played the crucial role.

The above calculations show that for evaluation of intensity of processes
with a gauge horizontal bosons at low energies we can use inequality

0, (1) < 0, (1),

4. WORLD-SHEET KAC-MOODY ALGEBRA AND MAIN
FEATURES OF RANK EIGHT GUST

4.1. The Representations of Kac-Moody Algebra and Vertex Operators.
Let us begin with a short review of the KMA results [17, 18]. In heterotic
string, the KMA is constructed by the operator product expansion (OPE) of the

fields J7 of the conformal dimension (0,1):

J“(zf,)J”(co)=~l 5 k8 + ! ifebeyey (57)
- - o

The structure constants ¢ for the group g are normalized so that
cacd phed _ Y- Tl 28ab ‘ 58
feetphed = g 8 = iy, (58)

where QW and y are the quadratic Casimir and the highest weight of the

adjoint representation and % is the dual Coxeter number. The —t can be

2
v
expanded as in integer linear combination of the simple roots of g:
rank g
L= ma. (59)
V=
The dual Coxeter number can be expressed through the integers numbers m,
rank g
h=1+3 m (60)

i=1
and for the simply laced groups (all roots are equal and \|f2 =2): A.D, E,,
E7, E8 they are equal to n+ 1, 2n -2, 12, 18 and 30, respectively.
The KMA § allows one to grade the representations R of the gauge group

by a level number x (a non-negative integer) and by a conformal weight A(R).
An irreducible representation of the affine algebra g is characterized by the
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vacuum representation of the algebra g and the value of the central term &,

which is connected to the level number by the relation x = 2k/\y2. The value of
the level number of the KMA determines the possible highest weight unitary
representations which are present in the spectrum in the following way
rank g
x=— > nm., 61)
Vooie
where the sets of non-negative integers {m, = ml,...,mr} and {n,= nl,...,nr}

define the highest root and the highest weight of a representation R,
respectively [17,18]:
rank g
uozz na., . 62)
i=1
In fact, the KMA on the level one is realized in the 4-dimensional heterotic
superstring theories with free world sheet fermions which allow a complex
fermion description [14,15,16]. One can obtain KMA on a higher level working
with real fermions and using some tricks [29]. For these models the level of
KMA coincides with the Dynkin index of representation M to which free
fermions are assigned

x=x, = (63)

(Q,, is a quadratic Casimir eigenvaiue of representation M) and equals one in

cases when real fermions form vector representation M of SO(2N), or when
the world sheet fermions are complex and M is the fundamental represen-
tation of U(N) [17,18].

Thus, in strings with KMA on the level one realized on the world-sheet,
only very restricted set of unitary representations can arise in the spectrum:

1. singlet and totally antisymmetric tensor representations of SU(N) groups,
for which m, = (1,...,1)

2. singlet, vector, and spinor representations of SO(2N) groups with
m;=(1,2,2,..2,1,1);

3. singlet, 27 and ﬁ-plets of E(6) corresponding to m; = (1,2,2,3,2,1)
4. singlet of E(8) with m, = (2,3,4,6,5,4,3,).

Therefore only these representations can be used to incorporate matter and
Higgs fields in GUSTs with KMA on the level 1.

In principle it might be possible to construct explicitly an example of level-1
KMA-representation of the simply laced algebra § (A-, D-, E-types) from the
level-one representations of the Cartan subalgebra of g. This construction is
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achieved using the vertex operator of string, where these operators are assigned
to a set of lattice point corresponding to the roots of a simply-laced Lie algebra
g In heterotic string approach the vertex operator for a gauge boson with
momentum p and polarization { is a primary field of conformal dimension
(1/2, 1) and could be written in the form:

=8¥,@J exp (ipX), ppH=Cp'=0. (64)

Xu is the string coordinate and y* is a conformal dimension (1/2,0)

Ramond-Neveu-Schwartz fermion.

4.2. The Features of the Level-One KMA in Matter and Higgs Repre-
sentations in Rank 8 and 16 GUST Constructions. For example, to describe
chiral matter fermions in GUST with the gauge symmetry group SU(5) X
x U(1) c SO(10) the following sum of the level-one complex representations:
1(=5/2) + 5(+3/2) + 10(-1/2) = 16 can be used. On the other side, as real repre-
sentations of SU(5) x U(1) < SO(10), from which Higgs fields can arise, one can
take, for example, 5+ 5 representations arising from real representation 10 of
SO(10). Also, real Higgs representations  like 10(- ]/”)+m(+1/2) of
SU(S)x U(1) originating from 16+ 16 of SO(10), which has been used in
Ref.[6] for further symmetry breaking, are allowed.

Another example is provided by the decomposition of SO(16) repre-
sentations under SU(8) x U(1) < SO(16). Here, only singlet v = 16, s = 128 and
s = 128’ representations of SO(16) are allowed by the KMA (s =128 and

= 128’ are the two nonequivalent, real spinor representations with the highest
weights Mg = V20, + &), + ... + &5 Fgy), € g = 81.1.) . From item 2; we can
obtain the following SU(8) x U(1) representations: singlet, 8+8(=16),
8+56+56+8(=128), and 1+28+70+28+1(=128). The highest

weights of SU(8) representations =8 n,= 8 and m, = 56, Mg = 56 are:

=1/8(7£l—£2—s — €y~ €~ g — €, — &),

3 4 5 6 7

n7=(1/8£I +£2+£3+s4+es+e6+£7~758),
(65)
=1/ 8(58l + 582 + 583 - 384 - 385 - 386 - 3£7 - 388),
_"‘"ﬁ(_‘—“—d
= 1/ 8(— 3el — 352 - 323 - 384 — 385 + 556 + 587 + 5€8) .
Similarly, the highest weights of SU(8) representations m, =28, = 28 and

T, =70 are:
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TC2=1/4(381+382—83—£4~€5—86—87—£8),

T, = 1/ 4(e, + &, + &5 + €, + &5 + £ — 38, — 38yp), (66)

n4:1/2(£1+£ +€,+€E —€ ~E —E —&

2 3 4 5 6 7 8)'

However, as we will demonstrate, in each of the string sectors the gene-
ralized Gliozzi — Scherk — Olive projection (the GSO projection in particular
guarantees the modular invariance and supersymmetry of the theory and also
gives some nontrivial restrictions on gauge groups and their representations)
necessarily eliminates either 128 or 128" It is therefore important that, in order
to incorporate chiral matter in the model, only one spinor representation is
sufficient. Moreover, if one wants to solve the chirality problem applying
further GSO projections (which break the gauge symmetry), the representation

E which otherwise, together with 10, could form real Higgs representation, also
disappears from this sector. Therefore, the existence of E_ 2+ 10,,,, needed

for breaking SU(5) x U(!) is incompatible (by our opinion) with the possible
solution of the chirality problem for the family matter fields.

Thus, in the rank eight group SU(8) x U(1) < SO(16) with Higgs repre-
sentations from the level-one KMA only, one cannot arrange for further
symmetry breaking. Moreover, construction of the realistic fermion mass
matrices seems to be impossible. In old-fashioned GUTs (see, e.g., [19]), not
originating from strings, the representations of the level-two were commonly
used to solve these problems.

The way out from this difficulty is based on the following. important
observations. Firstly, all higher-dimensional representations of (simple laced)
groups like SU(N), SO(2N) or E(6), which belong to the level two representation
of the KMA (according to equation 61), appear in the direct product of the
level-one representations:

R(x=2) SR x=1) X R} (x= 1), (67)

For example, the level-two representations of SU(S) will appear in the
corresponding direct products of

15, 24, 40, 45,50, 75 © 5, 5, 5 % 5, 5 x 10, etc. (68)

In the case of SO(10) the level-two representations can be obtained by the
suitable direct products:

45, 54, 120, 126, 210, 144 c 10 x 10,

16 x 10, 10 x 16, 16x 16, 16 x 16. ©9)
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The level-two representations of E(6) are the corresponding factors of the
decomposition of the direct products:

78, 351, 351", 650 < 27 x 27 or 27 x 27. (70)

The only exception from this rule is the E(8) group, two level-two repre-
sentations (248 and 3875) of which cannot be constructed as a product of

level-one representations {20].

Secondly, the diagonal (symmetric) subgroup G Y™ of G x G effectively
corresponds to the level-two KMA g(x = 1) @ g(x = 1) [21,22] because taking
the G x G representations in the form (R RG') of the G x G, where R, and
RG' belong to the level-one of G, one obtains representations of the form
RGXRG’ when one considers only the diagonal subgroup of G x G. This
observation is crucial, because such a construction allows one to obtain level-
two representations. (This construction has implicitly been used in [22] (see
also [21] where we have constructed some examples of GUST with gauge
symmetry realized as a diagonal subgroup of direct product of two rank eight
groups U(8) x U(8) < SO(16) x SO(16)).

In strings, however, not all level-two representations can be obtained in that
way because, as we will demonstrate, some of them become massive (with
masses of order of the Planck scale). The condition ensuring that states in the
string spectrum transforming as a representation R are massless reads:

O O _ (71)
2k+QA[)/ ZQM

where Q. is the quadratic Casimir invariant of the corresponding representa-

h(R) =

tions, and M has been already defined before (see eq.63). Here the conformal
weight is defined by LJ0)=hR)10),

dim g
____l_ [1 a a a
L0_2k+'Qw[Z[ T, +2ZT N (72)

a=1 n=1

where Tn“l 0)=0 for n > 0. The condition (71), when combined with (61),

gives a restriction on the rank of GUT’s group (r < 8), whose representations
can accommodate chiral matter fields. For example, for antisymmetric repre-
sentations of SU(n =1+ 1) we have the following values correspondingly:
h = p(n — p)/ (2n). More exactly, for SU(8) group: h(8) =7/ 16, h(28) =3/4,
h(56) = 15/ 16, h(10)=1; for SU(5), correspondingly A(5) =2/5 and
h(10) = 3/°5; for SU(3) group h(3) = 1/ 3 although for adjoint representation of
SU3) — h(8) = 3/ 4; for SU(2) doublet representation we have h(2) = 1/ 4. For
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vector representation of orthogonal series D h=1/2, and, respectively, for
spinor — h (spinor) = I/ 8.

There are some other improtant cases. The values of conformal weights for
G=S80(16) or E(6)xSU@3), representations 128, (27, 3) (r(128) = 1,
h(27, 3) = 1), respectively, satisfy both conditions. Obviouslyy, these (important
for incorporation of chiral matter) representations will exist in the level-two
KMA of the symmetric subgroup of the group G x G.

In general, condition (71) severely constrains massless string states trans-
forming as (R(x = 1), RG'(x = 1)) of the direct product G X G. For example, for
SU(8) x SU(8) and for SU(5) x SU(S5) constructed from SU(8) x SU(8) only rep-
resentations of the form

Ryy = @, M) +he) (V. N)+hc), (73)

with (R, ) = (N - 1)/ N, where N =8 or 5, respectively, can be massless.

For SO(2N) x SO(2N) massless states are contained only in representations
RV v = (?LZ_V’ ZLV) (74)
with A(R )= 1. Thus, for the GUSTs based on a diagonal subgroup

G = G x G, G Y™ high dimensional representations, which are embedded
in R (x=1) X RGf(x = 1) are also severely constrained by condition (71).

For spontaneous breaking of G X G gauge symmetry down to G ™0 (rank

GS™= rank G) one can use the direct product of representations
R (x=1) X R (x=1), where R (x=1) is the fundamental representation of
G=SUN)Y or vector representation of G =S8O@2N). Furthermore,
G ™« G % G can subsequently be broken down to a smaller dimension gauge
group (of the same rank as G *¥™) through the VEVs of the adjoint repre-
sentations which can appear as a result of G x G breaking. Alternatively, the
real Higgs superfields (73) or (74) can directly break the G x G gauge
symmetry down to a G,Y™ < G ¥™ (rank G'™ < rank G ™). For example
when G = SU(5) x U(1) or SO0 x U(1), G x G can directly be broken in this

way down to SUB) X Gy, X Gyl X ...

The above examples show clearly, that within the framework of GUSTs
with the KMA one can get interesting gauge symmetry breaking chains
including the realistic ones when G X G gauge symmetry group is considered.
However the lack of the higher dimension representations {which are forbidden
by 71) on the level-two KMA prevents the construction of the realistic fermion
mass matrices. That is why we consider an extended grand unified string model
of rank eight SO(16) or £(6) x SU(3) of Z(8).
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The full chiral SO(10) x SU(3) x U(1) matter multiplets can be constructed
from SU(8) x U(1)-multiplets

(8+56+8+56)=128 (75)

of SO(16). In the 4-dimensional heterotic superstring with free complex
world-sheet fermions, in the spectrum of the Ramond sector there can appear
also representations which are factros in the decomposition of 128, in
particular, SU{5)-decouplets (10 + E) from (28 + 28_) of SU(8). However their
U(l)5 hypercharge does not allow one to use them for SU5) x U(1)5--
symmetry breaking. Thus, in this approach we have only singlet and 5+3%
Higgs fields which can break the grand unified SU(5) x U(1) gauge symmetry.
Therefore it is necessary (as we already explained) to construct rank eight
GUST based on a diagonal subgroup G Y™ < G x G primordial symmetry
group, where in each rank eight group G the Higgs fields will appear only in
singlets and in the fundamental representations as in (see 73).

A comment concerning U(1) factors can be made here. Since the available
SU(5) x U(1) decouplets have non-zero hypercharges with respect to U(l); and
U(1),,, these U(1) factors may remain unbroken down to the low energies in the

model considered which seems to be very interesting.

5. MODULAR INVARIANCE IN GUST CONSTRUCTION
WITH NON-ABELIAN GAUGE FAMILY SYMMETRY

5.1. Spin-Basis in Free World-Sheet Fermion Sector. The GUST model is
completely defined by a set £ of spin boundary conditions for all these world-
sheet fermions (see Appendix B). In a diagonal basis the vectors of Z are
determined by the values of phases off) € (— 1, 1], fermions / acquire
(f = —exp (inof ) f) when parallel transported around the string.

Te construct the GUST according to the scheme ocutlined at the end of the
previous section we consider three different bases each of them with six
© elements B = !)l, b2, b3, 174 =8, bs’ b6 (See Tables 2, 3, 8).

Following [15] (see Appendix B) we construct the canonical basis in such
a way that the vector 1, which belongs to E, is the first element b, of the basis.
The basis vector b, = § is the generator of supersymmetry [16] responsible for
the conservation of the space-time SUSY.

_In this chapter we have chosen a basis in which all left movers
(Wu;xi,yi,mi;izl,,.ﬁ) (on which the world-sheet supersymmetry is

realized nonlinearly) as well as 12 right movers (_qik;k= 1,...12) are real
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whereas (8 + 8) right movers \PA 6M are complex. Such a construction

corresponds to SU(Z)(’ group of automorphisms of the left supersymmetric
sector of a string. Right- and left-moving real fcrmions can be used for breaking

G°°™P symmetry [16]. In order to have a possibility to reduce the rank of the

compactified group G*°™P, we have to select the spin boundary conditions for
the maximal possible number, NLR =12, of left-moving, X3456° Y1256

O 534> and right-moving, 6 Lo.12 (6 P = 6}}, p =1,...12) real fermions. The
KMA based on 16 complex right-moving fermions gives rise to the «observ-
able» gauge group G °® with:

rank (G °®%) < 16. (76)

The study of the Hilbert spaces of the string theories is connected to the
problem of finding all possible choices of the GSO coefficients C[g] (see
Appendix B), such that the one-loop partition function

z=¥ C[E]HZ[?} 7)
o B oL
and its multiloop counterparts are all modular invariant. In this formula
C[g} are GSO coefficients, o and P are (k + [)-component spin-vectors
o= [Ot(fl'),..., oc(fk’); Ot(fl"),..., (x(f,")], the components ozf, Bf specify the spin
structure of the f-th fermion and Z[...] — corresponding one-fermion partition
functions on torus: Z[...]=Tr exp[2niH(Sec[)].

The physical states in the Hilbert space of a given sector o are obtained
acting on the vacuum |0 )a with the bosonic and fermionic operators with

frequencies
n(f) =12+ 1/2a(f), n(fH=12-1/20(f" (78)

and subsequently applying the generalized GSO projections. The physical
states satisfy the Virasoro condition:

2 _ _— _ a2
ME=—1/2+1/8(0 o) + N, =— 1+ 1/8(0t 0p) + Np= Mg, (19

where 0(=(0LL, aR) is a sector in the set Z, NL=Z (frequencies) and
L

Np= 2 (freq.).
R
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We keep the same sign convention for the fermion number operator F as in
[16]. For complex fermions we have F.h=1, F(f ") = — 1 with the exception
of the periodic fermions for which we get Fo_ (Nh=-1/21 - YSf)’ where
ysle)=|Q>,ysfb3IQ)=—b3!Q).

The full Hilbert space of the string theory is constructed as a direct sum of
different sectors Z m; bl. , (ml. =0,1,..., Nl.), where the integers Nl. define

1

additive groups Z(b)) of the basis vectors b, . The generalized GSO projection

leaves in sectors o those states, whose bi-fermion number satisfies:

exp (inb, F ) =8 C * [ g‘ ] , (30)

I
where the space-time phase Sa = exp (in(x(\uu)) is equal to — 1 for the Ramond

sector and + 1 for the Neveu-Schwarz sector.

5.2. SU(5) x U(1) x SU3) x U(1)-Model 1. Model 1 is defined by 6 basis
vectors given in Table 2 which generates the ZyxZy % ZyXZyXZg % Z, group

under addition.

Table 2. Basis of the boundary conditions for all world-sheet fermins. Model 1

Vectors| W15 | X6 1,6 ©y,.6 91,12 V.8 P
b, 11 | 1n o |1 112 18 18
by 11 | 111111 | 000000 | 000000 02 128 0®
b, 11 | 111100 | 000011 | 000000 | @* 8 08 18
by=S| 11 | 110000 | 001100 | 000011 02 0® 0®
by 11 | 001100 | 000000 | 110011 12 | ye-y8 | s ys
be 11 | 110000 | 000011 | 001100 |12 %6 18 0®

In our approach the basis vector b, is constructed as a complex vector with

the 1/2 spin-boundary conditions for the right-moving fermions ¥ 4
A =1,...8. Initially it generates chiral matter fields in the 8+ 56 + 56 + 8 repre-
sentations of SU(8) x U(1), which subsequently are decomposed under
SU(5) x U(1) x SU(3) x U(1) to which SU(8) x U(1) gets broken by applying
the by GSO projection.

Generalized GSO projection coefficients are originally defined up to fifteen
signs but some of them are fixed by the supersymmetry conditions. Below, in
Table 3, we present a set of numbers
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bi —Llo C b
¥ b | i EXp |

i
which we use as a basis for our GSO projections.

Table 3. The choice of the GSO basis y[b;, bj].
Model 1 (i, numbers rows; and j, columns)

b] b2 b3 b4 b5 b6
b, 0 1 1 1 1 0
b, 1 12 0 0 1/4 1
b, 1 - 172 0 0 12 0
b, 1 1 1 1 1 1
by 0 1 0 0 -12 0
b 0 0 0 0 1 1

In our case of the Z24 X Z, X Zg model, we initially have 256 x 2 sectors.
After applying the GSO-projections we get only 49 X 2 sectors containing
massless states, which depending on the vacuum energy values, E;"* and Eg*,

can be naturally divided into some classes and which determine the GUST
representations.

Generally RNS (Ramond — Neveu — Schwarz) sector (built on vectors
b, and §S=b,) has high symmetry including N =4 supergravity and gauge

SO(44) symmetry. Corresponding gauge bosons are constructed as follows:

M I
y, 10), @Y, ¥, 100,

{ *] _
w100, @ W 100, LJ=1..,22 (81)

While U(1), charges for Cartan subgroups are given by formula Y=% + F

(where F — fermion number, see (80)), it is obvious that states (81) generate
root lattice for SO(44):

islisj(ht]); e, Fe,. (82)
The other vectors break N =4 SUSY to N =1 and gauge group SO(44) to

S0(2) , ,x SO(6), x [SU(5) x U(1) x SU(3),, % U(1),)% see Figure 1.
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N=2SUSY: Vv = (1)) + (10 SU(8)
4
N=1SUSY: Vies — Vi + Sne SU(5) x SU(3) x U(1)
J=1 J=1/2 J=1/2 J=0
Evac = (63) : - (63)
-1/2; -1]
S sector )
Eue = [0;-1] (63) x 2 (63) x 2 —
SUSY sector
o Gauge multiplets
§ by GSO projection
J=1"" J=1/2 J=1/2 J=0
) = @LDHED+H(IS8) : — (53)+(5,3)
-1/2; -1]
S sector i
FEue = [0;-1] (2004 (LDH(18)x 2 || ((5.3)+(3.3))x 2 —
SUSY sector
Gauge multiplets Higgs multiplets

Fig.2. Supersymmetry breaking

Generally, additional basis vectors can generate extra vector bosons and
extend gauge group that remains after applying GSO-projection to RNS-sector.
In our case dangerous sectors are: 2b2 + nbs, n=0,2,4,6; 2b5; 6b5. But our

choice of GSO coefficients cancels all the vector states in these sectors. Thus
gauge bosons in this model appear only from RNS-sector.
In NS sector the b, GSO projection leaves (5, 3) + (5, 3) Higgs superfields
(see Figure 2):
1,2 a i* | a* i
PEVPIRO DI SYPI SV SYPI SYPIRL D (83)
and exchange¥ — ®, where q, b=1,...,5,,j=1,2,3.

Four (3, + 1,,) generations of chiral matter fields from (SU(5) x SU(3)),

group forming SO(10)-muitiplets (1, 3) + (5, 3)+(10,3); (4,D+ (5, D+
+ (10, 1) are contained in b, and 3b, sectors. Applying by GSO projection to the
3b,, section yields the following massless states:

+ o+ 1+ j* b ] ]
b\v12bx34bx56| Q). ® { REYPTR SYPE ST SYFUR ST SVPR 27 } 1Q)g
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+ + 4 * b i i j k
bxnbx“bxml Q >L ® { \P‘?:/ 4 \Plll/ 4\1‘1/ 4\Pll/ 4 \Pl/ 4\111/4\111/4 } 1 )R (84)

with the space-time chirality Ysy =~ 1 and Ysy = 1, respectively. In these
12 12

formulae the Ramond creation operators &% and bt  of the zero modes are
1.2 o f
built of a pair of real fermions (as indicated by double indices):

X g (o, By =(1, 2), (3, 4), (5, 6). Here, as in (83) indices take values
a,b=1,.,5and i, j=1, 2,3, respectively.
We stress that without using the b, projection we would get matter

supermultipiets belonging to real representations only, i.e., «mirror» particles
would remain in the spectrum. The b projection instead, eliminates all chiral

matter superfields from .U(8)II group.

Since the matter fields form the chiral multiplets of SO(10), it is possible to
write down U(1), -hypercharges of massless states. In order to construct the
5

right electromagnetic charges for matter fields we must define the hypercharges
operators for the observable U(8)I group as

i n
v,=[doY vy, v,=[do Y wiw (85)
0 a 0 i
and analogously for the Uy group.
Then the orthogonal combinations
Yo=1 (¥ +5¥ V.=t -3y 86
5“’4(5’+ 3), 3—4(3_ 5) ( )

play the role of the hypercharge operators of U(l)Y and U(1), groups,
5 H
respectively. In Table 4 we give the hypercharges ?51, 3’31, I’SH, i’;l .

The full list of states in this model is given in Table 4. For fermion states
only sectors with positive (left) chirality are written. Superpartners arise from
sectors  with § = b,-component changed by 1. Chirality under hidden

SO(ZZ)?,Z)3 X 80(6), is defined as %, L, +,, £, respectively. Lower signs in
items 5 and 6 correspond to sectors with components given in brackets.

In the next section we discuss the problem of rank eight GUST gauge
symmetry breaking. The matter is that according to the results of section 4 the
Higgs fields (10,,, + 10_, ,) do not appear.
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Table 4. The list of quantum numbers of the states. Model 1

No bbl’ ’;2' 1;3’ SOhid U(S)I U(3)‘ U(S)” U(3)” ;51 ;.31 ;,Sn '1;311
4 V5 Yg .
1 RNS 5 3 1 1 -1 -1 0 0
. 1 ] 5 3 0 0 -1 -
@ | 02012(6)0 5 1 5 1 -1 0 -1 0
1 3 1 3 0 1 0 1
5 1 1 3 -1 0 0 |
1 3 5 1 0 1 -1 0
2| 010000 1 3 1 1 57 -1 0 0
. 5 3 1 1 -32 -1 o0 0
W 10 1 1 1 172 32 0 0
030000 1 1 1 1 52 3R 0 0
5 1 1 1 -32  3In 0 0
10 3 1 1 12 -2 0 0
31 001130 (-1+2]| 1 1 1 3 0 32 0  -in
001170 | —1+2| | 3 1 | 0 12 0 32
\'*‘,H _
021130 {+1+2] 1 3 1 3 0 12 0 -2
021170 |[+1%2]| | 1 1 ] 0 32 0  +3p
41 111011 | F1£3] 1 1 1 3 0 -32 0 12
111051 | F1+£3| 1 3 1 1 0 122 0 -3
&\)H _ -
131011 | x1+3] 1 3 1 0 12 0 12
131051 | F1+3| | 1 1 ] 0 -32 0 -3p
5(01(3)1026)1 |~ 1+3( 1 3(3) | I | £54 114 +£54 34
+113] 565) i 1 1 14 F34 +54 334
6| 0131041 |~143| I 1 () | +£54 T34 +54 + 4
+1+3] 1 1 5(5) || +5[4 F34 +14 x3/4
6| 12003(5)1 [+1-4]| | 1 1 I | £5/4 +3/4 =514 T34
S [0S | +1 54| 1 1 1 1 | £5/4 +3/4 +514 +34
00102(6)0 | ¥3+4| 1 1 1 1 | +5M4 F3/4 +5/4 F3/4
53.  SUS) xUQ1) x SUE3) x U(1)-Model 2. Consider then another

[U(5) x U(3)1

4
ZZ

This model

X Zg X Z,, group under addition.

GSO coefficients are given in Table 6.

model which after breaking gauge symmetry by Higgs mecha-
nism leads to the spectrum similar to Model 1.

is defined by basis vectors given in Table 5 with the
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Table 5. Basis of the boundary conditions for Model 2

Vectors| Wy, X1,.6 Yi.6 W 6 G112 ¥ s D .8

b, 11 16 19 16 12 18 18

b, 11 16 0° 08 0" P13’ o?

b, 1n | 120?12 0®  |0?1%20? 0% 14 v2ive (-2 ve
b4 - 11 12 04 02 12 02 04 12 012 08 08

bS 11 14 02 04 12 06 18 04 15 03 05 13

b6 11 02 12 02 ]2 04 04 12 12 02 16 02 18 08

Table 6. The choice of the GSO basis Y[b, bj].
Model 2 (i, numbers rows; and j, columns)

bl b2 b 3 bd bS b6
b, 0 1 172 0 0 0
b, 0 2/3 - /6 1 0 1
b, 0 173 5/6 1 0 0
b, 0 0 0 0 0 0
by 0 1 - 12 1 1 1
by 0 1 12 1 0 1

The given model corresponds to the following chain of the gauge symmetry
breaking:

El - SO(16)2 — U®): — [UG) x UBI.

Here the breaking of U(8)%-group to [U(5) x U(3))* is determined by basis
vector bS’ and the breaking of N=2 SUSY - N =1 SUSY is determined by

basis vector b6'

It is interesting to note that in the absense of vector by U(8)? gauge group
is restored by sectors 4b3, 8b3, 2b2 + c.c. and 4b2 +c.c.

The full massless spectrum for the given model is given in Table 7. By
analogy with Table 4 only fermion states with positive chirality are written and

obviously vector supermuliplets are absent. Hypercharges are determined by
formula:

n
Y, =2, (0 2+F).
k=1



THE FAMILY PROBLEM IN THE 4D SUPERSTRING GRAND 1181

Table 7. The list of quantum numbers of the states. Model 2

by, by, by,

Nl bb | SOm | UG U ve)" ve'| v v n v
1 RNS 6,2, 1 1 I 1 0 0 0 0
124 1 1 1 1 0 0
5 1 5 1 1 -1
004100 1 3 1 3 0 -1 0 -1
008100 1 3 1 3 0 1 0 1
2| 010000 5 3 1 1 | -32 -12 0 0
1 3 1 1 527 12 0 0
030000 10 1 1 1 12 3 0 0
3| 0110000 1 1 10 3 0 0 12 12
036000 1 1 5 1 0 0 -32 -3
1 1 1 1 0 0 52 -3
4 | 023000 4| 1 3 1 1 | =54 —-14 54 34
51 003000 [ +3+4 | 1 1 5 1 | —54 34 /4 34
6 | 009000 1 1 5 1 54 -3/4 — 14 -3/4
71 049000 | ~3+ 1 3 1 1 5/4 14 —5/4 —3/4
890 osot01 | —1+3 | 1 3 1 1 0 -1 0 0
030101 | +1+3| 5 1 1 1 1 0 0 0
+1-3{ 5 1 1 1 -1 0 0 0
-1+3 1 1 5 1 0 0 1 0
-1-3 1 1 5 1 0 0 -1 0
058101 | +1+3 1 1 1 3 0 0 0 1
10| 033001 |+1x4 1 1 1 1 | -5 3m 54 34
11| 103001 |+2-3| 1 1 5 1 | -14 34 -—54 -3/4
1211001 | £2-3 | 1 1 1 3 | —-514 34 54 U4
12| 109001 |[+2+3]| 5 1 1 1 V4 =3/4 54 34
149001 | +2+3 1 3 1 1 5/4 /4  5/4 34
13] 000111 | +2+3 1 1 1 1 0 -32 0 312
020111 | +2-3 1 3 1 i 0 12 0 312
028111 |+2-3 i 1 1 3 0 =32 0 -—12
048111 | +2+3 I 3 1 3 0 12 0 -2
103111 | +1+3 | 1 1 1 1 514 34 -S54 34
109111 | +1+3 | 1 1 1 1 | -54 -3/4 54 -3/4
133011 | -1-3 1 1 1 1 | —-5/4 ~3i4 -54 3/4
139011 | ~1+3 1 1 1 1 5/4 34 514 -3/4
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The given model -possesses the hidden gauge symmetry
$0(6), x S0(2)2,3,4. The corresponding chirality is given in column SO, 4 The
sectors are divided by horizontal lines and without including the bs-vector form
SU(8)-multiplets.

For example, let us consider row No.2. In sectors b, 5b, in addition to the
states (1, §) and (5, 5), the state (10, 3) appears, and in sector 3b, besides the
state (10, 1), the states (1, 1) and (3, 1) survive, too. All these states form
8 +56 representation of the SU(8)! group.

Analogically we can get the full structure of the theory according to the
U(8)l X U(8)”_—group. (For correct restoration of the SU(8)"-group we must
invert 3 and 3 representations).

In Model 2 matter fields appear both in U(8)! and U(8)!! groups. This is the
main difference between this model and Model 1. However, note that in the
Model 2 similarly to the Model 1 all gauge fields appear in RNS-sector only
and 10 + 10 representation (which can be the Higgs field for gauge symmetry
breaking) is absent. -

5.4. SO(10) x SU(4)-Model 3. As an illustration we can consider the GUST
construction involving SO(10) as GUT gauge group. We consider the set
consisting of six vectors B = by, by, by, by =S, by, by given in Table 8.

Table 8. Basis of the boundary conditions for the Model 3

Vectors| ¥, X6 Yi.6 W, 6 P12 Y o8 D8
b, 11 111111 111111 11111 112 18 18
b, 11 11111 000000 000000 I L B R VK ot
b, 11 000000 11T | 000000 of1* |- 613 0° 1}

b, = 1 110000 | 001100 | 000011 02 | ot 0t
by 11 111111 000000 | 000000 0" ot 1’y3
bg 11 001100 110000 | 000011 |12 02 15 o2 i 0®

GSO projections are given in Table 9. It is interesting to note that in this
model the horizontal gauge symnietry U(3) extends to SU(4). Vector bosons
which are needed for this appear in sectors 2b,(4b,) and 2by(4b;). For further

breaking SU(4) to SU(3) x U(l) we need an additional basis spin-vector.

So, the given model possesses gauge group G °™x [SO(10) x SU(4)}* and
matter fields appear both in the first and in the second group symmetrically.
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Table 9. The choice of the GSO basis y[b, bj].
Model 3 (i, numbers rows; and j, columns)

b 1 b2 b3 b4 b5 b6
b, 0 1 0 0 ] 0
b, 0 23 1 1 1 1
b, 0 1 0 1 1 1
b, 0 0 0 0 0 0
by 0 1 1 1 23 0
bg 0 1 0 1 1 1

Sectors 3b2 and 5b2 + c.c. give the matter fields (16, 4; 1, 1) (first group) and

sectors 3bs and 5bs + c.c. give the matter fields (1, 1; 16, 4) (second group).

Of course for getting a realistic model we must add some basis vectors
which give additional GSO-projections.

The condition of generation chirality in this model results in the choice of
Higgs fields as vector representations of SO(10) (16 + E are absent). According
to conclusion (74) the only Higgs fields (10, 1; 10, 1) of (SO(10) x SU(4))><2
appear in the mode! (from RNS-sector) which can be used for GUT gauge
symmetry.

6. MORE EXPLICIT METHODS OF MODEL BUILDING

In the previous models we had to guess how to obtain certain algebra
representation and select boundary conditions vectors and GSO coefficients
basing only on basis building rules. Below we will develop some methods that
help to build models for more complicated cases such as E. x SU(3) and
SU3) x SU(3) x SU3) x SU(3).

6.1. Normalization of Algebra Roots. As is known, U(1) eigenvalue when
acting on state in sector ot is o, /2 + F, . So square of a root represented by the

state in sector O is z (,/72+F).
i
Consider then a mass condition. It reads (for right mass only)
2141 -
My =-1+ g (ocRocR)+NR-~O.

In general we can write ngas
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21+ Fof) F? «
2
= e R —
nf)=F 5 5 F )
forany F=0,% 1 (F 3 = F for that values).

Now MR2 formulae read

22 22 2
M 2 | —]‘ 2 i F ixv’
== +82(ai)+z SHE S|
i=1 i=1
Hence
22 o 5
2= [ S+ F ] .
‘ 2
i=1
Clearly it is the square of algebra root and it equals 2 for any massless state.
Obviously for massive states normalization will differ from that.
On the other hand, if we desire to obtain gauge group like

G'xG"x G M then sectors that give gauge group should be like this
0% 0® 0% for G,
©0'10% o 0% forG U,
(010 I 08 08 ahid) for G hid’

where we assume that both of G " ! are rank eight groups (I divides left and
right movers). With other vectors we will get roots that mix some of our
algebras.

With all this in mind, we can develop some methods of building GSO-
projectors (vectors that apply appropriate GSO-projection on the states in order
to obtain certain representation) for several interesting cases.

6.2. Building GSO-Projectors for a Given Algebra. As we follow certain
breaking chain of Eq, then it is very natural to take Eg construction as a starting

point. Note that root lattice of Eg arises from two sectors: NS sector gives 120

of SO(16) while sector with 18 gives 128 of SO(16). This corresponds to the
following choice of simple roots

T, =—e te,
My =—e,+ ey
My =—es+e,

1t4=—€4+€5,

TC5=—€5+66,
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n,=—¢e,+e

6 6 s

7C7=—e7+€8,

1
ns_i(el+62+63+€4+‘?5"86_37"€8)'

Basing on this choice of roots it is very clear how to build basis of simple
roots for any subalgebra of Eg. One can just find out appropriate vectors T of
the form as in Ey with needed scalar products or build weight diagram and

break it in a desirable fashion to find roots corresponding to certain repre-
sentation in terms of Eg roots.

After the basis of simple roots is written down one can build GSO-
projectors in a following way.

GSO-projection is defined by operator (b;F) acting on given state. The goal
is to find those b; that allow only states from algebra lattice to survive. Note
that F; =y, — /2 (y, — components of a root in basis of e;), so value of
GSO-projector for sector o depends on Y; only. So, if scalar products of all
simple roots that arise from a given sector with vector b, is equal to mod 2, then
they surely will survive GSO-projection. Taking several such vectors b; one can
eliminate all extra states that do not belong to a given algebra.

Suppose that simple roots of the algebra are in the form

H

e,te te te te

m = 3t e tesTe ey

: (te e

+
1T % te

o

b | —

nj=(ie te )

k m

In this choice we have to find vectors b which gives 0 or 1 in a scalar product
with all simple roots. Note that (b-ni) = (b-nj) mod 2 for all 4, j so ¢; = (bm)
either all equal 0 mod 2 or equal 1 mod 2 (for = (Fe t e,) it should be 0
mod 2 because they arise from NS sector). Value 0 or 1 is taken because if
root T € algebra lattice, then — & is a root also. With such choice of simple

roots and scalar products with b all states from sector like 13 will have the
same projector value. Roots like + e x ¢ rise from NS sector and are sum of
1
i == (te te +te +
roots like ys ) & e,te,tete, + € + €6 + e, + es) and therefore have
scalar products equal to 0 mod 2 as is needed for NS sector.
Now vectors b are obtained very simple. Consider

¢;=(bmn)= bj Aji ,
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where Ajl. = (nl.)j — matrix of roots component in e basis. Hence b=A"l-c,
where either all ¢ = 0 mod 2 or ¢ = 1 mod 2. One has to try some
combination of ¢ to obtain appropriate set of b. The next task is to combine
those b, that satisfy modular invariance rules and do not give extra states to
the spectrum.

6.3. Breaking Given Algebra Using GSO-Projectors. It appears that this
method of constructing GSO-projectors allows one to break a given algebra
down to its subalgebra.

Consider root system of a simple Lie algebra. It is well known that if
T, Ty € A, where A is a set of positive roots, then (n, — n,(n,-%,)) € A also.

For simply laced algebras it means that if T, t € A and (T;7) =— 1, where
T, is a simple root, then © + m, is a root also. This rule is hold automatically in

string construction: if a sector gives some simple roots, then all roots of algebra
and only they also exist (but part of them may be found in another sector).
Because square of every root represented by a state is 2, then if (n,:m) # - 1,
then (7 + 7tl.)2 # 2. So one must construct GSO-projectors checking only simple

roots. On the other hand, if one cuts out some of simple roots, then algebra will
be broken. For example, if a vector b has non-integer scalar product with simple
root T, of E, then we will obtain algebra SO(10) x U(1) ((b-w,) even could be

1 if other products are equals 0 mod 2).

More complicated examples are E. X SU(3) and SU(3) x SU3) x SU(3) x
x SU(3). For the former we must forbid the 7, root but permit it to form
SU(3) algebra. Note that in Eg root system there are two roots with 3w,. We will
use them for SU(3). So the product (b-1,) must be 2/3 while others must be 0
mod 2.

We can also get GSO-projectors for all interesting subgroups of Eg in such
a way, but so far choosing of constant for scalar products (c; in a previous

subsection) is rather experimental, so it is more convenient to follow certain
breaking chain.

Below we will give some results for Eg x SU(3), SU@3) x SUB) x SU3) %

x SU(3) and SO(10) x U(1) x SU(3). We will give algebra basis and vectors that
give GSO-projection needed for obtaining this algebra.

Eg x SU(3). This case follews from Eg using root basis from a previous

subsection and choosing
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3
This gives GSO-projector of the form

blz[ml 33505 )

Basis of simple roots arises from sector with 1 8 in right part and reads

c[=(—2,—2;0,2,—2,-2,2,0].

1
m = 2(+e te,te,te, +65+e6+e7+e8)

1
m, = 2(+e +6’2—€3~—€4—€5—€6—€7—€8)
_1
7t3—2(+el—ez—e3—e4+e5+eb—e7+e8),
_1 +
n4—2( [ te,tes—e —esteg 67—6‘8),
n—l(+ +e,+e,+ e e - (87)
5Ty E T T ey s 6 eg):
_1
11:6—2(—el+ez—e3+ed—e5+e6~e7+e8),
1
1\’,7—2(+el—e2+23-e4—e5—e6+e7+e8),

n

i
3 5(—(3]+62—e3—e4+e5—e6+e7+e8).

SO(10) x U(1) x SU(3). This case follows from E X SU@3). In addition to
b, we must find a vector that cuts out m,. Using
¢;=(0,0,1,0,0,0,0,0
and inverse matrix of E_ x SU(3) basis we get GSO-projector of the form

b2=(o,o,1 2 11 2 1]

3°'73'3'3°73'3
Basis of simple roots is the same as for E6 x SU3) excluding Ty

SU3) x SU(3) x SU(3) x SU(3). Using E x SU(3) basis inverse matrix with

1,1
=1L -1,-1,=,1,=,-1,-1

We get GSO-projector of the form
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11 1 1 1 1
=l -=, =, L L,-,>,-=,-= |.
b, [ T3 bl 3]
Easy to see that such a ¢; cuts out m, and T, roots but due to appropriate

combination in E root system two SU(3) groups will remain. Basis of simple

roots is
_1 +: +e,+e.+te +e, +
1:1—2(+e1 e;teste, testete, eg),
L I
nz—z( eptey—e;—e,—es—e —e, e8),
-1
Tr,3—2(+61—ez+e3—e4—es—e6+e7+e8),
_1
7[4-—2(—€1+€2+€3—'€4+€5+€6—€7—88),
_1 (88)
1:5—2(+el—ez+e3+e4+es—e6—e7—eg),
-1 +
1t6--2(~el+e2~e3-e4 €5 —€g+ e, + eg),
et tete, - +
11:7-2( epte,teste, —eg—e e, —e),
_1 +
n8—2(+el—-ez~e3—e4 65+e6+e7—98).

Using all this methods we could construct a model described in the next
section.
64. E.xSU3) Three Generations Model — Model 4. This model

illustrates a branch of E} breaking E; — E, x SU(3) and is an interesting result

on a way to obtain three generations with gauge horizontal symmetry. Basis of
the boundary conditions (sec Table 10) is rather simple but there are some
subtle points. In [34] the possible left parts of basis vectors were worked out,
see it for details. We just use the notation given in [34] (hat on left part means
complex fermion, other fermions on the left sector are real, all of the right
movers are complex) and an example of commuting set of vectors.

A construction of an E, x SU(3) group caused us to use rational left

boundary conditions. It seems that it is the only way to obtain such a gauge
group with appropriate matter contents.

The model has N =2 SUSY. We can also construct mode! with N =0 but
according to [34] using vectors that can give rise to E, x SU(3) (with realistic

matter fields) one cannot obtain N = 1 SUSY.
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Table 10. Basis of the boundary conditions for the Model 4

\t/cii Vi2 X1...9 @i,.0 [ W s D, 5
by | 11 1° 19 15 18 18

1 2 201 2 2| 2 23 , 2 2 18

SR IR AL TN R S N S S BRI
5 | 00 0° 0% of 18 08
b, | 11 1,1,0,000 1,1;0,0,0,0 0° 08 0%

Table 11. The choice of the GSO basis Y [b;, bj].
Model 4. (i, numbers rows; and Js columns)

bl b2 b3 b4 ]
b, 0 173 1 1
b, 1 I 1 1
by 1 1 0 1
b, 1 13 1 1

Let us give a brief review of the model contents. First notice that all
superpartners of states in sector o are found in sector o + b, as in all previous

models. Although the same sector may contain, say, matter fields and gauginos
simultaneously.

The observable gauge group (SU(B);I X Eg) X (SU(S)E X Eéu) and hidden
group SU(6) x U(1) are rising up from sectors NS, by and 3b, + b,. Matter
fields in representations (3, 27) + (3, 27) for each § U(3)H X E group are found
in sectors 3b,, by + by and b,. Also there are some interesting states in sectors
by, by + by, 2by + by + by, 2b, + by and 5b,, 5b, + by, 4b, + by +b,, 4b, + b,
that form representation (5, 3) and (3, 5) of the SU(3)[H X SU(3")E, group. These

states are singlets under both E, groups but have nonzero U{1)igqen Charge.

We suppose that the model permits further breaking of E¢ down to other

grand unification groups, but problem with breaking supersymmetry
N=2 - N=1is a great obstacle on this way,

7. GUST SPECTRUM (MODEL 1)

7.1. Gauge Symmetry Breaking. Let us consider Model 1 in detail. In
Model 1 there exists a possibility to break the GUST group (U(5) x UB))! x
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x (U(5) x U(3))lI down to the symmetric group by the ordinary Higgs
mechanism [9]:
G'xglsev™ 5 (89)

To achieve such breaking one can use nonzero vacuum expectation values of
the tensor Higgs fields (see Table 4, row No.l), contained in the
2b,t+ 2(6)b5(+ S) sectors which transform under the (SU(5) x U(1) x SU(3) x

x U(1)Y’Y™ group in the following way:
group
5, 1,5, l)(_ 10: - 10) (24, l)(()'()) (1, l)(0,0);

(l» _3_; 19 ’é)(o‘]; 0,1 - (l‘ §)(0,0) + (lv l)(0,0)' (90)

G L L3001 = G Dy

(1,351

L o1 -10 G 3¢

-1y 91)

The diagonal vacuum expectation values for Higgs fields (90) break the
GUST group (U(5) x UB)! x (U(5) x UB)!" down to the «skew»-symmetric

group with the generators Asym of the form:
Asym(t) =—t"x1+1xt (92)
The corresponding hypercharge of the symmetric group reads:
y=y"-yl (93)
Similarily, for the electromagnetic charge we get:
ol _ol_pl_7h, 230 _34_7 .27
Q,,=Q -0 =(T; —-T5)+5 Yy -Y)=T +5 Y
11 12 3
15715°15°5" 5
does not lead to exotic states with fractional electromagnetic charges (e.g.,
0 =x1/2,%+1/6).

em

(94)

where T = diag [ ] . Note, that this charge quantization

Thus, in breaking scheme (92) it is possible to avoid colour singlet states
with fractional electromagnetic charges, to achieve desired GUT breaking and
moreover to get the usual value for the weak mixing angle at the unification
scale (see (47)).

Adjoint representations which appear on the r.h.s. of (90) can be used for
further breaking of the symmetric group. This can lead to the final physical
symmetry

(SU3°) x SUQgy) x U1y x U(1)) x (SUB,) x U1 ) 95)
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with low-energy gauge symmetry of the quark-lepton generations with an
additional U(1)'-factor.

Note, that when we use the same Higgs fields as in (90), there exists also
another interesting way of breaking the C Iwgl gauge symmetry:

G'x G- SUBY) x SUQ)L,, x SUQ@)gy, x U(ly) x

x SUG Y x SUB )" x U(l5 ) - ... (96)
H

It is attractive because it naturally solves the Higgs doublet-triplet mass
splitting problem with rather low energy scale of GUST symmetry breaking
[30}.

In turn, the Higgs fields h from the NS sector

T, N)
Gyt G Dy ©7)
are obtained from N = 2 SUSY vector representation 63 of SU(8) (or SU®)™)

by applying the b, GSO projection (see Fig.2 and Appendix A). These Higgs
5 p g PP

fields .(and fields (91)) can be used for constructing chiral fermion (see
Table 4, row No.2) mass matrices.

The b spin boundary conditions (Table 2) generate chiral matter and Higgs
fields with the GUST gauge symmetry Gmmp x(GIxGh obs  (Where
GComp = U(1)} x SO(6) and G LI have been already defined). The chiral matter
spectrum, which we denote as ‘{I(I‘, N with (' =1, 5 10; N = 3, 1), consists of
Ng =3, + 1, families. See Table 4, row No.2 for the ((SU(S) x U(1)) x
X (SU(3) x U(1)),)™™ quantum numbers.

The SUQG3 H) anomalies of the matter fields (row No.2) are naturally
canceled by the chiral «horizontal» superfields forming two sets: ‘Il\’g,N; 1N) and

A
<I>g N: LAY I'=1, N =1, 3, (with both SO(2) chiralities, see Table 4, row No.3,

4, respectively).

The horizontal fields (No.3, 4) cancel all SU(3)I anomalies introduced by
the chiral matter spectrum (No.2) of the (U(5) x U(3))I group (due to b, GSO

projection the chiral fields of the (U(5) x U(3))“ group disappear from the final
string spectrum). Performing the decomposition of fields (No 3) under

(SU(5) x SUBHY™ we get (among others) three «horizontal» fields ‘I’H
2x(1, §)(0,_ 1y a, D(o,— 3y {, Q)(QJ), (98)
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coming from ‘P( (and ‘I‘ 11513 ) ‘P and W7

(LELD (13137 respectively,

1L3LD

which make the low energy spectrum of the resulting model (96) SUG,™Y™

anomaly free. The other fields arising from rows No.3, 4, Table 4 form
anomaly-free representations of (SU(3,) x U(1)y¥™

A Doy WDy + 1 Dgzp U By, 99)
The superfields q>(r Mt h.c., where (' =1, 5; N = 1, 3) from Table 4, row

No.5 forming representations of (U(5) x U(3))"" have either Q Uor Q I exotic
fractional charges. Because of the strong G “°™ gauge forces these fields may
develop the double scalar condensate ( $ $ ), which can also serve for
U(5) x U(5) gauge symmetry breaking. For example, the composite condensate
(&\)(5,1;1’1), $(1,1;§,1)) can break the U(5) x U(5) gauge symmetry down to the
symmetric diagonal subgroup with generators of the form

N=tx1+1xt (100)

sym

so for the electromagnetic charges we would have the form

Q,=0"+0", (101)
leading again to no exotic, fractionally charged states in the low-energy string
spectrum.

The superfields which transform nontrivially under the compactified group
G O™ = §O(6) x SO2)*3 (denoted as G + h.c.), and which are singlets of
(SU(S) x SU(3)) x (SU(5) x SU(3)), arise in three sectors, see Table 4, row

No.6. The superfields 6 form the spinor representations 4 + 4 of SO(6) and they
are also spinors of one of the SO(2) groups. They have following hypercharges

yLo yLII,
TN ALY
Y=(5/4, F¥4;,5/4,F3/4), Y=(54,%4,-54,-3/4). (102

With respect to theAdiagonal G Y™ group with generators given by (92) or
(100), some fields © are of zero hypercharges and can, therefore, be used for
breaking the SO(6) x SO(2)* > group.

Note, that for the fields 6 and for the fields & any other electromagnetic
charge quantization different from (94) or (101) would lead to «quarks» and
«leptons» with the exotic fractional charges, for example, for the 5- and 1-

multiplets according to the values of hypercharges (see eqs. 102) the generator
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Q" (or Q') has the cigenvalues (+1/6,+1/6,+ 1/6,+ 1/ 2, F1/2) or
+ 1/ 2, respectively.

Scheme of the breaking of the gauge group to the symmetric subgroup,
which is similar to the scheme of Model 1, works for Model 2, too. In this case

vector-like multiplets (5, 1; 5, 1) from RNS-sector and (1,3,1,3) from

4b; (8b,) play the role of Higgs fields. Then generators of the symmetric

subgroup and electromagnetic charges of particles are determined by formulas:

AP = 1O x 1 @1xt®
sym ’
As(y§3,=(—t(3))x1@1xz(3>,

Q.. =t -2/5Y5, where (D =(1/151/15,1/15, 275, 3/5).  (103)

€
After this symmetry breaking matter fields (see Table 7 rows No.2, 3) as
usual for flip models take place in representations of the U(5)-group and form

four generations (1 +5 + 1__0; §+ l)sym. And Higgs fields form adjoint repre-

sentation of the symmetric group, similar to Model 1, which is necessary for
breaking of the gauge group to the Standard group. Besides, due to quantization
of the electromagnetic charge according to the formula (103), states with exotic
charges in low energy spectrum also do not appear in this model.

7.2. Superpotential. The ability of making a correct description of the
fermion masses and mixings will, of course, constitute the decisive criterion for
selection of a model of this kind. Therefore, within our approach one has to

1. study the possible nature of the G, horizontal gauge symmetry
(Ng = 3H or 3H+ IH),
2. investigate the possible cases for G, -quantum numbers for quarks (anti-

quarks) and leptons (anti-leptons), i.e., whether one can obtain vector-like or
axial-like structure (or even chiral GHLX GHR structure) for the horizontal
interactions.

3. find the structure of the sector of the matter fields which are needed for
the SU(S)H anomaly cancelation (chiral neutral «horizontal» or «mirrors
fermions),

4. write out all possible renormalizable and relevant non-renormalizable
contributions to the superpotential W and their consequences for fermion mass
matrices.

All these questions are currently under investigation. Here we restrict
ourselves to some general remarks only.
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With the chiral matter and «horizontal» Higgs fields available in Model 1
constructed in this paper, the possible form of the renormalizable (trilinear) part
of the superpotential responsible for fermion mass matrices is well restricted by
the gauge symmetry:

A A A A A
W, =g‘5[‘1’(1 3» ¥E h(53) \11(1 n Y63 s
A A " A
+ %103 \Y(E yhs3* \P(m 3 Yo P ] (104)

From the above form of the Yukawa couplings follows that two (chiral)
generations have to be very light (comparing to My, scale).

The construction of realistic quarks and leptons mass matrices depends, of
course, on the nature of the horizontal interactions. In the construction
described in Sec.S there is a freedom of choosing spin boundary conditions for
Ng= 12 right fermions in the basis vectors b3, bs, b6,..., which in the Ramond

sector 2b,, may yield another Higgs fields, denoted as h(F N and transforming
as 5,3)_ 1+ G D) 28+ 28  of SU(8). Using these Higgs fields we

get the following alternative form of the renormalizable part of the
superpotential W:

, A A ~ A A -~
W, =gV2 [ Y3 Y53 fis. 3) +¥oon Y6 he3) t
A A ~
+ \P(m 3 fa03) eyt T(10,3) Y5 hs3 ] (105)
To construct the realistic fermion mass matrices one has to also use Higgs
fields (90, 91) and (Table 4, No.5) and also to take into account all relevant

non-renormalizable contributions [16].

!

Higgs fields (90) can be used for constructing Yukawa couplings of the
horizontal superfields (No.3 and 4). The most general contribution of these
fields to the superpotential is:

A A
(

W2=g\[2_[CDH o sl B 3 @

(1,1;13) T (1,311 (1313) (LLLD 1,1

/\ H I\H_ o
+ ‘I’ﬁ 3:13) q’? Q4343+t Yoz Y313 q’(1,3;1,3) +

(1313)

+pH 9H_ @

(1L,1:13) (13:1,3) P1,3;1,3) ] ' (106)

From this expression it follows that some of the horizontal fields in (99)
{(No.3, 4) remain massless at the tree-level. This is a remarkable prediction:
fields (99) interact with the ordinary chiral matter fields only through the
u(1,) and SUG3,) gauge boson and therefore are very interesting in the

context of the experimental searches for the new gauge bosons.
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Finally, we remark that the Higgs sector of out GUST allows conservation
of the G, gauge family symmetry down to the low energies (~ O (1 TeV) [5]).

Thus in this energy region we can expect new interesting physics (new gauge
bosons, new chiral matter fermions, superweak-like CP-violation in K-, B-,

D-meson decays with 8,,, < 107 [5)).
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8. APPENDIX A.
SHORT INTRODUCTION TO N =2 SUSY MODELS

Let us consider a gauge interaction of the vector (gauge) hypermultiplet and
Fayet-Sohnius (matter) hypermultiplet. On the language of N =1 SUSY these
hypermultiplets consist of N = 1 superfields as follows:

vector hypermultiplet — vector superfield V = (Vm; A) and chiral superfield
©® = (N; ¢);
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Fayet-Sohnius hypermultiplet — two chiral superfields: X = (X, y) and
mirror Y = (¥; %). (In brackets we have written bosonic components on the first
place).

Suppose, we have matter multiplets in some representations of a gauge
group G with generators ¢ :

Tr(tt)=k5 ,, [tgl=if, t.

Then N =2 gauge Lagrangian on the language of N = 1 superfields looks like

LN=2:[ 12TrW“Wa} +he + [1/k Tr @ *e28V @~ 2V) 4
16kg s

. T . — .
+ Xj+e23VX] + Yt 2Vy )y + [i2g YJ.T(D X/ +he, (107)

where superstrength W_=-1/ 45(-15 G- 2'5"VD0[c=,215'V, V=V% and analogi-

cally for ®. It is interesting that the Yukawa coupling of N =2 theories is
entirely determined by the gauge structure.
Under following gauge transformations this Lagrangian is invariant

eV - exp (igAa+ta) e?8Y exp (- igA,L,),

® — exp (igA 1) P exp (- igA,1,),
X — exp (igAt) X, Y - exp (- igAata*) Y. (108)

We can see that ordinary fields (superfields X) and mirror fields (superfields
Y) are transformed as mutual conjugating representations of a gauge group.

After excluding of auxilary fields the Lagrangian L£Y=2 jo0ks like (we
suppose that k = 1/ 2):

LN=2=Tr(- 172V, V™ - 2i A\a"V, L+ 2N *V?N +2i V_0c™) +
+ 2N2igh[ON 11 + 2N2igh[ON] — g2 NN 112 +
+X VX +iV yG g+ YV +iV 3Gy +

+V2igX Ay — Y ATy — xTox — ¥ Ty — x"Ny) + he. —

- XHNTNIX-gY TINNTYY * — g% 4X,"X) (X, °X) ~
&7 MY (V) + g% 2AYX) (XY - Y (X1X), (109)
where i and j indices are numbers of matter hypermultiplets. Note, that
covariant derivative for X-fields Vﬁ = am +igV, , but for Y-fields
V');l = E)m - ingT. Since the N =2 SUSY is present, this Lagrangian possesses
the hidden global internal SU(2) symmetry. The component fields (A, — ¢) and
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(X, Y ™) are doublets under internal SU(2) group and remaining fields are
singlets.

The attractive feature of the N =2 SUSY theory is that the B-function
differs from zero at the one-loop level only.

3
Bley = 47 [ L Tu(R) - €6y ). (110)
T (o]
where
= ) =
fu D =GB 8, Tr ta(a)tb(q =TRy) 8,
and we suppose that gauge group is like G = H ® G,, and R are repre-
A

sentations for chiral superfields.

We can see that this theory can be made finite for some gauge group
through a certain choice of representations of matter fields if the following
relation is true [31]:

CyAG) =2, T,(R). (11
g

Let us write down representations of some subgroup of E; which warrant
the finitness of the N = 2 theory [32]:

SU(S) __p, q and r matter multiplets in representations (5 + 5), (10 + Tﬁ)
and (15 + 15) correspondingly, for which p + 3¢ + 7r = 10.

SU(10) p and g matter multiplets in representations (10 + 10) and
(16 + 16) correspondingly for which p + 2¢ = 8.

E, 4 multiplets in representation (27 + 57).
E, 3 multiplets in representation (56 + 56).
Eg  one multiplet in the lowest (adjoint) representation (248 + 248). This

means presence of N = 4 SUSY.

There are five types of soft SUSY-breaking operators, and their addition to
the Lagrangian does not destroy the finiteness of the theory [32,33].

1) Any gauge invariant N = 1 supersymmetric mass addition. For example
mTr (I>2|F +hec, m Y,.TXI.IF + h.c. First addition can be written in component

fields as
Tr (- mod — m*0d — 2mPN *N) + N2gmX *NY * - NZgm'Y IN*X.  (112)
This addition breaks N =2 to N =1 SUSY.
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2) Any gauge invariant masses for scalar fields of view A2-B? We
. A+iB
suppose that scalar is R

3) Certain mass terms of view A2+ B2

* v + [
UN'N + 2 (UX*X, + UJY'Y). (113)
I
If for each iU, + U, + Ui = 0.
4) Certain combination of mass addition and three-linear scalar addition.
Tr (- mAA — m* M — 2mPN *N) — iN2gmY TNX + iN2gm™X *N*Y ' (114)

This combination is simply the addition 1) under the transformation of
internal SU(2) group. It breaks N =2 to N = 1 SUSY, too.
5) Gauge invariant scalar three-linear operators of view

a) k xx, X, X, + Y,.*Yj*yk*) +hec.,
b) k%X X X, + Y.*Y.'Y,") + hc., joint with certain set of scalar mass
i7j 7k ik

A% + B 2 and scalar three-linear addition Tr N 34+ h.c., where X and Y don’t lie
in adjoint representation and the gauge group must be SU(n) with n 2 3 or their
direct production. However, these terms lead to unbounded below potential.

9. APPENDIX B. RULES FOR CONSTRUCTING CONSISTENT
STRING MODELS OUT OF FREE WORLD-SHEET FERMIONS

The partition function of the theory is a sum over terms corresponding to
world-sheets of different genus g. For consistence of the theory we must require
that partition function to be invariant under modular transformation, which is
reparametrization not continuously connected to the identity. For this we must
sum over the different possible boundary conditions for the world-sheet
fermions with appropriate weights [35].

If the fermions are parallel transported around a nontrivial loop of a
genus-g world-sheet Mg, they must transform into themselves:

1 = L)y (115)
and similar for the right-moving fermions. The only constraints on Lg((x) and
Rg(oz) are that it be orthogonal matrix representation of nl(Mg) to leave the

energy-momentum current invariant and supercharge (32) invariant up to a
sign. It means that
yho-8 yh, 3 =%, (116)

a
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J K —
LgJ LgK fIJK - 8ozfl'fK' arn
and consequently — SaLg(oc) 18 an automorphism of the Lie algebra of G.
Further, the following restrictions on Lg.(oc) and Rg(oc) are imposed:

(a) Lg((x) and Rg((x) are abelian matrix representations of nl(Mg). Thus all
of the Lg(oc) and all of the Rg((x) can be simultaneously diagonalized in some
basis.

(b) There is commutativity between the boundary conditions on surfaces of
different genus.

When all of the L(o) and R(o) have been simultaneously diagonalized the
transformations like (116) can be written as

f—> —exp (ina) f. (118)

Here and in eqs.(117), (118) the minus signs are conventional.
The boundary conditions (116), (117) are specxﬁcd in this basis by a vector
of phases
= (). alf 5 1 o, L. (119)

For complex fermions and d=4, k=10 and ! =22. The phases in this

formula are reduced mod (2) and are chosen to be in the interval -1,+ 1L
Modular transformations mix spin-structures amongst one another within a

surface of a given genus. Thus, requiring the modular invariace of the partition

o, ... O
function imposes constraints on the coefficients C [ Sl Bg-l (weights in the
g By
partition function sum, for example, see eq.(77)) which in turn imposes
constraints on what spin-structures are allowed in a consistent theory.
According to the assumptions (a) and (b) these coefficients factorize:

c op o] Ty (xg]“ (120)
B, B || By | 5| B, |

The requirement of modular invariance of the partition function thus gives
rise to constraints on the one-loop coefficients ¢ and hence on the possible
spin structures (., B) on the torus.

For rational phases a(f) (we consider only this case) the possible boundary

k
conditions o comprise a finite additive group E = 2 ® Z,, which is generated
i=1 '

by a basis (bl,..., bk), where Ni is the smallest integer for which Ni bl. =0

mod(2). A multiplication of two vectors from Z is defined by
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— i Rpi j k pk Il
(X.B - (a;, BlL - O“){! B;f)complcx +1/ 2(aL p’L - OLR BR)rcal' (121)
The basis satisfies following conditions derived in [15]:
(A1) The basis (bl""’ bk) is chosen to be canonical:

> mb, =0 m =0 mod(N) Vi.

bt

Then an arbitrary vector o from Z is a linear combination o = z albi .
(A2) The vector b, satisfies 1/ 2N b,= 1. This is clearly satisfied by b= 1.

(A3) N‘.j bi-bj =0 mod(4), where Nij is the least common multiple of Ni and

N, .
J

(Ad) Ni bi2 = 0 mod(4); however, if N‘. is even, we must have N.‘ b? ={
mod(8).

(AS5) The number of real fermions that are simultaneously periodic under
any four boundary conditions bi s bj s bk, bI is even, where i, j, k and [ are not
necessarily distinct. This implies that the number of periodic real fermions in
any b, be even. :

(A6) The boundary condition matrix corresponding to each b; is an auto-

morphism of the Lie algebra that defines the supercharge (32). All such auto-
morphisms must commute with one another, since they must be simultaneously
diagonalizable.

For each group of boundary conditions Z there are a number of consistent
choices for coefficients C[...], which are determined from requirement of
invariance under modular transformation. The number of such theories

b,
corresponds to the number of different choices of C[ b' } . This set must satisfy
i
equations:
b, _ o .
(B1) Cl: i ]= 5 XUV N, _ g (imb:by2 Jmim/N,
b. b b
J ! J
b 2
(B2) C[ 1 } 7
b

The values of C[ ([; ] for arbitrary o, B € EZ can be obtained by means of the
following rules:

: /2
(B3) C[ a]=ei1t(a-a+ 1-1v 4 C|: ;1 }Nl .

o 1
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. *
(B4) c[%‘]:e"(“'ﬁwc[ﬁ],
(64

SR

The relative normalization of all the C[...] is fixed in these expressions

conventionally to be C[ 8 ] =1

For each o € E there is a corresponding Hilbert space of string states H

that potentially contribute to the one-loop partition function. If we write
o =(a, | o), then the states in H o are those that satisfy the Virasoro

condition:
ML2 =-c + 1/ 8(xL~0tL + Z (frequencies) =
L - mov.
= —cp+ 1/ 80 0, + Y (freq) = M2, (122)
R — mov.

Here € = 1/ 2 and R = 1 in the heterotic case. In ’Ha sector the fermion

*) has oscillator frequencies
q

-l—iT(xm + integer. (123)

The only states | s ) in H  that contribute to the partition function are those

that satisfy the generalized GSO conditions
in(h -F ) o
‘ € e - SaC[ bi ]

for all bi , where Fa(f) is a fermion number operator. If a contains periodic

*

ls)=0 (124)

fermions, then 10 )Ol is degenerate, transforming as a representation of an
SO(2n) Glifford algebra.
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