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INTEGRABLE SYSTEMS

A.N.Leznov
Institute for High Energy Physics, 142284 Protvino, Moscow Region, Russia

On the base of algebraic construction, new discrete symmetry of integrable system is
introduced and its applications are studied. Its universality is demonstrated by examples of
explicit sclutions of many known integrable evolution equations and hierarchies in(l+1)
and (2 + 1) dimensions.

[pennoxex anre6payyecKuil MOAXON K TOCTPOCHHIO COMMTOHHBIX PEIICHHHA MHTErpH-
PYEMBIX HEJIMHEHHBIX CHCTEM, OCHOBaHHBI Ha MCClenoBaHuM anrebp ux cummerpun. Ero
YHHBEPCAILHOCT [IPOAEMOHCTPHPOBAHA HA NPUMEPaX SBHbIX PELICHUH MHOTHX W3BECTHBIX
MHTEIPUPYEMBIX ypaBHeHuil ¥ ux uepapxuit B (1 +1) u (2 + 1) u3Mepennsx.

1. GENERAL REMARKS [1-7]

In this paper we will consider the dynamical systems which have solution
of soliton kind. The origin of the concept of the solitons is connected with the
physical problems, in particular, with the study of the waves on the water in the
canals. These waves correspond to the processes of propagating a perturbation
peak (soliton wave) which brings finite energy. This peak is stable with respect
to the outer influences. The soliton wave differs from the usual periodical waves
which have many peaks.

From mathematical point of view all these systems are united by the pro-
perties of their algebra of inner symmetry. These algebras are infinite dimen-
sional but have the finite dimensional representations with the «spectral para-
meter», i.e., they are realized by finite dimensional matrices which entries are
rational functions of the parameter A, taking values in complex plane. This case
sufficiently differs from the finite-dimensional algebras of inner symmetry of
exactly integrable systems.

Now we have generalized the partial problems of the soliton solution
behaviour into the following mathematical scheme. We formulate the problem.
It is necessary to find an element g, which takes values in some group and
depends on the parameter A. This element is also a function of independent
variables £ and satisfies the relation
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—aa-gg_l =u. (1.1

The elements u, taking values in corresponding algebra, are postulated to be
rational functions of the spectral parameter. In the general case the parameters
which determine the position of the poles are the functions of the independent
variables &,

The Maurer—Cartan identities subject to (1.1) are reduced to the system

) (12)
= - =lu.,u.l. .
agj o€, )

From this identity we can take out the equalities of residues in all the poles
of any order. After that we have the system of equations under consideration,
i.e., there arises a polycomponent equation which is equivalent to investigated
dynamical system. One can say that system (1.2) with respect to spectral
parameter is a generating expression (Laurent series) for the equations of the
dynamical system.

Originally for the solution of the systems of type (1.2) the wide known
inverse scattering method was elaborated. By means of this method many equa-
tions of importance for physical applications (such as the Korteveg-de Vries,
sin-Gordon, nonlinear Schrédinger and so on) were integrated. This method is
described in detail in many known monographs.

In further works the solution of the systems (1.2) was connected with the
matrix Riemann problem (the so-called ‘Zacharov-~Shabat dressing method).
This method provides a possibility of finding the solutions of integrable system,
when the solution of the Riemann problem is known from the independent
consideration.

In this paper we shall use a purely algebraic construction for finding the
system of equations possessing soliton-type solutions together with their expli-
cit form, by passing the stage of investigating and exploring their internal sym-
metry algebra. The problem of necessity for such approach and the existence of
systems having soliton solutions that do not fall within the scope of our
construction will not be considered here. In any case all the systems that are
integrable by the inverse scattering method fall within the construction which
follows below. In all cases it yields explicit formulae for soliton type solutions
even when traditional methods grow so cumbersome that it becomes impossible
from the purely technical standpoint to produce the result.

The initial (input) elements of the construction are specially coded data of
the structure of internal symmetry algebra of the system which are used to
express, by several algebraically operations, soliton-type solutions together with
the system of equations they satisfy. Here, the solution of sin-Gordon, Kor-
teveg—de Vries, nonlinear Schrodinger and other wave and evolution equations
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is described by common formulae distinguished only by the parameters related
to the internal symmetry aigebra.

2. INFINITE-DIMENSIONAL
RATIONAL FUNCTIONS ALGEBRA [8,9]

In this section we will describe the construction of a special type of infinite-
dimensional algebras, which is an essential point in the following approach to
the consideration of the dynamical systems in question. We will call these as the
algebras of the rational functions, because up to now any terminology on this
subject is absent.

In order to explain the construction of these algebras we will examine
simple algebraic identities for the decomposition over the simple fractions,
which are well known:

M o fla, b,mn) . " g (a b, m, n
i N '

1 1 _ Z

rA-a" A-b" T -af - by’

j=1

The explicit form of the functions fi,gj may be determined by many inde-

pendent methods and it may be found in any book on this subject.
Consider some Lie algebra with its generators L;. Let the finite ambiguity

of the arbitrary parameters a = (a,, a,,...a,) be denoted by one symbol; and the

generators of some infinite-dimensional algebra L;"k are determined by relations
L* = -a)*L,.

The new generators are labeled with an integer index & and continuous-com-
plex number a; A — the complex parameter. In the case of the negative k we

introduce additional generators L‘: = k"'L’.. The most significant fact is that the

variety of these generators is a closed infinite-dimensional Lie algebra.
Indeed, we calculate the commutator

& bl _ ~k -1
[L:.‘,Lj]—(k—a) (A — b) ZCi'J'.'Lm.
m

By virtue of the previous identity we represent the right-hand side of the last
equality in the form of linear combination of the generators constructed
above. Continuing the last equality, we have
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[ Lo fa b kD) Log(a bk, 1)]
k

> >

Z -a 2, a-bn”

2ClL,,

m

or saving the first and the last terms of the written equality we obtain

k !
(L, =3, c” [ 2 Fla bk, DL+ g (a, bk, 1) Lﬁ;llJ .
] m k=1 I'=1

It may be considered as the commutation relations of abstract infinite-dimen-
sional algebra. We note that in the last sum there is only the finite number of
the generators. It may be connected with the filtration properties of the const-
ructed algebras. We will call them as the algebras of the rational functions.

The algebras of the inner symmetry of the integrable systems have a direct
connection to the subject of this section.

3. THE STATEMENT OF THE PROBLEM
AND ITS NONLINEAR SYMMETRIES

Here, the problem, which transistory was stayed in section 1, will be formu-
lated more carefully and its symmetry properties will be described. With the
help of these symmetries it will be possible to construct the whole hierarchy of
solutions of the problem, if some solution of it is known.

The formulation of the problem is the following: It is needed to find such
element g, taking values in some group, which depends on complex parameter
A and arguments &: (&1....§n), in such a way that constructed from g elements

u =g€ g‘l from corresponding algebra are rational functions in complex A

plane.
The known under this consideration are the positions of the poles and their
multiplicity for each of the elements u;. In what follows we shall call the tota-

lity of these data a spectral structure of the element u;. The unknown are the
residues in all poles of the elements u;, as the functions of  or, and this is the

same, matrix elements of g as the functions of A and .

The problem possesses the remarkable symmetry properties, which we shall
describe now.

Let g, be some solution. For definiteness let 8y belong to the group

SL(k, ¢). This means that 8y is (k+ 1, k + 1) matrix with determinant equal to

L. Let us introduce the matrix of the polynomials P, which has the following
structure:
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i)ll P12 P13 Pl,k+l
n+1 n n n
21 522 23 24+ 1
P p2  p¥® P
3.1)
}_,”k+1,1 },“k+l,2 :}“;.k+1,k+l
n n n
where the P"m‘B is the polynomial of degree n on A; and ;’na;“l‘, the poly-

nomial of degree n + 1 with the coefficient 1 at A" *1 The equal degrees of
the polynomials are chosen for simplicity and in future this limitation will be
taken away as some other restriction which takes place in the definition of the
polynomial matrix.

The coefficients of the entries of the polynomial matrix are defined from
requirement that in (k + 1) (n +1) different points of the A plane there is a linear

dependence between the (k + 1) column of the matrix PgO. That means
k+1
2 (P go))y et =0,
s=1

O PB=1,2..k+1), i=1 2. . .(k+ I)n+1), (3.2)

where CB(li) are totalities of arbitrary c-number parameters. These conditions
determine all the coefficient functions of the entries of the matrix P (3.2).
Indeed, let us take o = 1 in the last equality. We have

k+1
Y an(ki) (8, c(xi))ﬁ= 0, i=12,...(k+ )(n+1). (3.3)

s=1

The last equality is the system of (n + 1)(k + 1) linear algebraic equations,
in which the (n + 1)(k + 1) coefficient functions of the polynomials of the first
line of the matrix P are unknowns. (Each polynomial has exactly (n + 1) co-
efficients, the number of polynomials is equal to (k + 1)).

From the definition of the matrix P it follows that its determinant is the
polynomial of the degree (n+ 1)(k + 1) with the coefficient 1 at the highest
power of A. From (3.2) we conclude that determinant P vanishes exactly in the
(n + 1)(k + 1) points of the A plane. In these points, the columns of the matrix
Pg, (Det g, = 1) are linearly dependent. So we obtain:

(n+1)k+1)

Det P = H A - }\.l) 3.4
1
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From definition of the entries of the inverse matrix g_1 via the ratio of the
k-order minors to the determinant of matrix g, we have for entries of the

matrix u:
= @ﬁ -1 =MML 35
Ya, p [a&,g )a,ﬁ Det (I gll) G:3)

where by symbol || B — @|| we denote the matrix arising from the matrix g
when its B line changes over the derivatives with respect to § from its o line.

Let us illustrate these formulae by the examples of the second order matrix.

g, & g & 8, & |
Det | S11 812 J Det | 521 82 J Det | 511 812 ]
821 8 821 82 811 812
=S . t u = < . b u -, I’ (3'6)
1 Det g 21 Det g 12 Det g

where g = %g . To determine the analytical properties of entries of u, as func-

tions of the parameter A we use the general formulae to the case of g = Pg,.

For matrix g we have:
g =Pg,+ Py, =(P+Pig) g,
For the entries of u we obtain: i
_ Det || (P (P + Puy) ||

Yo, B ™ k+Din+ 1)

H (7\' - }“l)
1
The coefficients of CBO“i) in (3.2) are independent of . Thus the columns

3.7

of matrix (Pg,) are linearly dependent. By this reason the numerator in the
expression for matrix elements of u (the matrix u, has the rational dependence

on A) will contain the multiplier, which cancels with the denominator, and ana-
lytic properties of matrix u repeat the same of u,y. The position and maximal

multiplicities of the poles are the same for matrices u and Uy
Some separate treatment is needed to understand the behaviour u in the

limit A — oo. Let us at first consider this situation on the example of the second
order matrix. The numerator of the element u ), is the determinant of the matrix:

i T 120 12 1m0 120
Pooit Py juy tP Suy P U AP+ P,
21 22
»P" Pn+1
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As A — oo, the denominator of the matrix element U has the asymptotics-

A2+ 1 The maximal power on A in the numerator may be contained in the
product Pnlil Pnzi ) U101' This power is not more than 2(n + 1) + s, where by

s we denote the maximal power of the matrix elements u, at infinity.

Let us make some resume. It has been shown that if there is some solution
g, of the problem, then the element Pg,, which is constructed by the rules of

this section, is also the solution of the same problem. So we obtain the entire
hierarchy of the solutions (n is arbitrary). The problem possesses some non-
linear symmetry. This symmetry is usually regarded as the Backlund trans-
formation. The Backlund transformation plays the most important role in the
theory of integrable systems. It will become clear from the next sections how
these transformations are used for the construction of the exact solutions of the
integrable system.

4. THE SPECTRAL EQUATION [8,11]

In this section the connection between the matrix equation (1.1) and the
theory of the ordinary differential equations will be considered. Equation (1.1),
being written in the form

g = ug, 4.1)
is the equation for unknown g, taking values in some group, under the
assumption that element u, which takes values in corresponding algebra, is
known. This equation is the system of equations on the parameters of the
group element g (it is assumed that they are functions of an independent
argument and differentiation is carried out with respect to it), and in this
sense it is invariant with respect to the choice of any representation of an
algebra (or group). On the other hand, we can consider it in some fixed
representation when g and u are certain finite-dimensional matrices. We shall
use the Dirac notation for the basis vectors || o, (B (o, B extend their values
from 1 to N, where N is the dimension of the representation). (4.1) makes it
possible to calculate the serial derivatives of the element g:

. [

2 . 2 R .
g=g=Gridrg=ug dM=ug o =utuu, u=1

Writing the matrix elements for the first N derivatives by using the basis
vectors (1]| and || o), we have:

N
(LI gl e = (L agll 1 CH gl o+ 30 CEl u ] BY GBI gl o0 (4.2)
2
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Eliminating the N — 1 matrix elements (B|| g|| o) (B = 2,..(k + 1)) from the last
system of N equations, we derive an ordinary N-order differential equation for
the function y_ = (1|| g|| o):

Det || W57 = (1Ll Dwge (1l 20 (Ll Bl =0, (43

where the index s labels the lines and takes values from 1 to N; the index B
labels the columns 2,...N, except of the first one. Thus all the elements in the
«first» line (1| g|| o) satisfy the same N-order differential equation (i.e., they
are its fundamental solutions), whose coefficients are expressed explicitly
through the entries of the matrix u and its derivatives up to the (N — 1)th
order. We shall call this equation a spectral equation. The matrix elements
(Bll Il o) may be found from a linear system of (N — 1) equations (4.2)
(1 £5 <N), and in this manner the matrix g is explicitly expressed through
N fundamental solutions of the spectral equation, the matrix elements u and
their derivatives up to the (N — I)th order inclusively. The coefficient func-
tions of the spectral equation may be expressed through a set of its funda-
mental solutions by known relations. Let us rewrite the spectral equation in
the form:

N-=2
e R A D NG AT L) (4.4)
k=0
We introduce the notation || \y“‘]. \y[‘szl ...... A1 [J"]H for the determinant of the
matrix whose first column consists of the derivatives of the 5, order of funda-

mental solutions of the spectral equation, the second column from the deriva-
tives of the s, order from fundamental solutions and so on. In this notation

we have:
V=, w0y

ylk =1 LM

LR L R S U ny . 4.5)

Comparing these expressions with the coefficients of the spectral equation we
see, that to obtain them it is necessary to make the substitution w&ﬂ -
— (1| u || &) in the last formulae. This relation will become useful in const-

ructing the matrix elements via the known set of the fundamental solutions of
the spectral equation.
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5. CONSTRUCTION OF THE SOLUTIONS
IF THE ELEMENT g, BELONGS TO DIAGONAL
(COMMUTATIVE) SUBGROUP [8,10-13]

The general construction of the third section will be used now so as to get
the whole class of solutions of integrable systems for the algebra SL(k, c). Let
us pay attention to the case in which the background equation has a trivial
solution if one assumes that element g takes values in commutative (Cartan in
the semisimple case) subgroup

g=exp Y, ho, [k, h]1=0, (5.1)
s=1
where r is the dimension of the commutative subgroup. From the background

'c
equation (in our case 82‘, g 2 h ) it follows that the functions T, must

be rational functions of the argument k, whose analytical properties are deter-
mined by the spectral structure of the elements u. It means, that the residues
in the poles of T and the coefficient functions of its Laurent expansion near
the infinite point of the A plane, must the functions of the single argument
g So

t
1=, 7 (E. 0 +TUE),
i=1 ,
i.e., T is the sum of the rational functions of one argument, the number of
which coincides with the number of independent parameters & in the problem,
and some function T(S) which depends on all parameters except A. We will call
this function the null mode of T and the whole function T — the source
function. Let us take this solution in the capacity & of the general construc-

tion of section 3, and use the quadratic (k+ 1, k + 1) matrix of the poly-
nomials P, in

Pll P12 Pl,k+1
n+1 n n

1 k+1
21 22 2k+1
Pn n+1 Pn

1 k+1

(5.2)

Pk+1,l Pk+l,2 ;,nk+1,k+1



1170 LEZNOV A.N.

containing as before the notation Pn(k) for arbitrary polynomial of the degree
n and ;’"(7») for the same polynomial with the coefficient 1 at the highest
power of A.

The difference as compared with the general scheme consists, at first, in
distinguishing the degrees of the polynomiais of the columns. Second, all poly-
nomials of the first line have sign P. The last modification is necessary for
determination of the null modes of the functions T, as it will be later. It is

assumed, as before, that there is a linear dependence between the columns of

r k+1
the matrix g = Pg, = P exp Z ht in Z (n, + 1) different points of the A
s=1 a=1
1
plane, k+1
DI A dIR(S cph)exp (tg =15 ) =0,
, B=1 Py
k+1
a=1,2,.(k+1), i=1,2,...2(na+1), (5.3)
' a=1
where CB(}\.’.) is the totality of arbitrary c-number parameters, To=T,,~0

k+1
The last equality is the system of z (n,+ 1) linear algebraic equations,
a=1
where the coefficient functions of the polynomial matrix P and the null mode
components of the T functions are unknown. The number of equations equals
the number of the unknown variables. Indeed, let us take o = 1 in (5.3). The

number of the coefficient functions of the first column of the polynomial
k+1

matrix P is equal to Z n,+1 and the k null mode components of 1 func-
oa=1
tions are unknown. So the whole number of the unknown variables equals

2 (n, + 1), i.e., exact number of equations. The same situation takes place

for the other columns and consequently the system of equations (5.3) expli-
citly determines all parameters of the polynomial matrix and the null mode
components of T functions.

Det P = Det (Pg;) and from definition of the polynomial matrix P it follows

that its determinant is a polynomial of the degree z (n, + 1) with the co-
efficient 1 at the highest power of A. From (5.3) we know that Det P vanishes
in the Z (ny, + 1) points of the complex plane. Thus we get:
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k+1

Z(nu+ i)
. a=1
DetP= [] -2 (5.4)

i=1

The general formulae of section 3, for the entries of the matrix u remain true
after obvious substitution (uo)a‘ B 5(1, B(TB - 'CB N l)

) _ Det || P13 - Pa + Pa(ta — Ty l)]| | 5:5)
o B M-

From the last expression we get convinced, as in section 3, that all the pecu-
liarities of the matrix elements of the matrix u, including the infinite point,
are determined by the analytic properties of the source functions.

6. THE CASE OF THE ALGEBRA SL(2,C) [10,13-15]

The results of sections 3 and 5 will be specified here for the case of an
algebra SL(2, C), which has many physical applications. In that case, it is
possible to write all the expressions in the form convenient for practical cal-
culations.

Let the polynomial matrix P (5.2) be rewritten in the form;

n|+ I n,
A-a, A-—b
po| H-ay Jla-s)| 6.1
i=1 j=1
Pnl Pnz-+- 1
The polynomials of the first row ;’n o 1~’n are decomposed on the systems
1 2
of their roots (a, bj ). In our case T,=-1,= z 'cx(ﬁs, A) + T, =T The co-
efficient functions of the polynomials and null mode 1, are determined from

0
the linear system of the algebraic equations

exp 2‘!(7»s) exp 2170Pn1 . 1(7\5) +c(d) Pnz(XS) =0,

s=1, 2,...(n1 +n, + 1),

exp 21(A ) exp ZTOPnlO‘s) + c(?»s) Pn2+ @A) =0. (6.2)
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The number of unknown quantities in the first system of equations is equal
to (n, + 1) symmetrical combinations, composed of the roots a; (coefficient

functions of the polynomials P . ), n, symmetrical combinations, composed of
1
the roots b]. (the coefficient functions of the polynomials P ), and null mode
1

component in the form exp 21, This exactly equals the number of equations.

The same situation takes place for the second system (6.2). As in (5.5) for

Uy =u,, we obtain:
n+l
H(k—a)H(x b)) nop ol
_1i=1 j=1 _ b i -
u, = S z)"_bj+i§1;"_ai+21 . (6.3)

Mo-2) | =

As it follows from the explicit expression for u,, the analytical dependence

T: the positions of poles, their multiplicity, behaviour at infinity are the same as
for the u_ as for 1. Rewriting (6.3) in an equivalent form we have

nl+n2+2
n, j n 1 ; ITa-x)
- Y 2 = = u,.  (64)
= H(x—a)H(x b)
i=1 j=1

The last equality is the definition of u, and the examples of the next section

will show how it may be used. By decomposition of the right side of the last
equation over the simple fraction we obtain the expressions for the deri-
vatives

. n(b) (a.)
b.=—u(b) a=-u(a)=x : )
’ Tp L Gp,e)T T B, @)P,@)

In the equality the symbol "over the imliex of the polynomial means this
polynomial without multiplier, which goes to zero at the present significance
n+n+2
1 2
of its argument, T(A) = H \ - A).
s=1
For u, we have the equivalent representations
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I Pn +1 * TPnI+ 1 Pn2 - TPnZ
Uy =T (L) Det Z =
P
n, nt+ 1
i b
P Xy tt XiTy o
n, + 1 n, 1 - I 3
(7\.) Det Pn PI12 + 1 -
Pn[ + 1 Pn2
a n(A)
- - - Z - + 1 = — o,
nl+l n, ! no+ oo,
= Det - =
ny P, (A
n]+l Pnl+l)n
a
- 2 )\’ _ a’. + T Il+
= Det P” . (6.6)
!
= 1

"l+l

In the last transformation we have used definitions of n(A) and u, . Then

n +1 Pn7 p Pn

n(A) = Det| - |l=p P 2 —1 1 (6.7
P”I P"’+] IIl + 1 n2 Pn -

or

N, B, ¢ A
P.p S+ Ly Z G ay
1 2

Comparing the residues at the poles A =a, and A = bj in both sides of the last

equality, we obtain

) n(b,) i;j i n(a,) a,
j ﬁnlﬂ(bj)ﬁnz(bj) u (b))’ i_;’n‘+1(“i) ;)nz(a’_)‘ ufa)’

Now we continue the interrupted calculation (6.7),
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— E i +’t u n+1 .
A—a; + ! a. u(A)—u,(a)
_ i . i W + 4
ug = Det . —’r+i=21 ula) A-a . (6.8)

“2G- a) u,(a)

Let us finally calculate u_(A) = u,,

fa1 &2
_ - (& g _ & 82
u_=n ') Det| 21 "2 =gl g e Det =
fa Az 821 8y
& 812
821 @_ﬁ%@@_ﬁa&
g 8 8 817 8 811 8
1 11 12 8u 12 812 811 81y
=7 (A) 8,18, Det =
‘ 821 2 &
&1 2 8n
g ‘ g 8
g_zl [glg ]J” Ty ()
11 12511 ) 81581 &11&8
= ¢,,8,, Det 12811 81812 _
821 L
811 812811
([}, . 821 SLITRNE SN
811 ! g g 8y "
=Det =
$21 ]
&1
g £, 8 2
o21 2Lﬂ_u(m -
811 811 811 gll
: 2
14 871
S (e P S 3 u,(A) (6.9)
&1 4 311 &1

In the latter transformations we use several times equalities (6.4), (6.7), which
in the notations of the previous calculations have the form

8 %1 _ m0y B Su _ my

u+(7\,).
812 811 8nfnn & & 81181
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We may pass to expression (6.9) for u_ in more short way if to profit by the "
spectral equation of section 4. The matrix elements 811 815 = V satisfy this

equation, and so we have

Substituting the expression for U, into this equation (6.8) we once more come

to previous formula (6.9). We limit ourselves by the first inference only with
.the aim of preserving the uniformity of the calculation scheme. Using (6.4)
and (6.8) we rewrite (6.9) in the form

&i 1 i‘i 1 2
" =[2 ua) (@ - A ]+ [2 u(a) (@ -N } *

4 . a, u(a)-u,®)
? [2 u, (@) (@~ M) J[" "2 (-2 J (6.10)

Now we go to further transformations of the last expression. As we know, the
matrix element u_ has no singularities in the points A = a;. For this reason the

residues in these poles must vanish. This results in the system of equations of
the second order for functions a,. We shall reduce these equations somewhat

later. Note that the first integrals of them are contained in formulae (6.5),
where the constants }‘i play the role of the constants of integration. The terms

without singularities in (6.10) give rise to the final expression for u_

4 (@)=
u—=_22u+(ai) (@ - %) +
a a 1 u@)=u, ) ufa)-ula)
+ZZ u(a;) u+(aj)(a,.—l) a, - - a-a 6.11)

Formulae (6.4), (6.8) and (6.11) solve the problem which was imposed in the
beginning of this section. The entries of the matrix u for every rational T(A)
are expressed uniformly and give us the possibility of avoiding the hard ope-
ration of the division of the polynomial m(A) in general expressions of the
previous section. Each of the entries of u,, u, is expressed in the form of the

derivatives of some combinations of symmetrical functions, which_are com-
posed from a;, i.e., the coefficient functions of the polynomial P - Al
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these coefficient functions are the solutions of a linear system of algebraic
equations (6.2). The form of the matrix u essentially depends on the form of
background function t(A) and in each concrete case they may be obtained
only in direct calculations with the help of the formulae of this section.

To conclude, we write down the second order equations for the functions
a, bj. These equations give a possibility of establishing numerous recurrence

relations among the symmetrical combinations, which are composed of the
«roots» a;, bj and their derivatives. These formulae will play an essential role in

the next section when we pass to the concrete examples of the integrable sys-
tems and their solutions. The equations for functions a;, bj are as follows:

a;a, ~ u+(ai) ]

- - i’
a, — q u+(a'.)

a4, +2ta)a, +2 Y
1=k

. bb, ub).
, bj—zr(bj)bﬁzz PRI e (6.12)
j=k Kk Tj THY

In the last equations "t(a’,)E T(A) and only after this A =a, and so on. The

systems of the ordinary differential equations (6.12) are of some special inte-
rest. They are exactly integrable and the result of their integration can be
found from the solution of the algebraic system of linear equations (6.2),
where a; (bj) are the roots of the polynomial with known coefficients. The

first integrals of the systems are known and are contained in formulae (6.5).
Their independent integration can be performed on the background of the
solutions of integrable systems. The example connected with sine-Gordon
equation will be considered in one of the next sections.

7. CONCRETE EXAMPLES ({8,10,13-16]

Now we will examine the most familiar systems and equations related to
the algebra of rational functions of the second order matrices. The aim consists
in demonstration of the general formulae of the previous section and their
application to the concrete examples.

For simplicity, in the first examples we assume that our problem is in-
variant under transformation A — — A of the spectral parameter. This means that
the second solution of the spectral equation is obtained from the first one by the
same transformation, i.e.

U-N=-uA), N =N,=N, a=-b,.

!
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Having these equations in mind, we obtain from (6.7) and (6.11)

_ 133 2
Vo= A+ AT+ Rsy sy + 58,

2
v [XZ +k[s—+s }+s + 5.8 ]
0 1 0°-1 |-

The equations of the second order (6.12) in the case under consideration are

the following ..
aa,
a + 2a a +2 Z =0.

a —a
k=i k

Multiplying each equation by a;' and summarizing the result, after some cal-
culations we come to the recurrence relation for the functions S, For the case

n >0 we have ne

S+ 2s, - 28s =0 (7.3)

‘

From the same equations there follow the recurrence relations also for the

case when n < - 1. And on the boundary we have 25, + &_l +s31 =0. The

recurrence relations allow one to express all the functions s, via function s5_|

and its derivatives up to the (n + 1)-order. For the matrix v we have

3 2 3
A +As_ Ay + s+ 55, 207 + 25,

2
—k2s+kh+ + 5+ -3+ +As, + 5, + 5,5 ,)
-1 2 TS | TNt S5 ( St ASg + S+ S8
We know that the Cartan-Maurer identity or the condition of compatibility is

satisfied. It gives us the equation for the function Q = syt

Q 3

-This is modified Korteveg—de Vries equation. We know from our construc-

alnHa

tion that its solution is given by the expression 0 = —————" . To find it in
g y p 3z

the explicit form, it is necessary to solve the linear system of algebraic equa-
tions. In the case of the Korteveg—de Vries this system is as follows

exp 20z + 2D [T @, -2) + ) [ @+r)=0



INTEGRABLE SYSTEMS 1179

An explicit solution of this system leads to the solution of the modified
Korteveg—de Vries equation in the form of the derivative of the logarithm of
the ratio of two determinants of the n-th order. -

In all cases, when T is odd and has polynomial structure there arise the
equations for only one function. These are (modified) Korteveg—de Vries equa-
tions of the highest order.

The next example is connected with the simplest case of such equation. Let
T=Az + (vk3 + },LKS) z. The matrix u remains the same as above. For the calcu-
lation of the matrix v we need some modifications. From (6.4) we conclude that

v, = AL> + BA® + C\, and the parameters A, B, C enter to the equality
4 52 a 2
VA At + Y 5 =AM B o | 1+ Y
a; — % |

which allows one to determine them. We get the entries of v in the form:

’

2 }\.2

v, = A + 2 + vsp) Ad+ 2(v(s, + .s‘(z)) + Hsy) A,

vy = vA® + v.v_]k4 + (Vs + H) A+ (V(s) +5p5_) + Hs_)) A+

2 ' . 8 2

+ (V(s, + 55) + W) A+ H(s, + 5gs_y) + Vlsy + 555, +5_ 5, + 555_,),
)
2

g

_v_=Vs__l}\4+V ]7» + V(s +ss])+},Ls)?\.2

2 2 2
55 SoSy 55 L
H Vst sy 5 tHIs A+
+v(s3+s25 P85S Sy 52 s )+p(s + 85 ]).
We need the following recurrence relations:
. 2 . 2 . .
0 2 4 2 2T T BT T TR

Thus we conclude that all s, may be expressed via function Q@ =s_, and its

derivatives. The condition of compatibility leads to equation

0,+Q,..—100%Q -40000 -10(Q) +300%Q =0, (7.5

which is the modified Korteveg—de Vries equation of the fifth order (in our
general formulae we putv =1, u=0).

When the T takes null values at the point A = 0, there is always the second
possibility of constructing the background element g, and, as a consequence,
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some other integrable system. It may be assumed that two fundamental solu-
tions of the spectral equation coincide when A = 0. This means that Vronskinian
of the spectral equation vanishes at this point and the background equation (6.4)

changes to:
1167 -2
[To*-

from that we conclude u+(l) = 2. From the equalities (6.8) and (6.11) we find

u+<x),

2x{1+2 26‘1' ]

Uy = A, u, ==, and so the matrix u has the form:
" A 2
w= L -5, —AJ
where as above 59 = Z izk. The system of the second order equations is the
k=1

same as in precéding case. All the recurrence relations remain unchanged and
we obtain the entries of v:

%
2

2 0 Y 3 0
—[ls0+k2+s—4j —[k +M0—2]

The Cartan-Maurer identity leads to the equation for the function U = -29 .

3 2
X+7\.s0— 2A +2s0

[enll B8]

_z
~ U+ U, +6UU_=0, [t—4]. (7.6)

This is the Korteveg-de Vries equation in its original form.

If 7, is any odd polynomial on A, we will obtain the higher order Korteveg—
de Vries equations. It is not difficult to write down the explicit form for these
equations. We limit ourselves by the Korteveg—de Vries equation of the fifth
order.

Let 1=(\z + 7»5) z

The matrix u is the same as before. We obtain the entries of the matrix v
by the same technique as in modified case:

u, = Py 2507{"2(s2 + s(z)),

S

_ a5 3 2 2
vo—l +so7» +s17u +(s2+s0)7»,+s3+s .

0

4 3 5% 2 5i
—v_=sOl +sl7L + 52+~2—k +(s3+sls0)7x+ s4+s2s0+7+

03 S,
| S
|
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The condition of the consistensy gives us the Korteveg—-de Vries equation for
the function U = — 25

~U+U__—10UU__ - 20UU_+30U%U =0, [1=5J. (1.7)
XXXXX XXX X xx x 4

As it follows from our construction, the connection between solutions of the
Korteveg—de Vries equation and its modified version is given by the equality

U=0Q+ Q2, as a consequence of the recurrence relations for s (7.3) of

o S
this section.

7.2. t=Xz+A'z - sin-Gordon Equation. Calculations of the matrix «
do not change and we have as before:

Y= A+p 2A
(—b —(Mp)]’

where p = s_,- The general equation (6.4) yields the expression for v :

al [T** -2
2 Y 5 1= v (.
[ a’.z—l“} ll(kz—a?) *

It follows from the last equality that v, has a single pole at the point A =0,

+

a,
with the residue equal to 2 exp2p, where exppzl—[f. Thus v =
i

=277 exp 2p. With the help of equations (6.4), (6,8) we find
Vo = 2! exp 2p, v_=- A~ sinh p. It must be noticed that in these calcula-
tions we use the relation 1 + 5, = exp (- p), which follows from equation for
u, if its both sides are divided by 2A before setting A = 0.

V=

o1 [ exp 2p 2exp 2p
sinh 2p  —exp 2p J

The Cartan-Maurer identity yields now the sin-Gordon equation for the
function p:

2
9P _ 5 sinh 2p. (7.8)

As in the case of the Korteveg—de Vries equation, the assumption that T is

an odd order polynomial on A~ results in the higher order sin-Gordon
equations. This is related to the fact that all moments of negative degree

S, = z a;"a; are connected with each other by the system of the recurrence

relations, which follow from the second order equations for the functions a;.
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73. t=Az+ (pk_] +2% Z. This example is connected with the equation,
which is in some sense «intermediate» between the sin-Gordon and Korteveg—
de Vries equations.

Matrix u is the same as in the previous examples. The element v , 18 given

a’ H(xZ_xz

20| A2+ + > a2 = v, (A).

by equation (6.4)

M-

We conclude that the maximal degree of v, at infinity is 3, it has the pole at

the point A = 0 and the residue in it equals p exp 2p. Using the technique of
the previous examples, we find other parameters without difficulties. Finally
we have:

v, = 2(7\,3 + 5ph + [ exp 2p7»_1),

Vo = 7»3+s ?»+s07»+s + 58 +uexp2pk1

2
s
v_=—[sl7»2+[?]+s Jl+s +545_, + 1 sinh 2pA71
It must be noticed that in this case any calculations are not necessary. It is
sufficient to take the linear combinations of matrices v of Korteveg—de Vries
and sin-Gordon equations. The Cartan—Maurer identity leads to the equation
for the function p,

2
4 9P _ 8_9 % (p , -
o= s 053 ( 22 ] + 8 sinh 2p = 0. (7.9)

74. -t =7A +Z A_; +f — Lund-Pohlmeyer—Regge System. This is the

first example of the general case, in which T has null mode. General equation
(6.4) for u,_ now has the form

n+n+2
n, 3 ntl ]'[ A -1)
y s=1
—2 +2)\' +2f+2}"= nt 1 n, Uy

j=1 Joi=1

H(x—a)H(x b))

i=1 j=1
Comparing the highest powers of A, we conclude u, = 2. Equations (6.7),
(6.8) give Uy = A +f, u =- z ézi = — 5, The equations of the second order

in the case under consideration
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a.a
. . i“k
a+2a,+Ha+2 =0
k=i ki
give us the possibility of finding the recurrence relations for s, It will be

sufficient for our purpose to multiply each equation by ai—1 and sum the result.

On this way we obtain

Syt 25+ 2fs_1 +5° = 0.

Equation (6.4)

nl+n2+2
n, b’ n1+1 . H (7\'_7%)
s a.
_ j i ’ -1 |_ s=1
fglk_bj+i=zlx_ai+2f+2x i ™2 "
[T-a) [T -5)
i=1 j=1

determines v, = 2f’}\._1.
It follows directly from (6.7), (6.8) that

vo =+ ~f5 ) AL vo=o (25 -f's%l) At

1
2
Let us now perform gauge transformation (see section 4) with 8, = exp Hf.

The aim of such transformation is to take away the derivatives f from the
entries of Uy, Vo After the introduction of new variables ‘

X =exp — 2f, y=s_, exp2f

the matrices u, v acquire a simple and suitable form

A 2x 1+ % - x
. 2 -1
u= v=»A
Z + }_’ X ’ 2, ’
2 A y+ % - ( 1+ )
The consistency condition leads to the integrable system
o%x dx &%y dy
To==-4x-2 -— = ——4 = = (). .1
doz ) dz 0 g0z T ) oz 0 (7.10)

If one executes the transformation, which is motivated by the form of the
matrix v:
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7
yx .
1+2=cos(x, X' =—sin o exp 6,

i.e., passes from the pair of variables (x, y) — (0, 8) and after this to the pair
(o, B) in accordance with the formulae

Bzcos(x BZ
6 =—— 0.= ———,
Z  1+coso Z 1 +cos o

then in variables (o, B) the system under investigation takes the form

sin =~ of-+o P
a,;+4sinoz——~—2-ﬁ7;3?=o, B+ i g

3 1
oY sin &

This is the Lund-Pohlmeyer-Regge system in its canonical form. It is con-
nected with some geometrical construction.

15.1=-(Az + 123+j) — Nonlinear Schriodinger Equation. The matrix
u is evidently the same as in the last case. From general equation (6.4) we
conclude (analysing its behaviour at infinity) that v, =2h +c. To find c, it is

suitable to take the ratio of the two polynomials in the expression of v, from

the definition of U, 1e.,

{ Z +Zx +2f +2sz

{ Zx b+2k +2f+2x](x+§].

Comparing the highest degree of A, we conclude that ¢ = — 2f. No difficulties
arise in calculations of the entries of Vg Voo and finally we have
. ) i

v, =2A-2f, Vo = A +f’+s0, v_=—7\so+—2'+fs0.

Executing the gauge transformation, which removes derivatives f from the
matrix elements Vor Up» and introducing new variables

r=2exp - (2, q=— 5, exp 2f)

we bring the matrix u, v to the form:
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Z - Ar+ L
=[Z; —rk)’ ' ; 2 291
et (-

The consistency condition gives us the integrable system

F-Z+@)r=0, ¢-1-@nq=o. (7.11)

This is a nonlinear Schrodinger equation without derivatives. In the next sec-
tion we will need an explicit form of its solutions.
Following the rules by Kramer, we get from the linear system of algebraic
equations '
+1 -1
(exp 21, exp 2TA,..., exp 20 L AL AT )

(exp 27, exp 21A,..., exp 27071 1, A, ?»"2)

exp (= 2f) =

2 g = (exp 21,..., exp 2" 1, exp 2" l; 1L, A, 7»"2)
i (exp 21, exp 2TA,..., exp 2‘c7~n1; 1, A,..., 7»"2) .
P

By induction, one can get from the last equality the expression for

SO - Z ai ’ n—1 n+1
¢ = 2(exp 2T, exp 2TA,...,exp2TA ! ;LA A2 )
0 (exp 27, exp 2TA,..., exp 2‘0\."1; 1, A,..., 7»"2)

exp - 2f.

By (a, b,..., ¢) in the previous expressions (as in section 4) we denote the
determinant of the n-th order (n is the number of elements a, b,..., ¢), whose
s-th line consists of the elements (a, bx,..., ). The index s numerates the

points of A plane in which the columns of the polynomial matrix are linearly
dependent. At last, for the quantities of interest we obtain

1 — 1
r=9 (exp 21, exp 2TA,..., exp 21kn1+ LA, % )

(exp 27, exp 21A,..., exp 2‘c7&n‘; 1, A,..., ?\.nz)

n+1

g=2 (exp 27, exp 21A,..., exp 200 1; LA..,A2 )
(exp 27, exp 27A,..., exp 217»"‘; LA..., lnz) .

g
7.6. 1= Z A ke — the Principal Chiral Field Problem in n-Dimen-
Yk

sions. The notations in the heading of this subsection should be understood as
follows: §, are the coordinates of the n-th order space; 9, totality of arbitrary

c-number parameters (Gk # GS, if k = s5). In this case T — 0 when A — oo, and so
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T has no null mode. The matrix of the polynomials in this case must be taken
in the form y
P P

p n+ 1 nt 1
Pn] Qn2+ 1
Equation (6.4) can be written as
n+nt 2
n2+l b "l+l B ) H 0\-")"‘)
_ j i - s=1
[ jglx_bj+i§1l—ai+}"_ek it " “
[Ta-a) [Tr-0)
i=1 j=1
fE 9 We conclude from the last equality that uk = A CAs Ao oo
agk T + A- 0, ’

one finds

. . d
Ak=2ai—2bj+2=5€—k(2ai—2bj+2Zér).
The calculation of “S' u'i is carried out via the general scheme and results in

the expressions

9Tt -Ta
1_%_%JZ§ 2 a)

k
Uy = = ,
07 A8, A-8,

) i[ekso‘sl]
Ko 250 -5y 9, A,

- AM-8) A-8,

The last equality needs some explanation. In the case under investigation, the
system of second order equations for functions a, is as follows:
a, aa A

i k-
+22 ——=—aq. .
— f— ]
a; Gk P A,

iii+2

Multiplying each equation of the system by (a; - Bi) and summarizing the
result we have:
A A
. k . k _ 2
ST A sl—Gk[so-——A so]-—so—Zso

k k
or
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o (51— 9 sé"zso
a_ak{ A ]” A,

k
This is just the same equality, which was used in the transformation of the
expression for u_.

k

We propose also another deduction, which permits one to obtain the expres-
sions for U, U_, U in some different form. From the direct definition of the

matrix u for the element Uy We have

p | P +1
b . n + P ~ n,
Det n +1 x..gk n2+] )\'_ek
& Prll Qn2+l
Uy = n‘+n2+2 -
[T a-»
s=1
(X‘ek)Pan’LPnln ()"—ek)Pn2+l_Pn2+]
Det p 0
B 1 n, n2+l
- )‘.—ek n+ n2+2

i

IT - A)
s =1

We know that in the last equality the numerator is divided by the denominator

[ . . n+n+2
and so it is only necessary to find the coefficient at the A 2~ in the

determinant of the numerator. It can be done easily. The result is

-~ n
U, = —-—-—1 " (Pn1]+ l)gk
0~ -
A-8,
The upper index at the symbol of the polynomial means the coefficient func-
tion at the corresponding degree of A. i’nn1+ [ == z a, and so we return to

1
the expression which was obtained above. In the same manner:

jovd n2 _ ~n n
k (P"z M l)ék (anl+ ])ék v2 S = * l)ék
+ ey T

u

k
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If the first expression is the same as before, then in the second one the coef-

ficient P ! arises from the solution of linear system of the algebraic equations
1

for the second line of the polynomial matrix. This is the explicit result of

summation in the previous expression for u . Finally, we have ik = E and
k
condition of the compatibility gives us the equation for the matrix-valued
function F:
00y PT [P
8§ 85, a.gl. 8E_,j

This is the system of equations of the principal chiral field problem in the
n-dimensional space playing an important role in the general theory of the
self-dual equations.

8. THE SOLUTION OF THE GENERAL EQUATION
IN THE SOLVABLE CASE
AND THE DISCRETE TRANSFORMATION [17,18]

Here we shall show that the equation for the element g has a regular exact
solution not only if, as it is proposed, element g belongs to the commutative
group, but also if it belongs to the solvable one (diagonal plus upper (lower)
triangular matrices).

We shall consider this situation on example of the case SL(2, R) group
(algebra): 3 _
R g=expx+(xexp Hr

= g,
axl.

or
i _ +

u = Té,'H + (oc{;i Zovc&i) X,
where the element u' belongs to the solvable algebra and must have deficient
analytical properties as a function of the spectral parameter A in the complex
plane. The solution of this problem for 1 is the same as in the diagonal case:
T(A) — the rational function, the residues in each pole of which are the func-
tions of only one variable éi' For o we obtain:

’ A’)
o = P(\) {dx 2 exp 210,
where o(A) is an arbitrary function of one variable; and C is some circle in

the A plane. on which the integral has the meaning; P(A) is some polynomial.
Indeed:
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T }\. - 7T }\.'

W = o ~ 2a‘céi =P(\) f d\a(\) W exp 2T(1).

As follows from the last expression u_has the same peculiarities in the finite
A plane as t(A). At infinity, if T(A) ~ A* and P(A) ~ A/, then u, ~ & 1=} The

situation for the solvable groups of higher dimensions is the same and it is
not difficult to obtain a solution and explicit formulae in that case. Yet this
is not so important for our purposes.

Now we take the solution for the solvable case as the element g, in our

general construction of section 5. In this way we obtain the solutions, which
depend on arbitrary function, the definite choice of which gives us the pos-
sibility to find solutions with definite boundary conditions, solve the reduction
problem and so on.

Let us consider this question more carefully. We take the matrix of the
polynomials in the usual form:

P P

n n, + 1
2

The condition of the linear dependence of the columns of the matrix g = Pg,

has the form (we write it only for the first line):

P 1exp‘l:+cexp—1:[1~’"2+()L1~J

n +
i

n]+l]=0
or ‘

oN)

N exp2t(l))+P = 0.

P, (exp 200y + Py [ an 2L
1

We see from the last equation that there is only one difference as compared
with the diagonal case (a = 0). That is the formal change in all formulae:

exp 21 (l)c_l(l) — exp 2T(A) =

= exp 2t(A)c (k) + P(A) Idl’ - i, exp 2t(X) = exp 27°(A). 8.1
To have the correct behaviour of u' at infinity one should demand
n,>n, + 1. All formulae of the issues 6—7 remain correct under the sub-

stitution (8.1). We have the hierarchy solutions of the investigated system,
which depend on the arbitrary function o\).

These solutions can be connected with the solutions of the diagonal case by
some limiting process. We explain this on the example of the nonlinear
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Schrodinger equation. From the results of the corresponding subsection we have
the explicit form of its solutions:

_ (exp 21, exp 21A,..., exp AT 1; 1, A,..., AT 1)

r

By (exp 27, exp 2TA,..., exp 24 4 1, A,..., \?)
-1 1
(exp 21, exp 27A,..., exp 2" 1A A * )
q, , = - — ) (82
T (exp 27, exp 27A,...,exp 2TA L 1, A,..., A ?)

Let n, have fixed values and n, — oo (more exactly ny=n +1+N N o).

First of all we prove the following equality

exp 21, exp 27A,..., exp 21:7»”1; I, A,..., knz) = W(ll, kz,..., knl + "2)’

n
1

C Y o) O(h) ... B(A,) W, Ao A, (8.3)
i ok
where W(kl )un... km) is a Vandermond determinant and ®(A) is determined by
the expression: n+n
o) =exp 2th) [T &, -2)™"
ki

Let n, = 1. Expanding the determinant with respect to the elements of the first
column, we obtain:
n+ 1
(exp 25 L, A, A =Y exp 2t(h) (- 1) WAL A ) =

s=1
n+1
2

= WA, Ay 7‘,.2+ D2, eR),

s=1

where W’ is the Vandermond determinant, which is constructed from the n,

values of A, except A . Let n, = 2. Expanding the determinant with respect to
the minors of the two first columns, we have:
nt+ 2
(exp 27, exp 2TA; 1, A,., A2) = Z (- ' T *exp 21(A) exp 2T (A)(A, — A,
s k n2+ 2

W (A A ) = Wk, A, 7“"2+ ) zk D(A) D) (A, - A
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In the case of arbitrary n the expansion of the determinant over the minors
of its n, first columns and some regrouping of the multipliers under the sym-

bol of the summation prove the validity of the proposition (Refs.[8,44]).

Now let us return to expressions (8.2), use equality (8) and take the limit
n, = oo. Then for the values

qn - qn, o0? rn - r’l, oo

we obtain

q =——— r = (8.4)
where

©, = J . fdh dh exp 211 ... exp 210 ) WA, Ay ).

2
This is just the same result, as can be obtained if for 8, one picks out the

element of solvable group of the upper triangle matrix at the beginning of this
section. :

Now we shall draw some consequences from the last expressions for the
solutions of the system of nonlinear Schrodinger equations, which after some
evidently performed transformation, will be written in the form:

r—r+2gnr=0 ¢ —qg-2qr)q=0.

From (8.4) we see, that o

n —_—

1

r =
I .

n ®n+l qn

Let us assume, that the system under investigation is invariant under the
- 1 . .
substitution R==, @ =?. Then from the first equation we get Q = g(qr —
q

- (fnq)). By direct check we get convinced that the second equation is also
satisfied. So we conclude that our system is invariant under transformation:
1

R=_. Q=q(r- (ing))

which we will call the Discrete transformation for this system.

In the next sections we shall see that the integrable systems under consi-
deration have their own Discrete transformation, solving which one can find the
wide class of solutions of the integrable system, including soliton of type one.

So the independent construction of the Discrete transformations opens the
new, more direct method for solving the integrable systems.
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9. DISCRETE TRANSFORMATION
FOR THE MAIN CHIRAL FIELD PROBLEM [19]

In this section by the example of the main chiral problem we propose the
direct method for the construction of the Discrete transformation using only the
form of equations of the integrable system.

As was mentioned in section 7, the system of the equations of the main
chiral field problem in n-dimensional space has the form:

a0 [
(ei ej)axiaxj_[ax’.’axj}’ O

where function ftakes values in the arbitrary semisimple algebra, 8, are nume-

rical parameters.
First of all we discribe in detail the calculations for the algebra A, which

allows us to, simplify calculations for the general case. Let f= X+f+ +
+ Hfy + X "f_(here [X *XT1=H, [H, X i] =+2X i) be some solution of (9.1)
and F=X +F+ + HFy+ X "F_ be a solution of (9.1) which is connected with f

via the Discrete transformation. The explicit form of this transformation will be
given below,

1 . L . .
Let F_=— . This suggestion is not accidental, but comes from the explicit

fi
form of the soliton solutions to the main chiral field problem (section 7). From
(9.1) we have the equation for F_:

OF_ F, OF_  3F, dF_
N S - P el

_— 1. . . .
Substituting F_= - into the last equation and using the equation for fi»

+
which follows from (9.1), we find the equation for F * = F0f+:
* daf,. of of
OF _ P Too g% 9.2)
axi 0 axi axi + axl_

The second mixed derivatives calculated from (9.2) are equal due to (9.1).
Thus for derivatives of F0 we have:

Gt SPPRNE BN,
ax, ~ Yo For 85 S5 ©.3)

i
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Substituting (9.3) into null component of equation (9.1), we arrive at

oF, , o, ofy Lo
o, T Rt O g m Ao For 85, g 09
1 12 i i

Finally, substituting (9.3) and (9.4) into the «positive» component of the sys-
tem (9.1) for F, we conclude that the corresponding equations are satisfied
identically. Let us rewrite relations (9.3) and (9.4) in the matrix form,

JoF of -1
3, = €XP [- X ¥ (f,~ Fy+6,)f,]exp [Hlnf+]r5£r =
1 I
=exp [~ Hlnf,Jexp [X " (f, ~ F, + 6,)f,], (9.5)
where r is an automorphism of the algebra A, with the properties x5 =

=-XT, rHr'' = — H. In what follows rfr”1 will be also denoted as f for
brevity. Define the element § with values in the SL(2, R) group,

S = exp [—X+(f() ~FypflexpHInf .

By direct calculation one gets convinced that

1085 17 of + Jd 1 _ 4
s -~ L Xt -0 - —x* 9.6)
o, f, [ ox; ] Fox; f, (
In terms of S equation (9) can be rewritten in the form i
OF . of -1 95 -1 .
_axi =S ax,. ST+ 9’. ——axl. S 9.7)

Equations (9.6) and (9.7), being equivalent of equations (9.3) and (9.4), rea-
lize the Discrete transformation for system (9.1) in the form which can be
generalized for the case of an arbitrary semisimple Lie algebra.

In the case of any semisimple Lie algebra for element f, which takes values
in it, and obeys the system (9.1), the following statement takes place:

There exists such an element S taking the values in the gauge group that

-1 0§ 1 _ai + J0 1 _ 4+
== -0.— =X, . 8
S ox, f_[axi’XM] ° ox, f M ©-8)
Here XA'; is the element of the algebra corresponding to its maximal root
divided by its norm, i.e., [XA;, X71=H, [H, Xi] =+ 2Xi; [ is the coefficient

function in the decomposition of f at the element corresponding to the minimal
root of the algebra. To prove the statement it is necessary to convince oneself
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that the Cartan—Maurer identity is satisfied. After substitution (9.8) into this
identity with the account of the definition of f and X;I given above, we

obtain the following expression which should vanish:

Ao o H o 82f . Y i 1T F s
R R R BN |

This fact becomes obvious if one commutes twice equation (9.1) with the
element XA“;. Now define the element F taking values in the algebra by the

following relations:

OF ¢ Of g1, o 98 (-1
ax,.‘sax,.S +6, axl_s : (9.9)

To prove the' compatibility of (9.9), compare the second derivatives of F:

’FIF
E)x,. ij axj E)x‘.

(195 O] [¢-195 of 0 (¢-195) 0 -1 98\ _
“[S axj'axi] [S axi'axj]+9iaxj[s axj] axj[“ i}‘

S—l

X+

v | =0

H oo 22

In the same way, with the use of (9.9) we come to the following equality:

‘ F’F  [OF F_ 3 [ of
®, - e)axax [ax ax]—s[(ei—e) ax [ax ax}

It means that (9.8), (9.9) realize the Discrete transformation for the main
chiral field problem in the case of an arbitrary semisimple Lie algebra.

As a direct consequence of (9.8), (9.9) one gets the Discrete transformation
for two dimensional main chiral problem with moving poles,

R E [aa_éffif] 10

In this case relations (9.8), (9.9) realizing the Discrete transformation are
changed as follows:
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D 1[D yr]_pd 1ys
B R E SRR A
-1 d 174 = d 1
ST s=x| =X} |-E= X 9.11
3 f_[a’;f M] s e
and discrete transformation by itself takes the form:
R B A P R I
=S (ags s e
inS[i_f]S"~Ea—§S"' (9.12)
g g dg

10. THE LIST OF DISCRETE TRANSFORMATIONS
FOR INTEGRABLE SYSTEMS [20]

Now we present the discrete transformation and its integration (in some
manner) for the most known and applicable integrable systems. Here, discrete
transformation plays the role of some nonlinear mapping which transfers any
given solution into another one. However, we do not investigate the properties
of the transformation, its geometrical interpretation (if any), etc. At present, we
have not used the general method for construction of the transformation in
question. General properties of discrete transformation together with the system
of equations which determine it will be considered in one of the next sections.
To prove the validity of all formulae of this section, one can make a direct
check which uses only one operation — differentiation.

As a hint for obtaining discrete transformation it is possible to use a purely
algebraic method for the construction of the soliton type solutions, which is
given in previous sections (6—8).

The starting point of the construction below uses the following two facts.
The integrable systems under consideration admit the transformation s:

8=>0=s8=r@ 6" 0 sVl

Here 0 and 6 are unknown functions (variables) satisfying the corresponding

Y
PDEs, 9?5 '8 .

N

i
There is an obvious solution of the nonlinear system in question which
depends on a set of arbitrary functions. The soliton type solutions, reductions
related with the discrete groups, solutions with definite boundary conditions are
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defined by a special choice of arbitrary functions mentioned above. Let us note
that 8, is a solution of a linear system of partial differential equations and it can

be presented as a parametric integral on the plane of the complex variable A.

In the case of integrable systems this circumstance is just the main reason
for applying the methods of the theory of functions of complex variables, the
technique of the Riemann problem, and, at last, the methods of the inverse
scattering problem. The results of this section reduce the inverse scattering
method to a simple technical rule.

" Here we give a list of integrable systems together with discrete transfor-

mations for them and corresponding solutions.

10.1. Hirota Equation

V4 oV = 6uw’) — B0 — 2v%u) + p + idv = 0,

u+ ou’” ~ 6uvi’) + P’ - 2u2v) +yu' — idu=0;
9 ,_90.
Tor’ T ox’
~ l ~ ” —
v=sv=;, u=su=u(u— (In u)”, Vo =0,
iy + g™ + iBu” + yug — iduy = 0. (10.1)

In this and in the other cases the main role will be played by the principal
minors of the following matrix:

[ ¢A\' ¢s + 1 ¢s +2

s+ 1 s+ 2 s+ 3
¢ ¢ ¢
¢s+2 ¢s+3 ¢.\'+4

The principal minors of these matrices will be denoted by the symbol Dr".

Here n is the rank of the matrix and r is the symbol of its element at the left
upper corner. In the case of Hirota equation the solution of the discrete trans-
formation acquires the form

n-1 n+1
nDO n+1D0
=CD T w =) (10.2)
0 0

The methods of the theory of functions of complex variables lead to the same
expression, with DO'l given by the nonlocal integral

DO" = j dkl...dlnc()\.l)...c(l") W:(Xl,..., A), (10.3)
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where W"(k) is the Vandermonde determinant and c(A) is the integral in the
representation for U

10.2. Nonlinear Schriodinger equations. /0.2.1. Nonlinear Schridinger
equation

g+q" - 2rq2 =0, ¢g= —i— , r=r(rg~-(nnr"};
—rH =2t =0, q,=0, i =1 (10.4)
The solution of the discrete transformation is the same as in the last sub-

section.
10.2.2. Modified Nonlinear Schrodinger Equation

Qi+ + 20 g =0, G=p. F=r[Go+(w5 ) |;

~r+r"~2rg) r =0, 4,=0, ry=rg. (10.5)
The solution of the discrete transformation is as follows
Dn -1 n+1
= (- 1y -yt (10.6
qn—( ) D" ' rn_( ) n+1° -0)
0 1

10.2.3. Nonlinear Schridinger Equation with Derivative

. ’7 ’ -~ ~ 1 ’
g+q -2g) =0, G=r, F=q- 7);

—rH 2% =0, q,=0, ry=rp. (10.7)
The solution of the discrete transformation is as follows
n—-1pnn n—-1lpnn
2n (DOn)Z 2n (Dln)Z
n—1lpnn n—1nn
D, "D, _ Dy D,

Dn+1= (Don)z S PR ‘(Don—+1)2' (10.8)
10.2.4. Nonlinear Schrodinger Equation with Cubic Nonlinearity
g+q" 245" + g =0, —r+r"+ 24 - q2r) =0.
Discrete transformation in this case is a bit more complicated:
G=0C+g>', F=-('+ g + i + g™~
As in the last cases 9y = 0, — 7, + r”’= 0 and the solution of discrete transfor-

0 0
mation under this boundary conditions has the form:
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Dnl— 1 Dn0+ 1 o @
4="5 s T,= g D§=0. Dg=o0.
Dn D’l

10.3. One-Dimensional Heisenberg Ferromagnet in Classical Region
(XXX-Model)

S=15,8", S$=(S.S,5) SZ+S5S =1

S =85 +2 L, S, =8, +2 L,
s, 5
(1+S0J [l—so]
S .
e _ % + 0_ 0 e
S+ 1=- Tes,” s®=0, s)=1, s, =28,
-1
. Dy D) . Dy D,
S—_ n2 S0+1 n2 °’
(D)) D)
Dn—an+l Dn+1Dn
§"o1=2-2 0 gn__4 0 "0 (10.9)
0 D™2 + (DY
(D)) I

10.4. XYZ-Model in Classical Region. The Landau-Lifshits Equation
S) =S x 8" + S x (J9),
S=(5,, 5, 5, (S)2 =1, J=diag (J}, J,, J3).
Under the stereographic projection
S, +iS, _ S, —iS,
1+s, 0 VTIS,

U=

and change — it — ¢ it becomes a system of the following equations:

n2
<oy . W)Y +RW 19 _
u+u’ -2 L+ +28uR(u)—0,
—0+v"—2um+l-a—R(v)—0 (10.10)
1+ uv 2 9v - )
4 _ J, —J
whereR(x)=()!.x4+’y,vc2+0t,3—f=4(>‘uc3+2yx=2RNFO((;C 1),0(—_- 24 1,

JI+J2

'Y:

u—->Uv->V:

—-J3. The system (10.10) is invariant under transformation
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1L 1w +at-1 (10.11)
1+VU 1+uv (v')2 + R()

u=1,
1%

which is the discrete transformation for this system. The reader can find the
corresponding solution in [40,41].
10.5. Lund-Pohlmeyer—Regge Model

Y —dy+2)y=0, X=0 +x27,

, 2.2
¥ = 4x - 20xy) £ = 0, i=—<y’+xy2)'+94y"L’;

x, =0, yo' =4y, (10.12)

) ( 1)n+1 ln—l "Dn+l
L= — s Y=
1 0
It is interesting to note that discrete transformation of L-P-R system coin-
cides with the nonlinear Schrédinger equation (10.2.4). And indeed these two
systems belong to the same hierarchy [42].
10.6. The Main Chiral Field Problem in a Space of n Dimensions (the

Case of Algebra A,). The main chiral field problem in n-dimensional space is

(10.13)

described by the following system of equations:
2
_gy 9L _[o o
®; -8 )ax Bx ox,’ axj ’ (10.14)

i

where the function f takes values in A, algebra, Gi are numerical parameters.

The last system is invariant under transformation [10]

oF, Bfo

1
F_—f+, £ =(f, - F+e)a Inf, -
e - FroR g -r ey 2P
ax' (f + )a f(fo 0+ i)axi_+axi- (] 15)

i

The last equations can be rewritten in the matrix form
oF J -
a—=exp -x* (fy— Fy+0,)f ] exp [Hlnf+]r5£r T
i
=exp[-HInf)exp [X"(fy— Fy+8)f,], (10.16)

where r is an automorphism of the algebra A, with the properties
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XEH = xF,  rH ' =- H,

FO=0, f00=t, f+°=(x°,

where 0 0
JT Jdo 01T oJo
ax, 3x, o, ox ] (1017

%t 9%l
ox; axj =0 ;- ej) ox, axj 2 {

To solve the discrete transformation, let us consider the linear system of
equations:

!
6 ——-2—u-= . (10.18)
i i i

!

From the last equations it follows that each function of is a solution of the

equation for o’. We have an explicit expression for o':

0.(x)

=3 0(x), o = j dAA)’ c(A) exp [ Y ﬁ ] . (10.19)

i

In terms of the o/ the discrete transformation has the solution

D= ] Dn Dn + 1
n__0 no_ —0 n__0
B=—pr =t fi= (1020)
0 0 0

The number of the indices of the last row in the determinant DO" is enlarged

by one. The application of the results of this subsection to the problem of
construction of multisoliton solutions of Sigma-chiral model can be found
in [43].

10.7. The Main Chiral Field Problem for an Arbitrary Semisimple Lie
Algebra. For a semisimple Lie algebra and for an element f being a solution of
(12), the following statement takes place [10]: There exists such an element S
taking values in a gauge group that

G AT el g DL e |
S ax‘._f__[ax.’XM:l e"ax,.f_XM' (10.21)

]
Here XA"; is the element of the algebra corresponding to its maximal root

divided by its norm, i.e.,

X' X 1=H [HXY=+2x*

— f_ is the coefficient function in the decomposition of f of the element

corresponding to the minimal root of the algebra. In this terms the discrete
transformation reads as
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OF _ o of -1 LA
axi_saxis +8, axiS : (10.22)

The system of equations in the case under consideration may be written in
the form of equality between the group g and algebra f valued functions as

g, g =6,1, .
Discrete transformation for group valued functlon takes the form
G = Sg,

where the group element is determined by the above relations. The explicit
expression of the group element g, after n-th application of discrete

transformation can be found in [7].
10.8. The System of Self-Dual Equations on Four-Dimensional Space (the
Case of Algebra A,). The self-dual equations for an element f with values in a

semisimple Lie algebra have the following form:
L Ff [ o o ]
dydy dzdz |dy 90z ]
The discrete transformation for this system is [44],[45]
i

f 3
a d
ay () a— lnf ay f() + (fo 0) y In f_s

(10.23)

F =

O p __ 9y p_09 _Fy 9 i
0z Fo=- dy Inf 9z fo+ U= Fy) 0z Inf.

d d J
5 =Ly =F) 5 Uy~ FQ+ 5 Uy —F(,))—f_2 b

FI Y PR DU DO |
S F = Uy Fo 5 o= Fo =5 Uy FO)] 225 a0

The substitution of (12.20) into the density of the topological charge yields

QF=gf+D O Inf .

For the interaction of the discrete transformation we have the linear system of
equations

aof Lot g ot 3 ot 9olt!
8_ 281 T % ' oz 28y 9y (10.25)

In these terms the solution of the self-dual system is given by
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n-—1 ~ 7 n+1 10.26
n_Do ,,_Do o_Do ( )
f - ’ fo— +T’ f -
- Dy D} Y Dy

10.9. The System of Self-Dual Equations for an Arbitrary Semisimple
Algebra. The following statement takes place [44,] [45]:
There exists such an element S taking the values in the gauge group, that

S _ 1T 4] 2 (L),
A F e az[f ]XM’

-198 _ of o+ + -
s™ f[az x] ay[f ]x (10.27)

Here X/; is the element of the algebra corresponding to its maximal root,
divided by its norm, i.e.,

| X, X 1=H, [HX=t2x*%
— f_ is the coefficient function in the decomposition of f on the element

corresponding to the minimal root of the algebra. The discrete transformation
has the form

oF o -1, 05 . oF of -1 _ aS
=S85 +=85", =§5=-5 10.28
» "y ta % %%’ TH° (1028)
10.10. The Main Chiral Field Problem with the Moving Poles. Many
integrable systems arise from the equations (10.23) by imposing symmetry re-
quirements on their solutions. The cylindrically symmetric condition in four
dimensional space restricts the form of the function f,

=& B, §=22;3+[(Z—+—%) +y§]1/2. E=-¢.

€ -8 —— (10.29)

d ., d
=1, —-f] .
3& 3 [ %" 3E
This is the equation for the main chiral field with moving poles.
The result of integration of equation (10.9) is given by

S = S(, E..)CXP f'
19 ¢ 179 4] _p0 1 4
TR FIEM T e
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-1 d 179 +] #9091 .4 (10.30)
S]—__S=— — X -&E—=—X
o€ f_[agf M] gagf_
and the discrete transformation has the following form:
9 9 -1
=5 (s )s” ga&S ’
9 g S[ 9 st" E9S g1, (10.31)
ok 3 o€

The relations (10.10), (10.31) describe the discrete transformation for the
main chiral field with moving poles [20].

10.11. The Self-Dual Equation under Condition of Cylindric Symmetry
in Three-Dimensional Space. The condition of cylindrical symmetry in three-
dimensional space leads to the following form of the solution:

f=éf(é, B, t=tEiip'/t E--g

€ - i)ég*a% [i alg] [%%]' (10.32)

The discrete transformation for equation (10.32) arising from (10.9),
(10.28) has the form [20]

s se7 e (-5 R he
s—lé%s fi{%ﬁx;]%i-éﬁg%%y;,
%F=S(%f}8"+%§gg5“l,

%Fzs[aaf] éﬂi

The system (10.32) in the case of algebra A, arises in the integration prob-

lem of the general relativity with two commuting Killing vectors [13].
10.12. The Cylindric Symmetric Solution Invariant under Two Ortho-
gonal Four-Dimensional Axes

d
5 Sa s —[57,5;]- (10.33)
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The explicit form of the discrete transformation in the case of the algebra

Al is as follows [20}

1

=7
oF, dlnf  Aalf 3
R
oF, dmf  alf ¥,
5%=1+(fo—F0) ax2 - x axl —éx_z’

oF, Afy~Fy) B(fO—FO)} L,

a=-[<fo—Fo> TR a, |Thu)

ar, dUy=F) 3Uy=Fp| L
Ml 3 0" 0T | 29
ox, f_[ (fo—Fp o M o, } f o, (10.34)
The linear system of equations has the form
aal ; ; a,tl aal +1
X Tt 200 = o
1 ) *2
X y—a’—Zu’—all:-aalH
2 ox, ox, ox,
X, =X
'cl+l=‘cl+ l2 2. (10.35)

The solution of the discrete transformation coincides with the self-dual case
(see (10.25) and (10.26)).

10.13. (2 + 1)-Matrix Davey-Stewartson System. The matrix Davey—
Stewartson equation is the system of two equations for two unknown s X s-
matrix functions u, v:

u +au + buyy — 2au J dy(vu)x -2b J. d.x(uv)yu =0,
v+ av +by -2 [ dvony v = 26v | dx(w) =0, (1036)

where a, b are arbitrary numerical parameters; x, y are the coordinates of two-
dimensional space. As s = 1, the order of multipliers is not essential, and (1.1)
is the usual Davey-Stewartson equation in its original form [15].

By direct but not very simple computations one finds that the system
(10.36) is invariant under the following change of unknown functions,
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g=1 P=lwu—v D ]vsvww-0""v)] (10.37)
v X y y'x

The substitution (10.37) is the discrete transformation under which all equa-
tions of matrix Davey—Stewartson hierarchy are invariant [46]. In the case of
one-dimensional space this substitution was mentioned in [47].

The substitution (10.37) may be also rewritten in the form of infinite chain

nx n nn-

-1 ~1 -1 I
((v) v )y=vv P R U [u”+l=:-], (10.38)

n

where (vn_ U, l) means the result of the n-th application of (10.37) to

some given matrix functions (vO, uo).

Under the boundary condition v:: =vy =0 (the so-called matrix Toda

chain with fixed ends) the general solution of (10.38) takes the form [16]
N
ve= 2 0,5 0,0,

t=0
where ¢ (x), $t(y) are arbitrary s x s matrix functions of the corresponding

arguments.
In scalar case 5 = | the general solution of the Toda chain with fixed ends
was found in [48] for all series of semisimple algebras except of E,, Eg. In [49]

this result was reproduced in terms of invariant root technique applicable to all
semisimple series.

i

11. THE THEORY OF INTEGRABLE SYSTEMS
FROM THE POINT OF VIEW OF REPRESENTATION THEORY
OF THE DISCRETE GROUP
OF INTEGRABLE MAPPINGS [50-53]

Here we want to consider the results of the previous section from some
more general point of view. We will start from the short historical discussion.
Our aim is to find place for including discrete transformation in usual, more
traditional ways of investigation of the theory of integrable systems.

Liouville has introduced the term «integrability» for dymanical systems. He
proved that if a dynamical system possesses a sufficiently large number of
integrals of motion in involution then such a system is integrable. But neither
general methods for the construction of a solution in explicit form nor any
mention of the symmetry of the system under consideration are contained
within Liouville’s criterion.
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In the case of Lie symmetries the theorem by E.Noether fills this gap. It
teaches us that the number of conservation laws coincides with the dimensions
of the Lie group and gives the possibility (in the case of Lagrange theory) of
obtaining explicit expressions for the integrals of motion.

Roughly speaking the modern theory of integrable systems up to now has
maintained the Liouville definition (the integrable system must contain an infi-
nite number of integrals of motion in involution) and many people have found
various consequences which follow from this fact.

The aim of this section is to show in a deductive way that the theory of
integrable systems may be understood as a theory of the linear representation of
the discrete group of integrable mappings. This does not mean that we can
propose at this moment a theory of this connection which would be complete
from mathematical point of view. We only demonstrate that all known results
of the theory of integrable systems do not contradict this hypothesis.

11.1. Discrete Transformation of Integrable Systems. Let us consider a
local invertible transformation described by the substitution

' i= 0, o, u”,..., i) = o(u), LD

where u is an s-dimensional vector function and ', u”,... are its derivatives
of the corresponding order with respect to «space» coordinates (the dimension
of the space may be arbitrary).

The property of invertibility means that equality (11.1) may be resolved and
«odd» function u may be locally expressed in terms of new functions # and their
derivatives. The connection (11.1) with integrable systems is illustrated by
examples of the previous section.

The Frechet derivative ¢’(u) corresponding to the substitution (11.1) is the
s X s matrix operator defined as

YW =9,+0,D+¢, D>+ .. (11.2)

where D™ is an operator of m-th differentiation with respect to corresponding
space coordinates u, u’, u”... d. More detailed information about this const-
ruction can be found in [47], [50].

Let us consider the equation which appeared first in another notation in
[51]

F (6(w) = ¢'(u) F,(u), (11.3)
where Fn(u) is an unknown s-component vector function, each component of

which depends on u and its derivatives up to a maximal order n.
For each substitution the equation (11.3) possesses one obvious trivial solu-
tion F, (u) = «’. To prove this it is sufficient to differentiate the equation (11.1)

once with respect to one of its space coordinates.
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If the equation (11.2) possesses some other solution (for a given ¢(u)) ex-
cept of trivial one, then we will call such a substitution an integrable sub-
stitution or mapping.

We specially emphasize that equation (11.3) contains two unknown func-
tions O(u) and F, (), and it possesses nontrivial solution for the function F (u)

only for a narrow class of integrable substitutions.
Each nontrivial solution of (11.2) generates the equation (system) of evolu-
tion type

u,=F (), (11.4)

which is obviously invariant under the substitution u — ¢(u). (In this con-
nection let us emphasize that the equation u,= ' is indeed invariant under an

arbitrary substitution).

Let us now compare the equation (11.3) with the definition of a linear
representation T(g) of some group (for definiteness one can keep in mind a Lie
group)

D(gx) = T(g) P(x), (1L.5)

where g is the group element, T(g) is the group operator for some repre-
sentation, ®(x) is the basis of the corresponding representation space.

The obvious correspondence occurs whenever the definition relationship
(11.5) is compared with equation (11.3):

Q@) = F (u), T(g) > ¢'(w).

i

Using this correspondence, let us interpret equation (11.3) on the group
theoretical level. We have some discrete group of transformations, the group
element of which is exactly the substitution ¥ — ¢(u); ¢’(w) (the Frechet deri-
vative) is a linear representation of the group element; and finally F (u) (the

equations of the hierarchy) is a basis in representation space. If this represen-
tation is irreducible (it is necessary to verify that by independent methods), then
all possible bases of this representation (solutions of equation (11.3) with dif-
ferent n) must be connected by some operator Wn, o

F (u) = Wn’ o (11.6)

Certainly the same situation occurs in the theory of (I + 1) integrable
systems. All equations of the same hierarchy are connected by the «raising»
operators constructed from the skew symmetrical (nonlocal) Hamiltonian

operators J, = — JnT

_ -1
wo=JI" (117

n,
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11.2. Equations for «Raising» and Hamiltonian Operators. Two equa-
tions will be important for further considerations:

O'(w) W) 0™ = Wow), o) Jw) 6w = Jow),  (11.8)
where q)’(u)T = q)lf - Dq)f, + D 2¢Z,, — ..., and W(u), J(u) are unknown s X s

matrix operators, with entries in the form of polynomials of some finite order
in operator of differentiation D (of both positive and negative degrees).
From (11.8) and (11.3) it follows immediately that if Fn(u) is some solution

of the principal equation (11.3) then W ”(u) F (u) (p is an arbitrary natural num-

ber) will be another solution of the same equation.

The solution of the second equation (11.8) under the additional restriction
of skew symmetry may be connected (interpreted) as a Poisson structure which
is invariant under the transformation of discrete symmetry. Skew symmetrical
operators J(u) are known as Hamiltonian ones. Two different solutions of the
second equatiop (11.8) (if it is possible to find them), say J](u) and .Iz(u) in the

combination J,J;"! obey the first equation (11.8). The operator J,J5 "/, (u) is

again the solution of the second equation (11.8) and so on. This is the way in
which Hamiltonian operators usually arise in the theory of integrable systems.
It is necessary to find two different Poisson structures from some independent
assumptions. All other objects may be constructed by the above scheme.

In the problem of the construction of Hamiltonian operators for integrable
systems, the equations (11.8) were used first in [52].

11.3. Conditions under Which the Evolution Equation May Be Rewritten
in Hamiltonian Form. Let us consider some scalar function H(u) locally de-
pendent on u and its derivatives and obeying the equality (equation)

H(d(u)) — H(u) = Ker € 58; . (11.9)
In other words, the difference between the function after one application of
the discrete transformation and its original value is a divergence with respect
to space coordinates. Let us compare the variational derivatives H(u) before
and after the discrete transformation. We have

5H(u) T, OH(O(u))
=¢ (v So(u) (11.10)

The last equality is a direct corollary of (11.9) and the obvious fact that the
variational derivative of divergence vanishes identically.
Let J(u) be any solution of (11.8). Consequently we have

BH(u) _ OH (9(u)) OH(0(u))
() Jw) =5, o'(w) J() ¢ (u) Y = J(0(u)) So(s) (1L.11)
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OH(u)
Su
tion (11.3) and corresponding evolution equation (11.4) takes a Hamiltonian

form. Compare with [5].

11.4. Conservation Laws. All known integrable substitutions in one-dimen-
sional space ((1 + 1) integrable systems) obey all conditions of the previous
section. This means that it is possible to find an infinite number of Hamiltonian
functions H, (u) and an infinite number of Hamiltonian operators J (4) in ex-

So we see that function F(u) = J(u) is just a solution of our main equa-

plicit form. And so in the (1 + 1) dimensional case all integrable systems of
evolutional type (11.4) may be written in Hamiltonian form. As a consequence,
it is possible to determine the Poisson brackets between two local functions by
the rule

(v, M) = ( 25 s

OM(u) ] (11.12)

ou

and to prove with the use of some technical manipulations that all conserved
integrals are in involution
)
{H, (), H (u})} = Ker € I (11.13)
This result is interpreted usually as fulfilling of the Liouville criterion of
integrability.

In the case of (1 + 2)-dimensional integrable systems it is impossible to
write down the systems investigated in Hamiltonian form (except for some tri-
vial cases). But whenever in the (1 + 2)-dimensional case the functions obeying
equation (11.9) can be found, they are in general nonlocal, the number of them
is infinite and they are invariant under time evolution in the sense:

HXw), =Y, (H W),

where x_are independent space coordinates of the problem.

It is true that we can present infinite number of concrete examples of vali-
dity of the last propositions but also it is true that at this moment we have no
idea how to prove it on group-theoretical level in general case.

11.5. The General Hypothesis. As a conclusion of the previous conside-
ration we are able to formulate the following general hypothesis about the struc-
ture of a future theory of integrable systems:

The problem of integrable systems is equivalent to the theory of repre-
sentations of the discrete group of integrable mappings.

Indeed if from independent considerations it turns out to be possible to
obtain a solution of our main equation (11.3), then we automatically produce an
integrable equation of evolution type (11.4) and each space of irreducible rep-
resentation of (11.5) will give us the exact solution of it. We are well aware that
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the form of our main equation (11.3) is not very suitable for obtaining direct
conclusions from it. In this connection we can notice by analogy with the dis-
tance between the original definition of semisimple algebras (in the sense of
‘absence of nontrivial ideals) and the Cartan classification into A,B,C,D,E,F,G
and E, it may be of comparable magnitude to the problem of declassification of
the solutions of our main equation.

We hope that something of this kind will be achieved in the case of repre-
sentation theory of discrete groups of integrable mappings.

11.6. Conclusion. The main result of the present section is contained in the
new equation (11.3). Its solution will provide the answers to two most important
questions of the theory of integrable systems. The first question can be regarded
as the «quantization» of substitutions, i.e., substitutions the choice of which
would be integrable in the above sense among the infinite number of invertible
ones. Except for the obvious remark that this will depend essentially upon the
dimensions of the spaces involved, the author knows almost nothing about how
to solve this problem and concludes that it is not going to be resolved quickly.

The second, more tractable problem from our point of view is the question
of the solution of the main equation (11.3) for a given (ad hoc) integrable
substitution ¢(u) (in this connection see the next section). It is possible to sup-
pose that the solution to this problem is closely connected with the theory of
representations of the discrete group of integrable mappings. From known
examples of integrable systems it follows that the discrete group of integrable
mapping possesses a rich storage of different irreducible representations. A
definite class of exact solutions of corresponding integrable system may be
connected with each of these representations. In some sence the soliton-like
solutions (which will be discussed below) correspond to finite-dimensional rep-
resentations of such groups.

12. TWO-DIMENSIONAL INTEGRABLE MAPPINGS
AND EXPLICIT FORM OF EQUATIONS
OF (1 + 2)-DIMENSIONAL HIERARCHIES
OF INTEGRABLE SYSTEMS [54-57]

Here we shall complete the second part of the general programme of the
last section: we shall find the explicit form of solution of our main equation
(11.3) for an ad hoc given integrable mapping. The equations of (1 + 2) inte-
grable systems belonging to Darboux-Toda, Heisenberg and Lotka-Volterra
hierarchies which are invariant with respect to discrete transformations of cor-
responding integrable mappings will be presented in an explicit form.
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12.1. Two-Dimensional Integrable Mappings. Below we will discuss three
concrete examples of two-dimensional integrable mappings which can be consi-
dered by similar methods.

12.1.1. Darboux—Toda Substitutions. The explicit form of the direct and
inverse D-T integrable substitution is as follows,

(—__ (-—-_ l

u-v, v—v(uv—(nv)xy),

- 1 -

v=—, wu=ulvu—(Inu) ). (12.1)
u xy

5 5=
Let f and f be the results of the s-th application of direct and inverse

. i . . —(—m)
transformations to the function flu, v), with the following agreement f =

m—>
= fmz20.

As a direct corollary of (12.1) one finds the Toda-like recurrence relation
for function T, = uv. It will be of importance for our further considerations.

« -
(In TO)Xy =~ T0 + 2TO - TO. (12.2)
The corresponding to (12.1) Frechet derivative has the form

0 1

2
Vv
o'(u) = vy v v b (12.3)
V2w -—F+=D +2D -D
v v y y X xy
29 59
whcreDy:ay,Dx=ax

The system (11.3) in the concrete case D—T of substitution may be rewrit-
ten as

L 1
Fi=-7.F,
v
- ) vy, vy
F2=vF1+ 2(uv)——X2 +—D + D —-D F.. (12.4)
v v Yy v x xy |°2

It is not difficult to verify by direct computations that Fy=(u, —v) is the

solution of the last equation and so substitution (12.1) is integrable in the sense
of [51].
After introduction of the new functions F| =uf|, F, = vf,, the system

(12.4) takes the form of a single equation for only one unknown function 5
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@) (F=f) @) (=) ==D_f, f,=—F (125)

The meaning of notations in the last equation is explained after formula
(12.1).
In further transformations of (12.5) we will use the fact that condition of

(_
invariance of some function with respect to the discrete transformation F = F is
equivalent to the F =const. This is in some sense analogous to Liouville
theorem in the theory of analytic functions. Using this fact for function

«—
T(f,= J- dy (T — T )) we obtain the Toda chain-like equation:

j — - _
T, =Ty )dy(T-2T+T), T, =uv. (12.6)

In terms of solution of (12.6) the evolution type equation (11.4) (invariant
with respect to D-T substitution (12.1)) takes the form:

' - —
vt=vjdy(T—D, ut=u_’.dy(T——T). (12.7)

12.1.2. Two-Dimensional Heisenberg Substitution. Under this term we will
mean the direct and inverse transformations of two functions (i, v) of the form:

Z:v‘l, 1(_= ! +—2 d=Iny,
T+u 1+uw ¢x¢y
v
V=ul, L., D yone (12.8)
l+uw 1+uy VYV,
LA (17) u, v, U
One can check that functions ¢ t = X 7= __,y 7 = ;=
" (1 + uv) v+v) (1 + uv)
N
), v
=- _)—Lz obey the Toda-like recurrence relations
v+v)
t).=t [aa , (m=1,2), (12.9)

« -
where A =t -2t +1¢ .
m m m m
The explicit form of the Frechet derivative operator reads:
-2
0 -y

O'(u) = (731 2 ekl 2 ol
[KR—] - 1+[V“ ] +(R)28(¢;‘DX+¢;‘Dy—VLD
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vy -
§=—, R=1+w, R=1+u. (12.10)
x 'y

By a short calculation it is possible to show that equation (11.3) possesses
nontrivial solution F1 =u, F2 =—v and so the Heisenberg substitution by
definition is integrable.

Now we can rewrite equation (11.3) in more transparent form. Let us
denote F1 = uB, F2 = vA. From the first equation (11.3) we obtain immediately

- . ) . .
B =— A . The second equation after some transformations may be rewritten in
the form of a single equation for function A:

[ uy 2}(2_/4)_ uy z(A"X)=
(1 + uv) (1 +uv)

12.11
o ; (12.11)

¥
As we know, the main equation (11.3) always possesses the trivial solution
Fl =u, (uy); F2 =V (vy) orA = ¢x, (¢y). Let us look for solution of (12.10) in

the form A = ¢X0t. Instead of (12.10) we obtain the equation for o

¢ o
- -1 Xy Xy
= (9, 9) [ A+2A A

u;* - uyv 1- o o)
Xx —)-—2E -y =| 2|, e=-%. (1212
[(1 + uv)? J(a * (1 + uv)? (= [ 0 l 0, (1212

Resolving (12.12) by the substitution

o —
BEs
6 X
we arrive at the equation for determining T
«— - -
T.=T,[dy 6T -1 -6 - T, (12.13)
where
T = UV
O a+w)?

12.1.3. Lotka-Volterra Substitution. In this case direct and inverse
transformations have the form

— « “
u=u+(nv), v=v+(nu,
x y
- -
u=u—-(nv), v=v-—(n u)y. (12.14)
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(—
As in the previous case, the functions t=u, t, =uy obey the Toda-like
recurrence relations (12.9).

The Frechet operator in this case has the form:

1 Dy
O'(w) = - - e (12:15)

D_(u)” 1+D(w) Dv
y y x

By the same technique as in the previous subsections we obtain the single
equation for unknown function T and expressions for the equations of
hierarchy via this solution

1 & -
Ty=dex[u(T—T)+u(T——T)], (12.16)

and finally 5
u = wT-T1), v, = DyT.

12.2. Solution of the Main Equation. In spite of essential differences in the
form of the Frechet operators in three above cases, the main equations of the
problems (12.6), (12.14) and (12.16) have the same structure and may be solved
by the similar methods. We shall demonstrate these methods on the more com-
plicated example of Heisenberg substitution and represent the results of calcu-
lations for other cases.

First of all let us note that equation (12.14) has the partial solution
T=T,

in what one can be convinced with the help of equality below, which is the
direct corollary of (12.8) and (12.9)

e 0, 0 o, ¢
TO—T0=2¢X[ ! )x+2¢xy ! +¢x[——’-‘~’—]—¢xy—+—x.

1+ uv 6;1+uv ¢, 0,

Let us now seek the solution of (12.14) as T=Tojdy o Instead of
(12.14) we obtain the equation for determining the function O

fay(t -1 +1,-11=7 [ay 7 [y @ 12.17
(O‘o)x+°‘o y[tl-t1+t2—t2]—t1 y(oco-—oco)+t2 y(ao—oco).( A7)

As it will be shown later, this equation will arise many times. Two possible
ways of its further evolution will be important. Let us use the following
ansatz

>

«
oy =10y + 1P
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After substitution of this expression into (12.17) and equating to zero coef-
- >

ficients in front of the terms 1t (this is some additional assumption), we

come to equations for unknown functions o, Bl:

«

«2
(ocl)+oc _[dy t+t 2]—jdy(0c —oc)
2
B, +B, [yt —t,+ 1 -1 =] dy (0 — ). (12.18)
Setting the second equation (12.18) by direct transformation and adding the

result to the first one, we get

« « 2« -
(otl+Bl)x+(a1+Bl)de[tl—t1+t2—t2]=0.

e_.
It means that the system (12.18) has partial solution o, + BI = 0. We will use

it in what follows.
For this solution the system (12.18) is equivalent to single equation for
unknown function o,:

J- «2 — S "I 2 «1 - =
(ocl)x+oc1 dy[tl—t1+t2—t2]- dy[(tlal-tzal)—(tlocl—tzal)].

It has obvious solution o, = 1. As a corollary we obtain the second partial

solution of our main equation:
J- - -
T, =T, dy (t1 - t2).
Further evolution of equation for o is connected with representation of

unknown function in integral form o, — J.dy()L1 (we keep the same symbol for

unknown function because it can’t lead to misunderstanding),

2 — o
(“1)x+°‘1 fdy[tl -1 +t2—-t2] =
«2 «— — -
=t Jay oy —ap+7, [ dy (@ - o). (12.19)

«~ 2
Up to obvious replacement £, — ¢, it coincides with the equation (12.17)
for o,
We can repeat the same trick with this equation as with equation for o, and

after k steps will come to substitution
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and equation for >

J' —k+2 «k+1 —
O ety Jadl 1y - 1+, -] =

J- —k +2¢ —k + 1 -
=]yl 1y o, —no) = 1oy = o)
with obvious solution o, = 1.

Collecting all results together we obtain partial solution of the main equa-
tion in the following formula

n
Tn=Ton(l-—Liexp[—(i+1)d,.—
i=1

n R
‘ S 4 de‘r_llfdyzz..... Jay'e!, (12.20)

k=i+1

where symbol exp d_means the shift of the agreement of s-repeated integral

h— ht+l—
(J dy ) —)j dy f; ...)in (12.13) by I and symbol Lp means exchange

r—

- . —
t, onthe t, in the p-repeated integral f dy 4 —)f dytzr....

The expression (3.20) is directly applicable to Heisenberg and Lotka—Vol-
terra integrable hierarchies. In the case of D-T hierarchy it is necessary to put
all operators L, = 1 and keep in mind the equality 1, =t, =T,

12.3. Examples. In this subsection we present the simplest integrable
systems for usual unknown functions u, v corresponding to the lowest solutions
T, of the main equation for D-T, Heisenberg and L-V substitutions.

12.3.1. Darboux-Toda Substitution
n=0
T0=uv, u=au +bu, v =av + by .
t X y t x

In examples below we shall choose a =1, b= 0 keeping in mind that it is
always possible to add the term (with arbitrary numerical coefficient) in
which x is changed by y and vice versa.

n=1
T1=vu —-vu,
X X

ut=uxx—uJ'dy(uv)x, —vt=vxx—vJ.dy(uv)x.
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This is the Davey-Stewartson equation in its original form.

n=2
T,= (uv)xx - 3uxvx - 3uv j dy(uv)x,

u=u_ —3u J. dy(uv), — 3u J dy(u ), ,
v,=v .~ 3, J- dy(uv)x -3y J. dy(vxu)x.

This is the Veselov—Novikov equation.

n=3

T3 = - (Tl)xx - 2(uxvM - vxuxx) + 2uy J dy(T1 )x + 4T1 j dy(uv)x,
v=—v v Jaw) -2 ([T -2 [ da) )+
+ 2] ayw -~ [y + [ )~ ] ayaidy, - 1f dyao 1.

Equation for u may be obtained from the equation for u under the change
UV, V—u t— —t
12.3.2. Heisenberg Substitution

n=0 :
uv viL
v, == + 2v _’-dy —r , —u=—u_+2u Idy[—‘L .
xx x T+uv ) t xx x 1+u )
n=1
Ty ) e [ Jay[ =) ]
Ve ey T Ve J Y 1+ uv x+ Vx 4 1+ uy +
X

uy uv
+ 3y _[dy —XY— 1 3y |dy -——LJ ,
X X

(I +uw)” |,

1+ w

vu vu 2
ut+um—3uxledy[—L] +3ux{J-dy[——L] } +
x X

qu uy
+3u [ dy| —22— | -3 Idy[—L].
x 2 X
I +w)” |, xx
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12.3.3. Lotka—Volterra Substitution

n=0
In the case T, = v we obtain the trivial system with the help of (12.2)

n=1
In this case
— - 3
Sy =vJde =y =v, ++ 2 [ axtw).
The corresponding integrable system has the form

=_ = (2
uy= =+ 20w) + 2u fdx(uy), v= 0y + 2y | dx(w)), .
In one-dimensional case D_= Dy this system is a partial case of more general
integrable system described in [25].

n=2 !

In this case

_ 3 _ -1 N =l W2

S2 =v + 3vvy Yoy + 3va (uv)y + 3(vy + v7) Dx (uy) + 3x(Dx (uy)) .

The corresponding integrable system can be written as

u, = Dy(uyy - 3(vuy) +3vu - 3(uy — uv) Dx_l(u)y) +
+D,(3D () D), + (D ),

_ 3 -1 2 —1 -1 2
v, = Dy(v + 3vvy + Viy + 3va (uv)y + 3(vy + v )DX (uy) + 3v(DX (uy)) ).

13. FORMALISM OF SCALAR L-A PAIR
APPLIED TO PERIODIC TODA LATTICES [11,12,35]

Now we consider concrete realizations of the general results of section 4
and apply them to the case of the system of equations of periodic Toda lattice
related to classical A -series. The case of algebra A, (the sin-Gordon equation)

has been considered in detail in the former paragraph.
We use the following formulation of the equations of the generalized Toda
lattice in two-dimensional space:
2 2
0%x, ap,

(a) 395 = OxP (I}x)i, (b) oz P 8, — tawa-l exp — 2 8.1,

8, = (kp),, (13.1)
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where in the case (a) the index i takes the values 1, 2,...(r + 1); (r + 1) is the
rank of the simple infinite-dimensional algebra of finite growth with the gene-
ralized Cartan matrix K. In the case (b) the number of values that index «
takes is less than in (a); k is the Cartan matrix (corresponding to K) of the
finite-dimensional semisimple algebra and 1, are the coefficients of the expan-

sion of the maximal root of algebra over the set of its simple roots. The

— —
system (a) admits the transformation x, — x, + (O@R) + O®)) N, where N is

the null vector of the generalized Cartan matrix: (1~(N) = 0. Equation (b) is
equivalent to (a) after excluding the trivial solution of the homogeneous
Laplace equation with the help of conformal transformation. Equation (b) is
a direct consequence of the Lax representation

.
A= (hp )+ N Y X5+ X)),
a=1

A=A exp— 8 X +exp (Mp) X,p),

o=l
[87—A7,82-—A:]=0, (13.2)
where XG[i and X;: are the root vectors of the simple and maximal roots of the

algebra; (Mp) = z tv8v and A is the spectral parameter. For X; we take the

normalization:

3

Xp X 1=t Wolh,  Wk= (kW)
The algebra, whose local part consists of the subspaces

8 =X XD, g = XX, gy =(hy)

is an infinite-dimensional semisimple algebra of finite growth. The degree of
the parameter A distinguishes the identical elements of the finite-dimensional
algebra, relating them to the subspaces with whose grading index they are
compared. Thus they eliminate the degeneracy of the representations of algeb-
ras realized by finite-dimensional matrices. The Cartan elements of the finite-
dimensional algebra appear in the subspaces whose grading index is the pro-

duct of some integral number on the height of the maximal root m = 2 t,
increased by 1. The only one element that is not distinguished by degree of
. - _ + - _ —1 .
A is the element H of the null subspace H = (X, Xy = 2 W, hv' This

circumstance explains why the number of unknown functions in (b) is less
than in (a). Thus the operators of the L-A pair (13.2) should be treated as
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operator-valued functions of the finite-dimensional representation of an infi-
nite-dimensional algebra of the finite growth. The spectral parameter A plays
here the role of a grading parameter. The algebra of internal symmetry of the
equations of the generalized Toda lattice is infinite-dimensional and coincides
with solvable part of such infinite-dimensional semi-simple algebra.
Equations (13.2) mean a «gradientness» of the L-A pair operators:

,
8,8 =(hp) -2 X+ A" Ix~

o=1

r
g8 = exp~ 8. X, + A" lexp(Mp) X, (13.3)

a=1

((13.3) differs from (13.2) by the gauge transformation g—-)exp%ln H,

which results in the change A — A — 1 at the generators of the simple roots;
g is an element of the complex hull of the group, spanned over the elements
of the semisimple algebra. Equation (13.3) may be considered as a system of
equations for the parameters of the element g. This system is naturally in-
variant under the choice of a concrete representation of the algebraic elements

X; in (13.3). Parametrize the element g by the Gauss decomposition g =
=Z exp(ht)Z*. Then (13.3) has as its consequence the essentially
nonlinear system of equations relating the parameters of the elements
Z*, Z7, 1. It seems quite remarkable that the equations for the parameters 1
split from the general system, remaining essentially nonlinear. However, they
split, in their turn, to a linear differential equation for the functions ¥, =
=exp z Tolee Which are equal to the matrix elements of the group element
g between the highest states of the representation (N lz""’ lr). However, in

order to obtain the scalar L-A pair equations of the given representation, one
does not need to write the complete system of equations for the parameters of
element g and then single out the linear system for ‘I—’l from it. It would be

enough to calculate the derivatives of the ‘I‘l up to the order N, -1 using

(13.3), and then to express them in terms of linear combinations of the matrix
elements (c|| g|| I) as follows (see section 4):

W= (Gl D= ) = X X+ A X )=

o=1

=Up) ¥+ X fy (ol gll ).
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Analogously, for an s-order derivative, we obtain
N

= Y ) gl ).

a=1

Inverting the latter equation we arrive at equality
NI— 1 NI_ 1

(aflgll Y= X Fo¥T = 3 FE el
0 0

The matrix elements (o || g|| /) may be calculated with the help of (13.3) in
two forms, i.e., they may be expressed as through the derivatives with respect
to the argument z or with respect to the argument z. As a result, one obtains
two forms of the matrix element(a || g|| ), which are equations N, — | of the

scalar L-A pair in the representation 1. Two missing equations appear if
someone excludes the N, matrix elements (a || g|| /) from N, + 1 linear rela-

tions connecting them with the derivatives ¥, up to the order N, with respect

to both arguments. These are two spectral equations of the representation 1. In
the general case, the structure of the spectral equations is as follows:

_ + 1
GNI(D) ¥, =" @N,-"’ (DY,

where G)n(D) denotes the differential operator of the n-th order, whose co-

efficient functions are homogeneous (with respect to the differeptiation) poly-
nomials in Pg (13.3). As Ny=m+ 1, the right-hand side of the spectral equa-

tion does not contain the differentiation at all. Such a situation occurs only in
the case of the simplest representations (of the lowest dimensions) of algebras
A, C,.(AB), . For the classical series B, and D, the degrees of the differential

operator in the right-hand side of the spectral equation are one and two,
respectively.

14. SOLUTION OF sin-GORDON EQUATION
IN THE FORM INVARIANT UNDER THE CHOICE
OF THE REPRESENTATION {10]

Now, on the example of the sin-Gordon equation we demonstrate the
method of constructing the solutions without using a concrete realization of the
algebra. This is the partial case of the general construction of the previous
section.
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The sin-Gordon equation results from the compati\bility of the linear system
(the Lax pair)

g8 =hp+MXT+X"),  gg =AT'(X " exp2p+ X exp-2p)

with g being the element of the SL(2, C) group, X *, X 7, h-elements of its

algebra [X 7, Y XV=hhXTT1=2X % The internal symmetry algebra of the
sin-Gordon equatlon is connected with the graded algebra of finite growth

SL(2, C) x Z = A that has the background elements X1 P h from which the

whole algebra is constructed. The commutation relations are

+ oy +- +-
X Xg1=8, g by g X3 T =kyg X357,
) (2 -2
@B=1,2, k—[_z 2].

By direct check we confirm that the algebra 741 has a multidimensional repre-

sentation with the spectral parameter and generators:

+ _ + + - - _3-1ly - — _a-ly+ _ _
X, =AX", X, =AX ", X, =A"X", X, =A" X", hy=—h,=h,

where X t, h are the elements of the algebra SL(2, R) introduced above. Here
the algebra as a whole consists of the sets of elements:

—=(;\’—2S—lxi’ }“—2sh), RO=(h),
+ — (;\’25 + IX i, Xth), 5> 0,
i.e., the positive, negative and zero subalgebras of the initial algebra. Going

back to the L-A pair representation, we see that the element g may be con-
sidered as belonging not to the group SL(2, C) but to some degenerate repre-

sentation of the Zl group. The arbitrary element of the SL(2, C) group can be
represented as the Gauss decomposition g = exp X "o exp At exp X B. Con-
sequently, from the Lax representation, there appears a system of equations

connecting the functions o, B, T, which is obviously invariant under the
choice of a certain representation of the algebra SL(2, C). Thus we have

g8 =hp+MX X )=
= (& — 20T — 0P exp — 20X * + (t + aff exp — 20)h + P exp — 27X

whereof

Bexp—2t=k, a=L—T

o —i+ @ =A2-p+ (P

Similarly,
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B’ exp -2t = ANlexp2p, o=-7exp-2p, - T421p+ (P = A
As a result of the last equalities we have a system of three equations
Go2-p+GOY. Fexpp) =7 -p"+E)) Y,
¥ exp — 2p = N A(E + pP), (14.1)

where ¥ = exp — T, oL exp — T. Now we search for a solution of this system in
the form

n
¥ =exp Az + A7) [] A~ ap),
k=1
where a, are some unknown functions, that are defined from the system of

equations, which arose after substitution ¥ into previous equations and com-
paring the terms at the same powers of A

1. a

a,
. . k . -2 .
ai+2aiai+2zak'_ .=0, -p+(p) =2Zak. (14.2)
!
i
The last equality may be satisfied by the substitution exp—p = (see
k

recurrent equalities, which follow from the system (7.3)). System (14.2) con-
tains n first integrals, which give expressions for the first derivatives a;:

2 n
‘ P, (@) a
==, P@p=Il@-a), x=0
H(ak—al) I=1
l1#k

The set of parameters x, independent of z, in fact, represents the first integrals
of system (14.2). Calculating Zik from the latter expression for ézk, we confirm

that (14.2) is valid. Further integration of the system is connected with the
following identity from the theory of the symmetric function of n arguments.
Namely

5
X
L S

0'k)=2, 0,

o 16— x;)
i#j
ifl<s<n-2and ©"" 1(x].)= 1. In fact, being reduced to a common deno-

minator, @s(x].) represents a ratio of two homogeneous symmetric functions.

Here the denominator is the Vandermond determinant, which is antisymmetric
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under permutation of all its arguments. Hence, the numerator should be char-
acterized by the same property, which is possible only when s is not less than
n— 1. Due to this, we may fulfill the further integration with the result

y a,—x

0 e I

k=1 ‘1 s k=1

n

5

g tx, =exp 2(x z + Y
Thus, the last n relations mainly determine a general solution of system (14.2)
depending exactly on 2n parameters. By now only the first equation of the
system (14.1) has been integrated, and to obtain an explicit dependence of the
parameters x ,y on argument z, one needs to use the two remaining equa-

tions. As far as exp—p = H ak/H A, the function ¥ exp p has the form:

Wexpp=»ATexp(hz + A~ UHO\.’ —ak)
k=1

2

i.e., with respect to the argument z, the function ¥ exp p has thc same struc-
ture as ¥ with respect to z with evident substitution a, — a, A5 27" Due
to this, the second equation of (14.1) entails the system of equations with

respect to differentiation over the argument 7
D -2 n
- Pla) = - .
@' ==, P@A=Tl@?-ad =0

[M@*-qn" " i

or

P (a,
a,=( )n2n HZ
¢ kH(k a)l:k

I#k

We have not used yet the third equation of system (14.1). After simple trans-
formations it can be written as

a, = exp 2pak ., exp 2p(1 + z a)=1 p=exp2p z a a,
which in their turn, after corresponding substitution, lead to

P (@) = (- 1)'a;" P (%) exp 2p [] 2.

This means that izk and aI: are defined by the same polynomial, whose roots

xl2 depend neither on z nor on z, i.e.,
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-~ Tlaz

X,=x, exp-p= .
1= %
rle

It is easy to see that the system of equations is invariant under the sub-

stitution z — z, a, - azl, x, o le. Then, from our previous results we find

" a -x
5

k=1ak+xs

— ~1= =
= exp 2(xS Z+x Z+y)=exp 2zx,

where parameters x ,y, are independent both of z and of 7. From the last

equality we obtain the linear algebraic system for homogeneous symmetric

functions s = z a.a....a, in the form
r i k
igj#.. *k
. 2 . _ —
sinh 78, =X, cosh 8, 1 X sinh LS, g T e = 0, s=1,2...n.

Solution of the latter system with respect to s, = H a, yields the well-known

n-soliton solution of sin-Gordon equation in the form of the ratio of two
determinants of n-th order.

15. GENERALIZED BARGMANN POTENTIALS [13]

In this section we establish a condition for the ordinary differential equation
of the (k + 1)-th order
k-1
R A VAR 2 (15.1)
i=0
under which it has a solution with the following analytic dependence on A:

n
¥ =exp KzH(ak-—}.).
k=1

The problem of this type, applied to quantum-mechanical one-dimensional
Schrédinger equation, was first considered by Bargmann. For this reason, the
coefficient functions of the last equation u; will be called generalized Barg-

mann potentials. To solve Bargmann problem, we need the expression for the
coefficient functions of an ordinary differential equation through the full set
of its linearly independent solutions. The following statement generalizing the
Wiett and Gauss theorems for the case of polynomials takes place. The
equation
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k-1
[k+1] i} _
¥ + 2 upll=0
i=0
may be represented in the form:

vo'wvrvh o lvE vt N A A Y )

where V, are the principal minors of the matrix of the Wronskian VO?=

= \PBG_ " (1 <, B<k+1), and generate the full set of k + 1 linearly inde-

pendent solutions of the equation. This is the Frobenius theorem. The con-

dition that Wronskian is a constant Vk 1= lzis solved as follows:
¥i=9. ¥ =9 -‘-dzl(pZ’
z z z - 1
¥, =0, [dye, a0, . I dz,_ 0., (15.2)
k+1
where the functions @, obey the only condition H (pk *2-lg =V,

=1
1. The set of (k + 1) functions ‘¥, manifestly obeys the equation

@y 1 (9705 (@] ")))..) =0,
All that remains is to express @, through ¥, . As a consequence of the defi-
nition of the matrix V and ¥ we find

s—1+1 — _yv—2
V. = H s =V 9=V,
I=1
The substitution of the expressions obtained for @ into the previous equation
completes the proof of the theorem.
The problem concerning the generalized Bargmann potentials is solved
according to the following theorem.
The solution of equation (15.1) has an analytic dependence on the para-
n
meter A of the form ¥ = exp Az H (a, — A), if the functions a,_ are defined by
c=1
the condition of vanishing of the function

B -2
=V Vi

k+1
= Zc(k)expkzn(a —7\.) X’;+1=kk+l

c=1
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}\'k+]

at n different points of the kﬁ“”

plane (1 < b< n). The generalized

Bargmann potentials u, are expressed through symmetric combinations const-
ructed from a, and their derivatives via quantities B‘_', which are defined from

the expressions for derivative of the s-th order of the function ¥

o §=2 n s
q | as ; .
¥ A +1§)3 A+ Z:’ Py ¥
as follows: . i-2
“i='§k’+1‘ B, - ZBk+II
Bji= . j<i+2. (15.3)

Equation (15.1) may be represented in the form

exp 5k(exp Sk _ (o lexp Sl(exp -p¥)y..) = Akt exp p, ¥, (15.4)

where ex =70 a and J are the principal minors of the matrix
p 5 s—1 c b p p

c=1

of the conserved integrals and 8.‘, ==P, Y2, P P=Py =0
n Aiak—j
- J L
‘]:j_si,j+Bi+z k+ 1 _ak+] (15.3)
c=1 s

under the null value of the parameter A.
After calculating the logarithmic derivative of ¥, we obtain

n a
7L+2 Py

c=1 ¢

¥ =o'y

For the s-th derivative we have by induction
\P['S] - (ps‘{‘ (ps+ 1 ('ps + (PS(PI-
With the help of the last equalities we find the recurrence relations for AC’ and
s
B’ .

Substituting the proposed form of ¥ into general equation (15.1) and
equating the quantities at different powers of A, we obtain the expressions for
the Bargmann potentials according to the conditions of the theorem.
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From the condition of vanishing of the residues in the poles at the points
A= a, we obtain the nonlinear system of differential equations for the func-
tions a :

¢ k-1 . k-1
Ak+1 _ 4y k+1 B P pk+1
AT =AY B A=A Y B AT=0. (15.6)
i=1 i=1
Let us show that a, as defined by the conditions of the theorem, obey the

relations (15.6). For this purpose, consider the Wronskian constructed by the
functions ¥ . In the notations of the previous sections, we get

n
(=P w4 =TT (”’f-+ Lkt

c=l

||1x+z ..... +ZB x‘+2 x”_

c—lc c—lc

=H @ =AY W, AL A ) det (15.7)

c=1

where W is Vandermond determinant. The calculations in (15.7) were per-

formed by the standard procedure, i.e., subtracting the first column from the
k+1

remaining one and removing the factor H (Xa - 7»]), etc. It follows from
a=1

(15.7) that, up to W is a polynomial of the n-th order of the argu-

k+ 1 k+l

xk‘f-l

ment that vanishes due to the linear dependence of ‘¥ . in accordance

with the conditions of the theorem, at n points l’;*’ 1, ie.,

n
_ k+1 k+1
Vk+1‘Wk+1H0‘b - A )-

=1
Consequently, V,  =|'¥, P, bk gtk + 1]|| = 0. Calculating the

latter determinant in the same way as (15.7), we verify that it has (15.4) as
its consequence. To prove (15.5), we make use of the fact that both the

Bargmann potentials u; and the equations (15.6) for Aci do not depend on the

parameter A. According to the Frobenius theorem, we have

n
o =¥0=0=ITa. ojo,= limG,~2)" ¥, ¥I| =

c=1
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=11m(7\.2 x)||1x+z CXHH(aC—x])(ac-xz):
c=1 % c=1
Al
= lim H(a Kl)(ac—— 2){14-2 (a—k)(a—lz)

A-0

f[l {1+2 J:In]afjlo.

c=1 (' c=1

Continuing the reduction procedure, we find
n

]'[ ¢ = imwIl e e P = [T
A0 c=1 A
From here we see that all the statements of the theorem are fulfilled and the
other form of the Bargmann potentials may be found after performing diffe-
rentiation in equation (15.4).

16. SOLUTION OF PERIODIC TODA LATTICE
FOR A, -SERIES [11,12,35]

In this section a system of equations is constructed for a scalar L-A pair of
the first fundamental representation (k + I-th dimension) of the algebra A

With the help of the results of the previous section, its «wave furction» and the
solutions of the periodic Toda lattice are obtained.

The highest vector of the first fundamental representation || l)((lH ) obeys
the conditions

1Y = - - -
X =0, Q| X, =0h] 1) =38 Ul Ay =

ol 8(1,1'

The set of its basic vectors is as follows,

I, XD, XX X XX D,

anxyt axTxS xRS X

We introduce the wave function {{|| g}| /) and, using (13.3) calculate its deri-
vatives, with respect to z
k

W=l gl D=l (hp+ XX+ A X gl 1) =

a=1

=p, ¥+l X el ),
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or
exp p(exp — p,'¥) = (] X,"g]| 1.

Next,
(exp p,(exp — p,'¥)) = {I|| X, gl 1) =

= {ULX"Gpdgll 1)+ <l XXl 1)
has’its consequence
exp p, — p,(exp 8,(exp ~ p,'¥)) = (|| X,'X,"gl| 1).
Continuing the reduction procedure up to the s-th step, we obtain
expp . —p,_(expd _ (expd _,...(exp d,(exp — p,¥))..))) =
=l XX X gl D). (16.1)

Finally the (k + 1)-th step

Al XXX e+ M I gl 1) =

= - p (UL XX X gl 1) + AF+ 1y

leads to the spectral equation
(exp &,(exp 8, _,...(exp &, (exp — p¥))..)) = AR+l exp p, ¥
Quite similarly, by using the differentiation with respect to 7 we obtain
exp 8, (exp 8 ,...(exp Sy(exp ~ (p, + p) V))..) =

=A &by XXt X Yg| 1). (16.2)

Excluding the matrix elements of the element g from the (16.1) and (16.2),
we obtain

exp p, — P, _ (exp 8 _ (exp  _,....(exp 8 (exp — p,'¥))...)) =
=ak+Texp 8 . (exp 8 ,...(exp 8 (exp — (p, + p) F))...),
(exp 8, (exp &, _...(exp §,(exp — p,¥))"..)) = A" Lexp p P,
(exp 8,(exp d,....(exp S (exp — (p, + p) ¥))...)) =

=2 & Vexp -5, (16.3)
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The system of (k + 2) equations (16.3) is, in fact, a scalar L-A pair of the first
(vector) fundamental representation of the algebra Ak. System (16.3) is in-

variant under the substitution

Z-‘)Z, ‘I’—)eXp—Pl\P, At_))"__lv p]_)—pIY pk+2_s_)ps-p]

l<s<k+1, Pral= 0), i.e., under the Weyl reflection of the first simple
root of the algebra A, .

We shall look for the wave function of the system in the «soliton» form
n
Y=exp(Az+2D [[ @ -nAH!
c=1

Excluding ¥'¥! from the Wronskian || P, ¥,.. ‘I’['k]H , using the equation con-
necting ¥, ‘I’, w4 and ¥ (the equation with s = k in (16.3)), we arrive at
the equality

|, W, P =3 Lexp — (p, + pp) I P, L P )

Continuing the procedure of the further exclusion of the derivatives with the
help of (16.3), we get the following chain of equations for the determinants

e, . ) =25 Lexp — o, + p) || %, W, w1 Y| <
=N D oxp — 2p +p,_ ) I, w2 Ul o
=D exp — (sp, +p,, ) W, B ) =
=D o kw 1yp, |1 WL W)
AR+ 1 ye+ ) I %, 7 '\{7['k]” ’ 16.4)

where ¥ = exp (— p,'¥). The chain of equations (16.4), completed with two

spectral equations, is completely equivalent to the system of equations of the
scalar L—A pair (16.3). It follows from the explicit form of the spectral equa-
tion with respect to the argument z that the first term in the equality chain
(16.4) does not depend on z; the last one does not depend on 7, and, therefore,
each term of the chain is equal to some constant.

As for the equations of the scalar L-A pair in form (16.3), the following
theorem, which generalizes the results of the previous section in the natural
way, is valid.
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The solution of the system of equations for the scalar L-A pair (16.4) is the

n
wave function ¥ = exp (Az + }»_la H (a. —A), where az, z) are defined by
c=1
the condition of vanishing of the function

k+1 n
Y= D, c(h) exp (laz+7»;’)n(ac~7»a)5
o=1 c=1
k+1
k+1 k+1
= anwa’ }"a+ =7
=1

at n different points 7&:+ U of the A *! plane (1 < b < n). The solutions of the

equations of the periodic Toda lattice are given by the relations

n a n a s—k—1
! ¢ 0 _ ¢ 3 oo
exppszn[f] Js—l—H[l ] J.\‘—k—l’
¢

c=1 ¢ =] c
where Jv0 are principal minors of the conserved integral matrix (see previous

section), when A =0 and J7, | are the principal minors of the matrix

1
J=cJ(a"', 176) the infinite value of A (o is the constant (k + Dxk+1)
matrix with 1 on its antidiagonal and O on the other places).

As follows from the results of the previous section, the first spectral equa-
tion (with respect to the argument z) (16.3) is satisfied when the first expression
for exp p_ from formulation of the theorem is used; the second spectral

e(iuation, which is obtained from the first one by the Weyl transformation, is
satisfied if the second expression for p is used. Thus, all that remains to do is
to prove the consistency of these identifications. For this purpose we calculate
the determinants in the equality chain. The first determinant was calculated in
the previous section with the result

n
I . k+1 k+1
e, e ) =w, Tk -k,
b=1
For the simplification of all the following formulae we propose

n
H 7‘,;+ !'= 1. For the function ¥ = exp — p,'¥, we have
c=1

Y = H azl exp (?\.z+7»_lf) H CREE

c=1 c=1
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=" Mexp Qe+ A [ @' -1 =

c=1

=)'V Yoz A aoah.

A common term in (16.4), rewritten in the adopted notations, is calculated by
the general scheme and leads to the result

exp =P, _ (- DEAED g, gk =] gls] gy <

n

k+1 k+1 ks
=Wk+lexp_pk+1_sn(7\vb+ - A"y det J 5,

b=1

where the first k + 1 — s rows of the matrix J &' coincide with those of the
integral of the motion matrix J, with elements
n A iak -J
— J ot
JiJ’Si,j+Bi+z Kt _ gkt
c=1 ac

n Tk+l—i —k—1+j
~ ; A a
-~ k+1—] c c
]iJ_SiJ+Bk+l—i+z k+1 _qk+1
c=1 a. -

The quantities A, B are obtained from the corresponding quantities A, B by the
Weyl transformation. By virtue of the condition of the theorem, the deter-

minant || ¥, ¥, ks ‘I‘[’x]...‘I”H becomes zero at n points of the AT !
plan. Thus the concerned determinant (which is a polinom of the n-th power

of the ?»_I) may differ from the Wandermond determinant only in some factor.
Finally, we have
n aﬁ +1 _ 7\‘1( +1

— c ks
expp,,,_. =11 }\’k+1_kk+ldet‘] . (16.5)

c=1 C

The last expression does not depend on A and it is convenient to calculate it
when A =0, A =c. In the first case, the matrix J transforms into upper
triangular matrix with unities on the principal diagonal; for this reason, from
the last equality we obtain

n
_ k+1-5,0
eprkH—X_H“c T
c=1

In the second case, J transforms into the lower triangular matrix and so (16.5)
results in
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n

- —S5y oo
EXP Py 4y —s“H a. ']s :

c=1

Thus the theorem is proved and one more expression (16.5) is obtained for
the solution of the periodic Toda lattice equations of the series A

Let us now write some relations, that are useful for concrete calculations.

k+1

Introducing the function F = Z c(ka) exp (kaz + 7»;1) and the notation s, for
o=1

the elementary symmetric functions constructed from a.,s = Z aa,...a,,

czb#.. . #d
we rewrite the expression for the function ¥, which appeared in the formulation
of the theorem, in the form

X7 p . k+1 k 1 k+1 -k - 1
=) (-1, FU9 s =1, pEEDpdrIp prboy
c=0
The system of equations for determining 5, is written out in the form
.n
s Ff=0, 1<b<n,
c=0
where each of n functions F, satisfy the equations

k+ 1) _qk+1 Jk+ 1y —k—l
A A RS Wl

For the matrix J’.J. , we have a recurrence relation, that relates every row with

the previous ones and thus allows one to reconstruct the matrix as a whole,
using only the elements of its first row. To do this, we take into consideration

the fact, in accordance with the definition of *J 0 (see (15.5) and the following
formulae), that the matrix elements .IS('.) appear in the expansions of the func-

tions ¢° in the powers of A. That is

+ZB >J+2

c=1 9~

5

A
+ZB k’+2—+z NZ ﬁ:

c=1 Ge j=1 c¢=1

=B +z—+21 Al = (p0+2J A

c—la
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The recurrence relations connecting the functions ¢* make it possible to estab-
lish the dependence of interest,

§ N i <N s | R §
¢ =g+ 2 0N =9+ 00" = ¢f + 90, +
1
=1

+(p02J x‘+<p021 wawZszJf DAY
k=1 l

=1
70 _ 540 1,0 70 0
TG = 0]+ @+ G+ 2, AN
k=1
In the latter equation, the first two terms, being proportional to the elements
of the first and the s-th rows, do not contribute to the principle minors (one
can show that they may be omitted in the recurrence procedure as well).
Finally, we arrive at i1
0 _ 50 0,0
J.s‘+ I, “J.\'i + ZJ\I\JkI -k’
k=1
As in the case of Toda lattice with fixed end-points, it is possible to construct
solutions for some other series from solutions of the periodic Toda chain for
the A series. The system of equations of the periodic Toda lattice is invariant

under substitution — and consequently among its solutions are

-«

those that p . The direct check shows that in the case k =2n + 1

o= Prsi-o
the system of equations of the periodic Toda lattice series A, _ goes to the

system of equations of the periodic Toda lattice series C, ; in the case k = 2n,
to series (AB)k.

17. THE GENERAL SOLUTION
OF THE PERIODIC TODA LATTICE [36,37]

Here we will consider the problem of constructing the general solution of
the systems under consideration; the soluton which possesses the sufficient set
of arbitrary functions for the solution of the Caushy or Goursat problems. We
use the methods of construction of the general solution of the Toda chain with
the fixed end-points. As is known, the algebra of the inner symmetry of Toda
lattice with fixed ends is finite and we thus have the finite number of terms in
the expression for exp (= p) in its solution; in the periodic case, the algebra of
the inner symmetry is infinite-dimensional and the number of terms in the
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corresponding expression if infinite. But it may be possible to prove that these
series converge absolutely due to the properties of the semisimple infinite-
dimensional algebras of the finite growth.
From the beginning, for convenience we restrict ourselves by the case of
one-dimensional equations, which arise from the general system of Toda lattice:
aZP r
—2 = K_ .ex
az az Q, B p PB,

0%x ’
Q
oz exp z Ka, B 5’
=1
where K, 8 coincides with the generalized Cartan matrix of the semisimple

infinite-dimensional algebra of the restricted growth. Generalized Cartan mat-
rix for the graded algebras of the second rank brings the latter system of
equations to the form

ale o%x
= = exp (2x; — 2x,),

=exp (- 2x + 2x,)

0z dz 0z dz
9%x 82x2
— =exp (2x, — x.), 3 = exp (— 4x, + 2x,) (17.1)
0z dz 172 dz dz ! 2

which, if variables X = Xy 2x) — x, are introduced, yields the sin-Gordon

’x 0%

po exp (2x) —exp (—2x) and Dodd-Boullow-Jeber—Schabat FoE

=exp x —exp (- 2x), respectively in the first and in the second cases. Note
2

that these equations together with the Liouville equation Tjacf = exp 2x are

2
exceptional among all the equations of the form aa—gz = flx) due to the pre-
Z
sence of the nontrivial group of internal symmetry.
We know that in the case of Toda chain with the fixed endpoints a solution

for the exp (- x,) is expressed up to mulptipliers dependent only on z and Z,
through the powers of the repeated integrals of arbitrary functions. Let us as-
sume that such a structure is also valid for the solutions in the contragradient

case and rewrite system (17.1) in the form (further on we will use only the first
system):

Fr i,
F 99, exp (2x, — 2x,), FR 9,9, exp (- 2x, + 2x,),
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where @, ¢, are arbitrary functions of the argument z; 61, $2 are the same of

the argument z. We have introduced arbitrary functions into (17.1) (it may be
done by substitution Xy X, +1In@ +In@, and further conformal trans-

formation) which play the role of unhomogeneities. After replacing
exp (— xj)—) Xj, the previous system becomes

X, X X,
o g N
Ix, X, X
il Mot Rk B S
XgwmT o 5, o RN )

In the brackets in the latter equation there are given the r.h.s. for the second
system (17.1). In the finite case, Xj are the polynomials in the repeated inte-

grals; the first term being equal to unity. Therefore, we assume that in the
«zeroth» approximation in @, X, = X, = 1. Then the equations may be solved

through «iterations», where the small quantities are the corresponding powers
of Py 6(1' The first order approximation gives

X =-[dz, [az5, =- 1) (D).

X, =-Jdg,[dz5,=-2) @)

The results of the calculations up to the eight order are listed below. It is
worth noting that the proposed procedure for solving the systems with the
exponential interaction is also applicable in the case of finite semisimple
algebras. The only difference from the case of infinite graded algebras is the
finiteness of the series in powers of the repeated integrals.

k k3 k Iy 1 2y 2 333 3v 3 4v 4
X =2 GO XXX =1-x% +2x X7 - ax X} - 200X+ ax X+
k=0 s=1

43y 4 5y 5 5y 5 5v 5 63 6 6y 6 6y 6
+8X,X, - 8XX” — 8X,°X,) — 16X.7X,) + 8X,°X 0 + 16X.°X.0 + 16X.X 0 +
63 6 Tv 7 v 7 T 7 T 7 T 7
+32X,X, - 16X'x," - 16x)X,] - 16x.X.] - 32X - 64x/x.] +
8y 8 8y 8 8y 8 8¢ 8 8%y 8 8¢ 8
+ 32X X)) + 32X, X" + 64XX + 6ax PxF + 64x Fx® + 128x 5% .

The upper indices of Xsk(}sk) mark the number of approximation, while the

lower ones stand for the order number in it. Here are the values for Xsk,
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x!'=), X?=(2), X’=(122), X;'=(2D),
x =212+ (1221), X=(1221), X =(12122) + (12212),
X)) = (12121) + 2(12211),  X;) = (12211),
x” = (122121) + (121221), X, = (121211) + 3(122111),
X, = (121212) + (122121) + (21221) + 2(122112), X = (122112),
. z 2 -1 _ :

where (i ... k) = J dz, 9, f dzz(pj J‘ dz @, and in arose from in by the sub-
stitution @ — @, z — z. The X, is obtained from X, by replacing indices
1 — 2 in the expressions for X]' The number of terms in in will be called a
length of in - L(Xj"). Thus LX) = 1, L(X,)) =3, L(X{) = 5, etc. Taking into
()

account that (4, i,... i) = (where s is the number of the repeated integrals)

and the presence of an ev1dent solution X = X, = exp — (1)(1), when P, =9,
we will find from its definition that
2 e Lx =
s
whereof, it follows that for arbitrary functions ?, and '([3]’2 bounded on the
intervals (zo, z) and (ZO, 7), there is the estimation of the term of the k-th
approximation
Y = chstvk MM M (z - zo) (- ZO)
5
where M is the supremum of the functions 9, on the interval (z, zO), M—
the same for the functions 61,2 on the corresponding interval z, EO' The series,

which gives the solutions X, ., converges absolutely. For this estimation it is

1,2
essential that all the terms of the k-th approximation, as well as all the terms
in Xj' enter with the same sign. This is a direct consequence of the properties

of the contragraded algebras of the restricted growth. To obtain closed ex-

pressions for X, ,, which would allow one, in particular, to calculate any term

in series, it is necessary to have some information about the representation
theory of such algebras.

The set of simple roots of the graded algebras of finite growth Xai and its

Cartan elements /i, obeys the system of commutation relations
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+ ¥ =
Xy, X5 =8, ghs,

where K is the generalized Cartan matrix. Classification theorems and explicit
form of the matrix K for the algebras under consideration are well known.
The Cartan matrix for the considered equations (g, b) has the form

(-2 2)l-e T2

In the whole analogue to the finite case, the graded semisimple algebras pos-
sess the set of the fundamental representations. Each of these representations
is determined by its highest vector o) with the properties

+ — —
XB o) =0, hﬁa) = 80[, Boc)

[ X l=+K x* (17.2)

of o’

and all other basic vectors of representation, which is infinite-dimensional in
this case, are constructed by consequent applications of the generators of the
negative simple roots to the highest vector. The properties of the graded semi-
simple algebras allow one to construct the invariant bilinear form in the rep-
resentation space. To calculate the scalar products of basis vectors of the
representations with the highest vector it is sufficient to know only the back-
ground commutation relations (17.2).

Now we describe the way of constructing the solutions for the case of
arbitrary semisimple graded algebras of the finite growth. First of all two equa-
tions of the S-matrix type should be solved

oM oM

o MIN), —— =M L(Z
op ~ ML @ ML,

where r ’
L"=3 0, X}, L =39(7)X,.

a=1 a=1
The functions @_(z), ¢ (z) contained in the definition of Lagrangians L* are

the arbitrary functions of its arguments. The solutions of S-matrix equations
may be represented in the form of ordered integrals, but the number of terms
in this expansion will be infinite. In the above notations and definitions for
the X  for the arbitrary semisimple algebras of finite growth we have

X = (ol M 'M_|| 0. (17.3)

The results at the beginning of this section, obtained by the methods of the
perturbation theory, are in fact the special case of the general formulae (17.3).

Coming back to the beginning of this section, we have for the solution of
the sin-Gordon equation
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i1
2 =2 -1
exp x = (p% (pl2 XX

where in expressions for X1 2 which follow from (17.3), one has to put P, =

= (\ol , (p2 cpl For the solution of second equation (b) we correspondingly
get
_ -2 P, e
eXp X =00, XX, %, 0, =0, 6, =9,
It should be noticed that, at present, we have no proof of (17.1) except of the
series expansion in powers of the repeated integrals and direct check of the
validity of (17.3) in each order.

Thus, in the considered case the form of general solution of the periodic
Toda lattice is the same as for Toda chain with fixed end points. The main
difference is that in the case of finite-dimensional algebras the series (given by
the perturbation theory) are finite and in the case of the infinite-dimensional
algebras they are infinite. But the demand of restricted growth guarantees their
absolute convergence.

Now it is not known how to choose the «creating» functions @, ¢ for con-
structing the soliton solution of the previous section and what is the criterium

of the summation of the series corresponding to this situation. It is an inte-
resting unsolved problem.

18. THE SOLUTION OF THE MAIN CHIRAL PROBLEM
WITH MOVING POLES BY THE METHODS
OF RIEMANN PROBLEM [38,39]

In this section, by the special choice of the coefficient function of the
homogeneous Riemann problem we show that its solution is connected with the
main chiral field problem with moving poles. This approach is by no means
unique; the method of the Backlund transformation leads to the same results.

The main chiral field problem with moving poles is described by the
equation

€-5-LL {3—F o } -

9 9E & 9E
We illustrate the general scheme of its integration by the example of the
simplest case of the SL(2, C) algebra. Let the homogeneous Riemann problem
on some contour has its usual form QQ = Q , where Q, are the boundary

values of two functions analytic out and within the contour respectively.
Element QO is chosen in the form
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c X_—E d
A-E
where a, b, ¢, d (ad — cd = 1) are arbitrary functions of argument A without

any peculiarities under analytic continuation within the contour; the points
A=E& A=E A=0 dispose there. The condition in the neighbourhood of the

£
T

Let us rewrite the Riemann problem in the form more useful for our aim

infinity point of the A plane is Q -1+

a b\x A—EH _
[c d]Q p—-n[ )29, (18.1)

where ﬁ+ =exp—nln &—g —121 Q_ with new asymptotic condition Q -1+ -

A
(é £)
+_—;\,———— 1+

rential form, reads

>’|"1

. The problem (18.1), being rewritten in the diffe-

-8 @) @) = -9 al@y+a Lo,
A8 @)" @)=0-9 @y - 12”—’ Q..

Taking into account the Liouville theorem and the properties of the Riemann
problem we conclude that both the latter expressions are the polynomials in
the whole complex plane. The asymptotic condition added is that the degrees
of the polynomial are the zeroes. Calculating these polynomials in the
neighbourhood of the infinite point and at the point A = 0, which lies within
the contour, we have

R - _Eg-l cexn_ " &
FI’;" EG Gg’ FE_ EG GE’ G =exp - 2lnéHQ(O).

With the help of the Maurer-Cartan identity, we conclude now that F obeys
the equation of the main chiral field with moving poles.

Let us find the solution of the Riemann problem in the form
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n e n f
+ § S5
21: - 2 -8
Q =
+ n g

1
1+
;(X—é)’ ;0» &)’

Here €, f‘,, 8, and hx are 4n parameters. They must be chosen so as the ele-
ment Q  would be analytic at the point A=§, A= E Let us denote by ¢ ()

the first s terms of its expansion in Taylor series near the point A =y, i.e.
A— 1 A—y) §
0,00 = 00) + 2 g+ .+ B2 ),

For the matrix element (Q_)l ;| we have

" aye, 2 bM) (7»—’5,)""‘8v
(Q), ; =a) + + s =
b 2 -8 ; (A -&)

n A) — B k_—n—s_ BN l__n—s
=a(x)+2a() a“‘@euz WA - M-8, s,
1 -8 1 -8

" Ee. I GBOMA-5"" (&)
+za.\'—léfs+z )( & nn—IE-’gs.
1 O\f—é)‘ 1 (;‘—g)

Within the contour C, the singularities may have only the terms of the last
line of the previous equality. The absence of them in (), | is equivalent to

the zero values of the residues up to the n-th order in the mentioned expres-
sion. The same conditions on the matrix elements (Q_)1 » (Q_)2 By (Q_)2 | lead

to the linear systems of the algebraic equations, which determine the un-
knowns es,gs,fs, hs. In what follows we shall write them in the form of the

n-ordered columns. We have
T (¢ De+T (¢ 8g=0 T O)f+T EEh=T
CEE e+T(P)g=-T (T EEf+T(P)h=0
where I'.(¢) (T',(@)) are upper triangle matrices all elements of which paral-

lel to the main diagonal are the same and equal to Sl—‘(p(s)(é), i@‘”@ ]

where s is the distance from the main diagonal. On the main diagonal there is
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the function @(&), @(E)) by itself, on the next place — its first derivative and
so on. The functions @(&), ®(E) are connected with the matrix elements of the
homogeneous Riemann problem by expressions

e d. =z
PO =2A=85 BB =50=8. T9)T(9,)=T,00)
The s-th line of the lower triangle matrix = I"_(&, E) =T (& - E) =T (x), con-
sist of terms of the binomial expansion (1 + x)* (I' (- x) = (I“_(x))’l)
I o 0 (-0C,
x 1 0o .. 0 | |
2
X 2x | 0 | e
Fe= A o | 75| »n"" %}
e e 0 n=1 1
OXT 1C"1 " 2C”2 ....... ] 0" C,
= x)"

In accordance with the previous results, the solution of the main chiral field
problem with moving poles is determined by the asymptotics of the homo-
geneous Riemann problem and its explicit form is

F=gX +

el+(§—E)% H+fX,

The explicit expressions for e, = —h , g, f, as a solution of the linear system

of the algebraic equations () may be represented in the form of the sum of the
entries of n X n matrix, which we denote by the title corresponding to
e, g, h, f letters

_ 1 : — _
G=(0_-9)"s E==50_+0)(0_-0)". F=-0(0_-¢)"0,

where @_, ¢, are the lower and upper triangular matrices with equal entries,

represented on the equal distances from the main diagonal.
written as

They can be

U ,‘._ i
Y is_l(é gy <2 a:; g, =

5! 0%
— -8’
])' &X 1 é

= G(®).

Now consider some more simple examples. Let n = 1. In this case, all
matrices G, E, F are one-dimensional and the solution of the main chiral field
problem takes the form

¢ =-

s=1,2,...(p_=(P(§), (P+
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Fe—t_x 10x0, 9§ .
9-¢ -~ 2¢-9 o¢-9¢
This is no more than (up to the gauge transformation) the *Hooft solution in
the spherical symmetric case.
Let n = 2. All matrices in the problem are two-dimensional. The matrices

¢, have the form _ .
B _f9e xqQ _ ¢ 9
e IO 6]’ = o)

where * mean the differentiation with respect to the independent arguments
§ and &, respectively, as before x = (¢ — @). For the solution F we get

3 28 +x(¢" +9) X, + (3 + 9) + @9’ + 69) H -

- (2995 + x(@’¢" + ¢%p) X,],

where D = § —x2$(p' and 8 =@ — ¢@. The expression for the «instanton»
charge density for the main chiral field problem with moving poles was es-
tablished in the first chapter. For arbitrary n, the solution of the present sec-
tion reads
Det (¢_-¢,)
q oo ln ——_ 2 =
€-&"
1 -8, |2 Dt -9e)
= n :
=3 = = —
€-9°| ok 2 dg g E-&)"

If the functions @ and ¢ are chosen in the «pole» form

c N c
N

N
(p=;§+ias’ (P:$E+ia’
Ry

where ¢, a_ are the real parameters, then after substitution into the charge

5

density and integration over invariant measure we come to the whole charge
equal to N(N = n).
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