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The state of art in studying thermodynamic properties of hot and dense nuclear matter is reviewed
with the special emphasis on the confinement-deconfinement transition between hadron matter and
quark—gluon plasma. The most popular models used for describing deconfinement are analysed,
including statistical bootstrap models, pure phase models, the model of clustered quarks, and the
string-flip potential model. Predictions of these models are compared with the lattice numerical
simulations. It is concluded that precursor fluctuation effects must be taken into account in order to
get a realistic description of deconfinement transition. The existence of precursor fluctuations is in
line with the dynamical confinement scenario and suggests that deconfinement cannot be considered
as a transition between pure hadron and quark—gluon phases. All this supports the concept of
cluster coexistence advocated by the authors of this review: Quark—gluon plasma and hadron clusters
are different quantum states of the same system, so that any statistical model pretending to treat
nuclear matter under extreme conditions must incorporate into itself the probability of these different
channels. The ways of constructing statistical models with plasma-cluster coexistence arc discussed
and thermodynamic properties of such models are analysed.

B o630pe U310XKeHB HOAXOIB K OMUCAHHID TEPMOIMHAMHUECCKHX CBOWCTE TOpd4ed W IUTOTHOM
#iepHoii Matepuyu. Ocofoe BHMMaHMe yueIseTcs Nepexony KOHDailHMeHT-IeKoHpailHMEHT, NPOUCXO-
IIIeMy MeX[y aipOHHOH MatepueH W KBapK-TIIOOHHOH IUTa3Moi. [lpoananusuporaHsl HauGonee
M3BECTHBIC MOJIC/IH ONHCAHHS NeKOH(aHMEHTa, BKII0Yas MOJE/IM CTATHCTHYECKOrO GyTCTpana, Mojien
YHCTBIX (Da3, MOENb KJACTEPH3OBAHHBIX KBAPKOB U CTPYHHBIE TIOTEHIMAILHBIE MOJEITH. Mpeickaszanus
OTHX MOJC/ICH CPABHUBAIOTCS € PEHICTOYHBIMU BRIYUCICHHAMA. JlefacTes BLIBOML, HTO ISl peartucTHyeC-
KOro OMUCAHMS JeKOH(alHMEHTa HEOOXOUMMO YYHTHIBATH NPEANEPEXOJIHBIE IYKTyauoHHbie  3th-
thexThl. CyllecTBOBaHHe NEPeXORHBIX (hIyKTyauuil cornacyercs co CcUEHapUeM JIMHAMHYECKOrO KOH-
(haliHMENTa M NOKa3biBaCT, 4TO JIEKOH(ANHMEHT Hemb3s paccMaTpuBaTh KaK Nepexol MeXly YHCTBIMH
IPOHHONR M KBAPK-TIHOHHONH thazamu. Bee 3T0 MOMICPKNBACT KOHUENIHMIO COCYIHECTBOBAHMS KIIACTe-
POB, NPONAraHanpyeMylo aBTOpaMH JaHHOro 0630pa: KBapK-IMIOOHHAs IUIa3Ma W aPOHHBIC KIACTEphi
— 9TO pa3sNHYHBIC KBAHTOBBIC COCTOSHMA OMHOHM CHCTEMBI, NMOITOMY J100ast CTATHCTUYECKAX MOICIT,
APETEH1yIoliad Ha ONHCAHHE SICPHOH MATEpHH B 3KCTPEMATBHBIX YCIOBHAX, MOMXHA BKJIIOYATD B ceOst
BEPOSTHOCTh ITHX PAIIMYHBIX KaHATOB. OOCYRIAI0TCH CIIOCOOBI OCTPOSHNs CTATHCTHYECKUX MOICTEH,
YUUTHIBAIOIIMX COCYLICCTBOBAHHE MIA3MBl W KNTACTEPOB, M AHATH3UPYIOTCH TEPMOJIMHAMHYECKME CBOI-
CTB& 3TUX MOJETCH.

1. INTRODUCTION

One of the most intriguing problems of high energy physics is the possibility
of transforming the nuclear matter composed of hadrons into the phase consisting
of their fundamental constituents, quarks and gluons. This phase, because of the
apparent analogy with the electron—ion plasma, is called the quark—gluon plasma.
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The transformation of the hadron matter into the quark—gluon plasma is named
deconfinement; the inverse process, respectively, being called confinement. The
deconfinement transition is somewhat similar to the ionization of atoms. The
literature devoted to this phenomenon is so numerous that, not to overload the list
of references, we shall cite here mainly review papers, when these are available,
and in which the reader can find thousands of references to original works. The
specific feature of the present review is that we concentrate on the statistical
models of strongly interacting systems under extreme conditions, when non—
hadronic degrees of freedom become important and deconfinement occurs.

The possibility that quark degrees of freedom can come into play in the
process of relativistic nuclear collisions at already achieved accelerator energies
was advances by A.M.Baldin [1] who predicted and explained the commulative
effect as a manifestation of the formation in the colliding nuclei of multiquark
droplets.

In order that quark-gluon degrees of freedom would be essential, special
conditions are necessary, like high temperature or density. From quantum chro-
modynamics it is known that at asymptotically high temperature quarks and gluons
are really deconfined forming the quark—gluon plasma {2-6]. We also know that
at zero temperature and at the normal density of nuclear matter there is complete
confinement so that only hadrons exist. But where is the intermediate region
in which quark-gluon degrees of freedom become relevant? The characteristic
parameters for this region can be estimated as follows.

Nuclear matter in the normal state has the baryon density ngg = 0.167/ fi:® .
The corresponding normal quark density is po = 3ngg = 0.5/fm3. The
characteristic quark interaction energy in the normal state can be presented as
Eo = h/71p, with the interaction time 75 = ap/c, where ap = pO'I/B is the mean
interquark distance in the normal state. Accepting the system of units in which
h = ¢ =1, with the conversion constant hc = 197.397 MeV/fm, we have

Eo = py/® =157 MeV.

Note an interesting relation between this interaction energy and the characteristic
baryon energy density e = muyngg , in which my = %(mp + my,) =
939 MeV is the average nucleon mass. Since ep = 157 MeV/fm3 | therefore
Ey =ep fm? . Thus, the normal nuclear matter should start to decompose being
heated up to the temperature equal to the quark interaction energy Ey , that is
up to O, ~ 160 MeV .

If one wishes to destroy the hadron matter by compression, one has to reach
a density of about the density of quarks inside a nucleon. This characteristic
density is p. = 3/vy , where vy = (47/3)r%, is the nucleon volume. Taking
for the nucleon radius 7y = 0.9 fm , we get vy = 3 fm3 . From here

pe=2po=1/fm’.
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This tells us that the hadron matter should start desintegrating being compressed
up to the density p. = 2pg .

As we see, the expected critical temperature and density are fairly low. Such
conditions certainly existed in the early Universe about 107" < 10 %sec  after
the Big Bang and are likely to exist in the interior of neutron stars {7].

More important is the common belief that such conditions can be created in
the process of relativistic heavy ion collisions, even with existing accelerators,
thus opening the path for experimental observation of the quark-gluon plasma in
the laboratory [8-14]. Analogous relativistic nuclear collisions can also be studied
in cosmic ray experiments [8]. The density of matter inside a fireball formed by
two collided ions can reach 10pg .

All models of the formation of the quark—gluon plasma in nuclear collisions
require the information about its rate of thermalization. Does the matter inside
a fireball thermalize sufficiently fast, so that a thermodynamic description makes
sense? For this, the thermalization time must be shorter than the fireball lifetime
Tp o~ 107%%25ec . The thermalization time, or the time of local equilibration,
Tioc » can be estimated as follows [13-15]. The local equilibrium time writes as
Tiee = A/, in which A = (po)~! is the mean free path of a particle in a
medium; p = @~ , the density of matter; « , average interparticle distance;
o ~ b? , cross section; &, interaction radius. Accepting the values a ~ b ~ 1 fmn
typical of nuclear matter, we have A ~ 1fm and 7/, ~ 107%3sec . Because
of the inequality 7, < 74, the thermalization inside a fireball is likely to be
reached.

The possibility of speaking about the thermodynamics of strong interactions,
separately from electromagnetic and weak interactions, is based on the fact that
it is just this type of interaction which in many cases plays the dominant role.
Really, the dimensionless coupling constant of strong interactions a, = 1 i3
much larger than the coupling constants of electromagnetic interactions, «, =~
1/137 ~ 1072, and of weak interactions, «,, ~ 107% , to say nothing of the
coupling constant of gravitational interactions, a, ~ 107'% . The corresponding
interaction times, at the energy 1 Gel’ characteristic of high-energy physics,
are 7, ~ 10" %%sec for strong interactions, T, ~ 1072!'sec for electromagnetic
interactions, and 7, ~ 107!'%ec for weak interactions. Therefore, during the
lifetime of a fireball 7; ~ 1072%sec electromagnetic and weak interactions do
not play any role. In the interval of time 7, <t < 74 inside a fireball there
may exist an equilibrium state of strongly interacting particles.

The sole consistent way of calculating thermodynamic characteristics in the
frame of quantum chromodynamics is perturbation theory, which is quite similar
to that of quantum electrodynamics {16,17]. However, the effective coupling pa-
rameter of strong interactions becomes small only at asymptotically high temper-
atures. In the most interesting region of temperatures around ©. =~ 160 MeV ,
where deconfinement occurs, the coupling parameter is large and perturbation the-
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ory does not work. For describing the whole range of thermodynamic variables
several statistical models have been suggested .

2. STATISTICAL BOOTSTRAP MODELS

The usefulness of applying statistical methods for considering the heated and
compressed nuclear matter has been understood long time ago. Let us mention,
e.g..Fermi [18].

The first statistical model of nuclear matter under extreme conditions, such
as being realized inside fireballs, has been proposed by Hagedorn [19] (see also
{20]) and called the statistical bootstrap model. In this approach it is assumed
that, at zero baryon density np = 0, various hadrons can be generated from
vacuum with the mass distribution

p(m) = pais(M) + peon(m); me [O, o),

in which the first and the second terms correspond to discrete and to continuous
mass spectra respectively,

pais(m) = Z Gio(m —m;) [1 — O(m ~ mo)],

[¢73) m
Peon(m) = O(m — mO)W exp <®—0> ,

where ©O(-) is the unit-step function; (; , a degeneracy number for spin—isospin
states; and the parameters are

mo = 1000 MeV, ag = 6.5 % 10° MeV3/2, Oy = 160 MeV.

The pressure for the ideal hadron gas is written in the classical Boltzmann ap-
proximation,

p=0 [ stmesn (~ovE) Lk an,

where © is temperature in energy units, and (3 is inverse temperature, 50 =1 .

As can be easily checked, the pressure in this model diverges forall © > Qg .
From here it was concluded [19] that ©g 1is the limiting temperature of the
Universe. The concept of the existence of a maximal temperature of the Universe
is, of course, quite artificial, therefore another interpretation of this divergency of
pressure has been proposed [20] treating ©¢ as the deconfinement temperature.



THERMODYNAMICS OF STRONG INTERACTIONS 93

After Collins and Perry [21], the geometrical scenario of the deconfinement
became popular [22]. According to this, the increase of temperature or baryon
density leads to the rising number of hadrons. The latter are assumed to have
finite volumes [23]. When the number of hadrons becomes so high that their
close packing occurs, then they fuse into one gigantic hadron occupying the whole
system. The Hagedorn temperature ©g is interpreted as the fusion temperature,
and the gigantic hadron cluster is identified with the system in the quark—gluon—
plasma state. This geometric scenario reminds the percolation transition [24].

Following the geometric interpretation, the bootstrap model was modified
[20] invoking the excluded—volume approximation. In this; one considers N

particles having the volumes wv;,v2,..., vy as moving in the free volume
N
VN =V - E Vj,
j=1

where V' is the total volume of the system. The pressure in the excluded—-volume
approximation becomes

N

Vir [ otmyexp (-5 ) 2 } ,

e =1
p=yhn Nzl 77OV

where again the Boltzmann approximation is also used. The mass distribution
for discrete spectrum is taken in the same form as above, and for continuous
spectrum it is slightly modified as

pron(m) = O — 1) 2% exp ().

with % <a< % . Now, the pressure is everywhere finite and positive becoming
zero at the same temperature Oy = Oy . The temperature @, , where p(©,) =
0, is interpreted as the temperature of hadron fusion into a gigantic cluster.
However, the thermodynamics of the system at ©® — oo has nothing to do with
that of the ideal quark—gluon plasma.

To overcome the latter deficiency of the model, it has been argued that taking
into account hadron compression can save the situation. This can be done [25]
by complicating the mass distribution writing its continuous part as

Peon(m,v) = O(m — bov — mp)O(v — vg)ag(m — bov)* x

4
xv” exp {-3— (aov)l/4 (m — bov)3/4} ,

which contains now seven fitting parameters: myg, ag, ., by, v, 7y, 0g -
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Now, in accordance with the geometrical scenario, the number of hadrons
at low temperature © < ©, is proportional to the free volume, and at high
" temperatures © — oo this number tends to one symbolizing the formation of a
gigantic cluster. However, at the 1st order transition temperature ©4 the number
of hadrons N (04, V) diverges for any finite volume V', which is unreasonable.

The bootstrap models, in addition to the arbitrariness in postulating the mass
distribution, contain internal deficiencies leading to the existence of instabilities
contradicting the necessary stability conditions for statistical systems [26,27].

3. PURE PHASE MODELS

An evident idea would be to follow the standard Gibbs prescription for
considering phase transitions between two phases. Treating the deconfinement
as such a phase transition, one assumes the existence of two types of pure
phases. At low temperatures and baryon densities this is a pure hadron phase
with features typical of the normal nuclear matter [28], and at high temperature
or baryon density this is the quark—gluon phase described by perturbative QCD
[17]. Let Q, be the grand potential of the quark—gluon plasma, and €2, ,
that of the hadron matter. According to the Gibbs rule, a phase transition occurs
when Q,(0,ug) = Q2(0,up) , where pp is the baryon chemical potential.
This equality gives a transition line ©,; = O4(up) . Expressing here the
baryon potential pp = pg(ng) through the baryon density, we may write
Q4 = G)d(nB) . ’

The possibility of using perturbation theory for.the high—temperature quark-
gluon plasma is based on the property of asymptotic freedom. According to this
property, the running coupling constant

67 3 51Inin(g/A)
11N, — 2Ng)In(g/A) 1211n(g/A) |

as(g) ~ (

in which N, and Ny are the number of quark colours and flavours, respectively,
A =~ 200 MeV is a scale parameter, and ¢ is momentum, tends to zero as
g — oo . In the integral over momenta, defining the grand potential, the main
contribution, when © — oo , comes from ¢ = O . Hence, it is possible to
get an expansion in powers of as(0) = ¢g%(0)/4r with the effective coupling
parameter
2472
(11N, — 2N§)In(©/A)’

As a result of this expansion [29], neglecting quark masses, one has for the grand
potential

¢*(0) ~

0 .
e B
7 = —40'+ B,
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in which a nonperturbative term B is included and the notation

A= Ao+ A2g” + Asg® + Asg'ing

is used, where

w2 H‘?
AO:ZE N -1+ NNf+15NZ 2@2 (1‘*"2‘”@ s
dp= - Nez iy N+9Z 1+ J
VIR f 22‘02 27202 | |
3/2

NZ-1{1 1 1

2
/Lf
A = N+ =N+ 2y :
3 127 {3 +6f+3f2n2(—)2

a=Ne1y V+1V+Z ]
YT 62 (3760 7r2()2 ’

is being the chemical potential of an f-flavour quark. Note that the term
O(¢®) cannot be calculated by perturbation theory because of unrenormalizable
infrared divergences.

Take into account that the number of quark colours is N, = 3, and consider
for simplicity the case of zero baryon density ng = 0, so that gy = 0. Then
the pressure of the quark—gluon plasma is

— Ql_ N4
P = V—AO

with the expansion coefficients of A being

872 21 1
Ao = 75 ( 32 f) ? 6< * f)

2 1.\ 3
A3—-3—7T-_<1+-6-Nf> s Ay = or 2(1+ Nf)

The low-temperature hadron phase is often modeled [4,7,30] by a gas of
massless noninteracting pions, which for the grand potential yields

2
2 _ T gt

Vv 30
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The corresponding pressure is

— Q2_7T2_4
=" =57

Equating Q; with 5, or p; with p, , one obtains the deconfinement

temperature
N
04 = yBY*; ={A-— :
d =7 Y 30
To check the phase transition order, let us find the latent heat at the transition
temperature.

Define the energy density

€=80 ~p+ ugng

__9[(ay_oa
ST 70 \v) T a0

A5d551—€2:®dA8d (Gz@d),

and the entropy density

The latent heat density is

where Asy = 51 — s is the entropy density jump at © = Q, .
For the considered case we have

o272
s1 = (44 + €)©°, 52:—17;—@3,

with the notation

_0A  33-2Nj , 3 1 2

where the equation
dg*  33—2N; ,
20 ~ 2470 Y
is taken into account. The energy densities are

2
ey =(BA+C)O'+ B, &= %@4.

Thus, for the latent heat one gets

Aey = 4B (1 + %74> :



THERMODYNAMICS OF STRONG INTERACTIONS 97

The nonperturbative term B is usually treated as the bag constant, with
Bl/4 ranging in the interval (150 = 300) MeV . For estimates, we may accept
the value B'/* = 225 MeV from the middle of this interval.

One often assumes that the quark—gluon plasma is an ideal gas of free quarks
and gluons, that is g = 0. If this is so, then for Ny =2 wehave v=0.72.
The deconfinement occurs at ©4 = 162 MeV being a first-order transition with
the latent heat Aeg = 4B =~ 1 GeV/fm? . The found deconfinement temperature
O, almost coincides with the characteristic energy Fp = 157 MeV discussed
in Introduction. This picture would seem quite reasonable if it would not be
absolutely wrong. Really, the effective coupling ¢(©) — oo for temperatures
© close to the scale parameter A a 200 MeV . Therefore, the assumption that,
in the vicinity of the deconfinement point, the quark—gluon plasma is an ideal
gas of quarks and gluons is senseless. This would happen only at temperatures
at which ¢%(©) <« 1, that is, when

2472
- f

The latter inequality becomes valid only at very high temperatures © >
106 MeV .

In this way, nonperturbative effects around the deconfinement transition are
very strong, and it is not correct to try taking account of them by the simple
addition to the grand potential of a term B .

Some nonperturbative effects can be included into consideration by resorting
to the effective-spectrum approximation [31,32], when one postulates for the
spectra of quarks and gluons the form ¢;(k) = \/k? + m? + U; , in which k
is the modulus of momentum; m; , a mass; U, , an effective mean field; and
t = g¢,9 enumerates quarks and glucns. This approximation yields the results
similar to the ideal gas picture: the deconfinement is a first-order transition
occurring at O = 160 MeV .

The reason why the effective-spectrum and ideal-gas approximations are
close to each other can be understood as follows. The effective—spectrum ap-
proximation may be interpreted as a result of a renormalization of perturbative
series. As an example, we may use the self-similar renormalization {33-36] dif-
fering from other resummation techniques by the possibility of checking its range
of applicability at each step. Consider the coefficient A in the grand potential
{1 of the quark-gluon plasma as an effective limit of the sequence {fi(g)}
with the initial approximation fo(g) = Ao + Azg® , the first approximation
fi(g) = folg) + Asg® , and so on. The simplest variant of the self-similar
renormalization [33-36] gives the renormalized coefficient
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This quantity, as As < 0, is finite for all ¢ including g — oo . In the whole
diapason of ¢ € [0,00) the deconfinement temperature does not change much:
for 9 =0, with Ny =2,itis Oy = 162 MeV , while for g — oo it
is O, = 176 MeV . However, the renormalized value A* is truthful only
when the self—similar renormalization is stable [37-40}. For this we need that the
corresponding mapping multiplier M, (g) and the Lyapunov exponent A;(g)
would satisty the stability conditions: [M;{g)] <1 and A;(g) < 0. In the
considered case
Milg) =1+ M) M) = oxte
A

The Lyapunov exponent, since A, < 0 and A3 > 0, is always negative. The
condition |M] (y)|< 1 holds only for g < 4|4,|/3A45, thatis for ¢ <1.

Thus, the renormalization of the grand potential, starting from the perturbative
expression, does not essentially change the results. And it is clear why: Really, the
ideal-gas picture, which makes the basis of the perturbative expansion, contains
no information on bound states that should appear as the coupling constant ¢
increases. The situation with the quark—gluon plasma is somewhat similar to that
of the electron—ion plasma in which there can exist bound as well as free electron
states [41].

The value of the deconfinement temperature obtained in pure—phase models
can be quite reasonable, in the same way as the simple estimate of Introduction
is such. However, it would be hard to believe that these models can correctly
describe the character of the deconfinement transition and the behaviour of ther-
modynamic functions. ;

4. LATTICE NUMERICAL SIMULATION

The idea of using a discrete space-time lattice to regularize quantum field
theories opened the entire repertory of statistical physics for the analysis of non-
perturbative properties of these theories. The application of Monte Carlo sim-
ulation techniques turned out to be a powerful approach allowing to perform a
quantitative study of nonperturbative aspects of quantum chromodynamics. The
lattice reformulation of QCD has been described in several surveys (e.g.,
[4,29,42]), therefore below we only slightly touch the principal points of this
approach. We shall mainly discuss the predictions of the lattice QCD and its
simplified variants for the deconfinement transition.

The first step towards the finite temperature study of QCD consists of
introducing the imaginary time ¢ = —i7 and of rewriting the partition function
as a path integral of the exponential of the Euclidean Lagrangian density over all
fields in the problem. The second step defines the cubic four—dimensional lattice
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with the sites z = {;,T} , where ?e Z3 is a real-space lattice vector and
T € Z; is conventionally called the temporal variable. The lattice spacings in
the spatial and temporal directions are denoted by a, and a., respectively. If
No and N, are the number of sites in the corresponding directions, then the
volume V and the temperature © of the system are given by V = (N, a,)?
and 3= N,a,, where =01

A gauge-invariant theory on the lattice is usually formulated in terms of link
variables U# and site variables 1(z) and ¥(z) . The link variable Uk s
associated with a link leaving site z in a direction (e=1,2,34 anditis a
matrix U! € SU(N,) in the space of colour indices, N, being the number of
colours. The site variables (z) and P(x) are associated with each site
of the lattice and they carry colour, flavour and spin indices. Also, ¥/(x) and
v(x) representing fermion fields, are treated as Grassman variables. The link
and the site variables satisfy the periodicity conditions

Uizﬁ 0o Ug' 8’ w(?,()) = -’(L'(?,/j)-

Then, in terms of these variables, the partition function is written in the form
of a path integral

Z= / I e S dvrapatyduy,
zr u
in which the action

S= S(U;‘ 1,/)(:1:/)1/;(1,"/)) =S¢+ Sg

consists of a gauge action S and a fermionic action Sp . The partition
function and other thermodynamic functions are calculated by using the Monte
Carlo procedure on a finite lattice of N(,3 x N, sites, the maximal number of
sites in each direction being around N, = 24 and N, =24,

The deconfinement transition has been studied, in the frame of the lattice
QCD or its pure gauge variants, by many authors. Here we cite only some
review—type papers [43-52]. Note, that, in addition to the confinement transition,
another transition related to the spontaneous breaking of chiral symmetry can
occur. The mechanisms leading to these transitions are seemingly unrelated
and it thus has been speculated that QCD may undergo two separate phase
transitions. However, the Monte Carlo data for pure gauge models and for the
variants with massless quarks suggest that these two transitions coincide. And
if the finite masses of quarks are taken into account then the chiral symmetry,
strictly speaking, happens only in the limit © — 0o . In what follows we shail
speak solely about the deconfinement transition. One of the main discoveries of
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the lattice simulation has been the fact that the deconfinement can be of quite
different character for different systems.

SU(2) Pure Gauge Model

The common convention is that the deconfinement for such quarkless models
is a second—order transition occurring at ©4 =~ 210 MeV . The errors in
calculating the pressure and energy density, related to the finiteness of the used
lattice, are around 5% above and 30% below Oy .

SU(3) Pure Gauge Model

The deconfinement has been found to be a first—order transition at ©4 =
225 MeV with the latent heat Aegy ~ %sl(G)d) . The errors of calculating the
pressure, energy density and entropy are about 10% above and 30% below
Oy .

SU(3) Model with Quarks

In the presence of dynamical fermions the situation is by far more complicated
as it is difficult to perform high statistics analysis of full QCD on large lattices
that would allow a detailed finite size study as it has now been done in the pure
gauge sector. Monte Carlo simulations for full QCD with dynamical quarks
have by now been performed only for the case of zero baryon density. The
transition has been found to be rather sensitive to the choice of quark masses
and the number of flavours. It seems that for Nj; > 4 the transition is first
order for all quark masses. For Ny < 4 the situation is still to some extent
uncertain. Nonetheless, there are strong indications that for physical quark masses
and N; = 3 the transition is likely to be a continuous crossover, occurring at
©4 ~ 150 MeV . However, one should once again stress the uncertainties in
the determination of the order of the transition in Monte Carlo simulations, with
quarks, even at zero baryon density.

What has been found in the lattice simulations with certainty [52,53] is
that nonperturbative effects are quite strong around the deconfinement transition
persisting till about 20, . Also, as is seen, no statistical bootstrap or pure phase
model is able to describe the variety of different transition orders discovered
in the lattice simulations, since these models always predict a sharp first-order
transition.

5. DYNAMICAL CONFINEMENT SCENARIO

Correlation functions and related susceptibilities are one -of the key tools used
for investigating phase transitions [54]. This concerns as well QCD correlation
functions [55]. The latter have been intensively studied in lattice numerical
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simulations [56-60]. The results of these studies revealed nontrivial effects in
the high temperature phase connected with strong quark-antiquark correlations,
which was interpreted [56-60] as the existence of hadronic modes, even at high
© > ©4 . De Tar [56] proposed that the high temperature phase might be
dynamically confined, in the sense that the long range fluctuations are colour
singlet modes, and that the poles and cuts in the linear response functions of
the hadronic phase go over smoothly into those of the high temperature one.
This scenario of dynamical confinement presupposes that, actually, there is no
transition at all, and that there is only a smooth crossover between hadronic
matter and the quark—gluon plasma.

It is conjectured [56] that the characterization of the plasma as a weakly
interacting gas of quarks and gluons is valid only for short distances and short
time scales of the order 1/© , but that at the scales larger than 1/6%© ,
where g2 is the running QCD coupling, the plasma exhibits confining features
similar to that of the low—temperature hadronic phase. The confinement scale, for
instance, at © = 200 MeV , is expected to be of order 1 fm and 10~ %sec.

Hatsuda and Kunihiro [61-64] considered the density—density correlation
functions of quarks for the Nambu—Jona-Lasinio model with a QC'D —motivated
effective Lagrangian. They found precursory collective excitations existing in
the high—temperature phase and corresponding to correlated ¢ pairs. This
means that meson modes do exist above as well as below transition temperature.
Really, all poles and cuts of the correlation functions in the momentum—energy
representation are the same at all temperatures. Thus, quarks, antiquarks, and
gluons should also exist in the low—temperature as well as in high—temperature
phase. Such precursor effects are analogous to pretransitional fluctuations in
superconductors [65] or superfluid He3 [66].

The gradual change of the excitation spectrum from hadronic states to quarks
and gluons, and the survival of hadronic modes above the transition temperature,
have been confirmed for QCD in the instanton-liquid approach [67] and in the
magnetic—current approximation [68]. In the latter case, quarks are assumed to
interact at high temperature solely through magnetic current—current interactions,
the electric ones being screened.

The following picture [68] may serve as an intuitive illustration of the dynam-
ical confinement [56-60]: The current—current interactions persist above ©, and
force any quark-antiquark pair (and, maybe, every three—quark state) to correlate
into colour singlets. As the quarks are moving in the heat bath, the strings con-
necting them for colour neutrality are constantly breaking and reforming, which
can be interpreted as hadrons going in and out of the heat bath.

If the transition between the hadron matter and the quark—gluon plasma is
a gradual crossover, as follows from the dynamical confinement scenario, then
why in many lattice simulations this transition is found to be of first order? The
answer to this question was suggested by Kogut et al. [69] explaining the first
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order of this transition merely as due to the finite size of the lattice. Calculating
thermodynamic characteristics, such as energy densities, and correlation functions
for several lattices with the sizes 83 x 4, 12% x 4, 12% x 6, and 16° x 4 , it
has been found [69] that the quark—gluon plasma transition becomes less abrupt
as the lattice size increases and the evidence for a first order transition becomes
weaker. Lengthy runs for N, = 16 showed no evidence for metastability, so
that Kogut et al. [69] concluded that their results suggest that there is no abrupt
transition at all, but only a smooth crossover phenomenon.

To describe the coexistence of gluons and glueballs above ©, for a quarkless
SU(2) system, De Grand and De Tar [57,58] proposed to write the grand
potential as the sum

Q=0 +Qy,

o0

—(—)V’C—'/k2 Il + 0, ()] dk
22 ’

ko

=
[

k()

I3 Cz 2 - N
., = -0V Zr—j/k In[l + ny(k)]dk,

0

I

where ) corresponds to gluons and ;. t0 glueballs; (, is a degeneracy
factor; the Bose distribution 711(3) = [exp{ﬁsi(Z)} ~1J7! contains the spectrum
El(Z)Z VE?2+m? with the mass my, = 0 for gluons and the mass my =~
1000 MeV for glueballs. The cut-off momentum Ay is postulated, to fit lattice
data, to be kg — oo below Oy and ko = 2.860,[04/(0—0,4)]°3 above O, .
This phenomenological model describes only the second-order transition in pure
SU(2) systems. The temperature dependence of the cut-off momentum kg
is too arbitrary to permit a straightforward generalization to systems containing
quarks as well as various hadrons.

The main value of the dynamical confinement scenario is the clear under-
standing that hadron and quark—gluon degrees of freedom, generally, coexist.

6. CLUSTERED QUARK MODEL

A model in which quarks could coexist with three-quark clusters, that is,
nucleons has been suggested by Clark et al. [70] for zero temperature and con-
sidered by Bi and Shi [71] at finite temperatures. Nucleons and quarks in this
model are intermixed inside the same system. This kind of mixture should be
distinguished from the Gibbs mixture, in which different phases are separated in
space having only a common interphase boundary (see [15]). The quark—nucleon
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mixture is rather similar to a binary liquid mixture [72]. A two—component sys-
tem can, generally, stratify in space if there are no chemical reactions between
components. The quark—nucleon mixture does not stratify because of the possi-
bility of formation and decay of nucleon clusters, which is taken into account by
the relation pny = 3uq between the nucleon, pw , and quark, i, , chemical
potentials. Since it is assumed that inside a nucleon bag and outside it the QCD
vacuum is different, the nonstratified mixture corresponds to nonuniform, or un-
homogeneous, vacuum. In some sense it reminds the twinking vacuum discussed
with respect to the instanton-liquid picture of the QCD vacuum {29]. A nucleon
can be interpreted as a droplet of a denser phase inside the rarified plasma phase.
Nucleons among quarks are alike fog drops in air. Another analogy is magnetic
bubbles in magnets [73].

Clark et al. [70] used the excluded-volume approximation when particles
move not in the whole volume V' but only in the free volume V5 =V —Nyvy |
where Ny is the number of nucleons of the volume ¢~ each, defined
by the bag model. This renormalizes the volume 1V — &7 by the factor
£=1,/V =1—pyvn , where pn = Na/V is the nucleon density. Then,
e.g., the baryon density takes the form

—

20v, - — d Lk
”B_f/[ Cq (I_M) ”q(k)+<N”N(l\') '(—er)—;v

in which, in addition to the geometrical interaction taken into consideration by
the factor &, the perturbative quark—quark interaction is simulated by the factor

— —
1 — 2a./m . The Fermi distributions n,(k) contain the free spectra w;(k) =
k2 +m? — y; . The energy density reads

e=¢,+eny+ B,

20, - —* dx
. )/Eq(k)nq( (2 ER
d
— —
en = &N /EN(k)nN(k)W’
where the nonperturbative energy is given by a bag constant B .

Comparing the grand potentials for this model with B!/4 =171 MeV and
those of pure quark and of pure nucleon phases, it was found that the mixed
clustered matter is more profitable at npg > 8ngg and © < 50 MeV . Of
course, one should not take too seriously the numerical predictions of this model
which is too oversimplified to be realistic. For instance, pions and gluons are not
considered here although they should play an important role in the deconfinement

€q :qu(
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transition. Thus, pion fields make a nucleon bag unstable at quite moderate
density and temperature [74,75] close to those discussed in Introduction.

The most valuable in the clustered quark model is the idea of nonuniform
vacuum containing such local fluctuations that nucleons can be formed

floating in the surrounding quark matter.

7. STRING-FLIP POTENTIAL MODEL

An extreme realization of the dynamical confinement scenario is given by the
string—flip potential model [76-81] based on the quantum-mechanical Hamiltonian

— — N V? — —
H('rl,.‘.,rN):Z o +V(ry,...,Tn)

=1

of nonrelativistic quarks. In the interaction term

V(?l,...,?N)ImiIqu)(T’ij) (r¢j§|?i—r]~|)

the minimum is taken over all ways to group N quarks into hadrons, so that
the summation actually goes only over < ¢,j > pertaining to the same hadron
consisting of 2,3,6,9,12 or 15 quarks. Using the variational wave function

(T, P N) =exp{=BV(T1, ..., TN)}D(T 1, ..., T w),

in which 3 is a variational parameter and D(...) is a free Fermi gas Slater
determinant, one minimizes the energy E(8) = (¥, HU)/(¥,¥) with respect
to 3. This gives 8= 3(p) as a function of density.

Variational Monte Carlo calculations for this model have been accomplished
with the harmonic, ®(r) = Lmw?r? | and linear, ®(r) = or , confining
potentials. The wave function has been symmetrized with respect to all of the
quark coordinates, including these pertaining to different hadrons. This takes
into consideration the exchange quark energy which is found [82] to be about
100 MeV .

The results show that the quarks always coalesce into the lowest energy
set of flux tubes, which is characteristic of an adiabatic approximation to the
strong coupling limit of QCD . At low densities p < py quarks cluster into
isolated hadrons. As the density increases, the value of 3(p) decreases, first
slowly, but at p ~ 1.5p; exponentially. For p > 2p, the wave functions
of separate hadrons strongly overlap, which may be interpreted as a transition to
the quark matter, although formally all quarks are yet confined. The complete
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deconfinement occurs at asymptotically high densities, when 3(p) — 0, and the
wave function becomes that of a free Fermi gas of quarks.

The quark—quark pair correlation function was calculated [76,79] using Monte
Carlo techniques and the longitudinal response function, using molecular dynam-
ics simulations [83]. At low densities these functions have the properties typical
of a set of isolated hadrons. For instance, the pair correlation function has a
sharp peak displaying strong correlations between quarks. The form of this func-
tion is similar to that of liquids [84,85]. As the density increases, the peak in
the pair correlation function relaxes smoothly to that of a Fermi gas of quarks,
disappearing completely as p ~+ oo .

Thus, the string—flip model demonstrates a smooth transition from hadron
matter at low densities to a free Fermi gas of quarks at high densities. Quarks at
all densities are to some extent confined becoming an absolutely free gas only in
the limit p — oo .

The main difficulty in dealing with this model is the necessity of the mini-
mization of the Hamiltonian interaction term over all strings connecting quarks,
which involves complicated Monte Carlo calculations. This procedure is neces-
sary for eliminating colour van der Waals forces between colour singlet hadrons.
These forces are present in confining two-body potentials and, if not eliminated,
produce large spurious energies in nuclear matter.

However, in a consistent statical approach this kind of divergence can be
automatically cancelled if one takes into account the corresponding correlation
functions, called smoothing or screening functions, which smooth the interaction
potentials in the regions of their divergence [86-88]. It is possible, starting with
divergent interaction potentials, to construct regular iterative theory [35,89] for
Green functions, whose each step involves only smoothed potentials containing
no divergencies. In the lower orders of this correlated iteration theory [35]
the situation is such that could be obtained by replacing from the beginning the
bare interaction potential by a smoothed one, that is by defining an effective
Hamiltonian with a pseudopotential instead of the initial potential [86]. Such a
replacement is an approximation neglecting some double and all triple correlations
[35].

The Hamiltonian of the string-flip model including the minimization over
strings is an effective Hamiltonian, in which this minimization plays the role
of smoothing. In lieu of this complicated minimization requiring Monte Carlo
techniques, it is equivalent to replace the confining potential by a smoothed one.

Ropke et al. [90-93] have developed a many-body approach to quark—nuclear
matter generalizing and simplifying the string—flip model. This approach starts
with an effective Hamiltonian

al AT
-~ — ; —
Heff(rly--w’rN):Z(nli“ >+‘2‘2Veff(rij)v
1=1 1,7

2m,-
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in which rn; stands for the quark masses, and the effective interaction Veff(;>
) = s(r)®(r) is screened by a function s{r) defining the probability that two
quarks at distance r are next neighbours. The screening function is to be found
from some additional equations. In the case of independent particles with density
p . one has s(r) = exp(—3Fpr®) . Inside a hadron, when r < a , where
a = p~1/% is an average interquark distance in the system, we have s(r) ~ 1,
so quarks interact through a bare confining potential. For the quarks pertaining
to different hadrons, i.e., when r > a, we get s(r) =~ 0, which is called the
saturation property [91}.

The many-body approach to clustering quark matter [90-93] makes it possible
to give a unique description of both the clustered hadrons as well as the free—
quark phase in the same way as it has been done tor the nuclear matier whose
nucleons could form the deuteron, triton , and « —particle bound states [94,95].
The total density of clustering matter is a sum p = Zz zip: » in which z; 18
a compositeness factor and p is the density of an 1 —component of clusters
composed of z; particles each.

In the many-body approach the quark system may contain both quasifree
quarks (scattering states) and various clusters (bound states). At zero temperature,
nucleons start dissolving at np = 4.3nqp . At zero baryon density the transition
of hadron matter to free—quark phase starts at Oy = 200 Mel™ , where some
of meson states are already dissolved. But other bound quark states do exist yet
at this temperature. The dissolution of the bound states occurs gradually with
temperature. Some mesons survive up to O = 20,4 . The gradual dissociation
of bound states above ©, 1s in agreement with the dynamical deconfinement
scenario. :

Although the many-body approach provides the principal possibility of treat-
ing bound states together with quasifree ones, it has the following technical
obstacles. Each bound state is described by a Bethe-Goldstone—type equation
for a two— or three—particle Green function, depending on the compositeness of
this bound state. This type of equations, as is known, is very difficult to deal
with. When there are many bound states interacting with each other as well
as with unbound particles, then one has to deal with a system of many interre-
lated Bethe—-Goldstone equations, in addition to several equations for one—particle
Green functions. In such a case the problem becomes practically as difficult as
chromodynamics itself.

8. CONCEPT OF CLUSTER COEXISTENCE

As follows from the previous Sections, there is need of such a statistical
model that could provide a realistic description of clustering matter being at
the same time treatable. One almost evident simplification would be, instead
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of suffering with a system of Bethe-Goldstone equations, to consider bound
clusters as separate objects. This can be understood as a kind of renormalization
by integrating out the internal degrees of treedom corresponding to the motion
of particles inside each of clusters, so that only the center—of-mass degrees of
freedom are left.

Enumerate all possible cluster states, including those of unbound, or free,
particles, by the index ¢ . Let KM(?) = [1/);-‘(7)] be the field operator of
an ¢ —cluster; this operator being a column in the space of quantum degrees of
treedom indexed by «a . The quantum degrees of freedom include spin, isospin,
colour and flavour indices. The field operators satisfy the commutation relations.

f

—! — " ! — —!
I I

WD =00 W) (D)l = 8,000 - 1),

where the upper sign stands for Bose and the lower, for Fermi statistics.
Take an effective Hamiltonian in the form

H:E—Z;le\A’l, (nH

in which the energy operator
E=>E+) E, (2)
T 1,7

consists of the single—cluster energies

a:/Wﬁm@mﬁm? (3)

5
where H,(V) is a Kinetic—energy operator, and of the interaction energies

-~ 1 — —/ — —! —3! -3 - =
By =5 [wF8,F - Fie (e r i @

with the interaction potentials <I>U-(?) having the symmetry property

— —
T

8,(7) = ®iy(— 7) = 25u(7). (5)

In the second term of (1), u; is the chemical potential of i -clusters and
N; = /wl(?)wi(?’)d v (6)

is a number—of—cluster operator.
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The grand potential

Q=-0InTre ¥ @)
defines the pressure
2 ©
p=-—p =yl e PH, (8)

The energy density is given by

e = (E), ®)

where (...) denotes the statistical averaging.
For each kind of clusters we may define their density

pi(7) = Wl (FIa(T)), (10)
the number of clusters
N, = (N;) = /p,-(?)d T, (11)
and the average density
pi = %— = %/pﬂ)d v (12)

The number of constituents of an ¢ —cluster is called the compositeness factor
z; . The total number of elementary particles is

N=3 2, (13)
so that the average density of the system can be written as
N
p=E =2 A (14)

The chemical potentials g; can be defined from the conservation laws
accepted for the given system. For example, if the numbers N, for each sort of
clusters are fixed, then (12) gives p;(0©, p;) . If the total number of constituents
(13) is fixed, then from the equilibrium condition 6Q) = 0 we have

B (15)
2 25
which, together with (14), defines 1;(©,p) . When neither N, nor N are
fixed, then p, = 0.
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Fig.1. Illustration of a cluster fusion

An important quantity is the cluster probability

; N;
p N
enjoying the conditions
0<w; <1, Y lwi=1, (17)

following from (14). With (12), we may rewrite (16) as

Z4

wi= 2 [ pr)d T . (18)

If the system of particles can form a number of bound states, then how
could we define numerous interactions between clusters? The number of such
interactions can be drastically reduced for those clusters whose interaction poten-
tials @ij(?) have the same type of behaviour at large distance, for example,
diminishing as r increases. Consider such clusters with a similar behaviour
of <I>ij(—7?) . Let two clusters, m and =, coalesce into one, :, so that the
compositeness numbers involved in the reaction m + n — 1 satisfy the obvious
relation z,, + z, = z; . And let aside be another cluster—spectator, j , as
is shown in Fig.1. Assume that the coalescence of the cluster—actors does not
influence the cluster—spectator, in the sense that its interaction with the initial two
clusters is the same as with that one formed after the coalescence:

B (T) + &0, (7) = &, (7). (19)

From this assumption, using the conservation law =z, + z, = z; , we find the
relation

— —
Di(7) _ Pmn(r) 20)
%% ZmZn

permitting to express the interaction potentials of different clusters through one
calibration potential.
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9. SCREENING OF INTERACTION POTENTIALS

The interaction potential &;;(7) may be divergent for some regions of
-

r . However, it would not be correct to replace this potential by a smoothed,
or screened, one just in the Hamiltonian (1). Such a screening appears in the
process of decoupling of binary propagators with taking account of interparticle
correlations, as is done in the correlated iteration theory [35]. If one wishes to
write an effective Hamiltonian corresponding to a given correlated approximation,
it is not sufficient to merely rearrange the operator terms of the Hamiltonian, but
a nonoperator correcting term must be added.

Let us illustrate this for the correlated mean—field approximation {35} when
the Hamiltonian (1) may be presented in the form

H:ZHi+CV,

= [ K& + 00 =] el F)a 7, @
in which the correlated mean field
U7 = Z/ &, (T =7 )p,(P)d 7 (22)
]
contains the screened potential
@iy (1) = 5,(7)%,,(7) (23)

smoothed by the smoothing function having the symmetry property
—

51](?) = 511(7) = Sij(_ ). (24)

The nonoperator correcting term in (21) is CV , and this cannot be put zero, as
will be shown below.
Since the exact Hamiltonian (1) does not depend on cluster densities, varying

the grand potential (7) with respect to pl(?) we have

i (5Q_) :< 6H_) >:(), 25)
dpi(T) 8pi(7)

In order that the exact Hamiltonian (1) would be correctly represented by the
approximate Hamiltonian (21) requires that the latter must satisfy (25), which

yields
+ 5 Z <5p1 > 0. (26)
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6H; 6U]-(77?/) NI
— ) = ——pi(r )d v,
<6pl<r>> / opu(7) |

Substituting here

transforms (26) into

] ! !
—Z/ & pi(7)d 7 = 0. (27)
Spi(T dp.(r

If the smoothing function slj(?) does not depend on /),(?) , then (22)
gives

— —!
r .

and Eq.(27) becomes

1]

oC 1 - - —/ ! —
+ v Z/ S, (r —r)p,(r)dr =0
r) B
The solution of the latter variational equation, up to a constant that can be omitted,

is
= 2‘/2/% (e, T T a7

Note that the Hamiltonian (21) with the obtained correcting term could be derived
from (1) with the substitution

el (F)w! (7w, (7 (7)) -

Y —y

= ) (Rl () + 0wl (F (7 = paF)os(7) ),

corresponding to the correlated Hartree approximation [35].

5
- si(r

In general, the smoothing function si]-(?) is dependent on pl(?) . There-
fore, the correcting term is to be found from Eq.(26) or (27). In any case,
the correcting term depends on thermodynamic variables through the densities
pi(?) . Thus, neglecting this term would disfigure the correct statistical de-
scription, and the behaviour of thermodynamic functions could be completely
spoiled.

Let us pass to a uniform system when p,(?) = p; . In principle, a mul-
ticomponent system can display a variety of nonuniform states related to the
solidification of one or several components. For example, an ensemble of fully
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ionized nuclei can form a crystalline lattice immersed in a uniform electron back-
ground, which models the high—density matter of white dwarfs [96]. It may be
that some heavy cluster components crystallize while others are liquid-like as it
happens in superionic conductors [97]. It also may be that heavy clusters form
an amorphous solid while light ones move in a conduction band as in glassy
metals [98]. In the cores of neutron stars a Gibbs mixture can exist when in
some volumes of space a lattice structure appears while others are filled by a
liquid—like nuclear matter {99]. We leave aside all these possibilities considering
in what follows only uniform systems.
In the uniform case, the mean field (22) becomes

UT) =Y @iyp = Ui (28)
J
with the interaction integral
3, = / ®; (1)d T . (29)
Instead of (25), we have
0H
< > =0. (30)
dp;
The correcting equation (27), defining the correcting term, changes to
5U
31
3l GD)

The field operators, for a uniform system, can be expanded in plane waves,

() = = X ae T al) = ).

k

Then an ¢ —cluster Hamiltonian in (21) transforms to

H; = Zwl k)a Wai(k), (32)

with the effective spectrum

—

wilk) = (k) — iy eilk) = Ki(k) + Us. (33)

The number of clusters (11) reads

N =Y (al(B)ai(k)) = G Y mak), (34)
k

k
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where (; is a degeneracy factor, i.e., the number of quantum states, and

ni(®) = {exp [ 71} 65)

is the Bose (upper sign) or Fermi (lower sign) momentum distribution. The

cluster density (12) is
—
= Ny d k 36
pl S’L/nl(k;)(2ﬂ.)3' ( )

For the grand potential (7) one gets

Q:ZQ,-Jrcv,

N
— dk
Q, = ;@Vgi/ln [1 + ni(k;)} Rt 37)
The pressure (8) writes
d Z}
N
pe=20G [ 1n 1) G (38)
The energy density (9) is :
g = Zei + C,
d
— —
i = i ; : 39
co= ¢ [ eBmB) s (39)
The cluster probability (18) becomes
d¥
Z; i
i = —G [ : 40

An additional simplification comes for isotropic systems, which is usually
— — —
assumed, when ¢;(k) = ¢;(k), where k=] k |. Then w;(k) = w;(k) and
—
ni(k) = ni(k) . If the spectrum w;(k) is such that the asymptotic properties

Elnw(k) -0 (k= 0),

w; (k) = oo (k — o0)
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hold true, then the cluster pressure and the cluster energy density reduce to

Ci * 3.0 (1Y .
= /0 k<! (kyn; (k) dk,

pi =

e= / K2e, (k). (k) dk
2n2 J,

where ¢i(k) = de;(k)/dk .

1

These are the basic formulas which we shall use in what follows.

10. COEXISTING MULTIQUARK CLUSTERS

The concept of cluster coexistence has been applied first to nuclear matter
consisting of different multiquark clusters. The interest to this problem was
motivated by the A.M.Baldin cumulative effect [1] and the related discussion of
the possible existence of multiquark clusters in nuclei [100,101].

Since at high density or temperature relativistic effects play an important

role, the kinetic term of the cluster spectra is taken in the relativistic form I\'l(z
) = VE2 + m? , where m; is the cluster mass. A system of 3-, 6-, 9-, and
12-quark clusters has been considered in the excluded—volume approximation
[102-106]. The 3- and 9-quarks are Fermions, and the 6- and 12-quarks are
Bosons. The Bosons with the lowest mass, that is the 6-quarks, can drop down in
the Bose-Einstein condensate, when wg(0) =0, which fixes ug . The chemical
potentials always satisfy (15).

In the excluded—volume approximation the interaction between clusters is
considered geometrically by putting ®,, zero, but replacing the total volume V/
by the free volume 1} ,

V—)VOEV—ZNI-U,-, (41)

where v; are cluster volumes. This reduces the volume

V = &V, =

=1- Zplvl, (42)

by a factor £ € [0,1]. Equivalently, this can be interpreted as a reduction of the
degeneracy factor

G— G =EG. (43)

The reduction factor in (42) and (43) can also be written as

§—<1+Zp(°)> ; (0)‘6/ ()((2“;3.
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Thus, for the density of clusters, pressure, and energy density one has

- d
pi= G /Tli(k) 23

p=+0 Z G /ln [1 £ n:(k)] ((217:;3 .

5
< d k
£= Z G / s,-(k)m(k)w. (44)
The volumes of clusters are supposed to be related by the equation
Lo (45)
m; oM,

This permits to express all cluster volumes v, = m,vs/mys through the 3-quark
volume vz = 4773 /3 with the radius 73 = 0.4 fm of the nucleon core.

The used multiquark parameters are given in Table 1. The 3-quark is a
nucleon. The 6-quark mass mg = 1944 MeV corresponds to an average value
over the masses of several light narrow dibaryons that are claimed to be observed
in experiments [107]. The mass mg = 2163 MeV’ is taken from the bag-model
calculation of Jaffe [108] and the 9- and 12-quark parameters are elicited from
the bag model of Matveev and Sorba [109].

The 6-quark probability depends on the value of the mass mg as is
illustrated in Fig.2. The results for other cluster probabilities are displayed in
Figs.3 and 4, where mg = 2163 MeV . The probabilities of heavy clusters are
always very small: wg < 0.1, w2 < 0.01.

As far as we limited here by the length of this review, we shall not discuss
in detail the results of our calculations, which can be found in the cited papers.
We think that the presented figures speak for themselves: it is better to see once
than to listen hundred times.

The coexistence of nucleons with 6-quark clusters has been considered as
well in the mean-field approximation [110] with the effective interaction potential
‘bq(?) = 2#-9—15(?) _n exp (—m,r).

M4y T
The first term here is the Fermi pseudopotential for the core interaction with
the scattering length a;; = %(a,— + a;) , where a; = a;; , and the reduced
mass m; = m;m;/(m; + m;) . The second term is caused by the one-pion
exchange; ar = 0.08 being the pion coupling parameter and m, = 140 MeV ,
the pion mass. Again, to reduce the number of model parameters, the relation
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Table 1. Multiquark parameters

Mass Compositeness Degeneracy
m; (MeV) number z; factor §;
939 3 4
1944 6 9
2163 6 3
3521 9 4
4932 12 1
10
- 10 .
08 | ) = 200MeV
? 08 © =200
1
06| | 3
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Fig.2. 6g-probability vs. the mass of a 6g- Fig.3. Cluster probabilities as functions of
cluster at @ = 0 and p = Po the relative density at © = 200 MeV
W6
©=0, Mg =1992MeV
1L
1 1
1 2 pip,
Fig.4. Nucleon probability as a function of Fig.5. 6g-probability vs. relative den-

the realtive density at different temperatures sity at @ =0
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a?/m; = a?/m]- , similar to (45), is accepted. Then, all scattering lengths «; =
az(m;/m3)'/® are expressed through the nucleon scattering length a3 = 1.6 fm .
The 6g-probability is shown in Fig.5.

Note that the mean—field approximation is valid if |{U;| <« m; , which is true
for the densities up to about 10p .

The models of this Section serve rather as a qualitative illustration of cluster
coexistence. They can have sense only at temperatures and densities much lower
than those characteristic of deconfinement, as unbound quarks are not included
here.

11. BARYON RICH MATTER

Include into consideration unbound {quasifree) quarks that can, in principle,
coexist with multiquark clusters. Whether and when quasifree quarks really
coexist should be determined in a self-consistent way from the conditions of
thermodynamic advantageousness and stability. To compare the results with
those of the previous section, consider again the case of baryon rich matter, when
p = 3npg , that is when the generation of particles from vacuum can be neglected.

Denote the chemical potential of a quark by ¢ = p, . Then relation (15)
yields w; = zp .

The strengths of characteristic interactions between baryons and between
quarks are of the order of or higher than the expected deconfinement temperature,
so these interactions must be taken into account. The mean field acting on quarks
may be written in a bag-model-motivated form {32) as U, = BV/N = B/p .
This gives for quarks the spectrum

Eq(k)z,/k2+m§+§. (46)

The mean—field term in (46) contains the total quark density p , which means
that each quasifree quark interacts in the same way with other unbound quarks
as well as with quarks entering into bound clusters. The interaction potentials
between different baryons can be expressed, basing on relation (20), through the
nucleon—nucleon interaction potential @33(?) ,

? ZiZj >

®,;(r)= Baz(7). (47)

There are several such effective potentials obtained from nucleon—nucleon scat-
tering experiments [111] or from analysing the deuteron properties [112]. We opt
for the Bonn potential [113]. The common consensus is that thermodynamics of
nuclear matter does not depend on the mutual orientation of spins of interacting
nucleons. Averaging over spin directions nullifies the spin terms of the interaction
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potential. The so—called cut-off terms of the Bonn potential can be neglected,
since they start playing an essential role only for very short distances < 0.1fm |
which would correspond to the baryon density ng > 10%np5 . We assume that
the interaction between any pair of nucleons is the same, because of which in
the isospin term of the Bonn potential we put the total isospin [, + [, = 1

describing the interaction between protons or neutrons. The so-obtained radial
part of the Bonn potential [113] reads

4

@;;;;(7) = Z E:—l exp (—y;r) (48)

=1

with the parameters
)y =167, =27, a3 =-T78, «a4=-27,

71 =038 MeVe 7y, =769 Mel Ay =550 Mel, o4 = 983 Ml

The interaction potential (48) is integrable, thus, it does not necessarily require
the smoothing procedure [35.88,114]. For the interaction-energy density (29) we
have

byy = /‘b:m(?)({ 7 (49)

which yields @44 = 4.1x 1075 AfeV —2 = 315 MeV/ fin® . Note that By po =
164 MV, hence ®33p0 = Ey = Po/ from where &, =~ /’072/‘; )

For the spectra of baryons we take

5,(A'):‘/L'2+m;“)+;)()—/))4);; (50)

where p, is the quark density and / enumerates multiquark clusters: 3¢. 6¢, 9¢
12q , and so on. The masses of bound clusters up to z; = 12 are taken from
Table 1, with the six—quark mass mg = 1944 AMfeV . For =, > 15 we use the
formula m; ~ (z;/3)m3 for the masses of heavy multiquark clusters [22].

For quarks we accept the mass m, = 7 MeV and the degeneracy factor
G = 12 corresponding to spin 1/2, N, =3, and N; = 2. The bag constant
BY/* =235 MeV .

The results of numerical calculations [115-119] are presented in Figs.6-13.
At © =0 and p = py, the 6g-probability is ws = 0.18 , which agrees
with the estimates of the 6g-admixture in nuclei [120]. The heavy-multiquark
probabilities are always small: wg < 1073, w;» < 107° , and wys < 1077 . At
zero temperature, only the Bose—condensed 6g-clusters exist, the probabilities of
heavier ones being strictly zero. Unbound quarks, at © = 0, are absent below
the density pg“c =~ 2py when they start appearing. This is why the characteristic
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Fig.8. Cluster probabilities vs. relative density at © = 50 MeV
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Fig.9. Cluster probabilities at ® = 100 MeV
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Fig.11. Nucleon, 6g-cluster, and quark probabilities as functions of temperature in MeV at
the normal density p = p,
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density pp“c may be called the nucleation density. As we see, the value of the
latter agrees with the corresponding estimates from Introduction.
The stability of the quark-baryon mixture is controiled by checking the
minimum of the free energy F = Q-+ ;;N; whose density can be written as
FQ
f=y=v+t me = —p+ pp.

(3

and also by requiring the validity of the stability conditions [54}]

O f dp
— > 0, -
0~ o,

-0 > 0.

The probability of unbound quarks increases, with temperature or density
monotonically showing that the deconfinement is a gradual crossover but not
a sharp transition. This is in agreement with numerical simulations [121] on
16* x 24 lattice, for Ny = 2, which has demonstrated that quark—quark
correlation functions at © = 1.58, are very similar to the zero—temperature
wave functions of the corresponding particles.

12. ZERO BARYON DENSITY

The case opposite to that of the previous section is when the baryon density is
vero, ngpg = 0, and all particles are generated from vacuum. Then g, =0 . In
this case, we can compare our calculations with the lattice numerical simulations
that are available only for np = 0.

The spectra of gluons and quarks are again taken in the form

wg(k):k—{»g—, we(k) = A‘2+/71§+—B~ 51
P p
with the bag-motivated mean fields.

The interaction of hadrons is considered in the excluded-volume approxima-
tion. The cluster volumes v, = m;ve/ms , according to (45), are expressed
through the volume vy = 4713 /3 of the lightest cluster with z, = 2. The bag
constants for the SU(2) and SU{3) systems are to be different [122] with the
relation BSU(?) =~ 0-4BSU(3) .

The presentation of results is convenient to perform in relative quantities
reduced to these of a reference system. The role of such a system is naturally
played by the Stefan-Boltzmann quark-gluon gas. The latter, by definition, is
an ensemble of free massless quarks, antiquarks, and gluons. The pressure and
energy density of the Stefan-Boltzmann quark—gluon plasma are, respectively,

0)

PsB = pf,o) +p7’ + pgo), ESR = sgo) + Efjo) + Ego)’ (52)



124 YUKALOV V.1, YUKALOVA E.P.

where N
dx
¥ = xeg, / i [0 (b)] 255,
0 = ©) 1y @ k
=G [ () . (53

the index i = ¢,§,g enumerates quarks, antiquarks, and gluons with the mo-
mentum distribution

n (k) = {exp [B(k — w)] F 1377, (54)

in which the upper sign is for Bosons (gluons) and the lower one, for Fermions
(quarks and antiquarks); the chemical potentials being

Mg = —Ug = 1y pg = 0. (55)

Egs. (54) and (55) permit to write down (53) as

oo 3
© _ & / kdk £10) = 3p(0), (56)
b = g2 exp[B(k — u)]F1’ P:

An exact integration yields

4
0 © _ & 4y 2 2 I
P+ = "( 0! + 1?0 +ﬁ>,

q

(0) 7r2 4
Thus, the Stefan—Boltzmann pressure is
Cq 2 N2
PsB <(g + - C,,) 1ok 0?1+ —— 57207 | - (58)

This is to be compared with the QCD pressure corresponding to the QCD
grand potential, given in Section 3, for zero coupling ¢ = 0,

2

45

7 N¢N, w?
= N2 —14-NsN. | 0% + L2292 (1 . (59
PQep = ( +4 f ) + g M +27r2(92 (59
Due to the relations for the degeneracy factor of gluons, ¢, = 2 x (N? — 1),
and for that of quarks, Cq = 2 x Ny x N, , and antiquarks, Cq = (7, we see that
(58) and (59) coincide with each other. Therefore, the Stefan-Boltzmann plasma
is the asymptotic high—temperature limit of quantum chromodynamics.
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The baryon density for the Stefan-Boltzmann plasma is

G d%

=500 = 7 [ k) = n(] 32 (60)

Either calculating (60) directly or using the derivative np = dp/Oug , with
up = 3 we have

_ Y 2 202
TLB—qu—gﬂ_—Z(M +7I'®). (61)
From here, one gets the equation
1872
P+ ey — i ng =0 (62)

q

defining p = p(np) . At zero baryon density np = 0, as is clear from (62),
one has u=0.
When the chemical potential is zero, the density of quarks becomes

303
Pq = Cq FC(B) (n=0), (63)

where ((3) = 1.20206 . For gluons, the chemical potential is always zero, so
their density is

@3
pg = (g 71_—2((3) (64)
Finally, for the specific heat of the Stefan-Boltzmann plasma we find
8633 271’2 7 3 1 22 ,u2—7r2®2
Csp = = — — 0°+ = O e———— . 65
SE= %0 ~ 15\ T 3%) @ T O aa (69

The results of numerical calculations [123-125] for the mixed system, con-
sisting of the quark-gluon plasma with the spectrum (51) and of hadrons in
the excluded-volume approximation, will be presented below for three different
situations.

12.1. SU(2) Quarkless System. The system consists of unbound gluons and of
glueballs that are bound gluon clusters. The experimental status of glueballs is yet
uncertain, though there are suggestions [126,127] to interpret a narrow resonance
appearing in proton—proton collisions as a scalar glueball. Pure gluodynamics is
often studied because it is easier, than the full chromodynamics, for Monte Carlo
lattice simulations.

Glueball masses have been computed in the lattice gauge theory for both
SU(2) [43,46] as well as for SU(3) [128-130] cases. The lattice results
are close to the bag-model calculations [131-133]. Here we accept the glueball
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masses found in the bag-model approach {132,133]. The corresponding glueball
characteristics are given in Table 2. The radius 75 of the lightest giueball with
niz = 960 MeV s a fitting parameter which is taken as ry = 1.2 fm . The
constant B in (51) is chosen to be B = (165 MeV)* . The gluon degeneracy
factor is (, = G for the SU(2) case.

The results of our calculations are displayed in Figs.14-18, where the glueball
probability w¢ and the giuon probability w, are defined by

glueballs

= 4 P
We; = E i, wy = L] —wg.
P P

1

The relative energy density is compared with the lattice data [134,135]. The
reference Stefan-Boltzmann plasma here corresponds also to the quarkless case,
Ny = 0. Deconfinement occurs at Q4 = 215 MeV as a second-order transition,
which is in agreement with the lattice simulaticns.

12.2. SU(3) Quarkless System. The giucball parameters are taken from
Table 2. The constant B in spectra (51) is B = (235 MeV)* | The gluon
degeneracy factor for the SU(3) caseis (, = 16.

Varying the radius r, of the lightest glueball, we have three possibilities:
(1) 2 < r., where r. = 0.8fm ; then deconfinement is a gradual crossover.
{(ii) r2 = r.; in this case deconfinement is a 2-order transition. (iii) r; > r. ;
then 1-order transition occurs. These possibilities are illustrated in Figs.19-23,
where the entropy density at g, = 0 is s = #(z + p) and the reference
Stefan—-Boltzmann entropy density is ssp = 3less + psg) = 43psp . The
relative entropy density is compared with the lattice numerica! simulations {136].
The latter agrees with our results if ry > ., so that deconfinement becomes a
1-order transition at about @4 = 230 AMeV .

Emphasize the importance of taking into consideration glueball interactions:
When these are absent, that is r, = 0, the behaviour of the system is unphysical.

12.3. SU(3) System with Quarks. The constituents of the system are taken
as follows. Consider quarks of two flavours, ¢ = {u,d}, and the corresponding
antiquarks ¢ = {&,d} with the masses m, = m; = 7 MeV . The degeneracy
factor for each pair of up and down quarks is (, = 2 x Ny x N, = 12,
and the same for antiquarks, (; = 12 . Gluons have the degeneracy factor
Cg =2 x (N2 ~1)=16. From the long list of the known hadrons, we include
only those with the lightest masses, which mainly contribute to thermodynamics.
These are unflavoured mesons (Table 3), strange mesons (Table 4) and light
baryons (Table 5).

For the radius of the lightest hadron, that is of a pion, we take rp = v, =
0.56 fm . The radii of all other clusters are expresses through r, using (45).
For the mean—field parameter in (51), we accept B1/* =210 MeV . The results
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Table 2. Glueball parameters

Mass Compositeness Degeneracy
mi (MeV) number z; factor ;
960 2 6
1290 2 6
1590 2 6
1460 3 11
1800 3 39
€/€sg
1.0 ¥ ?
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0| i £ bt
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Fig.16. Relative energy density for the SU(2) quarkless system (solid line) as
compared with the lattice Monte Carto data (Engels et al., 1981)

1.20%
E/Ess

100} /,

080 .

060¢ .

040f !
|

020t

0 ......... . ..l PSR Wt bt e aoa s aa Lo e a0 24 322 i
0 100 200 30 400 500

0{Mev]

Fig.17. Relative energy density for the SU(2) quarkless system (solid line) com-
pared with the lattice numerical simulations (Engels et al., 1989)
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Fig.18. Reduced specific heat for the SU(2) gluon-glueball mixture. At
the deconfinement temperature, specific heat diverges
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Fig.19. Glueball probability for the SU(3) quarkless system at several values of the
lightest glueball radius: (1) r, =0;(2) ry = 0.5 fin; (3) r, = 0.7 fm; (4) r, =038 fin
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Table 3. Unflavoured meson parameters

Mesons Mass mi (MeV) Compositeness number z; Degeneracy factor §;
nt 140 2 1
T 140 2 1
n° 135 2 1
n 548 2 1
p+ 770 2 3
p- 770 2 3
p(’ 770 2 3
[0} 782 2 3

Table 4. Strange meson parameters

Mesons Mass m; (MeV) Compositeness number z; Degeneracy factor {;
Kt 494 2 1
K- 494 2 1
k?© 498 2 2
k0 498 2 2

Table 5. Baryon parameters

Baryons Mass m; (MeV) Compositeness number zi Degeneracy factor {;
N 939 3 4
N 939 3 4
A 1232 3 16
A 1232 3 16

sl . aal rewwrww: T T
0 100 200 300 40 500 @
Fig.24. Hadron cluster probability for the mixture of quark-gluon
plasma and hadrons at zero baryon density
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of calculations are shown in Figs.24-26, where the hadron cluster probability is
defined as

clusters

o
2%

Deconfinement is found to be rather a continuous crossover-like transition at
Oy = 166 MeV, which is close to lattice data [137].

13. THERMODYNAMIC RESTRICTION RULE

Invoking this or that approximation, one gets an effective thermodynamic
potential, for instance, an effective grand potential } = (O, V, i, ) , involving
some auxiliary functions ¢ = {yp;} depending on thermodynamics parameters,
temperature © , volume V , and a set p = {;,} of chemical potentials.
Thus, effective spectra in (51) contain the mean field ¢ = B/p . In the
excluded-volume approximation, the free- volume of the system is factored with
the quantity =1-73 . piv;, as is seen from (42). Both p and p; are
functions of O, V,u . In the cut—off model of Section 5, the effective cut—off
momentum kg is a function of © .

Effective thermodynamic potentials are to be handled with great caution.
Really, if one calculates, e.g., the pressure

an 2 o .
=—r—=-==_—InTre?¥ 66
LT A (66)
in two different ways, as the derivative (—0Q/3V) or as the ratio (~Q/V)
then the answers can be different when 2 includes auxiliary functions depending
on V . This would mean that the relation (66) breaks. The same concerns the
energy density, entropy density, and the cluster densities, respectively,

6—@——p+2upl—

ap —ﬂ(€+p 2#4)1),

8p 1.
P = = (Ni), 67
pi= = 7 (NV) (67)
which may be defined in two ways, as first derivatives of pressure or as the
corresponding statistical averages. Definition (67) can also become broken when
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auxiliary functions depend on thermodynamic variables. This kind of inconsis-
tency occurs as well for the second derivatives, such as the specific heat

_ 0 By f 2
Cy = 55 = 5 (1B - (E)?) (68)
or the isothermic compressibility
LN _ B (e o
op = —— | =2 = — (i . 9
wr=-7 (52) = (@9 - ) ©9)

These inconsistencies in defining thermodynamic characteristics in two ways,
thermodynamic and statistical, of course, are not pleasant. Moreover, the differ-
ence between these two ways is not only quantitative, but can also become drastic,
especially for systems with phase transitions. It is even possible to give examples
when the definition through the derivatives yields unphysical divergencies in the
energy and entropy densities at the phase transition point. This, for instance,
happens, as is easy to check, for a pure gluon model in the effective spectrum
approximation.

The simplest procedure for avoiding the described troubles can be formulated
as follows. Let x be any of the thermodynamic variables @,V or u. If Q
1s an effective grand potential including auxiliary functions depending on these
thermodynamic variables, then

o _ (o) o0 ap
dxr ~ \dz . Op Oz

It is just the second term here which causes all unpleasant problems. So, the
decision is evident: the derivatives 9€/9z are to be understood in the restricted

sense as 20 o0
-— 3 | = . (70)
oz ox o

The consent (70) may be called the thermodynamic restriction rule. We al-
ways employ this rule dealing with effective thermodynamic potentials. If the
derivatives in (66)-(69) are understood in the sense of (70), then both ways of
calculating thermodynamic characteristics yield the same answers.

Although with the restriction rule (70) we avoid the appearance of spurious
terms so that all relations (66)-(69) become self—éonsistent, another problem
can arise when dealing with effective thermodynamic potentials. This is the
occurrence of instability regions around a transition point, where either the specific
heat Cy or the isothermic compressibility s are negative. Below we illustrate
this for the SU(3) quarkless system of subsection 12.2 with the mean—field
parameter B = (225 MeV)* . The results are shown in Figs.27-34. The



136 YUKALOV V.1, YUKALOVA E.P.

2.50

Jo [1@8-Mev 3]

©.401

@.30

9.20

0.10+

0 (Mev]
2.29 : — -
200, 00 225. 00 250. 00 275.00 300.c0

Fig.27. Total density as a function of temperature for the SU(3) gluon-glueball mixture
at different values of the lightest glueball radius: (1) r,=06 fm; (2) r, =08 fm;
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Fig.28. Gluon probability vs. temperature for the values of r, as in Fig.27
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Fig.29. Pressure of the gluon-glueball mixture vs. temperature for the same values of r,
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Fig.31. Smoothing of pressure in the unstable crossover region at r, = 0.7 fm
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Fig.32. Smoothing of pressure in the region of first-order phase transition at r,= 1 fm
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Fig.33. Relative smoothed pressure for the gluon-glueball system at r, = 0.9 fm (solid
line) as compared with the lattice simulation data (Engels, 1991)
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data (Engels, 1991)
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unstable solutions appearing in the vicinity of transition points are related to
the loss of convexity of pressure. To restore the convexity, we may resort to
the Maxwell construction smoothing the corresponding thermodynamic potential
[138]. Such a smoothing is shown in Figs.31 and 32. The behaviour of the
resulting pressure and energy density is in a reasonable agreement with lattice
simulations [50]. Nevertheless, a slight dissatisfaction rests with the fact that
instability regions occur not only around a 1-order transition, where this would
be more or less natural, but also in the vicinity of a continuous transition.

" Instead of relying on the restriction rule (70), it would seem rational to define
an effective thermodynamic potential, from the beginning, in such a way that all
necessary thermodynamic relations would be automatically valid. This goal can
be achieved [139] by redefining thermodynamic characteristics with the help of
the shifts of the chemical potentials, u; — p; —u; , pressure, p — p+p’, energy
density, € — €+ &', and entropy density, s — s+ s’ requiring that the shifting
functions wu;,p’,e’ , and s’ guarantee the validity of (66) and (67). The latter
then are named the self—consistency conditions [139]. In this case, (66) and (67)
is a system of nonlinear differential equations, for the functions u,,p’,&’ and s,
in partial derivatives with respect to the variables ©,V and p; . Such a system
has no unique solution, especially when boundary conditions are not known. To
extract a solution from the self-consistency equations needs several additional
heuristic assumptions and fitting parameters. Some simplification comes from the
guideline prescribed by mean—field approximations [140-142].

14. PRINCIPLE OF STATISTICAL CORRECTNESS

In this section we present a new principle allowing a correct construction
of effective thermodynamic potentials. This principle, as compared to the self-
consistency conditions, is: (i) more general, yielding these conditions but not
conversely; (i) much simpler to deal with; (iii) unambiguous, providing a unique
solution.

Let an effective thermodynamic potential Q.rf = Q.55(p) include a set
¢ = {wi(z)} of auxiliary functions depending on arbitrary variables x . The
latter, in particular, may incorporate space and thermodynamic variables. First of
all, it is necessary to understand that not any effective potential can have sense,
however reasonable it may look. Each thermodynamic potential, to be accepted
as such, must have the properties formulated below.

Property 1. Statistical Representability:

An effective thermodynamic potential Q.f; represents an equilibrium sta-
tistical system if and only if it has the Gibbs form

Qerslp) = Q[Heps ()], (71)
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where
Q[H)= —-OInTre P4, (72)

depending on auxiliary functions only through an effective Hamiltonian H.;p=
H.pf() . Such a thermodynamic potential is called statistically representable.

In this way, if one invents an effective thermodynamic potential, even pro-
nouncing seemingly plausible words, this does not mean that the invented potential
describes some statistical system. If the potential is not statistically representable,
it represents no equilibrium statistical system. For example, a thermodynamic
potential in the excluded—volume approximation is not statistically representable.
Although the latter approximation may occasionally give a reasonable descrip-
tion, but in general it is not trustworthy. The excluded—volume approximation
may be used, because of its simplicity, as a first attempt of understanding the
qualitative behaviour of a system, but it should be always followed by a more
reliable approximation.

Property 2. Thermodynamic Equivalence:

A statistical system described by a given Hamiltonian H,;, is thermody-
namically equivalent to a system modeled by an effective Hamiltonian H,;; if
and only if their thermodynamic potentials are statistically representable,

Qgiv = Q[Hgiv]7 Qeff = Q[Heff}y (73)
and are equal to each other,
QHgin] = QHegs]- (74)

The corresponding Hamiltonians are called thermodynamically equivalent.

For the case of infinite matter, such as nuclear matter, the equality (74) can
be softened by requiring the validity of the asymptotic, in the thermodynamic
limit, equality

lim - (QHyu) — QH. ) = 0.

Property 3. Statistical Equilibrium:

The necessary condition for an equilibrium statistical system modelled by an
effective Hamiltonian H.;;(¢) to be thermodynamically equivalent to a given
statistical system with Hg,, is the equilibrium condition

)
<S$Heff(<ro)> = 07 (75)
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where the variation over ¢ implies a set of variations with respect to each ¢,
and

. TrAexp(—fHy)
(A) = y '
Trexp(—08Hes¢)

The proof of (75) is straightforward basing on the statistical representability
(71), thermodynamic equivalence (74) and the fact that 2,;, does not depend
on .

Now we can formulate the central notion:

Principle of Statistical Correctness:

An effective thermodynamic potential is statistically correct if it is statisti-
cally representable with an effective Hamiltonian satisfying the condition (75) of
statistical equilibrium.

As 1s evident, the self—consistency conditions for the first-order derivatives
(66) and (67) immediately follow from (75). Moreover, the self—consistency
conditions for the second—order derivatives (68) and (69) also follow from (75)
as well as such conditions for the derivatives of arbitrary order. While if one
finds the shifting functions from the first—order self—consistency conditions (66)
and (67), the second-order conditions (68) and (69) are not necessarily fulfilled.

We shall also say that an effective Hamiltonian is statistically correct if it
satisfies (75). The same can be said about an approximation leading to a statisti-
cally correct Hamiltonian. For instance, the correlated mean—field approximation
of Section 9, involving conditions (26) or (27), or (31), is statistically correct.

15. CLUSTERING QUARK-HADRON MATTER

To obtain a statistically correct description of the quark—gluon plasma clus-
tering into hadron states, let us use the correlated mean—field approximation [35]
leading to the Hamiltonian

H=Y H +CV,

1

H; = Y wi(k)al (K)as(X),
k

wi(k) = \/k2 + m? + U; — p (76)

discussed in Section 9.
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Consider the case of the conserved baryon number Npj = 27 N,“ with

Nf’ = B;N, , where B, is the baryon number of an i -cluster. For an
equilibrium system, the relation

1 = Biup (n

holds between the chemical potential p; and the baryon potential 1 . The
latter may be defined as a function pg(np) of the baryon density

N
np=—2 = ZBI/):. (78)

%

The index ¢ enumerates the constituents. The total set {/} of these indices
consists of two different groups, {i} = {i}!{J {¢}e . The first group {i},
corresponds to the plasma constituents, quarks, antiquarks, and gluons, which are
elementary particles, thus, having the compositeness number =z, = 1. The second
group {i}. enumerates hadron clusters that are bound states with compositeness
number z, > 2. Respectively, the total density of matter

p= Z 2P =P+ P (79)

i

consists of two terms

Ppi = Z iy Pet = Z <ifh

{1} {1}t

corresponding to the plasma density p,; and the cluster density p; .
Define the plasma mean fields U, , when 1 € {i},;, as

—

U =U(p) = p/ Viris(r)d r, (80)

where V(r) is a confining potential and s(r) , screening function. Before
substituting into (80) a concrete confining potential, let us emphasize the general
properties which the plasma mean field U(p) must satisfy to. These properties
are

Ulp) 200 (p—0),

Ulp) =0 (p— 00). (81)

The upper line in (81) means that quarks and gluons cannot exist as unbound
particles at low density, that is, the colour confinement must occuras p — 0. Or
one may say that quarks and gluons cannot exist as free particles outside dense
nuclear matter. The lower line in (81) reflects the phenomenon of asymptotic
freedom.



144 YUKALOV V.1, YUKALOVA E.P.

There are different types of confining potentials, linear, quadratic, logarith-
mic, and with noninteger powers. For example, the interaction between a heavy
quark and its antiquark is usually taken in the form of the Cornell potential
[143,144] with the linear confining term. This form of the potential is confirmed
by QCD calculations [145] and by lattice simulations [146]. The quadratic
confining potential is also quite popular [77,80,91]. In addition, the intensity of
mutual interactions between three plasma constituents, quarks, antiquarks, and
gluons, is different [145,147]. The confining potential V' (r) in (80) is assumed
to be an averaged potential of the form

Vir) = Ar¥ (0<v<2). (82)

The screening function s(r) = ¢(r/a) is usually [91] scaled with the mean
interparticle distance a = p~1/% . Therefore, the plasma mean field (80) with the
confining potential (82) can be written as

U(p) _ Jl+l/p—1/3’ (83)

where oo
JHt = 47rA/ c(x)a* T dx.
0

We can calculate the constant J if A and c(x) are known. Alternatively, we
may treat J as a free parameter. The value of J can be estimated as follows.
Accept that at the normal quark density pg the plasma mean field (83) becomes

Ulpo) = 3Ey = 3py/*, (84)

where the factor 3 stands for the three plasma constituents. Then from (83) and
(84) we obtain
J = 31/(1+u)p(1)/3- (85)

Thus, for the linear confinement, v =1, we get J = 272 MeV , while for the
quadratic confinement, v = 2, we have J = 226 MeV .
For the mean field of an ¢ -cluster we may write

U, = Z Dijp; + 2 [Ulp) = Ulpa)] s (86)
{d}er

where the first term describes the interaction of the given cluster with other
clusters, and the second term corresponds to the interaction of this cluster with
the quark—gluon plasma. The interaction potentials between clusters can be scaled
according to (20), which permits to express the interaction integrals (29) through
one scaling integral as

(I)ij = Z,ij‘I), (87)
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Taking into account (83) and (87) reduces (86) to

U = 2,8p + 2 T4+ (p—'//3 _ p*”/3> : (88)

cl

In the effective Hamiltonian (76) with the mean fields (83) and (88) the
role of auxiliary functions is played by the densities p and p. . So, for the
equilibrium conditions (75) we have

OH oH
V=90 =0. 89
< dp > ’ <3pcz> )

From (89) we have two variational equations of the type (31), whose solution, up
to a constant, is easy to find:

C = - z VJ1+u (plﬁ"/?’ _ pi;u/s> _ %‘prl. (90)
In this way, the effective Hamiltonian is completely defined and we can pass to
particular calculations.

15.1. Pure Gluon System. Imagine an extreme situation when only gluons
can exist. This case may be obtained from the general model by putting all
degeneracy factors zero except that of gluons, ¢ #0. Then p = p, and
pce = 0 . Employing the Boltzmann approximation, we find [148] that there
occurs a first order transition vacuum-gluon plasma-at

v v 72\ /3 )
@d:J[S_VeXp@‘g)(g) J ‘

Below ©, there is exactly vacuum, empty space, with zero energy density
€ = 0. Gluons appear at ©; with a jump. The relative latent heat at O, is

Aey 1+v ( 3)
—_— = exptl——1.
ESHB v 14

The degeneracy of gluons for the SU(3) case is ¢ = 16 . For the linear
comfinement with v = 1, we get O, = 248 MeV and Aeggfesp = 0.27 .
For the harmonic confinement, when v = 2 , the vacuum-gluon transition
happens at a higher temperature ©,; = 285 MeV and the latent heat is larger,
AEd/ESB =0.91.

15.2. SU(2) Gluon-Glueball System. The gluon degeneracy factor for the
SU(2) caseis ¢ = 6 . As the scaling integral we take & = $y2/4 . So
that the interactions between glueballs are found from (87). We consider the
glueballs listed in Table 2. There are two fitting parameters for which we accept
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Fig.39. Relative energy and pressure for the corrected SU(3) quarkless model
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1989; Engels, 1991; Petersson, 1991)
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Fig.49. Dimensionless compres-
sibility coefficient
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J =175 MeV and ®;; = 38.42 GeV/fm® , so that & = 9.61 GeV/fm? .
The results of our calculations [148-151] are shown in Figs.35-37 for the quadratic
confinement, v ~ 2 . Actually, the results do not change much in the interval
1.5 < v < 2. We have mainly used v = 1.86 . Deconfinement is a second—
order transition at O, = 210 MeV . As is seen, the agreement with the lattice
simulations {135] is beautiful.

15.3. SU(3) Gluon-Glueball Mixture. For the gluon degeneracy factor we
have (; = 16 . The power v of the confining interaction is, as in the previous
subsection, close to quadratic. But the fitting parameters are J = 225 MeV
and ¢ = 3.84 GeV/fm3 . The glueball characteristics are again taken from
Table 2. Calculations show [148,149] that a first—order transition occurs at Oy =
225 MeV with the relative latent heat Aeg/esp = 0.23 . The agreement with
the Monte Carlo lattice simulations [50,51,152] is also very good (Figs.38,39).

15.4. Mixed Quark—Gluon—-Meson System. Consider the case of zero baryon
density, ng = 0. Take the quarks of two flavours, u and d, and the related
antiquarks, @ and d . Assume, for simplicity, that all their masses are
equal, m, = my =7 MeV . The degeneracy factor for each kind of quarks
is (. = (4 = 2N, = 6 . This factor for gluons is (, = 16 . Hadrons are
represented by mesons from Tables 3 and 4. Following Section 11, we accept
®33 = 315 MeV/fm® | so that & = &33/9 = 35 MeV/fm3 . The plasma
interaction parameter J = 225 MeV is the same as in the previous subsection,
as well as v = 2 corresponding to quadratic confinement. So, here we do not
add any new fitting parameters.

Our calculations [148,149] displayed in Fig.40 prove that there is no sharp
phase transition but there is a gradual crossover. The deconfinement transition
can be attributed to the temperature ©4 = 150 MeV where the relative specific
heat Cy/Csp has a maximum. The latter is finite and look rather as a Schottky
anomaly [153] than as a narrow divergent peak typical of a second—order phase
transition. The agreement of our results with the lattice—simulation data [137)
is again quite good. The lattice results [137] indicate that the deconfinement
transition is really continuous. From the point of view of QCD this can be
understood as follows. The role of the quark term in the QCD Lagrangian
is similar to that of an external magnetic field applied to a spin system. In the
presence of a magnetic field, the ferromagnet-paramagnet transition in simple
spin systems becomes a continuous crossover.

15.5. Finite Baryon Density. Here we extend the consideration to nonzero
baryon density. The parameters J and & are the same as in the previous
subsection. Again, we study the two—flavour case with the same characteristics.
We take mesons from Table 3, protons and neutrons from Table 5, and multi-
quarks from Table 1. For a six—quark cluster we accept mg = 1944 MeV .
The Bose-Einstein condensate of six—quarks occurs when wg(0) = 0. Then, the
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baryon potential is

1 /- —v/
KB = ’2-7716 + 3(bpcl + 3J1+u (p_u/l‘ +p /‘> ’

cl
and the density of six—quarks consists of two terms:

¢ oo
p6 = (2;)3 /ﬂs(k)d E +p8.

We have analysed the behaviour of several probabilities {154-157] as func-
tions of temperature © and relative baryon density 1 /nop . This is demon-
strated in Fig.41 for the plasma probability

1
wpr = (pg + pu+ pa+ pa+pg),

in Fig.42 for the pion probability

2
Wy = — (/)7\'+ + p.- + /)1r“) .
p

in Fig.43 for a summarized, excluding pions, probability of other mesons

2

; (p77 + pﬂ+ + /)p_ + /)/1“ + /)w') = Whines,

Wypw =
in Fig.44 for the nucleon probability

wy = p,,+p;—,+/)n+/),~l),

~(
p
in Fig.45 for the six—quark probability

we = (o5 + p3)
6 = — \Ps )+
P 3
and in Fig. 46 for the probability of condensed six—quark clusters

6
0 0
Wg = —Pg -
P

In addition, we present here some other thermodynamic characteristics per-
mitting to better understand the features of the deconfinement transition. The ratio
of pressure over energy density, which has the meaning of the effective sound
velocity squared,

2 _
Ceff = ¢
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is given in Fig. 47. At ng = 0 the temperature dependence of c? ¢ agrees with
that reconstructed from the lattice data [158]. The reduced specific heat

_985
UV—EBG

and the dimensionless compressibility coefficient

_(np 9p -t
R = (F anB )
are depicted in Figs. 48 and 49, respectively. The transition line can be ascribed
to the maximum of the inverse compressibility coefficient n;l which can be
called [111] the compression modulus (see Fig.50).

We shall not discuss in detail the peculiarities of the calculated thermody-
namic functions. This is because, as we think, the presented figures already
give a good visual demonstration, and also in order not to make this review too
long. Let us only emphasize that the deconfinement transition is a continuous
crossover becoming smoother and smoother with increasing baryon density. The
deconfinement at a fixed low temperature and rising baryon density is due to
the disintegration of hadrons into unbound quarks. When both temperature and
baryon density increase, the deconfinement is a result of the hadron disintegration
as well as of the generation from vacuum of quarks and gluons.

Concluding we may state that taking into account the coexistence of hadrons
and of the quark~gluon plasma is vitally important for constructing a unified ap-
proach being in agreement with the lattice-simulation data. The gradual character
of the deconfinement transition, occurring through a mixed hadron—plasma state,
rules out those predictions that have been based on a sharp first—order phase tran-
sition. This concerns the interpretation of signals of the quark-gluon plasma at
heavy ion collisions [8-14,159] and the hadronization scenario related to the evo-
lution of early universe after the Big Bang [4]. The quantitative predictions of our
approach can be improved in several ways, for instance, by including more kinds
of particles or by invoking more elaborate interaction potentials [160]. However,
we do hope that qualitatively the picture will remain the same.
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