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HEAVY ION INJECTION
IN SYNCHROTRONS AND STORAGE RINGS

D.Dinev

Bulgarian Academy of Sciences,
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A survey of methods for injection of heavy ions in synchrotrons and storage rings is
given. Three main injection methods: stacking in transverse phase space, stacking in
longitudinal phase space and ion stripping arc described in detail. Combinations of
multiturn injection with linear coupling, beam cooling and RF stacking are represented. A
lot of examples and original results obtained by the author on the simulation of the injection
of the Nuclotron booster are given.

Han 0630p METOQOB HHXCKUMH TAXCIABIX MOHOB B CHHXPOTPOHbI M HAKOIUTEIIbHBIC
Kosbua. [logpo6Ho onucakbl TP OCHOBHBIX METOJA HHXKCKLIMH: HAKOILICHHUE B NTOTICPCYHOM
(ha3oBOM 1IPOCTPAHCTBE, HAKOIUIEHHE B NPOA0;1bHOM (ha30BOM NPOCTPAHCTBE M Nepe3apsika
HoHoB. [IpencraricHbl KOMOHHALMK MHOTOOOOPOTHONH MHXEKLUMH W IHHEHHO! CBA3M KoJle-
6anui, MHOroo60pOTHON HHKEKUHMH M OXIIAXKIEHHUS 1TY4Ka U MHOTOOOOPOTHOH HHXEKLIMH H
BBICOKOYACTOTHOIO HakofLleHUR. [IpHBOAMTCS MHOXKECTBO I[IPUMEPOB W OPHUIHHATIBLHBIC
pe3ynbTaThi, NOJYYCHHBIC ABTOPOM, 110 MOAETHPOBAHHIO MHXKEKUHH B GycTep HYKJIOTpOHA.

1. INTRODUCTION

The last decades show a growing interest in the investigations with heavy
ions. Traditional applications of the heavy ion beams in nuclear structure stu-
dies and new elements synthesis have been considerably broaden and now cover
research fields from fine atomic and molecular physics to beam crystallization.
At the same time the nuclear physics studies have evolved to higher energy
including experiments with ultrarelativistic ion beams.

It is a remarkable progress in the accelerator physics and techniques that
underlies this development.
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The milestones of this progress are: the breakthrough in the ion source
technology with the invention of the ECR and EBIS sources, the revolutionized
impact of the beam cooling technique (electron, stochastic and laser) and the
realization that large proton facilities can be used for ion acceleration after
modest upgrade.

If twenty years ago tandems, conventional AVF cyclotrons and heavy ion
linacs, were used for ion acceleration, nowadays the field of heavy ion facilities
covers: large AVF cyclotrons, including superconducting machines; a large
number of accelerator-cooler-storage rings for low and medium energy;
superconducting heavy ion linacs; existing proton synchrotrons, converted to
ion accelerators with energies above 1 GeV/A; new ion synchrotrons and rela-
tivistic ion colliders.

This paper represents a survey devoted to the one of the major steps in
heavy ion acceleration process — ion injection.

We will restrict ourselves only to discussion of injection in heavy ion
synchrotrons and storage rings.

The goal of any injection is to accumulate high current beams with
minimum particle losses, i.e., with high efficiency. The accelerator acceptance
should be filled as dense as possible.

Many methods developed for injection of protons are applied also for heavy
ion accumulation.

Thus fast (single turn) injection by means of a kicker magnet which is
switched on during one revolution is used for injection of heavy ions from
booster synchrotrons or in cases when the beam pulse from the ion source is too
short (EBIS and laser sources). We will not specially discuss this method here
as it is elucidated for example in [1].

The intensity of the heavy ion beams produced by the ion sources,
especially in high charge states, are limited and as a rule lower than the
intensity of the proton beams.

That is why the methods for multiturn injection are of special importance
for the heavy ion storage.

There exist methods for particle stacking in either betatron phase space or
synchrotron phase space or simultaneously in both.

The betatron stacking is discussed in chapter 2, including the methods
applying beam coupling and beam cooling.

Chapter 3 is devoted to the RF stacking.

Another method for ion accumulation is the charge exchange injection. It is
widely used in the proton synchrotrons. Applied for injection of heavy ions this
method has a lot of peculiarities which are discussed in detail in chapter 4.

Table 1 and Table 2 summarize data on the injection in some of the heavy
1on synchrotrons and storage rings now in operation.
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2. MULTITURN INJECTION WITH BETATRON STACKING

The classical method of multiturn injection with accumulation of particles
in the transverse (radial) phase plane is widely used in heavy ion synchrotrons
and storage rings. Some examples are the synchrotron SIS in Darmstadt [2] and
the cooler ring CELSIUS in Stockholm [3].

2.1. Principle of the Betatron Stacking. In the betatron stacking method
[4—9] the closed orbit is locally distorted by means of two, three or four bump
magnets in a way to pass close to the injection septum, Fig.1a. In the beginning
the bump is as big as possible and then it is gradually reduced to zero.

In each time t € (O,nTS), Ts being the revolution period and n the number

of turns during injection, a portion (slice) of the incoming beam is injected into
the accelerator. In general the slice center will have linear x; and angular x/

displacements with respect to the closed orbit and the slice will undergo be-
tatron oscillations.

One turn later, the slice will come again at the injection azimuth. However
due to the betatron oscillations around the instantaneous closed orbit most of the
particles will avoid the septum. This is well seen in the normalized phase plane

(x, x*), x = Bx" + ox, where B and o are the Twiss structural functions. In the

normalized phase space (x, x") the particle trajectories are circles, Fig.1b.

Let us for our explanation of the multiturn injection process take horizontal
betatron frequency equal to Q =1+ 0.25, | being any integer. With this value
of O the particles of the considered slice after four revolutions will come again
to their initial positions, i.e., within the septum. Falling ‘again within the septum .
the slice would undergo wrong bend and will be lost on the vacuum chamber.
Fortunately enough, the closed orbit has been meanwhile displaced towards to
the machine center. If the closed orbit moves slowly enough comparing to the
period of the betatron oscillations, the particle motion will be adiabatic and the
particles will follow the orbit. No additional oscillations will be excited. This is
depicted on Fig.lc on which three successive positions of the beam slice and
closed orbit are shown. Provided the closed orbit displacement during four
revolution periods is large enough, the particles of the slice will avoid the
septum horizontally and will be accumulated in the accelerator.

Meanwhile a new portion (slice) of the incoming beam wiil be injected. The
particles of this second slice will have larger amplitudes of the betatron oscil-
lations as the orbit bump is reduced and the injection position is kept un-
changed.

The process goes on until the bump height is reduced to zero.

It can be shown that the successive slices (or more precisely what remains
from each slice after its multiple cutting by the septum edge) lie on a spiral
(Fig.1c). The origin of the spiral is on the simultaneous orbit and at the end of
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Fig.1. Principle of the betatron
stacking: a) closed orbit bump, b) the
positions of an injected slice at times ¢,
t+ T, t+2Ts. The hatched area will

be lost; the fractional part of the Q is
taken equal to 0.25. ¢) the successive
positions of the injected beam slices

the injection process it coincides
with the machine centre. In the

case of linear orbit fall the spiral x* SEP
is Archimed’s one. 2
Computer simulations can 3 m( ml
describe the stacking process ste =
by step [10,11]. &P P ‘ COCONQ) X
As an example we will use in
this paper the project of the B

booster synchrotron for the super- L X+ SEP
conducting heavy ion synchrotron 10|

Nuclotron which is constructed at %:__\ \9

JINR, Dubna [12]. This will be a I/ ¢ ,.\QA\S

six-period  synchrotron (Fig.2) W@,‘——%———‘
with circumference of 50.52 m 1n¥ ! \__33, e
capable to accelerate protons up to \\\@i‘ @zf, ,'

650 MeV and ions with Z/A =0.5 2. _ '_@/

up to 200 MeV/A. The now in 12 7771

operation linac LU-20 which acce- ¢

lerates protons up to 20 MeV and

ions with Z/A =0.5 up to 5 MeV/A will be used as an injector into the booster.
The booster will increase the beam intensities in the Nuclotron more than ten
times, will raise the final energy of the ions applying ion stripping and will
improve beams quality by electron cooling. Other important booster parameters
are: beam rigidity at injection 0.647 Tm and maximum 4.3 Tm; betatron tune
thQv=2.25; emittance of the injected beam 40 m mmmrad; acceptance

260 ® mm-mrad.

Figures 3 and 4 show the results of the computer simulations. Both the
radial (x, x") and the vertical (y, y”) transverse phase planes and the transverse
cross section (x,y) are shown. On Fig.3 the injection covers three revolution
periods (three beam slices are clearly cut in the radial phase plane) while on
Fig.4 it covers fifteen periods (the successive slices w1de1y overlap and the
density distribution is rather smooth).
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Fig.2. Nuclotron’s booster [12]
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Fig.3. Phase portrait of three-turns injection into Nuclotron’s booster [11]
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Fig.4. Phase portrait of fifteen-turns injection into the Nuclotron booster {11]

2.2. The Local Orbit Bump. During the multiturn injection, a local orbit
bump should be produced in order for the beam to pass close to the septum. Let
us consider the kicks in the bump magnets necessary for the local closed orbit

bump to be produced. Here we will analyse the general case of arbitrary phase
distances between the elements given in [13].

A. System with Three Bumpers

A scheme of three bumpers is depicted in Fig.5. The kicks €, € and g,
which produce a closed orbit bump with deviation X, at the injection azimuth

are the solutions of the following system of three equations:
sin lL,o VB, € +sin P,y VB, &, =0,

cosulg\/ﬁsl+cosu29\/E£2+\/E£9=0,

X
sin Hog VB, € + T/Bi 2.2.1)

9
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Fig.5. Injection system with three bump magnets

Bl

where g, =BLpl is the kick in the first bumper and W, is the phase advance

2
ds
between BM, and BM, {“‘24@ J
1

B. System with Four Bumpers

Using a system with four bumpers an additional constraint of having a zero
slope at injection azimuth can be set, Fig.6. Two cases can be distinguished.

In the first case a drift space is situated between the second and the third
bump magnets. Using the Twiss form of transfer matrix, we obtain for the kick
in the first bumper:

XS XS
€ = = ——_— (2.2.2)
Yoml, VBB sinpy,

where we have denoted by M' the transfer matrix from BM, to BM, and by
M? the transfer matrix from BM, to the septum. The kick in the second

bumper should counteract the trajectory slope X

X
g, =—X,"=-my€, - B_; (ctg iy, — ), (2.2.3)
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X, cm
- o W e w,m

BM; BM; BM3 BM,

Fig.6. Injection system with four bump magnets

Finally from a symmetry:

X.‘
83778, (c1g Hyy = O3),
3
XV
A (2.2.4)
b VBB, sinpy,

In the second case when no drift space but some elements (quadrupoles, for
instance) lie between the second and the third bumper, it is still possible to
obtain a zero slope at the injection azimuth although the trajectory is more
complicated.

For the strength of the first two bump magnets one can deduce in this case:

X, =B, oo

5 S i €p
(cos Moy — O SIN l'12s)

El (cosp, —o siny,)

€,=- - €. 225
2 B, (cosp, - o sinp, ) 1 ( )
And from a symmetry:
sin pl,,
XS=VBSB4 ( o si ) 84,
COS Wy — O Sin Y
B, (cosp_,—o sinpu )

g,=— ¥V Lo 2.2.6)

€, .
_ ; 4
B, (cos M=o sinpt )
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Fig.8. Efficiency in the Nuclotron’s booster versus the number of injected
turns for different laws of orbit bump fall
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Fig.9. Efficiency in the Nuclotron’s booster versus the distance injected
beam centre — septum [11}

The dependence of the efficiency on the betatron number Q has a typical
symmetrical shape, Fig.11.
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efficiency (%)

Y T T T
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inj. beam slope (mrad)

Fig.10. Efficiency in the Nuclotron’s booster versus the injected beam
slope [11]

efficiency (%)

Fig.11. Efficiency in the Nuclotron’s booster versus the betatron number

Q[11]
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2.4. Improvements of the Multiturn Injection with Betatron Stacking.
2.4.1. Multiturn Injection with Linear Coupling. If both the horizontal and the
vertical emittances of the injected beam are sufficiently smaller than the accep-
tance of the ring, one can realize multiturn injection with stacking in both
horizontal and vertical phase spaces applying linear coupling of the betatron
oscillations [14, 15].

The linear coupling occurs when Q.= Qz in the presence of skew quad-

rupole or solenoidal magnetic fields. The strength of the coupling if excited by
skew quadrupole is determined by [16]:

c ok 1 g[%
9 2nQ Bp dx

] ds. (2.4.1
z2=0

The linear coupling leads to beating of the horizontal and the vertical beta-
tron oscillations. The amplitudes of the oscillations in smooth approximation
are:

|x[2= 1417+ |B]%?*-2]4B"] y cos (©, ),
|z[2= 8|2+ |A|%?+2]AB| X cos (Q, 6), (2.4.2)

where

x=V1+& ¢ (2.4.3)

g=—B8p0A (2.4.4)
R ()

A=Q -0, (2.4.5)
Q.+0

Q=" (2.4.6)

In (2.4.2) A and B are two complex constants of the motion whose values
are determined by the initial conditions and Q. is the beating wave number.

It can be shown that:

0.=NA+cl. 2.4.7)
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According to (2.4.2) there exists a sinusoidal exchange of energy from the
horizontal to the vertical betatron oscillations and vice versa while the whole

energy, i.e., |X|2 + |Z| 2 keeps constant.

Thus a beam injected in the medium plane close to the vacuum chamber
wall will undergo horizontal betatron oscillations with decreasing amplitude.
The energy of the horizontal oscillators goes to excite vertical betatron oscil-
lators with increasing amplitude. After a half of beating period the beam will be
dismissed horizontally towards the machine centre and vertically off the me-
dium plane to the highest degree.

The depth of the amplitude modulation during the beating is given by:

Cq
§=—191 (2.4.8)
A%+ C«21

After that the process will go back to small vertical and maximum hori-
zontal amplitudes of the oscillations that is why the injection process must be
stopped.

As a result we will have phase space painting in both horizontal and ver-
tical planes.

The multiturn injection of heavy ions with linear coupling is realized, for
instance, in the AGS booster [17].

The injection is from 1 MeV/u tandem Van de Graaf which delivers ion
beams with very small transverse emittance. This allows very efficient multiturn
injection (Fig.12). The unperturbated tunes are Qx:4.833 and Qz=4'780' A

skew quadrupole induces significantly X—Z coupling during the injection. Typi-
cally about 40 turns can be injected with efficiency of 65%. Applying this
scheme the beam intensity has been increased more than 50%.

2.4.2. Combination of Multiturn Injection with Beam Cooling. 1f the beam
lifetime is long comparing to the cooling time it will be possible to combine at
electron cooling at injection energy with betatron stacking.

The cooler voltage is chosen not to change the average ion momentum.
During the cooling the beam shrinks transversally and new injection pulses can
be put next to the stack in the horizontal phase space. The injection consists in
repetitive combinations of multiturn injection and successive electron cooling.

Such kind of injection is realized in the heavy ion synchrotron SIS and in
the cooler ring CRYRING.

In SIS the injection covers from 10 to 15 cycles within 1s and allows the
accumulation of 4-10° particles per pulse [18]. The cooling time for U ions
with 11.4 MeV/u energy is about 100 ms. The cooling reduces the beam
emittance from 100 ® mm-mrad down to 30 m mm-mrad. A series of ten
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Fig.12. Multiturn injection in the AGS booster. Oscilloscope traces of the
injection kicker (top); circulating beam current (middle); beam pulse from the
Tandem (bottom). One horizontal box corresponds to 500 us [17]

repetitive multiturn injections with 80% efficiency will allow accumulation of
4-10° ions per pulse.

In CRYRING this combination is applied for the lightest fully stripped ions
[19]. Thus the lifetime of deuterons at 290 keV/u is 300 s. Provided the cycle
betatron stacking-cooling lasts 3 s it will be possible to improve the stored
intensity 100 times. The real efficiency is sufficiently smaller, as the stack of
cooled ions occupies a part of the phase space where normally some of the
injected pulses go. Nevertheless, 60 © A (2-109p) has been stored in the ring.

_The accumulated intensity in the stacking-cooling process is limited by the
space charge effects (incoherent space charge instabilities).

3. BEAM STACKING WITH RF ACCELERATION

3.1. Principle of the RF Stacking. Storage of the injected particles in the
longitudinal phase space was first suggested by Symon and Sessler in MURA
[20]. Later this method was experimentally investigated in the model electron



464 DINEV D.

)Y SEP

2X
stack

I /
Z N

%
1

Mi i

a L Xinj

> ¥

(1)

g L

Fig.13. Location of the injected and stacked beams in the accelerator aperture

storage ring CESAR in CERN [21]. The RF stacking was used successfully for
many years in the proton storage ring ISR in CERN [22].

The principle of the RF stacking [20-24] can be understood from Fig.13,
where a transverse cross section of the accelerator is shown.

The beam is injected by means of an electrostatic septum at position Xinj'

After the injection of the first portion of particles is completed, the stacking RF
cavity is switched on and the particles are accelerated (or more usualy dece-
lerated) to an outer (inner) orbit according to:

———=—, 3.1.hH

where R is the physical radius of the machine; B is the relativistic factor and
o is the momentum compaction factor [25,26]:

oO=— ——=—" (3.1.2)

In (3.1.2) ()m denotes averaging over the dipoles only and D_is the dis-

persion.
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Fig.14. Principle of the RF stacking

When the top of the stack is reached, the RF voltage is abruptly switched
off and the particles are released from the RF buckets.

The RF cycle then is repeated and the next injected portion is trapped in
buckets and accelerated (decelerated).

There are two modes of operation.

In the so-called «repetitive stacking» mode or «stacking at the top» the new
portion is moved again to the same position, i.e.,, to the top of the stack.
According to Liouville’s theorem the particle density in the longitudinal phase
space must be conserved [26]. Hence the particles already accumulated in the
stack will be displaced toward lower (higher) energies. Due to the very small
value of the momentum compaction factor (3.1.2) in the strong focusing rings
the portions of particles with different energies largely overlap in the physical
and transverse phase spaces, Fig.14. The stacking takes place in the longitudinal
phase space while the density in the 6-dimensional p-phase space is conserved
in agreement with Liouville’s theorem. A beam stack with large intensity is
built up.

In the «non-repetitive stacking» mode or «stacking at the bottom» each
successive portion of particles is moved to a slightly different energy than the
previous one. The energy difference is equal to the final bucket area A, divided

by 2x; so as the new particles will be added to the bottom of the stack.

3.2. Longitudinal Phase Space Topology. As this has been shown first by
Symon and Sessler [20], the equations of the longitudinal motion in an acce-
lerator can be put in Hamilton’s form with canonically conjugated variables:

dE
W=2 — 3.2.1
" ) ¢2D

0
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Fig.15. Stationary and moving RF buckets

and the RF phase ¢. In (3.2.1) o(E) is the revolution frequency of a particle
with energy E and E, is an arbitrary energy.

The area of stable oscillations around the synchronous particle, the so-
called RF bucket is shown on Fig.15 for the stationary case ( I =sin 0, = 0; no
acceleration (deceleration)) and for the moving buckets (I'=sin (pX;tO ; the
particles are accelerated (decelerated)).

Let 2 be the harmonic number of the RF, so as we will have 4 buckets
simultaneously on the accelerator circumference. The area of these h buckets is:

a) for stationary buckets

A
A —§§ 8n eVEs

bs= o W s (3.2.2)

5

b) for moving buckets

A, =Absaf(r). (3.2.3)
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wdp v Y Yy

Y — the relativistic factor and Y, — its value at the transition point. In (3.2.3)

o(T) is a tabulated function of the synchronous phase I'=sin ¢, (Fig.16). In
the RF stacking an important role is played by the adiabatic theore/r\n of
Boltzman—Ehrenfest [26], which states that if the parameters (such as V, P,
Es, etc.) in the Hamiltonian, H, are varied sufficiently slowly the particles
lying on a closed curve H(t)) = const surrounding an area of stable oscillations

A, at a time t, will remain on a closed curve H(t,) = const surrounding an area

A,=A atatimet,> t,. Thus the action integral Izé Wdo is an invariant.

3.3. Stacking Cycle. It is the phase displacement phenomenon that undelie
the Rf stacking process. The phase displacement is a phenomenon related with
the crossing of a coasting beam by RF bucket (no matter filled with particles or
empty). The trajectories outside the separatrix are such that the particles will
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move in the opposite to the bucket direction (for an accelerating bucket to lower
energy and for an decelerating bucket to higher energy). According to Liou-
ville’s theorem the area of the displacement of the coasting beam must be equal
to the bucket area A,. Hence the change in the mean energy of the coasting

beam is:

4

AW=—. (3.3.1)
2n
A detailed calculation of the change of the energy of a particle lying outside
a moving bucket when this bucket crosses the particle 1s made in [27,28]. It
shows that the mean energy change follows (3.2.1) while the energy spread in
the coasting beam is increased.
Let’s now look at the RF stacking cycle in more detail.
The stacking is performed at a constant magnetic field.
After the first portion of particles is injected, it immediately debunches due
to the spread in the revolution frequency of particles having different energies.
The RF voltage is now switched on adiabaticaly while the RF frequency is
kept constant (¢ = 0). The particles are trapped with big efficiency (more than

90%) in stationary buckets.
After the capture finishes, the RF buckets are decelerated toward to the top
of the stack.

As:
Edo_ a1 (3.3.2)
wdE B
and
dE. ® » | .
7o eV sin P (3.3.3)

the RF frequency must be increased according to:

do n w? A
— = —eVsing,. (3.3.4)
d 2nhP°E

When o reaches the final frequency, the RF voltage is switched off, the

bunches debunch and a whole strip in the stack is populated with particles.
In the repetitive stacking mode each of the successive pulses crosses the
whole stack and the particles are released at the top of the stack. ‘
In each crossing the already stored particles are moved to higher energy by
(3.3.1) according to the phase displacement mechanism.
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If the stack is built by n pulses, the ideal stack width will be:
AEideal Ab
_ideal b

2n . o

(3.3.5)

In fact the particles will be distributed over wider energy range
AE > AE,

ideal’
In the non-repetitive stacking mode the crossing of the whole stack by the
buckets is avoided by successive reducing of the final RF frequency by:

2
_0n A

0] . (3.3.6)
Thus the particles will be deposited at the stack bottom.
It is natural to define the stacking efficiency as the ratio of the average
phase space density in the stack to that in the injected beam [29].
The total stacking efficiency depends on two kinds of parameters:

€= £e. 3.3.7)
Here € describes the dependence of the stacking efficiency of the RF mani-
pulation — mainly on the trapping efficiency in the buckets.
In (3.3.7) € is the accumulation efficiency itself:
lim
eE=, (3.3.8)

tot

where N is the number of particles in the ideal stack width and N, 18 the

total number of particles in the stack.

Function € represents the reduction of the phase space density due to the
dilution of the stack by the moving RF buckets during the subsequent stacking
cycles.

Experiments and computer simulations [29] show that € is a function of the
synchronous phase I =sin @_and of the number of stacking cycles n. There is

an empirical formula:

1
= T , (339
l+——"F
3vn o (D)
which agrees quite well with the experimental results over a wide range of
I" and for not too small n.
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As o' (T) is a decreasing function of ¢, (Fig.15), the stacking efficiency
e¢— 1, when ¢, —0.
However small values of ¢, will require very long stacking times according

to (3.3.4), i.e., a compromise must be made.

3.4. Combination of Multiturn Injection and RF Stacking. Both the
multiturn injection and the RF stacking have their limits in the intensity of the
accumulated beams. These limits have been already discussed above.

If we combine both accumulation mechanisms, much larger intensity multi-
plication factors can be realized. The stacking will take place in the 4-dimen-
sional (x, x’, W, @) phase space. The physical aperture of the accelerator how-
ever must be shared by booth the methods. Let € be the area of the transverse

phase plane (x, x") devoted to the multiturn injection. In order to estimate this
area a pure geometrical analysis can be carried out [30].
From Fig.13 one can easily deduce that

a— ‘e()B(s)
—] 34D

2
— <
Ep~E, S2EB [ )

must be satisfied for any point s along the circumference, B(s) being the
Twiss amplitude function; and D(s), the dispersion.
On the other hand, in the injection point:

_ 2 1nj
Einj_Ebot_EB { D

inj

2Vg, B +A
], (3.4.2)

where A is the septum thickness.

Let S* be the azimuth at which the right-hand side of (3.4.1) has a mini-

mum and the corresponding values of B(s) and D(s) be B* and D".
The number of RF cycles is:

Ebot Etog
=€ AE , (3.4.3)

nrf

where AFE is the phase displacement of the stack dﬁring a single crossing by
the buckets (3.3.1) and € is the stacking efficiency here defined as the ratio

of the ideal stack width to the width of the real stack [21].
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The number of the effective turns in the multiturn stage of the combined
process is:

n =g —, (3.4.4)

where Eini is the emittance of the injected beam, € 1s the multiturn injection

efficiency.
Thus the total number of effective turns will be:

inj

Ep’ 2a— Ve, BY) 2V B +A
- 3.4.5)

Piot = M T = €8¢ AE 0 D D. .
inj

From (3.4.5) the optimum value of the phase area devoted especialy to the
multiturn injection can be calculated.

3.5. RF Stacking Examples

A. Heidelberg Test Storage Ring (TSR)

The Heidelberg Heavy Ton Test Storage Ring (TSR) [31] is an experimental
accelerator specially designed to investigate the electron cooling of heavy ions
and the combined RF stacking scheme as well. The ring is able to store ions
with energy up to 30 MeV/A (for Z/A =0.5) accelerated in a MP tandem —
postaccelerator combination. The emittance of the injected particles is
1.5 ® mm-mrad and the injected current 9 pA.

A combined .scheme of multiturn injection and RF stacking is used [32].
The phase area devoted to betatron stacking is €, =96 ® mm - mrad. It is filled

for about 100 turns with an efficiency of 40%.

The repetitive stacking mode is chosen for the RF stage of the accumulation
process. Ther efficiency of the adiabatic capture of the ions in the buckets is
94%. The RF stacking involves 20 cycles which gives a total number of
effective turns Mot = 800. In fact 7 mA (1.2-1010 ions) of co* ions with

6.1 MeV/A energy has been measured. The whole process takes about 12 ms.
Figure 17 shows the longitudinal Schottky Spectrum of the RF stack after
accumulation of 30 cycles [32].

B. MIMAS Booster — Accumulator for Saturne

MIMAS is a low energy booster — storage ring which accumulates heavy
ions from a CRYEBIS (Dione) — RFQ combination at 187 keV/A and
accelerates them to 11.9 MeV/A (for Z/A =0.5) for injection in the synchrotron
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Fig.17. TSR Schottky spectrum of the RF stack after accumulation of 30 cyc-
les (32}

SATURNE (33]. Dione generates ions in short 50 pus pulses at intervals of
20—50 ms.

In MIMAS ions are stacked in the synchrotron phase space by a betatron
deceleration scheme [34]. The deceleration voltage up to 500 V is made by flux
variation in 8 ion cores installed in one of the straight sections. Up to 8 heavy
ions pulses can be injected and stored with a repetition rate of about 100 Hz.

The injection scheme can work with polarized protons and deuterons as
well. The pulse produced by the ion source Hyperion is long (1 ms) with
constant intensity allowing for a constant filling of MAIMS.

With MIMAS the synchrotron SATURNE is capable of producing beams

up to krypton at 700 MeV/A as well as high intensity polarized protons and
deuterons at 3 GeV.

4. CHARGE-EXCHANGE INJECTION

Charge exchange injection is now the preferred injection method for proton
machines due to its relative simplicity and a very high intensity of stored beams
[35,36]. Recently, this injection method has been successfully applied for light
ion storage in the CELSIUS {37] and COSY [38] cooler rings.
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4.1. Principle of the Charge-Exchange Injection. The principle of charge
exchange injection consists in letting an injected beam pass through a thin inter-
nal foil [36,63]. Having passed the foil, ions change their charge while energy
is practically unaltered and beam rigidity Bp jumps to a new value according to
the relation:

A Toop T
Bp="—NT*+2E, T, 4.1.1)

300Z

where Bp is in Tm; the kinetic energy T per nucleon is in MeV, and the rest
of energy per nucleon E, 1s also in MeV. This provides a spatial separation

for the trajectories of the injected and circulating beams.

The charge exchange process cannot be described by a Hamiltonian. That
is why the Liouville theorem for phase space density conservation does not
work. This allows us to inject ions many time into one and the same area in the
phase space thus increasing the intensity of the stored beam (non-Liouville
stacking).

4.2. Equilibrium Charge State Distribution and Equilibrium Thickness
of the Stripping Foil. As the beam ions travel through the matter, a relative
content of ions in defferent charge states changes. The process is described by
the following set of linear differential equations:

o,
J

where <I)j is the percentage of the ions in the j-th charge state in the beam:
Oy is the cross section for the transition j — k; t is the foil thickness in
at/em?.

The charge state distribution reaches equilibrium for thick enough foils
(39,40]. This equilibrium distribution independent of the initial distribution in

the beam is determined only by the relations between different charge-exchange
cross sections O and the ion velocity. The beam attains charge state distri-

bution equilibrium earlier than a visible particle delay in the foil material is
reached. The equilibrium distribution is the solution of the linear system:

, 0, =0. (4.2.2)
J

So, in order to calculate for the equilibrium distribution and the equilibrium
thickness to be calculated, one needs the exact values of electron loss and
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capture cross sections O First theoretical papers on the cross sections in ion-

atom collisions have been carried out by N.Bohr. He found for the electron loss
[411:

2 -2
Z°+Z (B
G z4m2¥[—lJ , (4.2.3)

e 0 2
q o

where oo=1/137 is the fine structure constant and a, is the Bohr’s radius,

and for electron capture (together with Lindhard) [42] we have:

B -3
_ - 251/3 2| F1
oc—naoZt q [a} . “4.24)

Unfortunately, the experiments have shown that the above formulae work
well only over a quite narrow range of parameters. A lot of semiempirical
formulae for electron loss and capture cross sections have been put forward
[43—45].

For electron capture the experiments show that:

o ~z*y*zs (4.2.5)
c pr t
where
oy =4 +5; OL2=(2+5); Ot3=0.15+0.4.
The electron loss cross section O, increases with target atomic number Z

and decreases with projectile atomic number Zpr(oe ~ Zp(:, a=—(1 +3)) and de-

pends strongly on the ion velocity. On the other hand, the experiments show
that the cross sections for losses of more than one electron are not negligible.
In connection with that there was proposed a semiempirical method [45] for
calculations of the cross sections for the loss of one and several electrons by
fast multielectron ions. Using this method, which is based on the results of an
analysis of experimental data and theoretical calculations, the cross sections
(m=1—35) have been obtained for the fast ions of iodine and uranium in
nitrogen.

The problem is even more complicated as the case of solid foils strongly
differs from that of rare gases. While in rare gases the time between the suc-
cessive ion-atom collisions is long enough for excited atoms to return to their
basic state, in solid foils this time is short and the atom state remains almost
unchangeable. This means that all the cross sections should be averaged over
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the excited states. For this reason the electron loss cross sections in solids are
larger than is gases and the electron capture cross sections are smaller. As a
result the equilibrium thicknesses in solid foils are larger (up to ten times) than
those in gases [46].

The accelerator experiments [47,48] show that for heavy ions with energies
from 3.8 to 10.6 MeV/nucleon the equilibrium thickness of carbon foils lies
between 250 to 350 ug/cmz.

4.3. Equilibrium Charge State Distributions behind the Stripping Foil.
The equilibrium charge state distributions of heavy ion beams on traversing the
stripping foil are presented by a Gaussian [49], although the Gaussian describes
continuous random variables while the ion charge states q are discrete ones

@ I Aq-9/20" 4.3.1)

e
9 oN2m

Formula (4.3.1) is valid if the average charge state g is not too close to Zpr.

Several empirical formulae have been proposed for the average charge state
g. It is assumed to use the reduced velocity X as an independent variable in all
of these formulae:
|4

’ 8
X= , V'=3.6-10" cm /s, (4.3.2)
»>0.45
vV Zpr

Nikolaev-Dmitriev’s formula [50]:

L= (14 x71/06y700 4.3.3)
z,
To-Droin’s formula [51]:
4 (4.3.4)
z,
Shima’s formulae [52]:
E(L (Z,=6)=1=exp [-1.25X+ 032X >~ 0.11x 7], (4.3.5)
pr
Zi (Z,#6)= E(L (Z,=6)[1 +(Z)], (4.3.6)

pr pr
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where

8(Z) =-0.0019(Z, - 6) VX +107°(Z, - 6)°X, (4.3.7)

Heckman-Betz’s formula [53—55]:

%zl—Cexp

Y
V()Zpr

- ] (4.3.8)

where C and 7y are constants depending on Zpr in the intervals:
Ce (1.07+1.25); ye (0.57+0.65) and VO/C= 137.

Baron-Ricaud’s formula [47]:

ZO.447

L=1-cexp [— 83.275 } (4.3.9)

where

1, for Tpr> 1 MeV /n,
~10.9+0.0769 Tpr, for Tpr <1l MeV/n’

Formulae (4.3.1—4.3.5) have been deduced scaling experimental data over
an energy range of below 2 MeV/n. Formula (4.3.3) scales the experimental
data of wider energy range up to X =2.5 and also describes the cases of non-
carbon foils. In [47] the correction for heavier ions (Z = 54) has been deduced:

4,=17, 1 —exp (-12.905+0.2124Z - 0.00122Z %)), (4.3.10)

where "q‘p is taken from (4.3.9).

For the standard deviation Nikolaev and Dmitriev [50] propose the
following expression:

1.67
c=0.5\/5(1—[1] J (4.3.11)

z

The correction for heavier ions (Z 2 54) is proposed in [47]:

q
o=V 4,(0.07535 +0.19Y — 0.2654Y %) | Y=f. (4.3.12)
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Some experimental data for the charge distribution of Ar ions behind car-
bon foils of different thicknesses and energy 5.62 MeV/n are presented in
Table 3 [47].

Table 3
ArS;, T, =5.62MeV /n

n

d, pg/em? q - ) )
) 14 15 16 17 18
60 1.76 13.69 45.40 32.39 6.74
84 1.26 10.57 39.64 37.86 10.58
120 0.96 8.17 35.11 40.54 14.92
150 0.85 795 32.47 42.26 16.78
215 0.55 5.53 26.55 43.79 23.59
300 1 004 3.81 25.10 4521 | 2525

4.4. Heavy Ions Scattering in the Stripping Foil. The Coulomb elastic
scattering of beam ions in a stripping foil will cause a change of the trajectory
slopes.

The mean energy loss of an ion for unit path length when mprs().ZmI,

where m — the particle mass, m, — the target nucleus mass, is given by [56]:

mZ7 2e4nm 0 . m®—m m —m>
dE prt pr . Cmin 17 prot pr
e = £ In sin 5 + E 3 . 441
X o mLo (mpr +m)

In (4.4.1) n denotes the number of target atoms 1n unit volume and Epr —

the particle energy.
It can be shown [56] that the ratio of the ionization losses to the Coulomb
scattering energy losses is:

)
dx |. |
S =~ 4000, (4.4.2)

e (A
dx sct [ 'm ]

p

where m, is the proton rest mass and A, is the atomic weight of the target

material.
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From (4.4.2) it follows that the energy losses in the Coulomb scattering are
negligible.
On the contrary, the particle trajectory changes are very important.

The basic laws of the elastic Coulomb scattering have been well known
since the time of Rutherford’s pioneer works.

An important role in accelerator practice is played by the multiple scat-
tering in the foil material.

"It can be shown that the multiple scattering mean square angle is [56]:

252 1/3
z27% zZZ
(6% =0.078 21— 1n { 1.06-10* 2F— v AL , 4.43)
EJA, Bor ;

where Epr is the particle kinetic energy in MeV and ¢ is the target thickness

in g/cmz.
In [59] the following empirical formula for the multiple scattering mean
square angle of heavy ions in solid foils is given:

2
Z(z,+ ) 7

(%) =0.250 1, (4.4.9)

EZ
t pr

where ¥ is in mrad; stripper thickness ¢ is in ug/cm2 and particle energy Epr

is in MeV,
The average number of scatterings per particle and passage is given by:

0.0392 2L BT (4.4.5)

9, 1s the so-called screening angle:

%/_
Z
9 =4.5210° V1781042222 + B2 ——"—, (4.4.6)
o prt pr E BZ ¥
pr'pr ‘pr

where f is the target thickness in g/cmz, Epr is the particle energy in MeV.
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4.5. Emittance Growth Due to Elastic Coulomb Scattering in the Strip-

ping Foil. It is convenient to work in the normalized phase space (y, y'), where
y is the transverse coordinate (either X or Z) and

y =oy+PBy”. 4.5.1)

In (4.5.1) o and B are the Twiss functions and ’ denotes differentiation with
respect to the longitudinal coordinate S.

In the normalized phase space the betatron oscillations can be presented in
the form:

y=Acos (y+ ),

y" =A sin (y + a), v (4.5.2)

where y is the betatron phase, y = J-— and A and o are constants.

B(s)

Let y and y* be the Gaussian distributions. The betatron amplitude is:
A=y 442, (4.5.3)
Relation (4.5.3) determines a circle in the normalized phase space with a
radius A. In order to find out the amplitude distribution, one has to integrate the

joint probability distribution along this circle. In polar coordinates:

2n

P = | poy
0

2 2 3 2
A /27t0'd(p:i2 = /21:0’ (4.5.4)
0 2nG° o

i.e., we have obtained Rayleigh distribution with

o’ = 205. (4.5.5)

Passing through the stripper the beam particles change by jump the slope of
their trajectoty and keep the distance from the equilibrium orbit unchangeable.

y:yo’ y*=yz;+Ay*=y;+BAy’ (456)
Behind the stripper we have:

AP =AZ+20Y 'y + Ay (4.5.7)
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Averaging (4.5.7) we obtain:

fx=°/2;o+ciy*=°/2xo+52°?my“ (4.5.8)

The real situation in charge-exchange injection however is more compli-
cated. At the end of the injection process we have on the accelerator
circumference simultaneously particles passing N times through the stripper,
particles passing (N — 1) times and so on up to the particles having crossed the
stripper only once.

Obviously, in this case the probability for an amplitude is the normalized
sum of probabilities for amplitudes after a definite number of foil crossings:

N
1
P(A) = >, pA). (4.5.9)
=1
Then
, N
2_ 1 2
Oy =7y 2 Sa (4.5.10)
i=1
but
2 _ 2 2.2 '
GAi—OAO+BOGAy,.‘ 4.5.11)
Thus, we obtain
_ (N+1) 2
oi=00,+ > Bo"iy- (4.5.12)

From (4.5.12) we can deduce the emittance growth due to the elastic
Coulomb scattering:

V= €t NP (D). (4.5.13)
4.6. Energy Losses in the Stripping Foil. The energy losses of beam-

particles in the stripping foil are mainly due to the excitation and ionization of
foil atoms.
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Mean losses are described by the well-known Bethe-Bloch formula [56—

58]:
2 22
ae_PZpi (L (| (2m B 5 5 e
2 ZI

&= A LB ; (1+v), (4.6.1)

where p is the mass foil density:

2
D =4nN,r,m ¢*=03070 MeV-em™
€ ¢ g

and / is the mean ionization potential of medium atoms.
I1=135Z eV, (4.6.2)

8, ¢, v are the phenomenological functions which values are usually negli-
gibly small, & represents the density effect; and ¢, shell corrections.

4.7. Emittance Growth Due to the Energy Losses. [f the dispersion in the
stripper is nonzero, then the energy losses will cause the emittance growth
according to the well-known relations:

Ay=-D 4
O p

Ay =-D 2P 4.7.1)
0 p

where D and DO' are the linear and angular dispersions in the stripper and
Ap /p is related to the energy losses by:

AE 2 Ap
5 =B ) (4.7.2)

where E is the total particle energy.

The minus sign in (4.7.1) implies that traversing the foil the particles re-
main in the same position while due to the energy losses the corresponding
off-momentum orbit jumps to a new position. We will perform our analysis in

the normalized phase space (y, y*), where betatron oscillations are presented by
circles. From a simple geometrical analysis one can deduce that:

VB =VBg, +k V Ay* + Ay, (4.7.3)

where € is the initial emittance; € a new emittance; and k, the number of

turns.
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4.8. Ionization Losses Straggling in the Stripping Foil. The maximum
energy transferrable by a fast moving charged particle to the electron is [60]:

m Bzyz ?
= £ prpr 5 - (4.8.1)
1+2y( me/mpr)+ (me/mpr)

max

"For our case E___=10.22 keV.
max

The ionization losses are statistical in nature. There exists a probability
distribution function f{x, A) so that f(x, A)dA is the probability that the ion, on
traversing a path length x in the target, will suffer an energy loss between A and
A+dA.

The character of the distribution function depends on the parameter « [62]:

K=E§~ , (4.8.2)

max

where

27rne4Z7; off ZX,

—— pre;ll ¢

£= 5 : (4.8.3)
mevpr

n is the number of target atoms per unit volume; X, the target thickness; and

V4 , the ion effective charge:
pr.eff

vh
272/9

Z = z[ 1 - exp ( 0.95 H =Z[1—exp (—130B2~2/%)]. (4.84)

a) If k¥ <0.05, the distribution is highly asymmetric with respect to a long
tail, the so-called Landau’s distribution [61]:

fx, A= é o) (4.8.5)

O + ico

___l_ ulnu+Au
oA = GJ.. e du
— oo

A-—&(ln—é,+1—c)

§
A= £ :
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where ¢ is Euler’s constant ¢ =0.5777...

2y72
me'=1n| Y 2)1 + B2 (4.8.6)
my
b) If 0.05 < x < 10, we have the case of the Vavilov’s distribution [62]:
I S R N 2 B
fix, A) = nE Ke e’ cos (yfl +Kf))dy, 4.8.7)
0

£, =BIny = Ci(y)) — cos y - y Si(y),
£, =y(ny — Ciy)) + sin y + BSi(),

where Si and Ci are the sin and cos integrals.
¢) If x> 10, the distribution is Gaussian:

Lo -’
_ 2yx
foo Ay ="—= w© , (4.8.8)
where according to the Landau’s notation
a=(A)=[ ew(e)de (4.8.9)
0
and
Emax
- 2 _& 1
y= (j) e w(e)de =2 emax(l -5 B ) (4.8.10)

are the mean and variance for unit path length.

The situation with charge exchange injection is a little bit more complicated
because we have simultaneously on the orbit particles traversing the foil
N-times, (N — 1) times up to one time. Then the common probability density is:

N
=1 3 ), (4.811)
i=1

where pfA) is the probability density for particles traversing the foil i-th

times.
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From (4.8.11) and taking into account the large value of N, one can deduce
for the energy dispersion in a stored beam:

2
2 2 N 2 N 2
Oy=0,+ 5 9, + 12 <A>[ , (4.8.12)

where 0(73 is the energy dispersion in the incident beam, Grz is the dispersion

of ionization losses in the foil material (one passage through the target) and
(A >1 are mean ionization losses in the foil.

4.9. Ion Storage-Fixed Orbit Bump Mode. In this mode the orbit bump
remains unchangeable. [ons pass through the stripper many times until an equi-
librium is attained or until other limited factors — scattering and energy losses
— begin to restrict the number of stored particles.

The storage process can be described in the following way.

a) During the first turn the number of stored particles will increase as

NI = Alt, where A1=10(51nt is the ion current behind the target; 10, the injected
beam current; o, the circulating charge (Z‘, = ¢) formation cross section; n, the

number of target atoms per unit volume; and ¢, the target thickness. At the end
of the first turn we will have N, = ALT particles on the orbit, T being the period

of the synchronous particle.

b) During the second turn the circulating particles will pass through the
target for the second time. Let G, be the circulating charge formation cross

section for the circulating particles. Generally speaking, 0,# 0, as the charge

state distribution in the injected beam differs from that in the circulating beam.
If the former is centered on charge number Z; # Z (otherwise charge-exchange

injection will not work) the circulating beam contains only ions in one charge
state. lons in other charge states have been already lost on the walls of the
vacuum chamber because for them AZ/Z is quite large. Simultaneously new

particles are injected into the ring, and these particles will pass through the
stripping foil only once. Summarizing, we can obtain for the number of the
stored particles:

N, = Alt-T)+ G2ntAI(t -+ AI2T —-1) 4.9.1)
and at the end of the second turn:

Ny =AI(1 + o,nn)T. (4.9.2)
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Following this way of reasoning, we can obtain for the k-th turn
N =AI(1+b+ ...+bk“1)T, where b=0,nt. Summing geometrical progression

in the brackets, we get:
N, =N_(1-b", (4.9.3)

where

a
Nm:[]—_—b*]IOT, a=ont, b=02m, (4.9.4)

T is the period of the synchronous particle; 1, being the injected current; o,

the cross section for the formation of ions with equilibrium charge from the
injected ions; and G,, the cross section for the formation of ions with

equilibrium charge from the circulating ions.

In the specific case of stripping target with equilibrium thickness, the
charge state distribution behind the target will reach equilibrium which means
that it is independent of the charge distribution in the incident beam and that it
will be no longer changed. For the target of equilibrium thickness ont=

=0o,nt=d_, ie., the probability of circulating charge formation for the injected

beam is equal to that for the circulating beam. Formula 4.9.4 becomes simpler:

N =N_(1-0%) (4.9.5)
N =k 7 (4.9.6)
i o .

4.10. Ion Storage — Moving Orbit Bump Mode. In this mode the orbit
bump gradually reduces to zero during the injection.

When the orbit is close to the centre of the stripper, the injected particles
will cross it every turn. On the contrary, the particles injected when the orbit
lies outside the stripper will undergo betatron oscillations and will avoid the
stripper most of the turns. In other words, we have a kind of combination
between the multiturn and the stripping injections. Such a combination allows
the number of the injection turns to be increased many times.

The goal of this section is to assess the total number of injected particles in
the mode under consideration. We will use a beam model with a uniform charge
distribution and clear-cut boundaries which are circles in the normalized phase
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Fig.18. Charge exchange injection with a moving orbit bump

space. Let us take a beam slice dN =1,dt injected at time 7 (Fig.18). After one
turn the slice will occupy the position forming angle o =2nQ with the initial
position as is depicted in Fig.18.

Let us denote the beam radius by R = Bos and the aperture radius by A. As
A>> R, we will approximate here the aperture boundary lying within the slice

confines with a straight line, so the part of the slice outside the aperture will be
approximated with a circle segment.

Under the above assumptions a pure geometrical analysis can be carried
out. From Fig.1 we obtain that:

Y=y, —R=-y,0,

VO =y,+R =y (. (4.10.1)

For the utmost left y* and utmost right y” projection of the slice on the y
axis we have:
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Y(+jT)= Yot +jT) +y, cos j 2rQ — R(1 - cos j 2nQ)
Yt +jT) = Yot +JT) +y, cos j 2mQ + R(1 — cos j 21Q)
j=0,1,2,.... (4.10.2)

The stripper edge cuts a circle segment with an area §, from the beam slice.

If H is the edge distance to the slice center we can write:

H(t +JT) = a =y gt +)T) = (v, = y,,(1)) cos j 210 (4.10.3)
and
S,(t+jT)=R* arccos[% J—H\/Rz —H j=0,12,.... (4.10.4)

Another kind of restriction comes from the machine aperture. The aperture
is centered on the instantaneous closed orbit position. This means that at the
beginning of injection, when the orbit bump passes through the stripper we will
have no aperture limitations. However, when the orbit bump is small enough to
go close to the machine centre, considerable aperture restrictions on the beam
will take place. The closer the orbit passes to the machine centre the stronger
aperture restrictions will be.

As mentioned above, we will consider that the aperture cuts also a circle
segment (with an area S ) from the beam slice. This approximation is as much

better as A is bigger than R. Similar to (4.10.4) we can deduce that

J—HC\IRz—Hf, (4.10.5)

2 HC
SC (t) = R arccos ®
where

HO=y,O+A-y (4.10.6)

is the distance between the aperture edge and the slice centre.

The main parameter of our analysis is the transition coefficient k& — the
percentage of particles having passed through the stripper and accepted in the
aperture.
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It can be shown that

k(t+jT) =

®, a<y’(t+jT), R< Hy(n

TR - S (1)
—2~(1), a<y’(t+jT), H({)<R
TR ¢

R = (1 - ®)S, (¢ +,T)

5 , Y (t+jTy<a<y’(t+jT), H()2R
TR ¢

R = (1 - ©)S, (1 +,T) - DS (1)
= Y+ jD<a<y”(t+j1), H (1) 2 H(t +jT)

nR?
R >~ S (1)
LY T+ jTy<a<y’(t+jT), H (1) < H(t+jT) (4.10.7)
TR
1, y'at+jT)<a, H(=R
R~ S (1)
—— . Y't+jH<a, H{H<R
nR ¢

=012, ...

where

v

o,nt, for the injected beam

b= o,nt, for the circulating beam (4.10.8)

is the probability for the formation of ions with equilibrium charge.
Let us consider the case of an exponential law of orbit motion:

0=y /" (4.10.9)

Let r be the number of turns during which the orbit moves from the centre
of the stripper to the center of the machine.
Let us describe the particle storage turn by turn. During the very first turn:

T r
N, =] T ke +jD1ar (4.10.10)
0 j=0



HEAVY ION INJECTION IN SYNCHROTRONS 489

particles will be stored in the ring. Multiplication from 0 to r in (4.10.10)
describes successive crossing of the target while integration describes
continuous orbit motion. During the second turn the number of stored par-
ticles increases to:

2T r—1

Ny=N,+ | T ke +jmige (4.10.11)
T j=0

Generating, we arrive at the following expression for the total number of
stored particles

r +DHT r~1
N=3 1 | TTke+inig. (4.10.12)
i=0 iT j=0

4.11. Charge-Exchange Injection into Nuclotron Booster. As an example
we will give in this paper the simulations of the charge-exchange injection into
Nuclotron booster [63].

The main booster parameters have been given in paragraph 2. Some addi-
tional parameters important for the injection process are: injection energy for
protons — 20 MeV and for ions with Z/A =0.5 — 5 MeV/n; beam rigidity at
injection — 0.647 Tm; injector emittance — 40 mm - mrad; booster acceptance

—260r mm.mrad; momentum spread at injection — +2.1073
Some results of the simulation follow.

Figure 19 depicts the mean square angle for multiple scattering in the
carbon stripping target.

The calculated emittance growth is plotted in Fig.20.
The energy losses for the test ions are plotted in Fig.21.

The calculated values of the parameter X, are: 15 for Arig’L, 1.9 for C?; and

0.3 for Li?. This means that the probability distribution of the ionization losses
is normal for heavier ions while it is Vavilov’s one for light ions. Thus, the

standard deviation for Ar}lg+ and a 100 pg/ cm?

Y yx =39.1 keV. The calculated standard deviation is 17 keV for C?; and 5 keV

thickness of the target is

2+
for L16 .
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Fig.19. Multiple scattering rms angle for charge-exchange injection into
Nuclotron booster [63]
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Fig.20. Emittance growth in the Nuclotron booster due to multiple scattering;
the target thickness 100 pg/cm?, B,=4.5 m [63]
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Fig.21. Energy losses in the Nuclotron booster carbon stripping foil [63]
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Fig.22. Additional momentum spread in the Nuclotron booster due to the ionization losses
in the stripping target [63]

The additional momentum spread due to the ionization losses is given in
Fig.22.

The ion storage is shown in Fig.23.
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Fig.23. lon storage in the Nuclotron booster for charge exchange injection with fixed
orbit bump [63}
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