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CLOSED ORBIT CORRECTION
IN SYNCHROTRONS

D.Dinev

Bulgarian Academy of Sciences
Institute for Nuclear Research and Nuclear Energy, Bulgaria

Algorithms for closed orbit correction in synchrotrons as well as related topics as error
sources, statistical characteristics of the orbit, etc., are discussed. The review covers both
traditional methods for orbit correction: beam-bump, harmonical correction, etc., and the
newest developments: eigenvector correction, SVD, algorithms for optimum positioning of
dipoles, etc. The use of expert system and artificial neural systems is described as well. The
last chapter is devoted to the first turn steering.

O6cyxaKTCs anropuT™Msl 4718 KOPPEKUMH 3aMKHYTOH OPOUTLI B CHHXPOTPOHAX W CBS-
3aHHBIE C HUMH BOTIPOCHI — UCTOUHHKH OLIMOOK, CTATHCTHUECKHME CBOHCTBA OPOMTHI H T..
0O630p oxBaTbIBAaET KaK TPAOHLIMOHHBIE METOLb! KOPPEKLMH: METO/ JIOKATLHOTO MCKaXeHMs
OpOHTEL, TADMOHUYECKHI METON M T.I., TAK M HOBEHIIHE aNTOPHTMbL: KOPPEKLIMIO C [pHUMeE-
HEHHEM CODCTBEHIILIX BEKTOPOB, CHHIY/ISIPHOE PA¥IOKCHUE MATPHLBI CBA3M, aAITOPHTMbI L1
OITUMAJIBHOIO PACTIONOXEHHS AUIIOIBHBIX MarHUTOB U T.3. O6CyXIacTes NPUMEHCHHE 9KC-
[EPTHBIX CHCTEM M UCKYCCTBEHHBIX HEHPOHHBIX CETCil 18 KOPPeKUHH opOuThl. TlocaenHuit
pasfen Nocsdlied KOpPeKLuH nepsoro obopoTa.

1. INTRODUCTION

The transverse motion of the particles in a cyclic accelerator is a super-
position of a motion along a closed trajectory (equilibrium or closed orbit) and
betatron and radial-phase oscillations around this curve. In a real magnetic
structure both the closed orbit and the oscillations around it are distoried due to
errors in the magnetic fields, displacements and tilts of the elements from their
designed positions, stray fields, and ground movements. As far as the closed
orbit is concerned, perturbations cause its deformation. The maximum deviation
of the distorted orbit from the reference orbit reaches to some ten millimeters.
Such a large deviation does not allow for the accelerator aperture to be used
effectively and hampers the work of the injection and extraction systems.

In storage rings the beam lifetime and the maximum current of the accu-
mulated particles depend on the accuracy of the orbit.
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An important point is the orbit stability. The time changes of the orbit
increase the dynamic aperture. In synchrotron light sources an unstable orbit
will increase the effective emittance thus reducing the effective brightness of the
photon beams.

This is the reason why in accelerators special systems of either small
correcting magnets or additional correcting coils in the main dipoles or control-
led displacements of the quadrupoles are used.

The purpose of the orbit correction consists in choosing the proper
strengths and positions of the correction elements so that the smallest possible
deviations from the reference orbit may be achieved.

A special problem is the first turn steering which we discuss in the last
chapter.

In this paper a survey of both the major orbit correction algorithms used in
synchrotrons and storage rings and original results on the orbit correction
obtained by the author during his work on the superconducting synchrotron
NUCLOTRON in JINR (Dubna) and on the cooler-synchrotron COSY (Julich)
is done.

2. TRANSVERSE PARTICLE MOTION
UNDER LINEAR PERTURBATIONS

We shall begin our discussion of the closed orbit distortion and correction
with a brief survey of the transverse particle motion in cyclic accelerators in the
presence of the so-called linear perturbations.

In a curvilinear coordinate system (s, x, y) used in cyclic accelerators where
s is directed along the reference orbit; x, along the main normal vector; z, along
the binormal vector, the Lagrangian of the transverse particle motion can be
presented in the form [1]

E(x,x’,z,z',s)—p\/[l+§]z+x’2+z'2+e[[1+§]As+x’Ax+z'Az]. 2.1)

In (2.1) the distance along the reference orbit s was taken to be the independent
variable; ()’ denotes differentiation with respect to s; p and e are the particle
momentum and charge; p is the radius of the curvature of the reference orbit;
and AS,, Ax,, AZ are the vector potential components.

From (2.1‘) the following expression about the transverse motion Hamil-
tonian can be deduced

H(-xv px’ X, pZ' S) -

(AN g eI 2 s, 2
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We shall consider here the cases of a sector magnetic field and of a quadru-
pole field, which are the most important for particle accelerators. For these
cases substituting in (2.2) the relevant expressions for the vector potential A and
expanding the kinematical part in a power series, retaining only the major first
few members, one can obtain that

5 2 2
lpx lpZ (l—n)(x] n(z]

S+ —+p, | = | +p, | —
2p, 2p, Po™ LP Poa{p

H=H,= , for a sector magnetic field 2.3)
1 p lp eg(2 )
X S
2po 2p0

for a quadrupole field.

In (2.3) we denoted with ’HO the Hamiltonian of the linearized transverse
motion; p, =—eByp is the particle momentum corresponding to the reference
trajectory; Byp is the beam rigidity; n =—(p /By)(@B /dx) is the field index; and

g is the quadrupole gradient.
We shall consider in this paper correcting magnets as short magnets, with
small (B, << B,) and uniform (n=0) field. Thus the linearized Hamiltonian for

the corrections is

Lo e B (2.4)
="+ ——eBx .
© 2p, 2p, ¢ .

Let’s now introduce in the Hamiltonian the so-called linear perturbations:
a) field errors AB=B — B,

b) magnetic element misalignments, Ax and Az,

¢) dipole tilts around the axis s, 0,

d) stray magnetic field, AB. .

These errors cause linear about x and z members to appear in the Hamil-
tonians

H-H,+ 0D, 2.5)
where
sHD =
Py py(1+n) Py
_ —eABx+— 92+*———xAx-—‘—zAz+ 1+— Ap, for dipoles
= pz p P (2.6)

egxAx — engz for quadrupoles.
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The quadratic part H , of the Hamiltonian (2.5) describes particle oscilla-

tions, as long as the linear part 8H Y causes an internal force depending on the
variable s. This is the well-known classical mechanics case of forced small
oscillations. Because of the internal force, the orbit is distorted. The new orbit
is a periodical solution of the Hamilton equations

dr, JdH dp, _ oH

ds apx.C0 ’ ds dx

x s+ 27R) = xco( ),

pxyco(s +21R) = px’co(s). (2.7)

In (2.7) R is the mean radius of the accelerator.
Equations equivalent to (2.7) are valid for the vertical plane as well.
Let u and p, be the conjugate variables describing the oscillations around

the orbit

x=x,+u P=p otP, (2.8)

If we now perform a canonical transformation from the variables x, p_to u,

p, using as a generating function

5 P )= (P of8) + )X =X ()P, » 2.9)
we shall obtain for the new Hamiltonian

K(u,p,, v, p, 5)=H(x,(s) +u, P TP, 200 v p (5] +p,8) =
(O, O OH O Y (2.10)
ach apx,cO " BZCO apz,c() Y J

The Hamiltonian K does not contain linear in u, 'pu, v, P, members, i.e., it

describes only the particle oscillations around the closed orbit.
From the Hamiltonians (2.3), (2.6) one can deduce the equations of the
transverse particle motion. In Newton’s form they are
2

dx

—d;z‘ + kx(s)x = Fx(s),
d*z
E + kz(s)z = Fz(s), 2.11)
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where

kx(s) =

k(s) =

F ()=

F ()=

d —zn) , for dipoles

P
0, for correctors (2.12)
=& , for quadrupoles,
Bop
'—12 , for dipoles
P
0, for correctors (2.13)
—&, for quadrupoles,
B

0

AB
- B— _d +2n) Ax, for dipoles

oP p

B
e for correctors (2.14)

Bop

gAx for ,
- R quadrupoles,

Bop A

n .
= Az——, for dipoles

P p

BC ~
- BOP s for correctors (2.15)
- % , for quadrupoles.

3. CLOSED ORBIT

The equations (2.11) are Hill’s equations with a non-zero right-hand side.
Its general solution can be represented as a sum of the general solution of the
homogeneous equation and a particular solution of the non-homogeneous one.
The latter can be taken as periodic, keeping in mind the accelerator symmetry.
This periodic particular solution will describe the closed orbit as long as the
general solution of the homogeneous equation describes the particle oscillation.
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The particle oscillations in an accelerator can be described by the Twiss’s
amplitude function P(s) [2]

_ ] 1 ds
x(s)=a~ B(s) cos[QOQB(S)], 3.hH

where @ is the number of the betatron oscillations per turn.
Let us introduce the new variables:

a) generalized azimuth s

ds
= , 32
¢ {Qmw 32
b) normalized deviation
X
= . (3.3)
TEVBG)
In these new variables the oscillations (3.1) can be written as
n(¢) =a cos (Q). (3.4)

By implication we shall describe the closed orbit using the variables (3.2),
(3.3).

Using the properties of the B function it is possible to transform the equa-
tion (2.11) to an equation of forced oscillations

2

4N 00 = oY), (3.5)
d¢

where
f9) = B *(@)F(9). (3.6)

Using the method of varying the integration constants the following perio-
dical particular solution of (3.5) can be obtained [2]
¢+2n

n= ﬁ{g’ £ f1) cos Q@ +m— pydt. 3.7)

The integral representation (3.7) is the base formula for the closed orbit
description.
There exist two approaches to the closed orbit treatment:

a) A matrix approach

As the perturbations are equal to zero out of the magnetic elements
(f() = 0) and the elements are short enough compared to the accelerator circum-
ference (AQ << 2m), the integral (3.7) can be transformed to the sum
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M+ L

Oy E F, A g;c0s 060, + T~ @), (3.8)

? < (p]_ < s 2n

Here M is the total number of the dipoles, L is the number of quadrupoles
and the bar above a symbol means averaging over the magnetic element.

It is convenient to put (3.8) in the matrix form

M+L
n= 2 A8, (3.9)
j=i
0.3 SQ+2r
where b
Al.jzcos Q((pl.+1t—(pj) 3.10)
and
0B/ ?Ag, 0B/ Ag, 4
- - AB. — Ax,, for dipoles
2 sin Q@ J 2 sin nQP2 J
3/2 /
QB Ao,
6]' =y ——L—-LB for correctors @3.11)
2sinm@Q
OB AG o drapol
" ZsinnoBp or quadrupoles
__ B €, (3.12)
2sinnQ

€ being the kick in the element.
The reason for introducing the generalized perturbations 81‘ is that they have

the same dimensions as the normalized orbit 1, i.e., ml/z.

b) Harmonic analysis approach

“The orbit N(@) is periodic with a period of 2. Let us expand it in a Fourier
series oo
"o .
n@) =+ Y, (w,cosk@+v,sink o). (3.13)
k=1
Let us also expand the perturbations f{¢) in a Fourier series

h < .
f) =75+ D (fcosk@+g, sinko). (3.14)
k=1
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From the equation (3.5) the following relation between the Fourier coefficients
of the orbit and the perturbations can be deduced

iy =Jo

0 o .
”k:{Q2_k2 ]fk’ vk:(Q?‘—kZJgk' G.15)

Of course, the matrix and the harmonic orbit treatments give the same results
which can be demonstrated using the formula

7

- ((p—*(P)\
—— = 3, cosk 4 | (3.16)
k=1 k=g

. 2
cos @, + T — (pj.): (sin Q) TQ [ 2; 5 -

4. ERROR SOURCES

The linear perturbations causing the closed orbit distortion can be sum-
marized in the following way.
a) Constant errors.
i) Errors in the coercive force.
This kind of errors can be estimated approximately by

st

ABzuOZ
a

AH, .10

where [ is the magnet core length and [ is the aperture.

it) Errors due to eddy currents.
iii) Stray magnetic fields.
iv) Earth magnetic field.
b) Errors proportional to the main magnetic field.
i) Permeability errors. Approximately

I
é§:~§i Ap. (4.2)
B T}

ii) Errors in the magnet core length

AB !

m——— A . 4.3)
B Mrla+ lst 5
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iii) Aperture errors

LLL: N B , (4.4)

iv) Adjustment errors — element misalignments, median plane dis-
placements, dipole tilts, quadrupole magnetic centre displacements, errors in the
coil positions, ets. ]

v) Ground movement.

c) Errors appearing only in high fields -— these are errors due to
saturation.

d) Fast noise: these are ground movements and power supplies ripples
in the 1—100 Hz bandwidth which cause fluctuations of the orbit.

5. STATISTICAL CHARACTERISTICS
OF THE PERTURBATIONS AND THE ORBIT

The perturbations AB and Ax are random functions of the generalized
azimuth ¢@. Keeping in mind that they are non-zero only within the magnetic
elements and that these elements are short enough compared to the accelerator
circumference (A @ < 27), one can represent perturbations as sums of elementary
random functions — AB, T1(p) and Ax,; I1(¢), where AB; and Ax; are random

values and I'1(¢) are single rectangular pulses of length A @,. The random values
AB; and Ax; are uncorrelated, normally distributed, with a zero mathematical

expectation and with standard deviations G, ,, 6, equal for all elements.

Let’s expand the perturbations in a Fourier’s series

a oo .
AB((p)=“2_0+ 2 (ak cosk(p+bk sin k @). (5.1)
k=1

Fourier’s amplitudes a, and b, are random values. Their mathematical

means vanish and their variances are

2 - [A%)
D(a0)=GABZ{ 2n],
j=1

cosk@. Ao, ]2
n 3

M
D(a) =05, Z [

i=1
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sink ¢, Ao, \?
MMJ . (5.2)

M
2
Db, = :
(b)=0rp 2. ( -
i=1
In uniform magnetic structures consisting of p equal periods, the formulae
(5.2) are simplified leading to a «white» spectrum

D(ak)_D(bk)=—D(a0)———~ z A(p (5.3)
j=1
In (5.3) Mp is the number of dipoles per period. Using the accelerator
symmetry it is possible to demonstrate as well that E(a,b,) =0, i.e, that q, and
b, are non-correlated. Analogical results can be obtained for Ax.
Let us now discuss the statistical characteristics of the orbit itself.
From (3.9) it follows that the orbit deviation 1, as a sum of normally

distributed values is normally distributed itself, with an expected value of zero
and a variance

M
— ____Q____ 2 3 2 2 _
D(n")—(ZBOpsin 70 ]zlGAB '21 Q}. A(pj cos“Q(¢, + 7 (pj)+
j=
L
Cae _Zl gj2 Bqu’f COSzQ(w,-M—(Pj)] (5.4)
J:

In uniform magnetic structures, (5.4) is simplified
o ¢ 0 pag
b= [ 2B, p sin nQ Jp CaB

I e R A
"1 2B p sinnQ 2 : (5.3)

[ Q ]2 2 LN

In the same way the statistical characteristics of the orbit divergence n'(¢)
can be calculated and one obtains that for uniform structures

D) = Q *D(m). (5.6)

Successful accelerator operation requires that the maximum orbit deviation

N,ax and its statistical characteristics be known.
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As for every accelerator from a large group of accelerators with different
random error distributions, the maximum orbit deviation N,.x appears at dif-

ferent points @ is not normally distributed.

max; nmax
It is very difficult to obtain the statistical characteristics of Mmax in the

general case. As a rough approximation let us restrict ourselves to the major
k = @ harmonic in the orbit expansion (3.12)

NP) = u, cos k ¢+, sinke=A cos(Q(p+0ck). 5.7

It is easy to see that in this approximation E(m, n) =0, i.e., | and 0 are
statistically independent.
We have for the two-dimensional probability [3]

’ 1 A2
p(ﬂ%]=2—2—exp -5 5.8)
ncsn GT}
Obviously the orbit amplitude probability p(A) can be obtained by inte-
grating (5.8) along a circle with radius A in the plane (n, BQ_]
2 Az
pr= [ o1, L )ado=4 exp[-A 1. (5.9)
0 0 on 26
Formula (5.9) represents Rayleigh’s probability distribution:
24 A?
p(A) = — &Xp =3 (5.10)
G4 A
with
6,=V20,=Y20, \/—c. (51D
The integral distribution functlon for the Raylelgh distribution is:
A2
¢A)=1-exp|——5 | (5.12)
4

A better estimate will be achieved if two contributing harmonics
k{Q {(k+ 1) are taken into account.
In this approximation

n((p)zukcosk(9+vksink(p+uk+1cos(k+l)(p+vk+lsin(k+1)(p=

=(u +u, cosQ+v,  sin@)cosk+

+ (v, —u Sin @ +v,  , cos Q) sink @, (5.13)

k+1
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i.e., we have a harmonic oscillation with a slowly changing amplitude A(Q)

2 . 2
A ((p)=(uk+uk+1cos(p+vk+lsm(p) +

+ (vk —u sin ¢ + v cos (p)z. (5.14)

k+1 k+1

From (5.14) the maximum amplitude can be calculated

A = max A((p)=rk+r (5.15)

k+ 1
where

_ 2,2 2 _2 2
’i_”k“’k’ et T %1 T Vea (5.16)

As it has already been demonstrated above, 7, and Thel which are the ran-

dom amplitudes of the k™ and (u+1), harmonics have Rayleigh’s distribu-

tions. These amplitudes are statistically independent. From these assumptions
the following expression for the variance of the maximum amplitude can be
derived

- 2
or =R} +2RkRk+1 RZ, ., (5.17)
where
2 a2, 2
Rk ”20u, Rk+l_20u . (5.18)
k k+1

In Ref.4 it has been also shown that the probability for the orbit amplitude to
be greater than A is

RR, ., A A
FA) =2V 5 exp |— . (5.19)
R; +Rk+l\/R +R? RZ+RZ, |

In Ref.4 it has been also shown that the best agreement between the analy-
tical estimates and the results of the computer simulation of the closed orbit can
be achieved if the major three or four harmonics of the perturbations are taken
into account. As the exact solution in this approximation is accompanied by
great mathematical difficulties only an approximate estimation for the orbit
amplitude variance is carried out

i#j
o’ n > R K,
—A - A (5.20)
I R? 2 IR? '



CLOSED ORBIT CORRECTION IN SYNCHROTRONS 1025

m-1/2 ™ R, A% )
F(A) = (4m) H{—J—Jexp —MJX
j=1

TR IR’
j J

m-1/2 (—])i(m ~ 1) A m—1-2j
x - , (5.21)
S 2% =1 - 2i)! Vggf

where m is the number of used harmonics.

6. A GENERAL DESCRIPTION
OF THE ORBIT CORRECTION METHODS

In accelerators as a rule the number of beam position monitors (N) is less
than the numbers of dipoles (M) and quadrupoles (L) — N < M + L. This means
that from the readings of the BPMs we can calculate only a part of the pertur-
bations correction with uncertainty.

The general block diagram of the orbit correction is shown in Fig.1. Figure
2 gives a classification of the orbit correction methods.

Algorithm of
Perturbations
Compensation

Estimation
of the
‘ Perturbations

AB,
AX | bERTURBATIONS

AB.,AX

IC

Object of Steering: ik

Correctors y J ElF;lgtkr :(?es

CLOSED ORBIT

I, X,
ALGORITHM
of Orbit Deviations Compensation:

q=Q(x; . B}) => min

Fig.1. Block diagram of orbit correction
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(Methods of Orbit Correction]

Methods of Methods of
Local Correction:
Beam Bump Method

/\

Methods with Perturbation Compensation: Methods with
Harmonic Correction
GUIGNARD's Method

General Correction

Orbit Deviations

WAREN-CHANEL Method Compensation
Single Step Methods: Multistep Methods: Dynamic
LSQ Method Hterative Methods
HEREWARD-BACCONIER Method Beam Bump Method

Fig.2. Classification of orbit correction methods

The orbit correction methods can be divided into two main groups: methods
for local correction and methods for correction of the orbit over the whole ring
(general correction).

The local correction methods correct the orbit only in a part of the accele-
rator circumference. Qutside of this region, the orbit is unchanged.

The methods for general correction cover methods that try to compensate
perturbations directly and methods in which a kind of goal function, depending
on the orbit deviations and corrector strengths, is minimalized.

The methods with perturbation compensation try to assess the perturbation
strengths.

In the harmonic correction, this is achieved through the approximate values
of the first perturbation harmonics. In the method proposed by G.Guignard and
its later improvements, the «probability» of having errors in a given area of the
accelerator circumference is found. Finally, in the Warren and Channell’s sug-
gestion, the values of all the errors are calculated, applying a special measure-
ment procedure. :

After the perturbations have been assessed, corrections with proper values
and positions are applied in order to compensate the orbit deviations.
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In the methods with orbit deviation compensation a quality criterion is
created. It can be either a function or a functional, from the orbit deviations and
correctors strengths. Then the minimum of the quality criterion is chosen. The
single-step, the multi-step, and the dynamical methods are included in the
group.

In the single-step methods, the orbit is considered only at the points where
BPMs are situated and is characterized by the state vector x = (xl, Xoyser e xn), x;

being orbit deviations. A goal function

g=0(x,B) (6.1)

is created.
In (6.1), B_ is a vector whose components are corrector strengths. They are

determined so that ¢ has a minimum.

In the multi-step methods, the whole accelerator circumference is divided
into separate areas. At first, the orbit over the first area is corrected. After that
we go to the next area taking into ‘consideration the results from the correction
in the former step and so on.

The dynamical methods of correction treat the orbit as a whole curve 1(¢)
rather than just orbit deviations in BPMs m; =MN(®,). The quality criterion is a

functional o

1= [ o). B (9)do. 62)
0
The condition for [ to have a minimum gives us the chosen corrector
strengths.

7. CORRECTION METHODS
WITH COMPENSATION OF THE PERTURBATIONS

7.1. Harmonic Correction Method. In the harmonic correction method, the
orbit Fourier spectrum
4 < .
@)=+ Y, (,cosk@+v, sin k@) (7.1.1)
k=1 :
is calculated at first.

As we know, the orbit deviations are only in the points where BPMs are
situated and not on the whole curve n(¢); the methods of the applied harmonic
analysis have to be used. Measuring the orbit with 2N BPMs we can determine
only the approximate values of the first N orbit Fourier harmonics. In the case
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of uniformly situated monitors the simplest way is to approximate first orbit

harmonics with the so-called Bessel coefficients [5]

LW
uy=Up=7 DIL
~
N :

1
u=U=y Yo ncoske, (k=12,.,N),
i=1
2N

1 .
ve=V, == Y nsinkg, (k=12,.,(N-1).

N

i=1

(7.1.2)

In the general case of non-equidistant monitors the rule of trapezoids for

integral approximation gives

N
1 1=,y
= Znicost)i{‘ii*E_l**],
i=1
N
1 . Oy
D) nismmi[—'—*——z-i-—],

—

Gp=0y—2m Oy, =0, +2m
In this general case the LSQ criterion of approximation

2
- Min,

n

14
z [ni_z Ck ‘l’k(q),)
i=1

k=0

(7.1.3)

(7.1.4)

where c, are the Fourier coefficients and y, is the system of trigonometrical

functions, gives r . -
H n
0 M

Y, n,

u, |=sTssT

where

(7.1.5)
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1/2 cos ¢l cos 2(1)] .. cos Nq)] sin q)] .. sin(N- I)¢1
1/2 cos¢, cos2¢ cos N¢2 sin ¢2 .. sin(N - 1)¢2

2

(7.1.6)
1/2 cos ¢2N cos 2¢2N . cosN¢2N sin¢2N .. sin (N-—l)(sz

Knowing the orbit harmonics, the perturbation harmonics can be calculated
using (3.14).

In the harmonic correction method, the fields in 2N correcting dipoles are
chosen so that the first N perturbations harmonics to be canceled [6—28].

Keeping in mind that the correcting dipoles are short (A ¢, <<2m) and

transforming integrals to sums, we are to solve therefore the following system
of equations

i 2N
= c (S
bid Z f; A (pi - UO’

i=1

2N
Ly o _02-#
nzf,-COSk(P,-A‘P,-‘ Q2 U,

i=1

| 2N Q2 2
. Y fisinke Ag = 7 v,. (7.1.7)

i=1

Then the fields in the correcting dipoles Bic, i=1,2,...,2N can be calculated

from the generalized perturbations using (3.6), (2.14), (2.15).

7.2. G.Guignard’s Method. It is very important for the biggest error sour-
ces to be found. Then we can check more carefully the corresponding elements
and the practice shows that in many cases after removing this very rough imper-
fection the maximum orbit deviation is reduced to sufficiently small values. As
in an error-free area of the accelerator circumference, the RHS of equation (3.5)
is equal to zero. The orbit in this error-free area is

N =Acos Q¢+ Bsin Qo+ C. (7.2.1)

The orbit (7.2.1) should be matched to the whole orbit in both ends of the
area under consideration. From here the constants A, B, C are calculated.

If now we assume that there are errors in the above area, then the smooth
solution (7.2.1) will not be valid any more. In the points with errors, " will
undergo kicks.

Obviously the divergence of the real measured orbit from the smooth model
(8.2.1) will be a measure for the perturbation strengths in the area.
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According to G.Guignard [9] we shall define the «probability» for the exis-
tence of perturbations in an area of the accelerator as

p+n-1
¥ 2% 2 [\/ﬁ—k (A cos Q, + B sin 0@, +¢) —xk]z. (7.2.2)
k=p

In (7.2.2), p is the number of the first BPM and n>4 is the whole number of
BPMs included in the area.

The constant A, B, C in (7.2.2) defines the non-perturbated orbit. We shall
determine their values so that the non-perturbated orbit will lie as close as
possible to the readings x, in the BPMs (in LSQ sense). In other words we

calculate A, B, C from the condition ¥ — min.

In Guignard’s method, we calculate the «probability» ¥ for successive
areas of the accelerator ring. The areas with big ¥ values are possible sources
of errors.

7.3. Warren and Channell’s Suggestion. As this has been already mentio-
ned in general the number of BPMs, N, is less than the numbers of dipoles —
M and quadrupoles — L, N<M+ L. Therefore we are not able to solve the
system of equations (3.9) with respect to the errors. In Ref.10 Warren and
Channell suggest enlarging this system adding some new equations. For this
purpose, new measurements of the orbit have to be done changing synchrotron
parameters and keeping the errors unchanged. A new set of orbit measurements
can be carried out changing the quadrupole strengths (i.e., changing Q) or
changing the signs of the quadrupole gradients (for example reducing FODO
structure into DOFO). The enlarged system of equations is solved by the LSQ
method.

8. LOCAL CORRECTION METHODS

8.1. Beam-Bump Method. At some places (injection, extraction, and
others) a very high degree of orbit correction is necessary. From the other hand,
at some places of the accelerator ring the orbit deviation may be much greater
than the average one due to strong local stray fields, strong local imperfections
or ground movement. These require the development of methods for local cor-
rection. ‘

Such local correction method is the beam-bump method, suggested by
Collins in the sixties [11—14].

The idea of the beam-bump method consists in a local orbit correction by
means of three correcting dipoles (Fig.3). The orbit deviation is compensated in
a BPM or pick-up electrodes (PUE) situated near the middle corrector, as long
as out of the area occupied by the correctors the orbit is kept unchanged.
Therefore we have the conditions
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Epe 2

correction

Eps 3

Fig.3. Beam-bump correction

x((pPUE) =X

Q{9 9)0)=x (9P, ¢) ) =0. ~(8.1.1)

From (8.1.1) and (3.9) the following system of three equations about corrector
strength can be deduced

sin i, VB, € +sinp, VB, g,=0,
v B, €1+COSM12V B, az+cosul3\l B, e,=0,
(ctg mQ cos Hypye T sin ulpuc) v g +

+ (ctg ©Q cos Honea * sin uéucz) N Bz €, +

+ ( (ctg =Q cos (”pucz + u23) +

2x
+sin (U + 1)) V BaE, ==, (8.1.2)
pue2 23 373 \j Bpue
where
e= il (8.1.3)
=~ "Bp .1
is the bump (kick) in the correcting dipole,
52
ds
B, = f W=Q(‘Pz“i’1) (8.1.4)

s1
is the betatron phase advance.
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For the specialL case of a BPM situated very close to the central corrector,

i.e., when “puez = (), the system (8.1.2) is reduced to

n sin (1, + Hys) n

m m
-,  £,=" - - ,
\/ﬁsm [T 2 sinp,sinfl,, \/B;sm nQ
M
- . (8.1.5)
B sty
In the completely symmetrical case W, = 1,5 — U, Houe =
xm
VB, g, =V B, 8= Bue SN K
2x
\/Bz , = B ctg J. (8.1.6)
pue

Besides using the expression (3.9) about the closed orbit, we can obtain the
system (9.1.2) in another way, by using the beam transport matrix between two
arbitrary points s, and s, in Twiss’ form

V (cos H,to sing ) VBIBZ sinp

M12

W( sin M- o0 sin uot (oc Q, )cos M, V (cos K=oy sin p.’z)

8.1.7)
Let M' be the transport matrix from CD1 to PUE; M?* — from CD1 to

CD, and M® — from CD, to CD,. Then from (9.1.1) it follows that
3. 2

. = *im c __”'11”’128_ 2
1z 2= 3 Myt
12 12
gy =—mlym €, —m,(m,e} + ). (8.1.8)
3 12/M2181 ~ M8 L

. . . o T
The optimum phase distance between the correctors in the triple is p= 5

when €, = 0.

8.2. Generalizations of the Beam-Bump Correction Method. As -a rule,
the magnetic structure of storage rings and colliders is irregular. However, if the
phase distance between BPM and CD, is big (Fig.3), the beam-bump method
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correcting the orbit in the monitor closely to zero will increase the orbit devia-
tion in CD,. This happens when correctors and monitors are situated non-regu-

larly (because of the lack of place) or when the betatron phase changes quite
quickly (in the areas with small B). That is why some improvements of the
beam-bump method have been put forward. Another reason for such impro-
vements is the fact that in the beam-bump method €, ~ 1/sint and in the case

when u=k-m; k=12, ... quite large corrector kicks will be necessary for a full
correction to be fulfilled.

In Ref.15, groups of N monitors and K =N+ 2 correctors are used. The
BPMs are considered to be situated close to the corresponding internal cor-
rectors.

The kicks of the internal correctors are determined by

Re. =—-x_ | (8.2.1)

int pue

where the matrix R is
VBB sin, sin,.
PR el SN LS. T
Rij_ = . (8.2.2)
sin L,

In (8.2.2), H,; is the phase advance between the first corrector and i-th
internal corrector; Hie is the phase advance between the j-th internal corrector
and the last corrector; HU,, is the phase advance for the whole group of
correctors.

Eq. (8.2.1) is a generalization of eq. (8.1.2) for the case of (N+2) cor-
rectors and N BPMs.

The two end kicks are determined in a way to keep the orbit out of the
group unchanged

x
_ uel
VB, ¢, %—E—\/B—nsmu , (8.2.3)
puel Ipuel
VB, €, = “pucn (8.2.4)
Lk \ijueN sm l‘LpueN}k

In the computer program PETROC (an improved CERN variant of the
HERA’s PETROS) another beam-bump improvement is done [16,17]. One can
use K correctors, k being 0, 3, 4, 5. Between the correctors N < 2k beam position
monitors are situated. No more than two BPMs can be placed between two
correctors. Only three correctors are active (with non-zero kicks) — the first,
the second, and the last. Let € be the kick in the first active corrector.
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In order for the orbit not to be changed, the two other active kicks have to
be er, and er, where

E[ sin
r,=-— -, (8.2.5)
2 By sin by,

By sinp,
r,=-— —_— . (8.2.6)
K By sin by

The kick € in the first corrector is determined by the minimum of the
function

2 2 .2 2 ;
g= E (x’.+xpuci) +wB B, sin“u, € (8.2.7)
BPMs
In (8.2.7), X puei is the measured orbit deviation and x; is the orbit deviations

due to correctors; w is a weight. The second member in (8.2.7) limits the cor-
rector strengths.

9. METHODS WITH ORBIT DEVIATION
COMPENSATION

9.1. Iterative Beam-Bump Method. If we move consequently along the
accelerator circumference, the local beam-bump method can be used as a
method for general correction. Each corrector works once as a first corrector in
the correctors triple (Fig.3), once as a second and once as a third corrector.

In this straightforward improvement, a little problem is hidden. In the
beam-bump method, the correctors of the triple are tuned to cancel the orbit in
the monitor which is situated as a rule near the middle corrector. Correctors
affect the orbit locally, i.e., the impact of the correctors is equal to zero out of
the triple. But as we pointed out above, in the iterative beam-bump the suc-
cessive triples overlap a little (they have two common correctors). Hence, each
corrector triple will cause a small orbit distortion in the next (belonging to the
next triple) beam position monitor. The last correctors triple consisting of cor-
rectors (k— 1), k and 1 will reduce the orbit deviation in the k-th monitor to
zero, but will distort the orbit a little in the first monitor.

To avoid this trouble, one more turn of successive beam-bump corrections
along the accelerator will be necessary.

9.2. Least Squares Method. The method can be characterized as a single-
step correction method.

The orbit is considered only in the points where beam position monitors are

situated and is characterized by the state vector n° corresponding to the cor-
rections:
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- :n(B+g)+,nc=.q(B+g)+A5¢'_ 9.2.1)

To write (9.2.1) we have used the formula (3.9), 8¢ being the generalized cor-
rections (3.11) and the fact that nB+g are known from the BPMs readings.

In the least squares method (LSQ) the following goal function is minimized
[8,18-—20] N
g=2, n’=n" - min. (9.2.2)
i=1
It is important to note that as a rule the number of correctors, , is less than

that of detectors, n, i.e., K < N. It is possible to be demonstrated that the mini-
mum of (9.2.2) occurs when corrector strengths are

By =~ (4 ToyTg B9, (9.2.3)

The minimum value of ¢ (the so-called residual sum of squares) is equal to

— B+ T (B+ )T
9in =N - n A80pt. (9.2.4)

9.3. Fast Realization of the LSQ Correction. A fast realization of the LSQ
correction method is proposed in Ref.15. The idea is at each iteration to opti-
mize the orbit using only one corrector. Having tried in this way all available
correctors, we choose for further use this one for which the residual sum of
squares of orbit deviations is the smallest.

At the O-th iteration we begin with the orbit measured by BPMs

nO=nE+8 (9.3.1)

Let 11("_ D be the orbit having been optimized at the (n — 1)-th iteration. As
at each step at the n-th iteration, we will use only single correctors, therefore

(n_pn—1)  om) '
n;’ =1 +5j a, (9.3.2)

where 5](.") is the generalized strength of the j-th corrector at n-th iteration; a; is

the j-th column of the matrix (3.10).
Following the LSQ aigorithm we will minimize

gjﬁ") = min (nj"Tnj(”)). (9.3.3)
(@]
i
Thus at the n-th iteration, we will obtain k values q](."), j=172,..., k, one for

each corrector. From these values qj(.") we will choose the smallest one. The

corresponding corrector will be the optimum corrector at the n-th iteration. Its
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optimum strength Sj(") will be the correction used at the n-th iteration. Therefore
our goal function is

qj(") —> min. (9.3.4)
J
In Ref.15 it is proved that this iterative procedure is convergent and that the
corrector strengths found at different steps are added.

9.4. Algorithm MICADO. The MICADO algorithm for closed orbit correc-
tion was put forward by B.Autin and Y.Marti in Ref.21 and is realized in many
accelerator design programs, for example in MAD [22]. This algorithm can be
seen as an improvement of the LSQ method.

MICADO is an iterative algorithm. At the first iteration only single correc-
tors are used. The goal function is as in the LSQ method

g]Q) = min (n](.“TnJ(.”), (9.4.1)
8

where
n{"=n®* 9+ a5V, (9:4.2)

'r](B +8) being the vector of BPM readings and Sj(l) being the vector of the gene-

ralized corrections (3.11). As at the first iteration we use only single correctors:
aj‘” =(0,..., aj(l),..., 0), (9.4.3)

therefore, at the first iteration we have to solve k equations with one unknown
value — 8](.1), G=1,2,..,k).

Next we find out the number j * of that corrector among all k correctors for
which qj(.l) (9.4.1) has the smallest value — q(_l*).
i

It is j *-th corrector that will be used at the second iteration together with
each one of the rest (k— 1) correctors. We minimize again the square function

qj(?) =min (nj(?)Tn](.z)). (9.4.4)
o '
But now the corrections vector 8](2) is

8].(2) =(0y00y & ... 8, 0), (9.4.5)
J

i.e., has two non-zero éomponents: one, & ,, is the strength of thej*—th corrector
i

(remember that this number was found and fixed at the previous step) and
another one — the strength of any other corrector. Thus at the second iteration
we have to solve (k — 1) systems of two equations with two unknown values —

S . and d.
j ]
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Following the first iteration idea we will search now for the number j ** of

that additional corrector for which qj(.z) has the smallest value. So that after the

second iteration we will have fixed numbers j* and ;" of two optimum cor-
rectors.

Iteration procedures of this kind go ahead, adding one new corrrector at
every step, until the sum of the corrected orbit deviations becomes less than a
given small value €. Furthermore the method finds the smallest number of
correctors satisfying this condition.

9.5. Hereward-Bacconier’s Method. In this correction method the
following goal function is introduced [23—26]

N K

g=y L +1-9 Y 6/‘.’2—>min. (9.5.1)
i=1 j=1

In (9.5.1), vy is a parameter, 0 <y< 1.

The first sum in (9.5.1) minimizes the orbit deviations in the BPMs, the
second one restricts the strengths of the correctors, limiting in this way the
influence of the high harmonics of the correction. We saw that from the
readings in N BPMs the amplitudes of the first N/2 orbit harmonics can be
calculated. These N/2 orbit harmonics are compensated by the corresponding
harmonics of the correction. The higher harmonics of the correction remain
uncompensated. As they distort the orbit additionally it is useful to restrict their

. influence.

The optimum value of the parameter y is determined either experimentally
or by computer simulations.

One can write

N K 2 K
q=YZ[EGUSJ‘TM,(-B”)]HI—Y)Z6;'2. 9.52)
ji=1

i=1 j=1

The necessary condition for ¢ to have a minimum is

N K '
99 _ ¢, (B+g) s
o _27_2 a, Y (a,, 8+ +2(1-v) 8 =0,
j i=1 p=1
J=12,. k. (9.5.3)
This can be written in matrix form

WATA+Q-pE) s =—ya TnE* 9, (9.5.4)
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9.6. LSQ with Singular Value Decomposition. According to the linear
algebra [27] any (N x K) matrix A with N >=K can be represented as a product
of three matrices:

A=UwVT 9.6.1)

where U is (N x K) unitary matrix (U Tyu=vuT= E), Wis a (K x K) diagonal
matrix with positive or zero diagonal elements ( w, >=0, called singular values)
and V is a (K x K) unitary matrix (VT-V=V-VT=E). (1) is known as SVD
decomposition of the matrix A.

If the matrix A is square (equal numbers of monitors and correctors) and
some wl.’ s are equal to zero, A will be singular; in case some of the w s are

nonzero but very small, A will be illconditioned.
If N> K (which is usual for accelerators), the system of equations for the
corrector strengths

se=—1 9.6.2)

will be overdetermined.

Even in this two cases the SVD decomposition of A provides a «reason-
able» solution of (2) (in LSQ sense).

It is proven [27] that the vector

8 %€ = - v.[diag (1 /W)U T, (9.63)

wﬁere for all w's equal to zero or very small, the corresponding diagonal
elements (1 /w)) in the second matrix of the matrix product (9.6.3) are replaced
by zero (e= — 0!), satisfies

|A- 85 +n|% > Min. (9.6.4)

If U(l.) are the columns of the matrix U (N-vectors) and V(i) are the columns
of the matrix V (K-vectors), then

U.n
§5C=_% [—(’)—— J Vay (9.6.5)

i i
i.e., the corrector strengths are linear combination of the vectors V(i) with
coefficients equal to the dot product of the vectors U(i) with the measured orbit
n weighted by the singular values w;.
In order to redpce the corrector strengths one can replace {1/ w,) by zero
not only for zero (or very small) w, but when w, <&, where € is chosen in a way

to avoid the power supplies saturation [28].
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The LSQ correction method with SVD decomposition of the response
matrix A is coded in the computer program for orbit simulation and correction
ORBIT [29] and has been used in the X-ray ring NSLS and in SPEAR [30].

9.7. Eigenvectors Correction. In the LSQ correction method we have to
invert the matrix (ATA) — (9.2.3). ATA s square (K x K) symmetric real matrix,

i.e., hermitian matrix, i.e., there exists a transformation A=T_1(A TA)T to a
square diagonal matrix A. The diagonal elements &, of the matrix A are the

eigenvalues of the matrix (ATA), and the transformation matrix T=_(X1,
X,,..., X ) is formed by the eigenvalues X, of the matrix (ATA).

It follows from this transformation and from (9.2.3.) that {8]
sc K K K y iX
== > X J——Mk A, (9.7.1)
p=ltg=1r=1 P

Let us represent the corrector vector 8 in the basis Xl’ [=1,..,K
5= CX,. (9.7.2)
I

Then we have for the residual sum of squares (9.2.4)

_s T T
=58+, AC8'X,. (9.7.3)
l
The eigenvectors with small eigenvalues will have no significant
contribution to the correction and may be neglected thus reducing the corrector
strengths.

qmin

9.8. Dynamical Correction Algorithm. Algorithms described above strive
to compensate orbit deviations in the points where BPMs are situated by means
of some number of orbit correctors. As a result of the orbit correction, the
corrected orbit will have approximately zero deviations in the BPMs. However,
between the monitors the corrected orbit will have non-zero deviations. During
the computer simulation we noticed that in some particular error distributions
the deviations of the corrected orbit in some points are out of control. In general
it is important to correct the orbit over the whole accelerator ring and not only
in the BPMs.

Emphasizing this fact, we will choose the criterion of correction quality as

a functional [31] -
_1 2
a=5- | @) do. ©8.1)

0
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But the orbit n(¢) is a random function of the generalized azimuth. This
requires to improve the criterion (9.8.1) taking the mathematical expectation of
the functional

a= M[» fn(w)dcpJ | 9.82)

(9.8.2) is the final form of the correction quality criterion in the DINAM
algorithm.
One can write

= f n ((p)&p=—+ Z(u +v})

k+1
u(B+g) oo

_| 2o b+g) (B+g)
= 5+ by (”k FayT8 s
k=1

+!:u(B+g)uBc+ Z (2 (B+g) fc+2v(B+g)kac]}+

2 2
(uBC +yBe ) =3 +3%,+ 3, (9.8.3)

B+ g
k

](CB“L & being those caused by the dipole and the quadrupole errors and uk ¢ and
Be

In (9.8.3), "klv are the Fourier coefficients of the orbit, u and

ka‘ being those caused by the correctors.

Let us have 2N Beam position monitors, M-dipoles, L-quadrupoles, and
K-correcting dipoles. As a result of the orbit measurement by BPMs, we shall
know the orbit distortions in 2N points. However, the total number of the per-
turbations (M + L) is, as a rule, much larger than the number of BPMs.
Therefore, we cannot solve (3.9) about the perturbations. From this system of
equations only 2N perturbations can be expressed by the readings in BPMs and
other perturbations. In other words, we have a case of correction with
uncertainty.

Let n; i=1,2,..., 2N be the orbit distortions in BPMs. Then we can‘write:

oo

u
0 .
n=at > (uy cos k @+ v, sink ¢ ). (9.8.4)
k=1 (=12..2n)
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From these 2N equations, the first = N Fourier Coefficients

can be expressed by the orbit distortions M, and higher
orbit_harmonics. Assuming that BPMs are placed uniformly along the accele-
rator ring, the following relations can be deduced from (9.8.4)

Higp Ups voos Uy o Vi )

uy = _22 typ; = Uy = Sy
j=1

w=U.- 2 (p gt top; e = U= Sp
: 1

Jj=1
where N
1
UOZTV 2 n,.

U=7 D> mcoske;  (k=12,..,N),

2N
1 .
V=% D nsinke (=12, (n-1) (9.8.6)
i=1

are Bessel’s coefficients.
Making use of the relations (9.8.5) one can write for the sums in (9.8.3)
2 p-i 2
U U
| -0 2 2y, N
Z]—{ 5 + D (UZ+VH+ 5 }+
=1
N-1

— USy+ D, (=2US, —2V,R) ~ UNSN}+

k=1

2 N-1 U2 R

Zo 2__N_ B+

[2+2(S+R)+SN 2tV +
k=1

oo

2 2
£ 3 [u23+2)+v£3+g) ]}=2a+zb+zc,

k=N+1 9.8.7)
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n-1
Bce Be Bc Be
g +2 Y, (U s + Vi) + Uy uly }+

k=1

Y =

2

n—1

B+g Bc _ Bco Bc Bc Bc

+{2VN v — g Sy =2 Y (S, + v R) - 2u SN}L
k=1

+[2 S @O pBr e, B‘} PIEDN +Z (9.8.8)

k=N+1

Using the fact that the higher orbit harmonics are statistically independent
and have a zero mathematical expectation we obtain that

M(Z,)=M(Z) = M(E) =0, (9.8.9)

Using the Fourier expansion (3.13) and the reactions (3.14) between the
orbit and the perturbation harmonics one can also obtain that

ME)=4 Y [——Q——?]D, (9.8.10)

2
k=N+1Q@7—
where D is the variance of the perturbation harmonics
D=D(f,)=D(g,). (9.8.11)

Because the correcting dipoles are short compared to the accelerator
circumference, one can reduce integrals in the expressions for correctors Fourier
harmonics to sums and write

2 Z 2 e q (9.8.12)

p=1g¢g-1
where
n—1
cp+2 z [ cosk((p (p)+c cosN(p cosN(p
k=1

_1

r9 N
ck=%Qii;ll‘Q7 , (9.8.13)

Q" —kY)

In the same way one can prove that
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kok
> =3 Y B s (9.8.14)
3 qrog r
g=1r=1
where 2 e
_%o 2 '
qu~—2—+z ¢, cos K@~ @)+
k=1
=c0§Q| - |+Siancos(n—| —(p|)Q—
s lg,-0, 1 += 5 0~ 9,
lo,—o,| sinmo
-1 - sin(n—|(pq—(pr|)Q. (9.8.15)

Finally in the applied harmonic analysis it is proved that
. 2N
1 2
Za =y = (9.8.16)
i=1
Summarizing all the above results for the quality criterion (9.8.2) we get

2N

2N &k
.__1.. 2 Be
2q=" PRI A M, 80+
i=1 p=1g=1

D. (9.8.17)

The coefficients qu and qu are given by formulae (9.8.13) and (9.8.15),
respectively. In these formulae, ¢, are the azimuths of the BPMs and 9, and
@, are the azimuths of the correcting dipoles.

The strengths of the correcting dipoles are determined by the condition for
a minimum of g to occur

k 2N
2,218"’ 5;% = _,E'lAps n, =12,k (9.8.18)

Introducing matrices A = {Aij } and B={ Bl.j } and the vectors of the correc-

tions 8¢ and BPMs readings 1, eq. (9.8.18) can be written in the following

matrix form
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2888 =_ ATq. (9.8.19)
Let us introduce the matrix
R=—% B7'aT (9.8.20)

The matrix R depends only on the azimuths of the BPMs and on the correc-
tors and for the given accelerator it can be calculated prior to the correction.
Then the required strengths of the correcting dipoles will be determined by the
matrix expression

58 =R .n. (9.8.21)

So the algorithm is relatively fast. The computer simulations showed that it
works reliably and is free from the undesirable effects mentioned in the
beginning of this part.

10. ORBIT CORRECTION
WITH NEURAL NETWORKS

Artificial Neural Networks (ANNs) [32] with their ability to tune them-
selves according to the output errors are well suited for on-line orbit correction.
The relationship between corrector kicks and orbit displacements in BPMs is in
general non-linear due to the presence of non-linear elements in the machine.
The orbit fluctuates during the time. Both these circumstances are well treated
by ANNs which have features for solving non-linear problems and self-
teaching.

As it 15 not possible to go in more detail in this paper we will restrict
ourselves only to the main principles of the ANNs correction.

An ANN consists of neutrons arranged in layers and directed and weighted
connections between them (Fig.4).

In the forward propagation of the signals (from input to output) each neu-
tron processes has input signals 5; and produces an output signal s; according to

the relations

Sl.=f[ TiijJ, (10.1)
i=1 '
where Tij are the synapse weights.

The function f{x) in (10.1) (the so-called action function) is usually a step-
function thus if the weighted sum of the input signals exceeds the threshold for

the neuron, the neuron «fires» and produces output signal.
In the backward propagation of the signals first of all the output errors g,

of the ANN are calculated
€ =z,—5, (10.2)

where z, are the «ideal» output signals.
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T,
s
1
S 1
HIDDEN
INPUT OUTPUT

Fig.4. Artificial Neural Network

Let Bij be the blames — the degree of responsibility that each input signal

has to the output error T S
= (10.3)

B.. .
ij
2755
J=1
Finally the weights are corrected according to
T =TM kB ¢, (10.4)
ij i i§ i
k being a coefficient.

Before to be ready for use an ANN must be trained. To do this we apply a
set of input signals for which the «ideal» outputs are known, record the output
errors and tune the weights according to (10.4). After many training cycles the
desired accuracy of the output can be reached.

The use of ANNs for orbit correction is quite straightforward. The input
signals are the measured orbit displacements X in BPMs and the output signals
are the corrector kicks €. There is one input and one output neuron for each
BPM and corrector.

In the training stage the applied input signals X are determined by

X = Ag, (10.5)
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where A is the response matrix whose elements can be calculated by the ma-
chine model or be measured, which is more accurate, and & are random kicks.

After the training is over and the desired accuracy of the output is reached
ANN can be used for on-line orbit correction.

During the machine operation a continuous process of retraining (fine
tuning) goes on. The detected orbit errors are feed back and the weights are
recalculated-adoptive correction.

ANNs have been used for orbit correction in the NSLS VUV and X-ray
storage rings [33,34].

Neural networks have been simulated by means of SNNS computer simu-
lator [35]. A three-layer shortcut connected network (all neurons are connected
to each other) and Quickprop training strategy have chosen best results. After
2200 training cycles ANN has been able to correct the orbit to 44 pm maximum
deviation.

11. EXPERT SYSTEMS

Knowledge based expert systems differ from conventional computer prog-
rams in their intensive use of intuitive and empirical rules which together with
facts about the task form the so-called knowledge base [36]. The control
strategy (the order in which rules are applied) is determined by the inference
engine (Fig.5).

EXPERT —, KNOWLEDGE INFERENGCE
BASE -
DATA FAGCTS+RULES ENGINE

INTERFACE

|

USER

Fig.5. Block diagram of a knowledge based expert system
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The expect system approach to closed orbit correction is developing in
CERN by D.Brandt and A.Verdier [37,38].

The expert system 1is based on the fitting method of G.Guignard
(chapter 7.2) of searching for field and alignment errors. It can predict and
estimate the location of large field defects and to check the correctness of the
BPM reading. A convergence test is used as a sensitive mean of detecting
whether all errors have been identified.

The main program is written in PROLOG; while the numerical subroutines,
in PASCAL.

The expert system has been successfully tested on EAP and LEAR in
CERN.

12. ORBIT CORRECTION FEEDBACK SYSTEMS

In synchrotron radiation sources (SRS) we need not only closed orbits with
small distortions but also high stable orbits. Orbit stability is a crucial point in
achieving low emittance electron beams and therefore high brightness of the
photon beams. Orbit correction must be applied dynamically which eliminates
fluctuations produced by ground vibrations and magnet power ripples.

In SRS orbit stability is improved by means of correction feedback system
(Fig.6).

In general the feedback systems are divided to local and global systems.

HABAX)  f+f

a8 A 7
ax L \Z/ W pue

H

Fig.6. Orbit correction feedback system. fldB, dX) is the error function (3.6),
W is the operator 1/0Q7? (d2/d¢? + Q2)}, H is the correction operator
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In local feedback systems the orbit is locally corrected at the centre of an
insertion device by three or four magnet bumps [39].

Global feedback systems can be analog {40] or digital [41].

In Ref.40 a feedback system based on Fourier analysis of the orbit is des-
cribed. As it has been shown in chapter 7.1. the orbit Fourier coefficients can
be expressed by the matrix equality, €q.(7.1.5). This means that a simple linear
electronic network can be built to realize on-line Fourier analysis. The input
voltages are proportional to the orbit displacements measured by BPMs and in
real time the output voltages are proportional to the Fourier harmonics. After
that the corrector strengths are adjusted to cancel these harmonics.

Digital feedback systems [41] allow one to avoid drift, offset and
temperature problems typical for analog circuits. Orbit data is transferred in
digital form by BPM processors distributed around the ring. The digital signal
processors then calculate the corrector strengths and control the corrector power
supplies.

Digital feedback systems are programmable and therefore more flexible
in use.

In principle any orbit correction algorithm can be used in feedback systems.

13. OPTIMUM POSITIONING OF DIPOLE MAGNETS

A different approach to the closed orbit correction is the optimum posi-
tioning of the dipole magnets around the ring. According to this approach the
dipole magnets are situated in their places on the ring not in an arbitrary way
but following a special strategy.

In the stage of accelerator assembling, the field errors in dipoles are care-
fully measured and only after that they are installed according to a positioning
algorithm.

This allows for the orbit distortion to be minimized [42,43].

Let the dipoles be installed around the ring according to the permutation

X=(AB,,AB, ..., AB, ),
1 2 M

kiefl, 2,..., M}, k,‘¢kj4 i#j. (13.1)
If we choose as quality criterion the functional
2m
1 2 .
=5 jn (¢) do —> Min, (13.2)
0

it can be shown [42] that the following sum must be minimized
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M M

2. 2. B,AB AB, — Min, (13.3)
g=1r=1 e 7

where the coefficients qu are calculated by the machine model.

Let us introduce the Xjk integer variables
1, if the K—th dipole is situated

X.= at the j—th position (13.4)
[ 0, otherwise,

M
z Xjk =1, 1i.e., one dipole at a place,
M k=1
z Xjk =1, 1ie., each dipole only at one place. (13.5)

From (13.3) the so-called «quadratic assignment problem» of the discrete
programming follows:

«Let us have M dipoles, k=1, 2,..., M and M places j = 1, 2,..., M around
the ring. We look for such positioning of every dipole at only one place for
which

M M M M
2 2 X X I[B,ABABIX X - Min, (13.6)
E in=1

where Xjk are M * integer variables (13.4) with constraints (13.5)».

Unfortunately in cases of large dimension of the task the quadratic assign-
ment problem proves to be difficult one [42].

That is why in [42,43] new approaches to the problem making full use of
its specific character have been developed.

The set of dipole errors (13.1) causes a combinatorial space of permutations
P . The points in this space are all possible permutations X (13.1) and its power
is M!.

Let us introduce a metric in the P space in the following way: the distance

r(X, Y) between the points X and Y is assumed to be equal to the minimum
number of the transpositions (elementary or pair shifts) necessary to bring the
point X to the point Y.

Here we will describe only one of the algorithms proposed in [42,43],
namely the algorithm of controlled random search.

The algorithm uses the following goal function
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Q = max, le.l, (13.7)

where x; is the orbit displacement in the i-th BPM.

The logical structure of the algorithm of controlled random search can be
described in the following steps.

Controlled Random Search

Step 1. Choose an arbitrary initial arrangement of the dipoles X, 1i.e., an
arbitrary initial point in the combinatorial space Pp. Draw a sphere S, centered
in the initial point X, and having radius equal to R, (R, < (M — 1) and its value
is chosen by physical considerations). Choose the convergence parameter €.

Step 2. Set i = 1.
Step 3. Choose a random point X; &S, _

bution. Calculate Qi = Q(Xi).
Step 4. Check whether Q, < €. If yes, stop the iterations and exit the algo-

n using uniform probability distri-

rithm. If not go to step 5.
Step 5. Draw a sphere S, centered in X; and having radius R, :

Ri = SRO, (13.8)

where 0.
5=—". 13.9
Qo ( )

Step 6. Set i =i + | and go back to step 3.

The computational experiments show that the CPU time necessary for the
optimizing of a machine with M dipoles is proportional to M!.

Other algorithm for optimum positioning of dipoles can be found in
[42,43].

14. FIRST TURN CORRECTION

In order for the particles in a circular accelerator to be able to perform
hundred of thousands turns before to reach the final energy of the machine they
must first of all pass the very first turn.

During the assembling and initial tuning of the accelerator much bigger
errors than the random field and alignment errors mentioned above may occur.
Sometimes they are caused by unpredictable mistakes and there are several such
cases in the accelerator practice.
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In the presence of big linear errors the centre of charge trajectory does not
follow any more the orbit and can have very big deviations. Even more, the
beam can hit somewhere that vacuum chamber not being able to make complete
turn around the machine.

Launch errors in the injection system may also cause the beam loss or
provided they are not so big-harmful coherent oscillations of the beam.

The situation is complicated by displacement errors in the BPMs and by the
low resolution of the monitors for single-pass beam.

So we face the task of threading the beam entire turn around the accelerator
ring.

Two different approaches are possible [44].

First we can fry to thread the beam around the ring using the existing orbit
correctors. Correcting algorithms have been developed for first turn treatment
and some of them will be described in this paper.

In a different approach we can search for the sources of big errors — dipole
magnets with big field errors of highly displaced quadrupoles. After finding of
the candidates for error sources we should carefully examine the corresponding
elements. This approach has been successfully applied for beam line steering
and can also be used for the first turn treatment.

The first turn correction is closely related to the beam line steering. In fact
before closing the first turn onto the second the magnetic structure of a circular
accelerator can be looked at as a beam line.

The beam losses are especially dangerous in the superconducting machines
causing the loss of the superconductivity and thus making the tuning process
much longer.

In big synchrotrons the distorted orbit amplitude can reach values which are
compatible with the vacuum chamber radius due mainly to the misalignments of
the quadrupoles. This makes the first turn threading a very important task.

Having corrected the center of charge trajectory so that the beam goes
entire turn around the ring we should close this trajectory, i.e., make the second

‘turn (and all the following turns) to coincide with the first turn.

This chapter represents some algorithms for first turn steering.

14.1. Beam Threading Algorithm. The idea of the method is straight-
forward [45,46]. The steering system consists of small correcting dipoles and
beam position monitors (BPM) situated near to them (Fig.7).

As BPMs electrostatic pickup electrodes are used.

Because the length of the correcting dipoles is small comparing to the acce-
lerator circumference they can be considered to produce local orbit bumps.

Let

Bcn ) l
En - B p
be the kick in the n-th corrector, where B - p denotes the beam rigidity.

(14.1.1)
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Mt Mz c1 w q M @l &
A 4
A A A
ENTRY BEAM LINE STEERING EXIT
DIAGNOSTICS STEERING

Fig.7. Beam line steering system

If M7 is the transfer matrix between Jj-th corrector and i-th BPM, we can
write

=mll g = .
X, =mj) €= Bj B, sin g, (14.1.2)

where x; is the deviation in the i-th BPM and we have expressed the matrix

elements by the Twiss parameters — amplitude function B(s) and betatron phase

advance H(s): s ds
uisy =1\ <. (14.1.3)
> B
Applying the principle of superposition we can write
x VB1B3 sinp . 0 .. 0 g
Xl VB1B4 sinp VB2B4 sinf,, ... 0 €, (14.1.4)
X BB, sinp BZBn sin o VBB sinwy ] g,

The system of equations (14.1.4) can be solved with a trivial forward sub-
stitutiton.

It follows from (14.1.2) that the optimum phése distance between the cor-
rector and the monitor in a corrector-monitor pair is n/2. In practice it is
difficult for one to follow this requirement.

BPMs should be placed near to the points where B has maximum and where
we can expect big centre of charge deviations. This improves the BPMs sen-
sitivity.

In order to minimize corrector strengths the correcting dipoles also should
be placed near to the points where B has maximum.

Whereas in the simplest FODO structure it is easy for one to follow these
rules situating the horizontal BPMs and correctors near to F quadrupoles and
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the vertical BPMs and correctors near to D quadrupoles, in more sophisticated
magnetic structures with many elements it is almost impossible.
The beam line steering systems have as a rule two additional parts (Fig.7).
In the entrance of the line two pickups are used to measure the position and
the slope of the injected beam. The credibility of the entry angle reconstruction
however is greatly improved if the two pickups are placed in drift space [45].
At the exit of the line two correctors are used to match the centre of charge
position and slope to ones in the following accelerator or target.

14.2. Least Squares Algorithm. The Least Squares (LSQ) approach was
successtully applied not only as a method for general orbit correction but also
for first turn treatment {47].

Let’s have n BPMs and m correcting dipoles, n = m.
If ck,k =1, 2,..., m are some changes in the correcting currents, the theo-

retical changes in the center of charge trajectory /\IL that they will cause gene-
rally speaking are
m c m
X<=3 % =2 F, ¢ (14.2.1)
k=1 "k k=1
In practice due to the error influence the measured centre of the charge
position x" will not coincide with the designed position xjj. Let Ax, = xf.l - %
denote the discrepancy between both.

The task of threading the beam around the entire circumference of the ring
can be looked at as a least squares problem

n
$¥=3 (Ax, - )" — Min. (14.2.2)

i=1

The corrector strengths which minimize the discrepancy between the mea-
sured and desired trajectories follow from the well-known solution of the LSQ
problem

c=FTH T F Ax (14.2.3)

In the case of equal number of correctors and BPMs, when F is square
matrix (2.2.3) becomes

¢ =Flax. (14.2.4)

For the first turn steering F is a triangular matrix (like (2.1.4)) as a BPM
«sees» only those correctors which are placed downstream to it.



1054 DINEV D.

The LSQ method has been used in the Tevatron first turn correction [47].
In superconducting synchrotrons the orbit steering is of special importance
because the beam losses cause the loss of the superconductivity. This means
that the accelerator will have about one hour stop at every tuning step and is a
serious problem. The automatization of the tuning by means of the LSQ algo-
rithm has allowed for an orbit close to the designed orbit to be established after
several iterations of the correction.
Another L.SQ algorithm for first turn steering is described in [48].
The goal function is defined as
n k 2
* PUE des * .
¥ =Zl M, F =) +-21aij e | — Min, (14.2.5)
i= j=

g = VR ¢ (14.2.6)

J ] J

where

are the «generalized» kicks.

In eq.(14.2.5), n°* denotes the desired centre of charge trajectory; n and k
are the current numbers of used pickups and correctors. In the case when we
lose the beam before the full turn to be carried out the current number of used
pickups n is less than the total number of pickups N and the current number of
switched on correctors k is less than the total number of available correctors K.

In practice there are limitations on the maximum allowed kicks in the cor-
recting magnets

|ej | <A. (14.2.7) -

Thus we face a constrained optimization problem [49].

In order to solve this problem the penalty function method has been used.

The general idea of the method of the penalty functions is to reduce the
constrained optimization problem to a series of unconstrained problems. To do
this we will add to our goal function (14.2.5) the so-called penalty function
0((8;) which is chosen in such a way that it will «punish» the function ‘P(e;) if

the constraints (14.2.7) are broken. In [48] the following penalty function is
used

K
* 2,2
o(e)) —'Zlmax ©, e - A%, (14.2.8)
] =
The following series of unconstrained optimization tasks is solved
‘P'(z-:;, ) = ‘}‘(8;) + a(a]’.‘) — Min, (14.2.9)

where B > 0, k=1, 2, 3... are parameters and
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Him Uy = oo (14.2.10)

k —» oo

14.3. Closed Bumps Algorithm. The classical method for global orbit cor-
rection by means of local orbit bumps can be applied also for first turn correc-
tion [49].

The local orbit bump is produced by three correcting dipoles (Fig.3).

Let n BPMs be places between the correctors.

Let «a» be the centre of charge deviation in the middle corrector. The
height «a» can be used for the local orbit bump to be parametrized.

A kick g; centered in a point i produces changes in the centre of charge

position and angle at another point s given by
AX(S) = ‘Bl BS Sin “u. 8’1

AX'(s) = lf@* (cos 4. — o sin L. )€E.. (14.3.1)
B is K is” i
5 .
We will want to produce a local bump. This means that if the point s is
situated anywhere outside the bump, the effects of the three correctors should
compensate each other:

3
2 Ax(s)=0,
if 1
D, Ax/(s) = 0. (14.3.2)

i=1

It follows from (14.3.1), (14.3.2) that for s outside the bump

3
2 \/E g sin H, = 0,

i=1

3

2 VB, g;cos p_=0. (14.3.3)
i=1

The kick in the first correcting dipole should produce a deviation equal to
«a» in the middle corrector. It should be therefore

a

g = W . (14.3.4)

Given (14.3.4), (14.3.3) becomes a system of two equations with two un-
knowns €, and €.
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The solution 1s

asiny,

& = : : (14.3.5)

B, sin W, sin pyq

and
2 _4(—a' — (14.3.6)
3 VBB, sin
In [50] the following goal function is introduced
n 3 .
_ PUE,_m d c\2 COR

Gla) = EIW,- @ -+ Y WP (). (14.3.7)

i= j=1

In (14.3.7), x:" denotes again the measured deviation in the i-th BPM, x;] —

the desired deviation. xf is the deviation in the i-th BPM due to the three

correctors and it can be easily calculated using the transfer matrices between the
correctors and the monitor.

wrVUE is a weight associated with each monitor while w]‘.‘ is a weight

associated with each corrector.

P(¢) ia a penalty function which punishes the goal function if the kicks are
too big.

In particular, the penalty function can be taken as

klel,if lel >€_

P(a) = { ax (14.3.8)

0, otherwise

where k£ > 0 is a large constant.

G(a) is a function of only one independent variable, a. It can be easily
minimized using for example the simplex method.

In order for the entire circumference of the accelerator ring to be corrected
the above algorithm should be applied iteratively. The ring is divided into over-
lapping closed bumps and the correction is repeatedly used taken into account
the results from the previous steps.

The algorithm is proposed for SSC and has been largely used for SSC first
turn and global closed orbit simulations.

14.4. Error Finding Methods. In the periods of machine assembling, initial
tuning or upgrading relatively large errors can occur: launch errors in the posi-
tion and slope of the center of charge of the injected beam, kick errors in the
dipoles and misaligned quadrupoles and focus errors in the quadrupole
gradients.
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As the strengths of the correcting elements are limited it could be 1mpos-
sible to correct the centre of charge trajectory to the required extent. That is
why a different approach to the beam steering has been developed [50,51].

In this approach we will rather search for the sources of big errors than try
to correct them. After the places and magnitudes of such errors have been found
one should carefully check the corresponding elements trying to uncover the
physical bases of the errors.

The error-finding approach has been successfully used in SLAC for beam
steering in the linear electron-positron collider SL.C [50,51].

Two kinds of computer programs are used to determine the error candida-
tes —— modeling programs and error-simulating programs.

The modeling programs give the operator a mathematical model of the
accelerator. They receive as input a full description of the accelerator elements
(their location and strengths) and produce as output a file listing elements and
corresponding transfer matrices and Twiss parameters.

Error-simulating programs calculate the effects on the beam parameters due
to specific errors in the elements and generate simulated trajectories. To find the
predicted trajectories this programs use the transfer matrices calculated by the
modeling programs.

As a modeling program any lattice design program can be used.

For simplification the error-simulating programs describe errors introducing
thin-lens elements in the lattice. For simulating of focusing errors thin-lens
guadrupoles are inserted in the lattice quadrupoles and for simulating of kick
errors thin-iens dipoles are inserted either in bending dipoles to describe field
errors or in quadrupoles to describe alignment errors.

Two different kinds of error treatment exist:

A. Global Search. The method of global error search makes use of a power-
ful nonlinear optimization package. All the elements are suspected as possible
sources of errors. Thin-lens elements describing errors are inserted in the ele-
ments. Then the optimization programs are used to find the settings of these
thin-iens elements which will yield BPMs readings matching the measured
trajectory. Those thin-lens elements which have nonzero strengths are the sites
of possible errors.

B. Local Search. Only few of the elements are used as possible error sour-
ces. The operator has to make some guesses about the location of the errors and
about the error-free regions. A highly-developed graphical interface can be very
useful in this trial-and-error method. The operator display should be able to
show a plot of the measured trajectory, desired trajectory and the difference
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between both. It is clear that an error originates in the region where the diffe-
rences grow up. After determining the error places the operator tries to adjust
the strengths of the corresponding thin-lens elemenets so that the calculated
trajectory lies close to the measured trajectory. Non-linear optimization
programs are used again but due to the small number of independent variables
the optimization problem is much more easy for solving.

Several expert systems have been developed to automate the use of the
beam line correcting programs and to minimize the time necessary for line
commissioning [52-54].

These are hybrid programs combining traditional expert systems with their
capabilities for qualitative reasoning, modeling programs giving a mathematical
model of the machine and optimization programs. Combining numerical algo-
rithms with symbolic reasoning these hybrid expert systems systematically per-
form the specific procedures that a human expert foliows in order to correct the
beam line.

First of all they look for error-free regions where the discrepancies between
the predicted and the measured trajectories are small. An assumption that every
subregion between two adjacent error-free regions is a possible location of
errors and that there is only one error element within each subregion is made.
Then the described above error-finding procedures are used in order for the
existence of beam line errors to be uncovered. Frames are usually used for
representation of the domain knowledge. LISP is the preferable language for the
expert system implementation.

This work was supported by Bulgarian Scientific Foundation, contract F-
309.
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