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In the present paper on superintegrable potentials on spaces of constant curvature we discuss
the case of the three-dimensional hyperboloid. Whereas in many coordinate systems an explicit path
integral solution for the corresponding potential is impossible, we list in the soluble cases the path
integral solutions explicitly in terms of the propagators and the spectral expansions into the wave-
functions. We find the analogues of the maximally and minimally superintegrable potentials of IR3
on the hyperboloid and many minimally superintegrable potentials which emerge from the subgroup
chains corresponding to SO(3,1). Some special care is taken for the proper generalization of the
harmonic oscillator and the Kepler problem.

B Hactoswiedt crathe, MOCBAINEHHOH 3alayaM C CyNEPHHTEIPUPYEMBIMH NOTEHUMATAMH B HpPO-
CTPaHCTBaxX MOCTOMHHOW KPHBH3HBI, 0OCYyX/aeTcs Crydail Tpexmeproro runepbomonga. HecmoTps wa
HEBO3MOXHOCTh TOYHOFO PELICHHS COOTBETCTBYIOIUMX 3alad C MOMOUIBIO METOAa KOHTHHY&ThHOTO
MHTEIPHPOBAHUS BO MHOTHX PasielsOUMX CHCTEMAX KOOpAMHAT B paboTe NPHBEEHBI BCE CITydaM,
KOTia 3TO YAaeTCH CHAeNaTh TOYHO VIS NPONAraTopoB M CHEKTPAILHBIX PayTOXEHHH 1O BOIHOBBIM
(yrkumsm. [OCTPOEHBI AHATTOTH MAKCHMATBHO 1 MHHMMATBHO CYNEPHHTEIPHPYCMBIX [IOTEHLMATOB B
IR® Ha TpexMepHOM rHIEPGONOHIE H GONBLIOE YHCITO MHHHMATHHO CYNEPUHTEIPUPYEMBIX TTOTCHUMAIOB,
BOSHUKAIOIMX M3 NleNo4YeK MOArpymn, cootercTaytomux pymne SO(3,1). IMoxpobHo paccmarpusa-
eTCs 06o0IWenye 3a1ad 0 rapMOHUYECKOM OCUMIIIATOPE M KEMUIEPOBCKOH NMPOBIEMBL.

>

1. INTRODUCTION

Motivation and Symmetry Methods in Physics

The present paper is the fourth in a sequel concerning superintegrable po-
tentials in spaces of constant curvature. It continues our studies which started
from the investigation in two- and three-dimensional Euclidean space, i.e., in IR?
and IR?, on the two- and three-dimensional sphere S and S®), and on the
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two-dimensional hyperboloid A(?). Our goal is devoted to the study of physical
systems in spaces of constant curvature which have accidental degeneracies, i.e.,
systems which have due to their peculiar features the so-called hidden symme-
try or dynamical group structure, thus giving rise to degeneracies in the energy
spectrum, and additional integrals of motion, respectively observables.

The most well-known of these kinds of potential systems in three-dimensional
flat space are the harmonic oscillator with quantum energy spectrum

Ey =hw(N+2) , NelNg , (1.1
and the Kepler-Coulomb problem with the quantum energy spectrum

Met
RN + 1)?

Here, N denotes the principal quantum number, and for fixed NV each level Ey
for the oscillator is (N + 1)(N + 2)/2-fold degenerate, and in the Coulomb
problem (N + 1)%-fold degénerate.

The particular symmetry features have the consequence that there are ad-
ditional constants of motion in classical mechanics, respectively observables in
quantum mechanics. In comparison, the orbits of a simple integrable system,
e.g., a three-dimensional anharmonic oscillator, are generally only periodic with
respect to each coordinate, but not globally*. For a physical system in D dimen-
sions just to be integrable, a number of D constants of motion is required, with
one of them the energy E. In classical mechanics these constants of motion have
vanishing Poisson brackets with the Hamiltonian and with each other; in quantum
mechanics they are operators which commute with the quantum Hamiltonian and
with each other. For instance, for a spherical symmetric system, the constants
of motion are the energy E, the square of the total angular momentum L2, and
the square of the (usually chosen) z-component of the angular momentum L2, in
classical mechanics as well as in quantum mechanics.

In systems like the isotropic harmonic oscillator or the Kepler-Coulomb prob-
lem in three dimensions, there are two more functionally independent constants of
motion. In the case of the harmonic oscillator the additional constants of motion
correspond to the conservation of the quadrupole moment, the so-called Demkov
tensor Ty, = pipr + w?z;xk [12], and in the case of the Kepler-Coulomb prob-
lem they correspond to the conservation of the square of another component of
the angular momentum and the third component of the Pauli-Lenz-Runge vector

En = , NeNg . (1.2)

A= ZIW(L x P —P x L) — e?x/|x|, and both systems have five constants of
motion, respectively observables.

“However, they are periodic globally if the frequencies wi,2,3 are commensurable, i.e., if their
respective quotients are rational numbers.
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A more careful investigation shows that the highly spherical symmetric sys-
tems of the isotropic harmonic oscillator and the Kepler-Coulomb problem can
be perturbed in various ways by the incorporation of additional potential terms:
First, this does not spoil the degeneracy of the energy levels at all, i.c., there
are still five observables*; second, one of the observables is removed, i.e., they
are four left; and third, only the minimum number of three observables for inte-
grability remains. The first possibility is described by the notion of a maximally
Superintegrable system; the second possibility, by the notion of a minimally su-
perintegrable systems, and the last possibility just describes an integrable system.

In this respect, the physical significance of the consideration of separation of
variables in several coordinate systems is as follows. The free motion in some
space is, of course, the most symmetric one, and the search for the number of
coordinate systems which allow the separation of the Hamiltonian is equivalent
to the investigation how many inequivalent sets of observables can be found.
In particular, the free motion in various coordinate systems on the hyperboloid
has been studied in Refs. 24,2831.38. The incorporation of potentials usually
removes at least some of the symmetry properties of the space. Well-known
examples are spherically symmetric systems, and they are most conveniently
studied in spherical coordinates.

All the superintegrable systems have the particular property that all the
energy-levels of the system are organized in representations of the non-invariance
group which contains representations of the dynamical subgroup realized in terms
of the wave-functions of these energy-levels [20]. The additional integrals of
motion also have the consequence that in the case of the superintegrable systems
i two dimensions and maximally superintegrable systems in three dimensions
all finite trajectories are found to be periodic: in the case of minimally su-
perintegrable systems in three dimensions all finite trajectorics are found to be
quasi-periodic™ [56]. Of course, in the case of the pure Kepler or the isotropic
harmonic oscillator all finite trajectories are periodic,

Generally, a physical system in D dimensions is called minimally superinte-
grable if it has 2D — 2 integrals of motion, and it is called maximally superinte-
grable if it has 2D — 1 integrals of motion, respectively observables. Therefore
we are led to the search for more (potential-) systems which have similar fea-
tures concerning degeneracy and number of observables as the radial harmonic
oscillator and the Coulomb problem.

A systematic study to classify separable potentials was undertaken by Smoro-

"In the sequel we use the notions “energy levels” and “periodicity of closed orbits”, “observ-
ables™ and “constants of motion™, “Coulomb-" or “Kepler-problem”, referring to quantum mechanical
or classical mechanical properties, respectively, as synonymous.

**The notion quasi-periodic means that they are periodic in each coordinate, but not necessarily
periodic in a global way. They are periodic globally if the respective periods are commensurable.
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dinsky, Winternitz and co-workers [20, 71,91}, i.e., they looked for potentials
which are separable in more than one coordinate systems. The separation of
a quantum mechanical potential problem in more than one coordinate systems
has the consequence that there are additional integrals of motion and that the
spectrum is degenerate. The choice of a coordinate system then emphasizes
which observables are considered to be the most appropriate for a particular
investigation.

Superintegrable Systems

The harmonic oscillator in spaces of constant curvature has been discussed
by.e.g., Bonatsos et al. [8], Higgs [43], Lemon [64], Granovsky et al. {22}
and in [34, 35], as well as the Coulomb-Kepler problem in spaces of constant
curvature — by Higgs [43] and Lemon [64], and in the general context of the
SO(4,2) dynamical algebra — by Barut et al. [5], and Granovsky et al. [23],
Katayama [55], Pogosyan et al. [79], Otchik and Red’kov {77], Schrodinger [80],
Stevenson [85], and Vinitsky et al. [88].

The notion of “superintegrability” [16, 53,92] can now be introduced in
spaces of constant curvature [34,35]. Whereas the general form of potentials
which are “superintegrable” in some kind is not clear until now, one knows
that the corresponding Higgs-oscillator (c.f. Bonatsos et al. [8], Granovsky et
al. [22], Higgs [43], lkeda and Katayama [45], Katayama [55]), Leemon [64],
Nishino [74], and Pogosyan et al. [79]) and Kepler problems (c.f. Granovsky et
al. [23], Infeld [46], Infeld and Schild [47], Kalnins et al. [54], Kibler et al. [57],
Kurochkin and Otchik [62], Nishino [74], Otchik and Red’kov [77], Vinitsky et
al. [88,89], Zhedanov [93]) in spaces of constant curvature do have additional
constants of motion: the analogues of the flat space. For the Higgs-oscillator
this is the Demkov-tensor [12,21,74], and in the Kepler problem a Pauli-Runge—
Lenz vector on spaces of constant curvature can be defined, c.f. [23,43,62,64,74].
Corresponding path integral considerations are due to Barut et al. [3,4], Otchik and
Red’kov [77], and [25] (D-dimensional case), and [34] (superintegrable aspects).

Disturbing the spherical symmetry usually spoils them. The first step consists
in deforming the ring-shaped feature of the (maximally superintegrable) modified
oscillator and Coulomb potential. One gets in the former a ring-shaped oscillator
and in the latter the Hartmann potential, two minimally superintegrable systems.
The number of coordinate systems which allow a separation of variables drops
from eight to four (namely spherical, circular polar, oblate spheroidal and pro-
late spheroidal coordinates [57,58]), and from four to three, namely spherical,
parabolic, and prolate spheroidal II coordinates.

Disturbing the system further, one is left with, say, one-coordinate systems
which still allow separation of variables. A constant electric field (Stark effect)
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allows only the separation in parabolic coordinates [29]. Here it is interesting to
remark that in the momentum representation of the hydrogen atom the bound state
spectrum is described by the free motion on the sphere S(®). To be more precise,
the dynamical group O(4) describes the discrete spectrum; and the Lorentz group
O(3,1), the continuous spectrum [2]. Now, there are six coordinate systems
on SG) which separate the corresponding Laplacian. The solution in spherical
and cylindrical coordinates corresponds to the spherical and parabolic solution in
the coordinate space representation. The elliptic cylindrical system is of special
interest because it enables one to set up a complete classification for the energy-
levels of the quadratic Zeeman effect (c.f. Solov’ev [83], Brown and Solov’ev 91,
Herrick [42], Lakshmann and Hasegawa [63]).

The separation in parabolic coordinates is also possible in the case of a
perturbation of the pure Coulomb field with a potential force oc z/r which allows
an exact solution [27,30]. The two-center Coulomb problem turns out to be
separable only in spheroidal coordinates (Coulson and Josephson [10], Coulson
and Robinson [11], Morse [72]) as has been studied first in the connection with
the hydrogen-molecule ion by Teller [86].

Another possibility to disturb the spherical symmetry is to remove the invari-
ance to rotations with respect to some axis, e.g., about a uniform magnetic field.
Usually this invariance is used to illustrate the azimuthal quantum number m of
the L. operator. The physical meaning of this quantum number then is that there
exists a preferred axis in space. This symmetry can be broken if one considers a
Hamiltonian of a nucleus with an electric quadrupole moment Q and spin J in a
spatially varying electric field [66,84]. Here sphero-conical coordinates are most
convenient, and the projection of the terminus of the angular momentum vector
traces out a cone of elliptic cross section about the z-axis [84]. Also the problem
of the asymmetric top (Kramers and Ittmann [61], Lukad¢ [65], Smorodinsky et
al. [67,82,90]), the symmetric oblate top [65], or the case of tensor-like potentials
(Luka¢ and Smorodinsky [68]) can be treated best in sphero-conical coordinates.
Therefore sphero-conical coordinates are most suitable for problems which have
spherical symmetry but not a sphero-axial symmetry.

In order that a potential problem can be separated in ellipsoidal coordinates
it is necessary that the shape of the potential resemble the shape of an ellipsoid.
Of course, the anisotropic harmonic oscillator belongs to this class. Introduction
of quartic and sextic [87] interaction terms then eventually allows only a sepa-
ration of variables in ellipsoidal coordinates. Another example is the Neumann
model [73], which describes a particle moving on a sphere subject to anisotropic
harmonic forces (Babelon and Talon [1], and MacFarlane [69]).

Our first paper [33] dealt with superintegrable potentials in two- and three-
dimensional flat space, where we distinguished minimally and maximally superin-
tegrable systems. In two-dimensional Euclidean space they are four (maximally)
superintegrable systems [16], i.e., the (generalized) harmonic oscillator V; (x), the
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Holt-potential V,(x), the (generalized) Coulomb potential V3(x), and a modified
Coulomb potential V;(x).*

In three-dimensional Euclidean space we found five maximally and nine min-
imally superintegrable systems. Among the maximally superintegrable ones are
the (generalized) harmonic oscillator Vi (x), the Holt-potential in R?, Va(x),
and the (generalized) Coulomb potential V3(x); among the minimally superinte-
grable systems were a double-ring shaped oscillator V(x), the Hartmann potential
Vz(x), a three-dimensional analogue of the Holt-potential V5 (x), four potentials
Vi (x), Va(x), Va(x), Va(x) which emerged from the group chain E(3) D E(2),
i.e., they are superintegrable in IR?, and the two potentials V;(x), Vy(x) which
emerged from the group chain E(3) D SO(3), i.e., they are superintegrable on
the two-dimensional sphere S(%).

In our second paper {34] we continued our study on the two- and three-
dimensional sphere. On S®) we found only two potentials with the required
properties, i.e., the (generalized) Higgs oscillator V| (s) and the (generalized)
Coulomb potential 1:(s). -We have not been able to find the superintegrable
analogues of the Holt potential and the modified Coulomb potential. On the
three-dimensional sphere S3 we have found three maximally superintegrable
and four minimally superintegrable potentials, respectively. Among the max-
imally superintegrable potentials were the (generalized) Higgs oscillator Vi (s),
the Coulomb potential V5(s), and as a third potential — Vi(s) a pure scattering
potential which corresponds to V;(x) in R®. Among the minimally superinte-
grable systems there have been the analogues of the double ring-shaped oscillator
Vi (s) and the Hartmann potential Vi (s) on S(*)_ and the two remaining potentials
Vi(s), V7 (s) emerged from the group chain SO(4) D SO(3).

In [35] we considered the superintegrable pote}ltials on the two-dimensional
hyperboloid A‘®). We have found the analogues of the (generalized) harmonic
oscillator V; (u), i.e., the Higgs oscillator in a space of constant negative curvature,
the (generalized) Coulomb potential V5 (u), and the Holt potential V3(u) on A%,
We also found two more systems Va(u), V3 (u), which are due to the peculiarity of
the hyperboloid that in spaces of constant negative curvature there are generally
more orthogonal coordinate systems which separate the Schrodinger, respectively
Boltzmann equation, in comparison to flat or constant positive curvature spaces.
However, we have not been able to find a superintegrable version of the modified
Coulomb potential, c.f. V4(x) in R%.

*The notion of minimally superintegrable systems in two dimensions does not make sense,’
because the number of integrals of motions equals two, and is thus equal to the number of integrals
¢ of motion which are required that the system is separable at all.
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Interbasis Expansions

An important aspect of group path integration (see below) in quantum me-
chanics is the so-called interbasis expansion technique for problems which allow
the representation of the wave-functions in various coordinate space representa-
tions. The basic formula is quite simple being

|k >= /dElC'pvk|p >+ Z Caxln >, (1.3)

n

where [k > stands for a basis of eigenfunctions of the Hamiltonian in the coordi-
nate space representation k, and [ dEj is the spectral-expansion with respect to the
coordinate space representation 1 with coefficients Cp, k. Cy 1 Which can be dis-
crete, continuous or both. The main difficulty is, in case one has two-coordinate
space representations in the quantum numbers k and p. n, respectively, to find
the expansion coefficients Cp x and Cy, x. Well known are the expansions which
involve cartesian coordinates and polar coordinates. In the simple case of free
quantum motion in Euclidean space, this means that exponentials representing
plane waves are expanded in terms of Bessel functions and spherical waves, a
discrete interbasis expansion, Le., ¢ 5% = Z%Z (*“‘“'1,/(:).

This general method of changing a coordinate basis in quantum mechanics
can now be used in the path integral. We assume that we can expand the short-
time kernel, respectively the exponential ¢**=1%/ in terms of matrix elements
of a group [31] by choosing a specific coordinate basis. We then can change
the coordinate basis by means of (1.3). Due to the unitarity of the expansion
coefficients (' the short-time kernel is expanded in the new coordinate basis,
and the orthonormality of the basis allows one to perform explicitly the path
integral, exactly in the same way as in the original coordinate basis. However, to
find the dynamical group and its corresponding coordinate space representation
in a superintegrable system, one of the principal problems, is not always very
easy. From the two (or more) different equivalent coordinate space represen-
tations, formulae and path integral identities can be derived, and at the same
time, yield interbasis coefficients. These identities actually correspond to integral
and summation identities between special functions. The case of the expansion
from cartesian coordinates to polar coordinates has been studied by Peak and
Inomata {78], and they obtained the solution of the isotropic harmonic oscillator
as well. The path integral solution of the isotropic harmonic oscillator in turn
enables one to calculate numerous path integral problems related to the radial
harmonic oscillator, actually problems which are of the so-called Besselian type,
including the Coulomb problem. Furthermore, a (path integral) solution in a
particular coordinate space representation can serve as a starting point for a per-
turbative analysis in cases where a system separates, say, in only one coordinate
system, but is not exactly solvable. Then, the knowledege of the wave func-
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tions and interbasis coefficients of the corresponding exactly solvable model is of
paramount importance, e.g., [32,70].

Path Integral Approach

In our investigations the path integral turns out to be a very convenient
tool to formulate and solve the superintegrable potentials on spaces of constant
curvature, in particular on the hyperboloid. The subsequent separation of variables
in each problem can be performed in a straightforward and easy way. We
start by considering the classical Lagrangian corresponding to the line element
ds? = gau»dg®dg® of the classical motion in some D-dimensional Riemannian
space, e.g., [13,17,39,59,81] and references therein

M (ds\? M
Latad) = (§) V@ = Fowl@i'd Vi . a9

The quantum Hamiltonian is constructed by means of the Laplace-Beltrami oper-
ator ) )
h R 1 0 7]
H=—-——A 1% —_— g G +V 1.5
2M LB+ (q) 27\/[\/—5(] \/_abJ‘_ ( ) ( )
as a definition of the quantum theory on a curved space. Here are g = det(gas),
(g*®) = (gas)"!, and App = 971/28 g*g'/25,. The scalar product for wave-

functions on the manifold reads (f, g) qu\/"f )g(q), and the momentum
operators which are hermitian with respect to this scalar product are given by
h( o r. dln /g
o — T —_— s Fa = " . 16
P i(aq“+2> dq* (0

In terms of the momentum operators (1.6) we can rewrite H by using an order-
ing prescription called product according, where we assume gq, = hgches (other
lattice formulations like the important midpoint prescription (MP) which corre-
sponds to the Weyl ordering in the Hamiltonian, we do not discuss). Then we
obtain for the Hamiltonian (1.5)

h2
=——A ——h%p.pyh® + AV , 1.7
syl + V() = 2M Papph® + AV (q) + V(aq) (L7
and for the path integral we obtain
q(t”):q”
Ka'aT)= [ D)o@
a(t’)=q’

xexp{%/ﬂ M hee(@hen(@)id® — V(Q) — AV(Q)

|
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_ M \ND/2N- 1/d
= 1m
N-—oo \ 27ieh 4k qk

. N
<o {13 [ghbc(q»hac(q]«_l AgAG -V (q,) —eavia)] i

=1

AVpr denotes the well-defined quantum potential

2

AVpr(q) = 8\/[[

g F Fb—§—2( ‘“’Fb)b+q

+2hachbc,ab _ hac,ahbc’b _ hac,bh/bc,a] . (19)

Here we have used the abbreviations ¢ = (¢ — t')JN=T/N, Aq; =q; — qQ—1,
g; = ,—}(qj+qj;1) forq; = q(t'+je) (t; =t'+€j,7 =0,..., N).and we interpret
the limit N — oo as equivalent to € — 0, T fixed. The lattice representation
can be obtained by exploiting the composition law of the time-evolution operator
U = exp(—iHT/h), respectively its semi-group property, and the discretized path
integral emerges in a natural way. The classical Lagrangian is modified into an
effective Lagrangian via L.ss = Lo, — AV. We use this path integral formulation
throughout the paper. For the technique of space-time transformations we refer
to [15,18,39,59] and references therein.

Presentation of Results

The contents of this paper is as follows. In the next section we give an
introduction into the formulation and construction of coordinate systems on the
three-dimensional hyperboloid. This includes an enumeration of the coordinate
systems according to [31,50,52,75]. The enumeration includes the explicit state-
ment of the quantity u = (ug,u1,us,uz) in terms of the coordinate variables
© = (01, 02, 03), the line element ds? = ds*(p), the momentum operators P s
the Hamiltonian Hj, the form a potential V(u) must have in order that the
Schrodinger equation HY = (Hy + V)W = EU is separable, and the correspond-
ing integrals of motion, respectively observables.

In Section IIl we present the three found maximally superintegrable potentials
on the three-dimensional hyperboloid, mcludmg an analogue of a Stark effect po-
tential which is, however, in comparison to IR* only minimally superintegrable.
The maximally superintegrable systems have five integrals of motion. For in-
stance, in the pure Coulomb problem in IR?® they are the energy E, the square of
the absolute value of the angular momentum L2, L?, an observable corresponding
to the semi-hyperbolic system, and the third component of the Pauli-Lenz—Runge
vector A (the whole set of E,L? L2 A is not functionally independent). Ac-
tually, the first three of these constants of motion are typical for each radial
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problem, and the minimum number of three observables is required in order that
a three-dimensional system is separable at all (in [16] a systematic listing of these
constants of motion has been presented). We treat the first two potentials, i.e., the
Higgs oscillator and the Coulomb potential on A®®), in some detail. The relevant
observables are listed in the tables.

In Section IV we discuss the minimally superintegrable potentials on A(),
We find four potentials which have their counterparts in three-dimensional Euclid-
ean space. The remaining potentials emerge from the subgroup structure of
SO(3,1), i.e., we find four potentials corresponding to the chain SO(3,1) D F(2),
two potentials corresponding to the chain SO(3,1) D SO(3), where one of them
is however equivalent to a previous one, and five potentials corresponding to the
chain SO(3,1) D SO(2,1), respectively. This yields 15 minimally superinte-
grable potentials on A(*). We do not explicitly list each solution again, because
this would blow up our paper to much, and refer instead to our previous work
concerning the superintegrable potentials in flat space [33], on the sphere [34],
and on the two-dimensional hyperboloid [35]. In Sections HI and IV we make
frequently use of the path integral formulations of the Poschl-Teller, the modi-
fied Poschi-Teller, and the Rosen—Morse potential, whose solutions can be found
in {33]- [35], and references therein, c¢.f., e.g., Bohm and Junker [7], {31,39,40],
Fischer et al. [18], Inomata et al. [48], Kleinert and Mustapic [60].

In the fifth Section we summarize and discuss our results. Here we also es-
tablish a correspondence of maximally and minimally superintegrable potentials
in two and three dimensions in the three spaces of constant curvature, 1.e., Euclid-
ean space, the sphere, and the hyperboloid. In addition we suggest analogues of
the Holt potential on the two- and three-dimensional sphere and on the two- and
three-dimensional hyperboloid, respectively. However, these potentials turn out
to be only integrable. On the sphere the corresponding separating coordinate
systems are the & = A’ = 1//2 particular case of the rotated elliptic, respectively
rotated prolate spheroidal systems. On the hyperboloid the separating coordinate
systems are the semi-hyperbolic systems. The flat space limits of these systems
are parabolic coordinates in two and three dimensions.

2. COORDINATE SYSTEMS ON HYPERBOLOIDS

In this Section we construct the coordinate systems on the three-dimensional
hyperboloid. However, first we cite some useful information concerning the
construction of coordinate systems on the most important spaces of constant
curvature. These are Euclidean spaces, spheres and hyperboloids.

For the classification of coordinate systems in an homogeneous space, and
hence for sets of inequivalent observables, we need second-order differential op-
erators I; (¢ € J, J an index set) which are at most quadratic in the derivatives.
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In order that they can characterize a coordinate system which separates the Hamil-
tonian we must require that they commute with the Hamiltonian and with each
other, i.e., [H,I;] = [I;,I;] = 0. This property characterizes them as observables
(in classical mechanics as constants of motion). In two-dimensional spaces we
have one characteristic operator I which corresponds to the additional observ-
able, and in three-dimensional spaces there are two characteristic operators I, I,
which correspond to the two separation constants appearing for each coordinate
system. Finding all inequivalent sets of {I}, respectively {I,,I,}, is equivalent
in finding all inequivalent sets of observables for the Hamiltonian of the free
motion. Because the operators 1,2 commute with the Hamiltonian and with each
other one can find simultaneously eigenfunctions of H, I, respectively H, I, I5.

Before we begin discussing the coordinate systems on the three-dimensional
hyperboloid in some detail, let us start with some remarks concerning harmonic
analysis on A®_ and we cite some results from [52,90].

The homogeneous Lorentz group SO(3, 1) consists of those proper real linear
transformations which leave the hyperboloid (ug > 0)

wu=ul=uf— (Wit ul+ud)=ud-u?=R? 2.1

invariant. The Lie algebra is six-dimensional, and is generated by the spatial
rotation generators

h 0 ad
Li = “fu-Z L
! 1 <“20113 “‘;0112> '
h 17, 0
Ly = 22,2 2.2
2 i <“I Ou;; “I;(()lll ) ' ( )
h 2] 0
Ly = —|w-2 —uy-2
4 i <u1 duy “20111> ’

(note the sign convention in comparison to the sphere) and the Lorentz transfor-
mation generators

i h 9] + d

\ = —|ug——- —

! 1 ‘o Oul “ Ouo ’
h 0 d

K, = = — - 2.

12 7 (uo ET + ug au0> , (2.3)
h %) 12,

K, = - P —_— .

3 i (“O By T auo>

The commutation relations are

[L,',Lj] = —ihéi]'kLk 5 [L“KJ] = —iheiijk, [K“KJ] = iheiijk . (24)
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The Hamiltonian on A(® can then be written as (V (u) a potential on A(%))

K2 1

=Ho+V Hy=———=A1p=—=
H o+ V), 0 MR B T SR

(K? —L?%) . (2.5

The irreducible representations of the identity component of SO(3,1) are labeled
by two numbers (jo, ), where jo is an integer or half-integer, and o is complex.
The eigenvalues of the Schrodinger operator Hy are found to have the following
form

2

Eij(J = _W[Jé + 0(0 + 2)]7
continuous spectrum: Jjo =0,0 = -1 +1ip,
discrete spectrum: jo = 2n (n € IN),0 = —1. (2.6)

Actually, the discrete spectrum is not present in our case; for instance, it must be
taken into account for the quantum motion on the single sheeted hyperboloid [31],
on the SU(1,1) [7] and on the O(2,2) group manifold [31,51]. We have for the
energy-spectrum of the free quantum motion on A®)

2

Ep:2MR2(p2+1), p>0 . Q.7

In the following enumeration we list in each case the definition of the coor-
dinate systems, the metric, the momentum operators, the Hamiltonian and the
observables I, I5, respectively.

In the sequel we only consider orthogonal coordinate systems on the three-
dimensional hyperboloid. u € A®) s expressed as u = u(p), where o =
(01, 02, 03) are three-dimensional coordinates on AG), Following Olevskil [75]
the line element is found to have the form

(02 — 03)(02 — Ql)dgz

. . 1 — -
d52=6agaad9i _ _[(91 02)(01 Q3)d0§+_

4 P(o1) P(p2) ’
(03 —01)(02 — 1) | o
+ des |, (2.8)
P(o3) :
which must be a positive-definite quantity, hence ¢, = —1, a = 1,2, 3, and where

P(o) is the characteristic polynomial corresponding to the coordinate system.
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Table 2.1. Coordinate systems on the three-dimensional hyperboloid

Coordinate System : Coordinates Separates
Observables I, I; Potential
1. Cylindrical ug = Rcosh 11 cosh 2 A

71,2 € R, p € [0,27) u1 = Rsinh 7 cos ¢

L =K? uz = Rsinh 7 sinp

L =1L ug = Rcosh 71 sinhry

I1. Horicyclic ug = R[y + (xf +2d)/y + 1/y]/2 Vs, Vi, Vio
212 € R,y >0 u = Rz /2y

I = (K, + Lp)? uz = Rzaf2y

I = (Kz - Ly)? us = Ry + (s} + 23)/y - 1/4] /2

HI. Sphero-Elliptic o = Rcosh Vi, Ve, Vs
T>0,& € [~K, K] u1 = Rsinh 7sné dnf Vit Ve
B € (-2K',2K") us = Rsinh 7 cnd cnf

h=L%L="L}+,12 us = Rsinh 7 dnd sng )

IV. Equidistant-Elliptic up = Rcosh rsnadng W,V Vs
TER,a € (iK', iK' +2K) u; = iRcosh 7 cnacng Vg

B €0,4K") uz = iR cosh 7 dnasng

h=K!+K}-L} u3 = Rsinhr

I = L} +sinh® fK?

V. Equidistant-Hyperbolic ug = —Rcosh T enyu cnn Vi, Via
TE€R,u € (iK',iK'+2K) u; = iRcosh 7snudny

n € [0,4K") uz = iRcosh v dnusny

11=K3+K§—L§ u3 = Rsinhr

Iy = K} —sin?al?

»

VI. Equidistant-Semi-Hyperbolic | uo = 73- cosh 7(\/(T+ aD)(1 + ) + pipsz +1)V% | Va, i
TE€R,p12>0 u = %cosh‘r(\/(l + w31+ u2) — prpa — 1)1/2

L=K}+K}-L2 uz = Rcoshr /pipz
Iy = {Ls, K2} u3 = Rsinh 7
2 2
VI Equidistant- ua = Rcosh r Gehatcos 9 Vi, Vis, Var
. 2 2
Elliptic-Parabolic w1 = Roosh rSiph g —sin 9
ra € R,¥ € (—n/2,7/2) uz = Rcoshrtandtanha
L =K}+K}-1L2 uz = Rsinhr

Iy = (Kz—L3)2+Kf

o _ cosh? b + cos® 9
VIII. Equidistant- ug = Rcoshr ~Jsinh ism J Vir

12 .2
Hyperbolic-Parabolic uz = Reoshr ﬂ%—‘ﬁ—%‘-‘%ﬁ
s1n s
T€R,6>0,9¢€(0,7) u1 = Rcosh 7 cot ¥ cothb
h=Kl+K}~1L3 u3 = Rsinh 7
Iy = (K7 — L3)? - K}
62 + 242 + 4
IX. Equidistant-Semi-Circular- | up = Rcosh T ﬁ—sﬂ&L— Vi, Vi, Vig
2 2y2
Parabolic (1 € R,£,7 > 0) |u; = Reoshr &t o —4
2
11=K12+K22—'L§ uz = Rcoshr -71
I = {K1, K2} - {Ky, L3} uz = Rsinhr

" after rotation with I3 = cos2fL3 - Lsin2f{Ly, Ls}; * after rotation with Ip = cosh 2f L} — § sinh 2f{ K2, Ls}
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Table 2.1 (cont.)

Table 2 (cont.) Separates
Coordinate System Coordinates Potential
X. Spherical up = Rcoshr i, Vo, Vs
7>0,9€(0,m),¢€0,2m) u, = Rsinh rsindcos ¢ Vs, Vs, V1
L =12 ug = Rsinh 7sindsinp Vi, Vis
Io=1L3% u3 = Rsinh Tcos?

XI. Equidistant-Cylindrical up == Rcosh 7y cosh s Vi, Va, Vg
12 € R,p €10,27) uy = Rcosh 7y sinhrz2cosp Vs, Via, Vis
L =K!+ KE - L3 u2 = Rcosh 7y sinh T siny

I =1L3% uz = Rsinh 7y

XII. Equidistant ug = R cosh 71 cosh 73 cosh 13 Vi, Vie, Vit
.23 €R uy = Rcosh 7, cosh rpsinh 1 Vis

L =K+ K:~L} uz = Rcosh 7y sinh 7z

I, =K? uz = Rsinhm

XIIL. Equidistant-Horicyclic up = Reoshr(y +z/y + 1/y)/2 Vie, Vi1
rnzeR,y>0 u; = Rsinhr

L=K!+K:-13 uz = Rcoshrz/y

In = (K2 = La)* us = Reoshr(y +2*/y — 1/y)/2

XIV. Horicyclic-Cylindrical uo = R{y+ o*/y+1/y)/2 Vo, V1
v,0>0,9€(0,27) u1 = Reocoap/y

L= (K + L2)? + (K2 = L1)? uz = Rpsing/y

h=13% us = R{y+0°/y - 1/y)/2

XV. Horicyclic-Elliptic up = R{y + (cosh® u —sin® v)/y + 1/y}/2 | Vo, V11

v, 4> 0,v € (—-m ) uy = Rcoshucoswv/y

11=(K1+Lz)z+(K2—Lx)2 ug = Rsinhusinv/y

I = L} + (K1 + L2)? us = Ry + (cosh? u — sin® v)/y — 1/y}/2

X VL. Horicyclic-Parabolic uo = Ry + (€ + ") /y +1/y]/2 Vio, Vi1, Viz
yn>06eR w =R(n* - &%)/

o= (K + L) + (K2 = Lh)? ug:REq/

I = {L3, K1 + La} uz = Rly + (€2 +1n?) (y—l/y}/?

XVIL Prolate Elliptic ug = Rsnadnf W, vo Vs
a € (iK' iK' +2K) u; = iRdnasnfcos ¢ Vs, Vg
Bef0,4K"),p € [0,27) uz = iRdnasndsin ¢

L = L3 u3 = iR cnaenfB

Ip =L = (K /E}) (K3 + LY)

XVIIL. Oblate Elliptic up = Rsnadnf W, Vs, Vs
a € (iK',iK' +2K) u; = iRcnacngcos

Be[0,4K"),p €[0,2n) uz = iRcnacnfsin g

L= L§ uz = iR dnasngd

Iy =L2+ K%L} - K - K3)

XIX. Elliptic-Cylindrical up = Rsnadndcosh Vi
reR.ae (iK' iK' +2K),3€[0,4K") {u1 = Rsnadnlsinh T

L = K} uz = iRdnasn3

=L} + k(LS - KD) u3 = iRcnacnf

XX. Hyperbolic-Cylindrical 1 ug = —Rcnucenncosh v Vi
reR,p € (iK' iK' +2K) 4y = —Renpcnysinh T

n € [0,4K") ug = iRsnudnn

=KL =K}-Li+k(K}-L} |us=iRdnusny

* after rotation with /3 = cosh 2fL? — & sinh 2f({ K2, L1} = {K1, L2})
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Table 2.1 (cont.)

Table 2 « (cont.) Separates
Coordinate System Coordinates Potential
XXI. Hyperbolic-Cylindrical 2 = —Rcnucny W, Vs, Vs
u€ (iK', iK' +2K) uy = iRsnudnn cos ¢
n € [0,4K"),p € [0, 27) uz = iRsng dnnsin ¢
=2 I =K} +L} -k (L1 +LY) uz = iRdnpsny
XXIL. Semi-Hyperbolic up = %(‘/(x F DA+ pd) +ppz + 1) |13, Ve
H12 > 0,0 € (0,27) uy = R\/pipz cos Vie, Vao
L =1L} uz—R,//,q;n sin ¢
1/2
Iz = {Ky, L2} + {K2, L1} uz = 7—(\/(1 +uD) (1 + p2) — pipz ~ 1)
. . _ pcosh’a + cos? ¥ + o° v 1/ (w=0)
XXIII. Elliptic-Parabolic 1 =R coshacos Vo, Ve
a,0 € R, € (-n/2,7/2) u1 = Rg/coshacosd
It = (K + L2)? uz = Rtachatan¥

T — o2 2 2 2 _ pecosh®a 4+ cos?s — 0t -2
T2 =2K{ + K§ + K3 + L? uz =R Ycosh acos T

~{K1, L2} — {K3, Ly}

: . _ psinh®b—sin® 94 5% +2 ¢ y(w=0)
XXIV. Hyperbolic-Parabolic 1 w =R Yo bon d Vs, Vs
b>0,peR,9€(0,n) ur = Rg/sinhbsin ¥
I = (K, + Ly)? uz = Rcothbcot 9

inh®b —sin’ 9 —
L =203+ L} + K} - K2 ug = R 22 !mS!;m

—{Ka, L1} - {K1, L2}

XXV. Elliptic-Parabolic 2 uw =R 9;&#@5& Vo, Vy, V(=0
P cosh a cos AR

a>0,9€(0,r/2),0€[0,2n) u; = Rtanhatandcosy
h=1L3 uz = Rtanhatandsing

— 912 _ psinh’a —sin®9
f2 = 27 ~ {L2, Ki} - {L1, K3} us = R Cehacosd

2 =
XXVI. Hyperbolic-Parabolic 2 uo = R SGgh_btcos 9 Vy, V=9
6> 0,9 €(0,r/2),p € [0,2n) u; = Rcothbcotdcos
L =1} uz = Rcothbcot Isinyp
Iy = {K\, L} + {K2, L, } - K? = K2 = gsin’d —sinh’b
2= 1, L2 2, Ly 1 2 uz = m—
2 242 2
XXVIL Semi-Circulas-Parabolic uo = Ru&# Va
2 2
e€R,En>0 u =R
Iy = (K + La)? u2=33%
4400 -4
Iy = {L3, K1 + Lo} + {K3, K2~ L} us =R T
XXVIIIL Ellipsoidal uj = R 21288 Vi
2 pelor = ez~ 1)(ea - 1)

0<l<pg3<b<p<a<p uy = R G-D0=1)

I = abK? +aK} +bK? w = _Rzﬁ—(—i—ﬂrﬂrgl ez~ b)lea = b)

L=(a+b)Ki+(@+ DK+ (b+ 1)k} |ul = g2l&8 —(:)_EQ?)(;“_)(SZ““)
—al}-bL3- 12
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Table 2.1 (cont.)

XXIX. Hyperboloidal

03<0<li<b<pp<a<

I =abK} —al} -bL}

=(a+bK? - (a+1)L3~(b+1)L]

+aK$ +bK3 - L}

= ~R? gxagzga
= _pzler—8)(o2 —b)(os — b)
a—b){b—1)b

et e T

Table 2 (cont.) Separates
Coordinate System Coordinates Potential
_ _prler=D(e2 =1} (es — 1)
=B n e v

XXX. Paraboloidal

03<0<p;<li<p

a-—b =a+if,0,BER

= —-|a.| L? +a(K3 -3 2) —ﬂ{Ks,Lg}
[2 = ~2aL? + (a+ 1)(K} ~ L)
+a(K3 — LY) + B({Kz2, Ls} — {K3, L2})

(ur +iug)? = 2R2 (@2 —(a)£9bz (—ba_(lgz- a)

ulw grlen=Dlez—U(es -1
? (a-16-1)

2 _ 2210203
“3——RL§[;&'

XXXI.
0<om<i<pp<a<mn

[x-—(K3+L2 —G(K2+L3) +(ZK12

=(a+ 1)K? + K} - L} +a(L] - K3)

+(K2 + L3)2 + (Ka + Lz)z

(uo +u1)? = Rz%&
(u§ —ud)

-l teres ¥ ores) —(at Lergz0s
a

-_prla = 1)(92_—:))(93 -1)

ul=R? (o1 — a)(pz — a)(os — a)

a*(a~1)
XXXIL (up +uw1)? = _RZRLBE?.E_ -
—p3<0<l<g@<a<a (ug —u})
L =~(Ks+ Lz)2 +a(Ka + L3)2 + aKf = R? a(erez + 0203 + Q;%S) —(a+Derezes

a<—-1<0<g;<a<n

I =aK? - (K2 + L3)* + a(Ka2 + L3)?

I =(a-1)K} - ~K?+LE+a(Lli-KD)

—(K2+ L3)? + (K3 + L2)?

(uf = ui)

priloiea o2 + 0203) — (a — V)or10203
Z

a

_ palor —a)(o2 —a)(os — a)
ui = R LY

= _prloatD(es+ (ea+ 1)
(a+1)

-1 -1 -1
= (ot DK} = K2+ L3+ a(K} ~ 13) |u} = —R? & )((9'-’_1)(93 )
~(Ka + La)* = (Ka + L2)? - prla—alg —a)ea—a)
a“(a—-1)
XXXIIL. (w0 + ) = — B2 12288 N

XXXIV.
03<0<;<l<p

(uo ~w)? = —R%g10203
2ug(ur — uo)
= R*(p102 + 0203 + 0103 — 010203)

=(L2-K3)2—{K17K2—L3} u} +uf —u} = R*(—p10203
L=L}-K3} —L +0102 + 0203 + 0103 — 01 — 02 — 03)
—(Lz = K3)? = {L1, L2 — K3} u} = R* (o1 — 1)(e2 — (e — 1)
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In algebraic form a coordinate system on A(3®) is described in the following way

\

2 _ Rz(@l —a1){02 — a1)(03 — a1)
0 (‘12—@1)(‘13—a1)(a4—a1) ’
=~ (o1 — az)(02 — a2)(03 — a2)
(ar — az)(as — az)(as — az) ’ 2.9
w2 — _prlor —as)(es — as)(os — as) '
2 (a1 —as)(az — az)(as —as) ’
2 _ _Rp2 (01 — aq)(02 — a4)(03 — aa)
" (a1 — aq)(az —as)(az — aq) ’ J
and we have for the characteristic polynomial
Plo) = (0~ a1)(0 — a2)(e—a3)(o — aa) . ) (2.10)

Fixing the numbers a;, i = 1,2, 3, 4, and the range of the p specifies a coordinate
system. For the metric tensor then follows

Ou; Ouy

Ui Tk Q.11
B0. Dos @10

Jab = Gk
where G, is the metric tensor of the ambient space, which in the present case
has the form G;; = diag(l,—1,—1,~1), and in order that the line element
ds? = > .b €ab9abdq®dg® is positive definite appropriate €,, = 1 must be taken
into account. Actually €, = €,, = —1,¥,. In the following we state for
convenience only the explicit form of ds?. In Table 2.1 we summarize the
results on the coordinate systems on AB) according to [49,52,75]. The potentials
Vi,..., Voo refer to Sections 3, 4 and 5.

3. PATH INTEGRAL FORMULATION OF THE MAXIMALLY
SUPERINTEGRABLE POTENTIALS ON A®

In Table 3.1 we list the superintegrable potentials on the three-dimensional
hyperboloid together with the separating coordinate systems. The cases where an
explicit path integration is possible are underlined.

3.1. The Oscillator

We consider the generalized Higgs oscillator on the hyperboloid (k12,3 >0)

L

+ +
2 ud oM u? u3 u?



1246 GROSCHE C., POGOSYAN G.S., SISSAKIAN A.N.

& uis $00 (IS4 quIs g
A.Nm+.ﬁ v» L +€m|~|¢
L/ :Mﬁl:ul g, upo :M uis
4
Amw Pty H v 2 &5+ 1 >tioqeted o0
T t-a Al e
E1,3+1)— h =¥ SuoqIadAY -1uisg
o uis & uis
A. ¢ J + 5 wa“va ¢ .azm Eﬁ £ 11 ondy(g Aeed|
17 ¢ Iz
———— n
Aw%a + M:wwuw WE g it =y Teonaydg (¢n‘tntin) =n _ _ Y ED b & ,:l =V
PTd v/ ! tn In \ Wt m=+m=+m=> ¥
WU+ (i ndvut:& y audifjg -orydg Adl«lln + }v.‘i + A- - o VN.\ =(0)%
(i A S A A 1
jeplojoqiad4iyg
{eposdy|(y
goUSQUp g udR Ud g UPDUSY L JUIs Y WT ¢ [eduput£)-dijoqiadAy
v Al S + edLIpul[A)-aijeqaadAy
1 1 T 4l H 2l w& 1 [e2HpUl[AD)-2Yj0q
We _ [eatpul[£)-o1di3
(7.5 = ndygg 21190
[ LHuts e N t n;mOuiwl B n<E ' ndifg ejeid
TR I jueysipinby
(1 ¢SO0 SNE o 2800\ @ UIS\ T Wt |[eouput{AD-juessipinby
Awtn*+¢<r+wlr T )ty =T featsoqds
v ! A,MEm + 4500\ Wg pog T _ y 1j0qiad A -uedsipiaby A £n + in + in v§u+
v T T andij ueysipinby bogy Y -a - y
4N andyig-oeyds Byl =)
R e R L I,
s3[qealasq $W2)8AG 3jeUIPIOO]) (n)A [enuatod

¢)V uo sfenuajoed ajqeadajurtadns A[eunxey "1°¢ dqeL




PATH INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1247

24 = [ uis ‘vonejol sjendodde sogye

;3lqea1asqo Yy Lue a13yy sf = §f
GeU2,. 4 + 0 U 3gupgud ¥+ y

gudous,y lf& A
Ahm:m _ Cszv QmCuml + D udy E+
I o -ty Y
({2 e7}fgqus é - §7 g yson) 3~; =¥ [e21pui|A) Juejsipinby
y 2502 + g U\ T + an =g n[oqeieg-andijg
. Pen o) AuEIspIby
¢ soo us \ & .::w Ws § :3 RILPET VN R{TIEIN
AWMN.«+ WMJV . 24 +Q N<+ M) =4 e ecum..mi_:vvm
172 Lz o In—tn4ln in+tnt+n ntinSpy
(R4 + (1 - N_:E =Y Lndypg-uesipinby | €ty 4 A = / A \,v =
I 1o -4 4
. Aamzmlmcv N Am nEw L s v; (UPY, :mv_mvﬁml
DN "R PR i Lt
[G1+ina-51+5 Tl =31 g [eHPUNAD-NqIYdAY
L uis & & _yus
Aw ey wﬁmﬂav A LL T +N5§ = audiIg 21190
T &4
uls
(125 (5 foeemy o)
1A LR B [ o ot ¢
[4 n~-ingln In 4+ =+= =+ =\/
AW il + .WI«%V ne + 572 :« =1 [e2:puij{)-juessipinby ~A vn 5 o/ + = \/v 1
L S B A L VA ! A Poa tn
(A + (M - Nimx|~§ =Yy [esuayds «.,|u_ =2 =(n)g
17¢
$3|qeAlasqO SWRYs4g 2jeuIpIoo) ?v\— |eijujod

(u0d) 1°¢ 3fqe],




1248 GROSCHE C,, POGOSYAN G.S., SISSAKIAN AN.

which in the 14 separating coordinate systems has the form
Cylindrical (112 > 0,9 € (0,7/2)) :

M 1
h= oo )

cosh? 71 cosh?

e (h gy s
2MR? \ sinh® 7, \ cos?2 ¢  sin? g cosh? 7, sinh? 7

Sphero-Elliptic (> 0,& € (0,K), 8 € (0,K")) :

M

= —2—w2R2 tanh® 7

L (k%’—%~ % k%—;)
IMR?sinh? 7 \ sn2adn?3  cn?acn?8  dnasn?f

Equidistant-Elliptic (t > 0, € (iK',iK'+ K),B € (0,K")) :
M 1 1
= _—w?’R*|1- 5 5
2 cosh® 7 sn?a dn“f

n? 1 it WL S k- %
2MR? | cosh? 7 \ cn?acn?B  dn’asn2j sinh? 7

Equidistant-Hyperbolic (1 > 0,p € (iK',iK' 4+ K),n € (0, K") :

M 1 1
= _w?R%*[1- 5
2 cosh? 7 cn?pen?n

v [ 1 ((K-y o B-d ) -
cosh? 7 \ sn2pdn®n dn?psn2n sinh? 7

T OMR2

Spherical (7 > 0,9 € (0,7/2),¢ € (0,7/2)) :

M
= -2—w2R2 tanh? 7

N h? 1 <k§—§+k§—§)+k§—§
oM R?sinh? 7 \ sin? 9 \ cos?¢ ~ sin®¢ cos? ¥

Equidistant-Cylindrical (115 > 0, € (0,7/2)) :

M 1
2 cosh® 11 cosh” 1y

. h? 1 (k%—§+k§—§)+k§—§
2MR2? \ cosh? 7y sinh® 72 \ cos? ¢ sin® ¢ sinh® 7

Equidistant (1193 > 0) :

(3.2)

(3.3)

34

3.5)

3.6)

3.7
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1
= - w’R? (1 - 2 2 2 >
2 cosh® 7 cosh® 15 cosh® 75

B2 1 k2 -1 k2 -1 k2 -1
+ 2 3 ( 21 -42 +.224>+.324 (3.8)
2M R? | cosh® 1, \ cosh® 9 sinh® 75 sinh? sinh® 1

Prolate Elliptic (o € (iK',iK' + K),3 € (0,K"), ¢ € (0,7/2)) :

- %W2R2 1- —1—2—
2 sn?a dnf

dn®asn?3 \ cos?2¢  sin?p cn2a cn?j3 ’

 2MR?
Oblate Elliptic (a € (iK',iK' + K),8 € (0, K"), ¢ € (0,7/2)) :

M1
2 sn?a dn®f

2 k2 1 k2 L k.2_l
n ! (1 442 4)+ 54 (3.10)

" 2MR? | cn?acn?B \ cos?p | sin? % dn’asn2

Elliptic-Cylindrical (a € (iK',iK' + K),8 € (0,K'),7 > 0) :

M
= —w’R%*|1- 21 5
2 sn2a dn“f cosh® 7

h? ( k2 -1 k3 -1 k3 -1 ) G

+ — —
2MR?\ sn2adn®’@sinh®7  dnasn?B  cn?acn?f

Hyperbolic-Cylindrical 1 (p € (iK',iK'+ K),n € (0,K’),7 > 0) :

M ; 1
= —w?R?|1- 5
2 cn?pcn?ncosh” 7

2MR? \ cn?pcen?nsinh®T  sn?udn®n  dn?psn2y '

Hyperbolic-Cylindrical 2 (p € (iK',iK' + K),n € (0,K"), ¢ € (0,7/2)) :

M 1
=R 1 - ——
2 cn?p en?y

5 1 k-1 k2-1 k2 -1
(1 442 4>+ 3 4 (3.13)

B 2M R? sn2/1, dn277 cos? 2 Sin2 [%2) dn2u sn2n

Ellipsoidal (a;; = a; —a;,a1 = 0,a3 = 1,a3 = b,a4 = a) :
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M . 1 1
= —w?R?|a14az4a34
(91 - 03)(92 - 93) 03 — Q4
n 1 1 + 1 1 1
(01 —02)(03 —02) 02 —as (02 —01)(03 —01) 01 — Q4
h? 1
+ 2
2MR? | (o1 — 03)(02 — 03)
K2 -1 K21 K2 -1
X {az1a21041 — 44 01;2(132642u + a13a23(l43“ﬁ*—4
03 — 03 — a2 03 — ag
N 1
(o1 — Q-z)(@s - 02)
[ k2L 2L k2 1]
X tazyaz;aqy S + Q12032042 4 + a13az3a43 & 4
02 — Qg D a9 02 — A3
n 1
(02 — 01)(03 — 01)
kf—i , k?—i k§~%
X Q31021041 + A12(32049 + (1323043 (314)
1 1 —az 01 — as

Hyperboloidal (a;; = a; —a;,ay =0,a; = 1l,a3 = b,aqy = a) :

M . 1 1
= w?R? 14Q24034
2 (or = 03)(02 — 03) Qs‘— a4
n 1. 1 N 1 1 1
(01 — 02)(03 — 02) 02 —as (02— 01)(03 — 01) 01 — Q4
h? 1
2MR? | (o1 — 03)(02 — 03)
[ k2~ L k21 K21
X 031021(141# + a12a32a42 L4 1302343 84
L 03 — — a —as
1
(Ql - 92)(93 ~ 02)
' -4 K- B4
X |a31a21a41 4 + Q12032042 4 113023043 4
L 02 — — a2 02 — Qg

1
(02 — 01)(03 — 01)
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2 _ 1 2 _ 1 2 1
2 4 1 4 3 4

X [a31021041 + a12G32G42 — 13023043 . (3.15)
01 — a1 01 — G2 01 — a3

In the following we do not display all path integral representations for all po-
tentials in all separable coordinate systems. In order not to rouse the volume of
the paper too much we display explicitly only those path integral representations,
where an analytic solution i$ available.

Cylindrical Coordinates For the oscillator on A®) we obtain the following
path integral representation (A\; =2m ¥ k; Fho+ LA =20 Fhks —v+ 1,07 =
M2 R /R + 1/4):

: 2
v o 3 i h M . 4
K( ‘)(u”,u',T)—R exp[—ﬁT<m+—2—Rw>]
Tl(t”):T” 7'2(2”):‘r” W(!”):KF”

X / D7y (t)sinh 1y cosh 1y / Dry(t) / Do(t)

n(t)=r] ra(t)=7} p(t)=y'
. !Il 2
i M . . w
X ex — —R?*[+? + cosh®> 172 +sinh®’ % 4 —— =
P { h -/z' I: 2 ( ! 1 1 cosh? T1 cosh? T

h? 1 (k‘f—§+k§—§ 1)
2MR? \ sinh? 7, \ cos?¢  sin¢p 4

1 k-1 1
+ + — ) |dt 3.16
cosh? 7 <sinh2 To 4) ( )
Nwi ( Ni [N
=y {Z [Z e BTG (o R (r] 74, s )
m=0 \[{=0 Ln=0

—i V;
+/ dpe= BTNV (o o o RYB) (! ot e R

+/ dk/ dpe B T/Mg ) (rir 1 o RYWSR) " (7 b, ! ,R)}.(3.17)

The bound state wave-functions are given by, withm = 0,..., Ny, = [3(2lFky—
U)],l =0,...,N = [(l/:Fk‘;;—1)/2],]\7:(),...,]V}\/[az = [%(V:Fkl :Fk24:k3)]2

\IJ( 1)(7-177'27@; R)

nlm

= (sinh 7y cosh7y)1/28022) (7y; R)y (M) (ry)g(ERaER) () | (3.18)

where
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SR (r; R) =

1 [2(/\2 — M= 20— DT+ 1+ AT — n)]l/2

1+ M) R3T (Mg — A1 —n)n!
x (sinh 71)1/2+21 (cosh 7y )27 H1/27 2z,
XF(=n, Az —n; 1+ Ay tanh® 7)) | (3.19)
(k5.0) 1 QvFhs — 20— )T+ 1+ ky)T(w—1)1"2
o) = ) [ NOET }

X (sinh 72)1/2ik3 (cosh 72)2[+1/2_”2F1 (=liv—1;1+%ks; tanh? T9)  (3.20)
mDm+k £k +1) 142
x (sin @)1/ 2ER2 (cos )1 /2R plEkaEhi) (o5 90) (3.21)

plrkaER) () = [2<1 +2m k ky & ke) g

The bound state energy spectrum is given by (N = m + {4+ n + 3 is the principal
quantum number)

h2
2MR?

In the limit B — oo we obtain

Ey = [(2N thy ko £hy —v)? — 1] + M g (3.22)

2

Ex ~ho(2N +k +ko+ks), NeNNg, (3.23)

which gives the correct spectrum for the corresponding superintegrable flat space
oscillator, i.e., the generalized oscillator in R3 (33].
For the first set of continuous states we find

‘I’(Vl)(ThTmﬁP%R)

plm

= (sinh 71 cosh 1) Y2522 (75 Ryy (=) () glFR2 FR) () | (3.24)

where

SI()Al A2) (r1; R)

_ 1 psinh7rpF A — A +1—ip r At — A+ 1—1ip
T(1+ X))V 2nx2R3 2 2
x (tanh 71)1/2+>‘1 (cosh Tl)ingl

X(/\2+/\1+1—ip 1+A1 — Ay —1i
2 ’ 2

p; 1 4 Ap; tanh? 7'1> , (3.25)

with the wl(ika’")(m) and ¢>$,:_Lk2’ik‘)(<p) as in (3.20, 3.21), and the continuous
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spectrum has the form

2

By = surme

(P> +1)+ %sz? : (3.26)

In the limiting case w — 0 we obtain for E,

2

E, = ? - 2

which corresponds to the case where just a radial part is present and has the
same feature as the spectrum of the free motion on A(S), i.e., there is no discrete
spectrum in this case.
For the second set of continuous states we find
Vi
\Il;kln)l (Tl y T2, 95 R)

= (sinh 7y cosh 1) T/2SPIR) (15 Ry (R0 () (kAR () | (3.28)

where

S](f“ k) (r1; R)

_ 1 psinhwpr ik—XA +1—-1ip r A —ik+1-1p
T T+ M)V 2r2R3 2 2

x (tanh T1)1/2+’\1(cosh Tl)ingl
X(ik+/\1+1—ip 14+ X —ik—1ip

5 , 5 ;1 A;; tanh? n) , (3.29)
o (m)

1 ksinh 7k vF¥ks+1-—ik tks —v+1-—ik

= r r
T(1+ks) V™ 222 2 2

x (tanh T2)1/2ik3(COSh ) ko Fy

><(1/:i:l’<33+1—ik 1+ks —v—ik

, : 1+ ks; tanh? r2> , (3.30)
2 2
with the ¢SZ5%%2) () as in (3.21).

Spherical and Sphero-Elliptic Coordinates. In spherical coordinates we
have the path integral representation (\; = 2m F k1 F ko + 1, Ay = 20 F kg +
M+ 1,072 = M2W2RY R +1/4)

K(Vl) (un’ u/; T)
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) 2 T(tll):TI, ﬂ(t”):oli i” '
o—ihT/2MR \
= Er / Dr(t) sinh” 7 / t) sinv D<p
T(t)=1' 9t )y=v'

"

.t
i
X e -
h? 1 1 (k%—§+k§—§ 1)
2MR? sinh? 7 \ sin? 9 \ cos? ¢~ sin?y 4

54 1
. — - It 3.31
+ cos?y 4 ‘ ( )

= i i {Zﬂ Alfo/ﬁ\I/n[m( " 01/ ", R) nlm(T . © 7[?)

m=0 =0 =0

~2—RZ (%z + sinh? 7(9? + sin® ¥¢?) — w? tanh® T)

+/ dpe BTG G (7 g o RYB ) (7 0 @,R)} . (332)
0

The bound state wave-functions are given by N = 0,..., Nasor = [%(u Th F
ky F k3)):

\Il(vl)(T, U, ¢; R)

nim

= (sinh? 7 sinv)~ 1/25 Az) (7. R)¢, (A i‘”3)(1))<f>(ﬁ:"‘2'ik‘)(gp) . (3.33)

¥ m

where J

1/2
(M,2ka) PT(+ A £ kg + 1)
9) = [201 4+ 20+ kg + A
7 @) [( Tk A T R T+ L+ )

x (sin¥)' /221 (cos 9) 1/ 2Eke Pl(’\"ih)(cos 20) (3.34)

where (n =0,...,N, < {v — A2 —1)/2)

S(/\Z’V)(T‘R) . 1 2v - =2n—1T(n+ 1+ A)T(v —n) 1/
" T+ ) R3T(v - Ay — n)n!

x (sinh 7)*2 /2 (cosh 7)2" Y/ 27v, Fy (—n, v — n; 1 + Ag; tanh? 7). (3.35)
The scattering states are

i) (70,5 R)

= (sinh? 7 sin 9) "V/280 ) (7; RN (9)plER2 R () | (3.36)
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where

A2,V .
SP2) (1 R)

_ 1 /psinhwpr v—Ay+1—1ip r A—v+1l—ip
L1+ AX)V 272R3 2 2

x (tanh 7)*2+1/2(cosh 7)1, Fy

A2 +1—ip Ay —v+1-i :
><<I/+ z;' 1177 2 ”; 1p;1+,\2;tanhzT> . (3.37)

Here denote the wave-functions qﬁssz’ik‘)(@) by the same wave-functions as in

(3.21). The discrete and continuous energy spectra Ey and E, are, of course,
the same as in (3.22, 3.26), respectively.

The path integral solution in terms of the sphero-elliptic coordinates is very
similar as for spherical coordinates, and the bound state wave-functions for the
sphero-elliptic coordinates are given by

\I/fl\l/,‘l)(r, &, 3 R) = (sin}12 Tsndcnd(lndsn/;('n/}(ln/})_1/2

x Sh2) (r Ry ZiER R TR (5 3y (3.38)

with the same energy-spectrum as in the previous case. The wave-functions
Effk"ﬂ'z’ﬂs)(d,/}) have been determined in [34] and correspond to the free
wave-function on the six-dimensional sphere in a cylindric-elliptic coordinate
system. They are not explicitly known yet, and therefore the above solution in
sphero-elliptic coordinates remains on a somewhat formal level. We present it

for completeness, though. The continuous spectrum has the form

\Il;yh)('r a, B R) = (sinh? ‘rsndcnd<ludsn/3’cm§dn/3)"1/2

XSI(,’\z‘")(T;R) Hl(:tkl yEka, ﬂ:kz)(~ /5') (3.39)

and E, as in the previous case.
Equidistant-Cylindrical Coordinates. In equidistant cylindrical coordinates
we obtain the path integral solution (A\; = 2m Fk; Fhko+ 1,0 =20+ X —v +
1,02 = M2W?RY/A? +1/4)
V) (4" 4y - — p-3 i n? 2,2
K'YV W;T) =R exp _ET 2MR2+—2—R

‘rl(t”):‘r{' t” (P(t”)—CP”

/ D7 (t) cosh? 7y / t) sinh 1y / Do(t)
()=

T (t)="7] et p(t)=¢
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. t”
1
X exXp {ﬁ /t’
B2 1 ( 1 <k§—§+k§—§_l)+l)
2MR2 \ cosh? 7y \sinh® 7 \ cos? ¢ sin¢ 4 4
k2 -2
+7 dt (3.40)
sxnh 5l

N,
-y {Z [Z PTGl 2 RV (r] 7, o )

m=0

M e <%2 + cosh? 7y (7§ + sinh?® %) + — < )
2 ! 2 cosh? 71 cosh?

plm

+/ dpe iEr T/R\I/ Vl)(T17 él (p,’vR)\P(VI) (T17727§0 aR)
0

s [k [ dpen B M) o BB (o >} (34D
¢} 0

We obtain one set of bound state wave-functions and two sets of scattering
wave-functions. The bound state wave-functions are (( + m = 0,...,N; =

[%[(Vq:kl Fhy—2),N=0,...,Nyaz = [%(V:Fkl F ke F ks)l:

\I/(Vl)(TlvT2790; R)

nim

= (cosh? 7y sinh 75) 71/28(Fka22) (- R)w Aoy (9) Rk (5 [ (3.42)
and En as in (3.22). The two sets of continuous states are

W (71,72, 05 R)

= (cosh? 7, sinh ) ~V/2§(ERA2) (7y; Ry M) (1) pliER R () | (3.43)
\I/( 1)(T13T27@7R)

plm

= (cosh® 7, sinh 72)_1/251(,ik3’ik) (n;R)w,(c)“’") (r2) TRtk (o). (3.44)

The continuous spectrum has the form

2
M
E, = P+1)+ ~wWR . 3.45
Here denote:
¢ the wave-functions ¢ ikz’ik‘)(@) are the same wave-functions as in (3.21),

e the wave-functions 1/11 W (Tg) are the same wave-functions as in (3.20,
3.30) with ks — A1,



PATH INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1257

o the wave-functions S(ik3 /\2)(T1;R) are the same wave-functions as in
(3.19, 3.25) with A\; — j:kg, respectively.

Equidistant Coordinates. As the last system where an explicit solution is
possible we consider the equidistant system and obtain the path integral solution
M =2mFhk —v+ 1L, =2Fk -\ +1,0° = M2WR*/R? + 1/4)

. 2
M _, .
K(Vl)(u”,u';T) = R3 exp l:_ %T( ]\ZRQ + — R%;z)]

T1(t'") (" ("

/ Dﬁ )cosh? 1y / DTg ) cosh Ty / DTg(t

()= Ta(t')=T} T3(t')=

. t”
M . .
X exp {-;; / %RQ <7'12 + cosh® 71 (72 4 cosh? T172)
L/

+ =

cosh? 71 cosh? 75 cosh? T3

h? k§—§+ 1 < 1 (k%—§+1>

2MR2 \ sinh® 71, cosh? iy \cosh® 7o \sinh®ry = 4

k3 — ¢ 1) '
+ 5 + - dt 3.46

sinh®rm 4 ( )

N, N, N,
-3 {z [z TG (0 g8 e

=0 Ln=0

plm plm

+/ dpe B T/Mg ) (o it it RYW V) < (o o o Ry
0

+ / dk/ dpe IE T/ﬁqli;‘k/lvi (Tl 77—3,7 T’} 7R)\Il§;‘k/1n)1*(7-177_27 T37 R)}

/ dg/ dk/ dp e BTG ) (7 ottt RYG ) (L g i R
(3.47)

We obtain one set of bound state wave-functions and three sets of scattering

wave-functions. The bound state wave-functions are (m=20,...,N,, < (v F

ki — 1)/2,l =0,...,N, < ()\1 F ko — 1)/2,” =0,...,N, < (/\2 F ks — 1)/2)
p(h )(7'1,72,7'3;3)

nim

= (cosh? 7y cosh 712)71/25?:’“3“2)(7'1;R)Lbl(ik"”Al (o) {FR1) (13) (3.48)
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and En as in (3.22). The three sets of continuous states are

\I/(Vl)

plm

= (cosh® 71 cosh 1y —1/2 g(£k3.22) T1; R Qb(ikQ’Al)(Tg)w(ik“”) 73),(3.49)
P ! m
\P(VI)

mkp

= (cosh? 71 cosh 7'-2)_1/251(,ik3’ik)(T1;R)w,(cih’)‘l)(Tg)d)Snik‘"’) (r3), (3.50)
W0 (70, 75, 75: R)

ekp

(11,72, 73; R)

(7’1~,T2’T3; R)

= (cosh? 7 cosh Tg)_l/zsl(,ik“k)(n;R)w,(cikz’ig)(Tg)l/)gik"”)(rg) , (3.51)
and E, as in (3.45). Here denote:

e the wave-functions wfnikl"’)(m) are the same wave-functions as in (3.20)
with 79 = 73, { > m and k3 — k|,

e the wave-functions wéik"u)(m) are the same wave-functions as in (3.30)
with 79 — 73, b — p and £k3 — £k,

e the wave-functions 'u”,(ikz')“)(rz) are the same wave-functions as in (3.19)
with 70 = 7, n = [, (A1, A2) = (£ky, Ay) and R =1,

e the wave-functions w(kik:‘h)(rg) are the same wave-functions as in (3.25)
with 71 = 1, p =k, (A1, A2) = (£ke, X)) and R =1,

e the wave-functions w,(cikz’ig)(rg) are the same wave-functions as in (3.29)
with 7, — 7, ([),k) - (k,g), Al = ko and R =1,

o the wave-functions Sﬁl,iph‘h) (r1; R) and Séth'ik)(‘rl ; R) are the same wave-
functions as in (3.19, 3.25) and (3.29) with A\; — k3, respectively.

Let us remark that the wave-functions have been normalized in the domains
@ € (0,7/2),9 € (0,7/2) and 7 > 0 in the spherical and in 7,53 > 0 in the
equidistant system. The positive sign for the k; has to be taken whenever k; > %
(1 =1,2,3), i.e, the potential term is repulsive at the origin, and the motion takes
only place in the denoted domains. If 0 < |k;} < % iLe., the potential term is
attractive at the origin, both the positive and the negative sign must be taken into
account in the solution. This is indicated by the notion *k; in the formulae. It
has also the consequence that for each k; the motion can take place in the entire
domains of the variables on A®). In the present case this means that we must
distinguish (e.g., in the equidistant system) eight cases: 1) T1,2,3 > 0,1) 2 > 0,
nE€R, )M €R, 3 >0,ivimeR, m3>0,v) 112 €R, >0, vi)
71 >0, 723 € IR, vi)) » > 0, 71,3 € R and viii) 71 2.3 € R. In polar coordinates
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the same feature is recovered by the observation that the P&schl-Teller barriers
are absent for |k;| < 1.

In elliptic coordinates this feature is taken into account in the following way:
Due to a € (iK',iK’' + K'), we have sn(a, k),icen(a, k) > &' /k, idu(a, k) > 0,
and we see that for a € (iK',iK'+ K) and 3 € (K',4K") we get uy > 0, and the
variables w1, uz, uz change their signs in the eight domains, i.e., 3 € (O,K"), 3 €
(W',2K"),3 € (21K',3K") and 3 € (3K’,4K"). We then have for a # 0

sn(0, k") = sn(2K', k") = sn(4K', K'Y =0 | (3.52)
en(h' k") = en(BN' K') =0 o
and dn(/3,4") > 0, 3 € [0,4K"'). For convenience, we have made the choice /3 €
(0, K"), and the same is true in all the following systems. The situation is similar
in the hyperbolic system, where we choose 1 € (i, iK' + K), 5y € (0, K”). In
the sphero-elliptic system we must choose for the same reasons & € (0, ') and
3 € (0, ).

3.2. The Coulomb Potential

We consider the Coulomb potential on the three-dimensional hyperboloid
(k12 >0

. « u /RN - U B |
which in the five separating coordinate systems has the form
Sphero-Elliptic (1 > 0.¢ € (0.K).3 € (0. R')) -
. (1
Volu) = —ﬁ(('othr -1)

: k-5 k3 -t
h ( a2 4) (3.54)

+ . - _
2M R2sinh” 7 \ sn2a dn®3  en2a en?j3

Spherical (T >0,V € (0,7),» € (0, m/2)) :

n? k-t k-1
= Llcothr — 1) + ! (1 44 22 4) (3.55)

R 2M R2sinh? 7sin® 9 \ cos?p  sin?

Prolate Elliptic Il (a € (iK',iK’ + K),3 € (0,K'),¢ € (0,7/2)) :
a (k2 snacnf — k' enfBdnj 1)

B k2 enZa 4 k% cn23

R

2 1

+ h K — 4 + K4 (3.56)
2MR2dn*asn28 \ cos2p = sin? %)
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Semi-Hyperbolic (1,2 > 0,4 € (0,7/2)) :

_ aCﬂ+ﬁ+¢H¢%1>
-2 i}

K1+ 2
N G U Tk
3.57
+ 2M R2 1y 1o ( cos? @ + sin? o ) G>7)

Elliptic-Parabolic 2 (a > 0,9 € (0,7),¢ € (0,7/2)) :
_ a(cosh®a+cos? 9 1
R\ cosh? @ — cos2 ¥
L M- H-i
2M R? cos?  sinp )

coth? a cot? ¥ ( (3.58)

As denotes the third component of the Pauli-Lenz—Runge vector on the hyper-
boloid [77], i.e.,

au

2 2 2!
Vuj + uy + ug

The path integral for the Coulomb potential on A(® can be explicitly evaluated
in three coordinate systems which will be discussed in the following. In the
prolate-elliptic II and the semi-hyperbolic system no explicit solution is known.

A = LXK—KXL)— u:(ul,UQ,U3) . (3.59)

7R

3.2.1. Spherical and Sphero-Elliptic Coordinates

The separation of the Coulomb problem in spherical coordinates is similarly
done as for the sphero-elliptic one, and we have

. 2 N
K(V2)(TII,TI719II,19/’¢H’@I;T) = R3 exp [_ %T(_h__ g)}

tll t —t II

/ Dr(t smh T / DI(t) sind / Dp(t)

t') T! (tl) ‘P

i t”
X exp ﬁ/
tl

h? 1 (kE-%  K3-%
- B .2(12“+?’24—1>—l dts  (3.60)
2MR2sinh® 7 \ sin®d \ cos? ¢  sinp 4 4

M _or.0 s 12 a2 2 9.2 a
ER (7’ + sinh” 7(¥* + sin” Jd¢ )) +—R-coth*r
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plm

+/ dpe i EeT/mg ) (21 9 o R (77 9! <,9,R)} . (3.61)
0

The bound and continuous wave-functions are given by

\11%2721(7, 9, ¢; R) = (sinh T)_ISI(\,VZ) (r; R)

T+ M +1
X\/(l + A+ -21-)(—“1——)13% (cos 9)p{FraEr) () | (3.62)

\I’(VZ)(T 9, ; R) = (sinh T)_15§)V2)(T;R)

plm

D+M+1)
x\/(z+/\1+§)(_l,1—)Pl+§l (cos¥)p{Fr2tR) () | (3.63)

with A\; =2mF ki Fka+1, A —l+/\1+2,N—n+l+2m$k1:{:k2+2 the

wave-functions (3.64, 3.66), with the wave-functions (;b (Fha k) (4,0) as in (3.21).
The bound state spherical wave-functions and the energy-spectrum are given by

1 O 7 1/2
SxVQ)(T;R) _ 9Az+3 {012\, —N2D(N 4+ X+ 5)T(on + A2 + 1) /

L@2x;+3) | RN D(N = X)) T(on — Az)
x (sinh 7)*2 /2= 7(ow—n),
1 2
- Ay +1; ————— 3.
XFl( n/\2+2+0N’22+ 1+cothr> ' (3.64)

E'N=g~7‘12]\72_1 - Moz~2 .
R 2MR?  op?N2

(3.65)

Here we have abbreviated a = hQ/Ma (the Bohr radius), oy = aR/N, N =
NFkFhk+2,N =n+14+2m, N =0,1,2,...,Npa: < /R/a. The
continuous spectrum has the form

i/2)(p—p)+Ara+1
SZ(,VZ)(T;R) _ 2(i/2)(p—p)+r2+3

7TF(2/\2+1)
psinh7p 1 i, 1 i,
A 4+ —(p— r — -
53 </\2+2+2(p p)) (/\2+2 2(p+p)>

i 1
Ginh 7+ 2 exp |7 (55-40) = do = 1 )] oFy

1 1 i 2
<A2+2+2( et — S (B+pi2dh +1; 1‘+—h> ,(3.66)

5= \/2MR2(EP — ah?/R) / h, and E, as in (3.27).
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In the case of the pure Coulomb problem the angular wave-functions are just
the spherical harmonics ¥,™ on S ie. we obtain for wave-functions in this
case

xpﬁjfg(r 9, R) = (sinh ) 'SP (1 R)Y™ (0, ) ' (3.67)
W2 (9,0 R) = (sinh 7) T SV (1 R)Y™ (0, ) (3.68)

plm

together with the principal quantum number N = n +[1+1=0,..., Ny <
VR/a— X —1/2. In [25] it was shown that the S(VZ)(T R) and S V2)( i R)
yield the correct radial wave-functions in R?, as R — oo.

The complete wave functions of the generalized Coulomb problem on the
three-dimensional pseudosphere in sphero-elliptic coordinates are given by

\1151‘”1 (7, &, /5 R) = (%inh2 ‘r%nd('nddndsnBandnB)71/2

xSWA (s R)EEN R (6 ) (3.69)
\Il(), )(T QL i R) = (%mll2 TSI1&(‘116(111(15118(‘113(1!1;‘})71/2

xSV (ry ) SE D (5 ) (3.70)

Let us note that in the pure Coulomb case, the path integral evaluation is almost

. . . ki, tky, g2
the same with only minor differences. The wave-functions _fm o 2) are

replaced by the wave-tunctions of the free motion on the sphere S ie., together
with the notation k.q = 1, h+ h=1[{l+1)
. SIS B g

S NG 5) o ARG () (3.71)
The quantum number A, yields the usual angular momentum number [ € INg.
The discrete spectrum has the same form as (3.65), however with the principal
quantum number N now given by N = n + [ + 1, therefore giving degeneracies
with respect to the quantum number m. Everything else remains the same.

3.2.2. Elliptic-Parabolic 2 Coordinates

In order to evaluate the path integral in elliptic-parabolic 2 coordinates, one
first separates off the p-path integration, and then performs a time transformation.
This gives (M =2m F ki Fh2+ 1)

" ! i — i h2 81
K" d 0", 0" o T)=R 3exp[—gT<W+E>]

(i”):’ly/

a(t')=a L2 v(i
/ / D9(t) tanh a tan ¥ ———sp——— cosh”a — cos” / Dp(t)
)=a p(t')=

cosh? a cos? ¥
Bt )=’
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X exp i /i —A{R2 (cosh? a — cos? 19)(('122+ 92) + sinh? a sin? Y2
v 2 cosh” a cos? ¢

a cosh? a + cos? ¥
R cosh?a — cos? 9

w co‘ch“’aco‘5219<k2 —‘11_ + kf _ i)

+ 2MR2 cos?¢  sin?p
h* cosh®a + cos? ¥ — 1
+ dt 3.72
8MR?  sinh?asin? ¥ ( :
e—iRT/2MR?
= ———(cotha cotha” cot ¥’ cot 9")1/?
R
37 ke ()t ) )
m=0
a(t” —a’ 19“”) 9" .
/ / DUt) cosh? a — cos? ¥
" cosh? acos? ¥
a(t')=a’ d(t") =0’
M cosh?a — cos? v PN a cosh? a + cos? V)
X exp 5pz 3 o la + ) = R ———
2R? cosh®acos? 9 R cosh® a — cos? ¢
1202 h?  cosh®a + cos? ) — 1
+ th2 t29 + - - It 3.73
2M R? cothaco 8MR? cosh?a — cos? ¥ ‘ ( )
e~ RT/2MR*
=—m (cotha’ cotha” cot ¥’ cot 9" )!/?
* 3 el (et )
S” 19//
X / 7 _‘ET/h/ ds" / Da(s / Di(s
7
a(0)=a 9(0)=»"
; s M N "
X exp —/ —(a* + %)
h Mop Pod Mo g, (3.74)
- — sy, .
2M \ sin®*9 cos?d  sinh?’a  cosh®a

where 32 = ; —2MER?/h* 1% = L + 2M R?(2a/R — E)/h*. The analysis of
this path integral is rather involved and requires the same Green function analysis
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as the corresponding two-dimensional case [31], [35], which will be not repeated
here in all details.

Let us note ﬁrst that in the case of the pure Coulomb problem we have to
replace A1 = |j|, 7 € Z, and the wave-functions in ¢ are circular waves, i.e.,
¢i(p) = e”‘f’/\/27r, ¢ € [0, 27). Everything else remains the same.

To analyze the general case we proceed exactly in an analogous way as

n [35]. For the discrete spectrum we expand the ¥-path integration into Poschl-
Teller potential wave functions CI)(’\1 A (), and the a-path integration into the
bound state contribution of the modified Poschl-Teller potential wave functions

Al’V)(a) of (B.6). The emerging Green function representation G’fill/gc)(E) of
K(v2)

disc.

(T) has poles which are determined by the equation
(2n1+/\1+5+1):—(2n2+/\1 —V+1) . (3.75)

Solving this equation for E,,,, yields exactly the energy-spectrum (3.65), with
the principal quantum number N =n; +ng + Ay +1=1,..., Npsq. as before.
Taking the residuum gives the bound state wave-functions which are therefore
given by

¥(2) (a9, p; R) = (cothacot9)'/?

mmnyng
2
o} — N2 PO (@) 9 (9) g lEke )
2 ’ ’ , 3.76
T, (@)6 2 ()l () (3.76)
where (3552551 (1) as in (3.21)),
’(/}(/\l’u)(a) _ 1 2(1/—-)\1 —2711 ——1)F(7’l1 +1+)\1)1"(V _ nl) 1/2
™ T (14 A) m!T(v F ks — ny)

x (sinh a)1/2'Hl (cosh a)2”1+1/2_"2F2(—n1, v —n1; 1+ Ap; tanh? a) , 377
na!D(B+ A\ +na +1) 142

Flno+ M+ D' (ne+ 8+ 1)l

x (sin9)!/2+M (cosﬂ)ﬂ“'/?P,(Lil’ﬂ)(cos 29) . (3.78)

SO0 () = [2(5 + A1+ 20y + 1)

For the analysis of the continuous spectrum we must insert the entire Green
functions of the Poschl-Teller (A.5) and modified Péschl-Teller potential (B.11).
We then find the Green function G(Y2)(E) in elliptic-parabolic coordinates by
considering the ds”-integration in (3.74) with the solutions of the Poschl-Teller
and modified Poschl-Teller potential, respectively, and the result can be put in
the following form (c.f. also [31] for some more details concerning the proper
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Green function analysis)
G(VZ)(auv alv 19//7 19’7 Qouv Solv E)

= (R?tanha’ tanh a” tan ¥’ tan 9" )~1/2 Z plER 2R () glEhe R ()

m=0
1

(Ar,2) (1N, 1 (A1,0) Iy y(AB) (gt gt
X ¢ = G 9,9 FE
{2 "ZZ¢"2 (a )wng (0,) PT ( ’ )E':h2(2n1+)\1+,5+1)2/2MR2
L[ aw) oy (a5 iy B gt g
by |k @ @ |
+ [appropriate term with a and o interchanged] } , (3.79)

in the notation of (A.1, A.5, B.6) and (B.11), respectively. 'Equation 3.79)

also represents the Green function corresponding to the path integral (3.72).

Analyzing the cuts gives the continuous states which have the form (p? = —% -

2M R?(2a/R — E)/h?)

‘Ifﬁ,‘;fi)l(a, J,¢; R)

= (R’ tanh atan )~/ 2P (@) P (9) 940 (0) | (3.80)
where

5O (g = T4 M 4P+ RT3+ M + i — k)]
¢ - 1+ \)

[k sinh 7k .
X -Sl;—f(tanha)’\‘_l/Q(cosha)‘ngl
T

. o
x( +)\1;1p+1 ’ + XM\ 21p+1k;1+,\1;tanh2a> ’ G.81)
T[3(1+ A +ip+ik)T[E (1 + A +ip — ik)]

(A1,p) _
k (0) = 1+ A)

k sinh i
= 8 (tan )12 cos ), By
s

14+ A +ip+ik 1 —ip+ik
x( + 1;1p+1 7 + A1 2IP—H ;1+,\1;-—sin219) ) (3.82)

The energy-spectra are as in (3.65,3.27), respectively. Putting both results together
we obtain the path integral solution of the Coulomb problem on A() in elliptic
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parabolic 2 coordinates in the following form
K(V2)(a”7 al7 19”7 19,7 30”’ <pl7 T)

— Z { Z e—iENT/h\Ilgr\L/i)]n2(au’19//’(;)//;R)\IIST‘L/fL)ln2 (al,ﬂl,cp’;R)
m=0

ni,n2

+/ dk/ dpe_iEPT/h\I/;‘,gr)l(a",ﬁ”,ap”;R)\Il;:ir)t*(a',ﬂ',cp’;R)}. (3.83)
0 0

3.3. A Radial Scattering Potential

We consider the potential in its five separating coordinate systems (k1 2.3 > 0)

h2 k?__l
Va(u) = [— e

2M R? u?

1 k2 — 1 K21 k2L
+ T + 254 (384
Ve +d\ Vi +ui+u Jud+ud -y u?
Spherical (T > 0,9 € (0,7/2),¢ € (0,7)) :
__» K- g
T 2MR? cosh® 7
e . (kf—% + kg_%>+k§‘_% (3.85)
sinh? 7 \ 4sin? 9 \ cos?(p/2) ~ sin?(p/2) cos? 9

Equidistant-Cylindrical (7’1,2 >0,p € (0,71')) :
_® (B-F, 1 ks~ %
" 2MR?\sinh®*7  cosh®m cosh?

T— (k%_% + kg_%) (3.86)
4sinh? 7 \ cos?(p/2) sin2(cp/2) )

Prolate Elliptic (a € (iK',iK' + K),8 € (0,K'),p € (0,7)) :

I G Y
~ 2MR? sn2adn’p
1 k2~ 1 k2 -1 k21
+— (‘24+.§4>+§42 . (387
4dn’asn?f \ cos?(¢/2)  sin®(p/2) cn2a cn?f3 :
Oblate Elliptic (o € (iK',iK' + K),8 € (0,K'),p € (0,7)) :




PATH INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1267

R k3 -1
 2MR? sn2a dn®g

1 R2-L gz_1 k2 -1
+ + + 3.88
4cnZacen?f (cosQ(ap/Q) sinz(go/Z)) dn®asn?g -88)
Hyperbolic-Cylindrical 2 (p € (iK',iK'+ K),n € (0,K'),p € (0,m)) :

h2 k.2 _ 1
T ToMRZ\ T cn?pcen?y

TR <k2__ L >+ Gl (3.89)
4sn2pdn®v \ cos?(p/2)  sin®(p/2) dn®psn?y | '

Only in the first two coordinate systems an explicit solution is possible.

Spherical Coordinates. In the first separating coordinate system we have
the following path integral representation together with its solution (A\; = m +
%(liFkl :FICQ),/\Q =2Fks+ A +1)

KW (" o';T)
T(t/l):‘rf/ 19(tll)“-.[911 tll) w

e—iRT/2MR?
=\ / Dr(t)sinh? 7 / DJ(t)sind /

T{t')=1' 9t )=’ e(t)=y¢'

i t
xexp{ﬁ/
tl

n? kS — 3
x — —
2M R? cosh? r

"

%32 (T'? + sinh? 7(9? + sin? w;?))

1 1 k-1 g2l
R 2 2 T3 -1
sinh® 7 \ 4sin® 9 \ cos?(p/2)  sin®(p/2)
-1 1
- = .90
+005219 4) dt (3.90)

=¥ Z/ dpe™ Be /MRl (1 9" o R)ED (9, R) . (391)

m=0 I=0

The path integral evaluation is successively performed by applying the path in-
tegral solution of the P6schl-Teller potential in o and ¥, and for the 1/ sinh? r-
potential in 7. The spectrum is purely continuous and the wave-functions have
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the form
W0, ) = 5000 (7 R ol () o

and E, as in (3.27). Here the wave-functions S$*2%0) are usual continuous

modified Pdschl-Teller wave-functions analogous to (3.25) with the parameters
(A2, ko), the ¢l(’\1’ik3)(19) are the same as in (3.34) and the wave-functions
qbgsz’ik‘)(cp/Q) are the same as in (3.21) with ¢ — /2 and an additional

factor 1/ V2.

Equidistant-Cylindrical Coordinates The solution in the second coordinate
system has the form (A =2m F k1 Fhka + 1)

\% "o
KV @ ' T)
iRT/2M R? n(t")=ry’ 2 (t")="3 e(t")=y"
o

SR / Dri () cosh® 11 / Dry(t) sinh 75 / Do(t)

n(t)={ ma(t)=r, p(t) ="

. t”
i
X exXp { -ﬁ /t,
om (K- 1 [ kg
2MR? \ sinh® 1y cosh’n cosh? 75
1 (k-3 K-3
+ + -1} +1 dt 393
4sinh? 5 (Cos2 £ sin’g ) (3:93)

- Z/ dk/ dpe  Br/mu ) (711 1l o YU (1], 74,0 R) - (3.94)

M
SR (+f + cosh? 71 (72 + sinh? ma?))

The path integral evaluation is successively performed by means of the path
integral solution for the Péschl-Teller potential in ¢, for the 1/ sinh? r-potential
in 7 and for the modified Poschl-Teller potential in 7. The continuous wave-
functions have the form (A; as before)

G (11,7, 03 R) = SR (my; Ry 4 (mg) gl te 40 (-“;) . (395)
with ¢ (Eka k1) (¢/2) as before, and the Séikmik)(n;R) the same as in (3.44),
and the %) the same as in (3.92) with Ay — Ay, 7 = 72 and R = 1.
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3.4. A Stark-Effect Potential

We consider the potential (k; o > 0)

h’ ( k2 -1 k-1

- +
AMVUE +ud \ Vul+ud+u Vel el -y

In its four separating coordinate systems it has the form

Va(u)

)'f‘kg’tl,g . (396)

Equidistant-Elliptic I (« € (iK',iK' + K),8 € (0,K'),7 > 0) :
1 h? kP + k-1 (k’2 1 )
cosh® 7 4MR? | k2 cn2a + k' en2B \ dn®a sn2f3
. k' k%2 snacna + k' cnf dnﬁ}
+(k? — k3)~— + k3Rsinh T 3.97
(ky 2)k k2cn2a + k' cn2 s : 3-97)
Equidistant-Semi-Hyperbolic (T € R,y 2 > 0) :
h? 1 11
- k2+k2—l(—+—>
4M R? cosh? 1 1 + po [( ! 2~ 3) b1 pe

Va(u) =

1+ p? 1+ u2
+(kf—k§)(‘/ iV +“2> + ksRsinh 1 (3.98)
H1 M2
Equidistant-Elliptic-Parabolic (1 € R,a > 0,9 € (0, 7/2)) :
R cosh®acos?d (k¥ -1 k2- %)
= + ksRsinht (3.99
2M R? cosh? 7 cosh? a — cos? ¢ < sin?d  sinh%a s ( )

Equidistant-Cylindrical (n celR, 7 >0,p€ (O,ﬂ')) :
_ B ( T SR el
"~ 8MR?cosh® 7 sinh® sin®(¢/2)  cos?(p/2)

) + kgR sinh 1 (3100)

Because there are only four observables, the potential Vj is only minimally
and not maximally superintegrable on the hyperboloid. However, its flat space
analogue Vj(x) is maximally superintegrable, and we have included V; in this
section, though. Unfortunately, the path integrals in all coordinate systems are
not solvable and we omit the further details.

4. PATH INTEGRAL FORMULATION OF THE MINIMALLY

SUPERINTEGRABLE POTENTIALS ON A®)

In this Section we list our findings of the minimally superintegrable potentials
on A®). They include the following:
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1. The class of potentials which are the analogues of the minimally superin-
tegrable potentials in R? [16,33]. For instance, the potentials V5 and Vg
correspond to the double-ring shaped oscillator and the Hartmann potential
in IR?, respectively. The four found potentials are discussed in some detail.

2. The class of potentials which correspond to the group reduction SO(3,1) D
E(2), i.e., which are superintegrable in IR? [33]. Here the results of [33]
will be used, and the problem of self-adjoint extensions for Hamiltonians
unbounded from below is briefly mentioned.

3. The class of potentials which correspond to the group reduction SO(3,1) D
SO(3), i.e., which are superintegrable on S(2) [34]. In our list we have
chosen for convenience a dependence according to 1/u2, but any function
F = F(ug) admits separation of variables.

4. The class of potentials which correspond to the group reduction SO(3,1) D
SO(2,1), i.e., which are superintegrable on A(® [35]. In our list we
have chosen for convenience a dependence according to 1/u3, but any
function F' = F(u3) admits separation of variables. Because the features
are repeating themselves, all those potentials can be treated simultaneously.

4.1. Analogues of the Minimally Superintegrable Potentials of R?
4.1.1. Double Ring-Shaped Oscillator

We consider the minimally superintegrable double ring-shaped potential V
on AB) (ks > 0) !

M Wrui+ud R (k-1 Fluy/w)
V- =Rl 2T sy & (28 4 - 4.1
5(u) 2 ¥ u? + 2M\ Ul u? + u? ’ @D

which in the five separating coordinate systems has the form (¢ with appropriate
range)

Spherical (1 > 0,9 € (0,7/2)) :

M h? k2 -1  F(tany)
Vs(u) = —w?R? tanh? 34 42
s(u) = W R tanh T 4 e ey o2 9 T sinZ o 4.2

Equidistant-Cylindrical (112 > 0) :

M 1
2 cosh” 1 cosh® 1y
h? (k%—i N F(tan o) )

+
2MR2 \sinh?’7m,  cosh? 7, sinh? 7,

(4.3)
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Prolate Elliptic (o € (iK',iK' + K),8 € (0,K")) :
M, 1 h? k21 F(tan @)
= —w?R*(1- - 4 , 44
2 ¥ ( snzadnzﬂ) 2M R2 ( cn?acn?f * dn?asn2s 4
Oblate Elliptic (o € (iK',iK' + K),B € (0,K")) :

= M‘LUQRz (1 el ‘—1—2—)
2 sn?a dn‘p

2 k2 1
__h ] 23 i FFtan«p) 4.5)
2MR? \ dn®asn?28  cn?acn?p

Hyperbolic-Cylindrical 2 (p € (iK',iK' + K),n € (0, K")) :
2 k2 _1
- —A{w2R2<1— = )— i ( i—q  Flang) ) (4.6)

2 k2 cn?pen?y 2MR?\ dn’pusn?v  sn?udn’v

An explicit solution is available in two coordinate systems, and we have the
following path integral representations together with their solutions.

Spherical Coordinates. In spherical coordinates the solution is not very
different from the solution of the generalized oscillator on A(®), the only differ-
ence being the p-dependence. Hence we obtain [\, = 2{ + k3 + A\p + 1,02 =
M2IRYVR? +1/4,n=0,... N, < (v — Ay = 1)/2]

]\'(VSJ( "o T)

l ) ] ‘L?(l”):l?” ip(t”):kP”

e-mr/zz\mz
= / t)sinh? 7 / DO(t) sin v / Dy(t)
r(t)=r' 9(t)=0' P(t)="
M . .
X exp { [7R2 T + sinh? 7(¥? + sin? ¥p?) — w? tanh? 7')
k3-1 F(t -1 1
- < i G Gt ek S | @.7)
QMR2 sinh? 7 \ cos? ¥ sin” ¥ 4

o0 N,
= / dE, S {Z e ENT/RG B (7 9 " RYUYY (7,0, s R)
(=0 \(n=0

+ / dpe™ BTG R (2 9", YRS (7, v',w,m}. “.8)
0

The bound state wave-functions and the energy-spectrum are given by (N = [4+n)

8 (7,9, 0 B) = (sinh® 7 sin 9) /2502 (7; R)g{M ) ()68 () | (4.9)
: 2 M
—___ " _ _ 22
En = SME? [(2(N+1):bk3+/\p‘ l/) 1] + 2w R . 4.10)
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The scattering states and continuous spectrum have the form

0 (19,0, R) = (sinh? 7 sin9) /2802 (7, R) AT ER) (9) 0l () (4.11)
2

M
E —_ 2 2 2. 4.
P 9MR? (v +1) i (4.12)

Here the wave-functions qb(AF) () are the eigenfunctions corresponding to the
potential term F'(tan ¢) with eigenvalues Ey = h*)\?/2M, and the qb (e, tk‘"’)(ﬁ)
are the same as in (3.34) with \; — A, and the wave-functions S( e ( ; R)
and SO‘2 ¥) (7; R) are the same as in (3.35) and (3.37), respectively.

Equidistant-Cylindrical Coordinates. A =24+ dp ~v+1,02 =
M2 RY/R? 4 1/4)

. 2
v . ) i B M
KY) (" w';T) = R 3exp [— ET<2MR2 + 7R2w2>}

1 (¢")=7 T2 (t")=7} o(t")=

X / Dry(t) cosh® 1y / D7o(t) sinh 9 / D

T1(t')=7{ T2(t)="1, e(t')=¢

i t”
X exp ﬁ /t,
h? 1 F(tanp) -1 1 k3 — %
L - < (.nf) 4+_>+ S ) at 4.13)
2MR? \ cosh? 1y sinh® 75 4 sinh® 7

- [ a8 { [Z e MV IIRG (7Y o R (5 7, s R)
=0 Ln=0

M 2f .2 2 ) 12 22 w?
- B\ 71 +cosh®n (75 +sinh® n?) + —5———
2 cosh® 1y cosh” 1

+/0 dpe_lE T/h\Il V)(Tl aTQ ,(P” R)\I/;E;‘l/)s\))*(TllvTévwl;R)

+/ dk:/ dpe™ BTN R (1l o RYw(YS)* (T;,TQ',@';R)}. (4.14)
9] 0

Again we have similar features as for the general oscillator, hence we have one
set of bound state wave-functions, and two sets of scattermg states. They are
given by (n =0,...,N, < (Ay — ks —1)/2,1=0,. <(v—-Ar-1)/2)

‘I’(A‘z/n) (11,72, ¢; R)
= (cosh? 7y sinh Tg)‘l/QS,(likS”\z)(Tl;R) [(XF’V) (Tg)¢§F)(<p) . (4.15)
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/r

5

\IISM)(TMTQ,QO; R)

= (cosh® 1y sinh 7'2)"1/25;(,1’“3’)‘2)&1;R)d)f”’”(ﬁ)(i)&m (¢) , (4.16)
OV (11,0, 0 R)

= (cosh? 7| sinh Tg)_l/zsx(,ik:"ik)(ﬁ;R)LZ),(:‘F‘") (T2)¢()\F)(cp) . 4D

The wave-functions z/),(”:_""")(‘rg) are the same as in (3.20) and (3.30) with £k; —
Ar and m — [, respectively. The energy-spectra En and E, are the same as in
the previous paragraph.

4.1.2. Hartmann Potential

_ The next potential represents the analogue of the Hartmann potential V5 in
IR” [33]. We consider

. v Up
Vs = —_—_— 1
alw) R ( u? + ul + ul )

N n? Pus + F<u2> @.18)
20 (uf + u3) Vui +ud+ uy ' '
which in the two separating coordinate systems has the form (p with appropriate
range)

Spherical (r > 0.9 € (0,7/2)) :

o h? F(tany) + 3 cos v
Ve(u) = —~—=(cothT — 1) + : : - 4.19)
s(w) R( T ) 2M R?sinh? 7 sin® ¥ (
Prolate Elliptic 11 (0 € (iN',iN' + K),B € (0,K")) :
_a k2 sna cna — E' enfBdnj 1
R k2 en2a + k'? en?j3
+ h? F(tany) + 1 k'? 1
4MR? \ k2 cn2a + k2 en?3 \ dn?a  sn?3
“B]i k2 SI.lOt C‘na + k’;nﬂ dngj 4.20)
k' k2en?a + K% cn2g

We treat only the spherical case with F(tan¢) = . Then we obtain together
with v > |8, ML =n? +v£ 8, A =m+ Ay + A_ +1)/2, ¢ € [0,27):

: 2
Ve . D 1 h o
K 6)(7_//’7_/’1911719/,80//’(‘0/’T) - R Bexp [_ ET(W n E)]
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T(t”): 1" t ) —9" (p(t”) ‘P”

X / Dr(t) sinh® 1 / DY(t) sind / Dp(t)

(t)=r" o) =" w(t)=
>< e i /t”
17/,

R Y+B-%  7-B-i 1)
- + ——]|dt 4.21
8M R?sinh® 7 ( sin(9/2) = cos?(¥/2) 4 @.21)

{Ze_.m/h i (710" RYWLE (7, 0,0 R)

-A;—R2 (7"2 + sinh® 7(9? + sin? 19«,92)) + % cotht

1=0

+/ dpe B TIMg L) (7 g o Ryw(e) (T',o',w’;R)} . (422)
0

The path-integration in 9 is of the Péschl-Teller type, whereas the path integration
in 7 is essentially the same as for the Coulomb potential. Therefore the wave-
functions for the bound and continuous spectrum are given by (n =0,..., N, <

VR/a— X3 —1/2, a = h*/Ma is the Bohr radius)

vl 1),<p, R) :(smh‘zrsinﬂ)—l/ZSN(r;R)¢§*+**~’(0)"W . (4.23)
rint m
. . imyp

V8 (1,9, 0, R) = (sinhzTsinﬂ)“l/ZSP(T;R)(f)f“”\‘)(ﬂ)i/ﬁ . (424)

1/2
(AeAl) M+ A +A_+1)
D)= (20 +Ap + A +1
o) [( A ) e T T 5 D)
D\ /2 g\ L/24+A_
x(sin 5) (cos g) P,(A“"\‘)(cosﬁ) ) (4.25)

with the Coulomb wave-functions Sy (7; R), S,(7; R) as in (3.64, 3.66) and the
energy-spectra (3.65, 3.27), respectively. In the case when R — oo the flat space
limit is recovered [33,56,57].

4.1.3. Generalized Radial Potential

We consider the potential (ko 1,23 > 0)

Va(u) = F(uf +u3 + ud) + —

h? (_k§—§+kf—l N

2
2M ug uj uj3 UH
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which in the two separating coordinate systems has the form

Spherical (> 0,9 € (0,7/2),¢ € (0,7/2)) :

h? 1 1 <kf—i+k§—i>
2MR? | sinh? 7 \ sin?9 \ cos? ¢ sin®
81\ K-}
- 4.27
* cos? 0 cosh? 7 “.27)

Sphero-Elliptic (1 > 0, € (0,K),5 € (0, K’)) :

Vi(u) = F(sinh® 1) +

h2 1 k2 1 k:z _ 1 k2 —_— =
= F(sinh®7) + ( ! 4 42 4 4 3 4~>
( ) 2M R? <sinh2 7 \sn?adn’3 cn2acn?3  dnasn?g

2 1
ko 4) ) (4.28)

cosh? 7

This potential is the analogue of the minimally superintegrable potential Vi (x) in
IR3 [33]. We have the following two path integral representations

KWW ';T)
Sphero-Elliptic, Ay = 2(m +1) £ k3 + A1 + 2 (I, h as in subsection 3.1.2):
e—ifT/2MR?
R3
r(t")=r" a(t)=a" B(")=p"

/ Dr(t) sinh? 7 . / Daft / DB(t)(k* cn?a + k'° en?3)
()=

. tl/
1
X exXp {ﬁ /
t/

(t")y=a' =g
M ) . L2
ERQ (%2 + sinh? 7(k? en®a + ' anﬁ)(d2 + 3 ))
2 k,? 1
—F(1) - h i (_ 0 4

2M R? cosh? 7

1 [ k-1 k-1 k-1
+—s ( T T T 4~> dt (4.29)
sinh® 7 \ sn2adn’8 cn?@cn?f  dn”asn?p
= (R?sinh® 7' sinh® 7" sn@’ cnd@’ dnd’ snf’ enf’ dnf’
—1/2

x snd” cn@”’ dn&” snB3” enf” dn3”)

x Z~zik1’ik2’ik3)(&",5')5[(ik“ik2’ik3) @B (T L (4.30)

m im

Spherlcal, M=2mFk Fhky+1L,m=20Fk3s+ X +1:
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t” — H t
e—inT/2M R? m(#)=r

,'9/’ tll
7 Dr(t)sinh?® 7 / DI(t) sin 9 / D(t)
T(t)=71'

. t//
i
X exp {ﬁ [,
h? 1 1 k§—§+k§—i 1 +k§—§ 1
2MR? \ sinh? 7 \ sin? 9 \ cos? ¢ in’

3R%++mm%w%mmwwD—Fm

sinfgp 4 cos?2d 4
k2
dt 431
" cosh? 7 >] } ( )
e—inT/2M R?
7 (sinh? 7/ sinh? 7" sin ¢’ sin ¥") ~1/2

X
1

¢$7:1tk2‘ik1) ((pn)(ﬁgrzltkg,ikl) (@/)

g

¢l()\1 ,iks) (ﬂ/l)d)l(kl ,ika) (ﬁ,)K[(7:7)(

"ot T) , 4.32)
=0
with the remaining path integral Kl(7:7)(T)
t,ll)
K[(::) (7_//7 T'; T) = / DT
t’)*T’
i " B2 A2 _1 k21

xexpq = | | =R*?—F(r) — (2 4—0‘4>ﬂ.4ﬁ

’ { h /t’ 2 ™) 2MR? \sinh? r  cosh?r (4.33)

The wave-functions ¢ ik2’ﬂ:kl)( ) and qb('\l’ik3)(19) are the same as in (3.21)

and (3.34), respectlvely This path integral cannot be further specified until
F(r) = F(sinh® 7) is known. The special case F = 0 is trivial.

4.1.4. Analogue of the Holt Potential

The potential Vg can be considered as an analogue of the minimally superin-
tegrable Holt potential Vi (x) in IR® [33,44] (o, \,w > 0)

2 k2__l
Va(w) = - 23

a
2M 2

+Mw2R2+4uf+u§_ Mg
(up — u3)? 2 (ug — uz)? (ug —u3z)?

(4.34)
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In the two separating coordinate systems it has the form

Horicyclic (z2,y > 0,21 € R) :

y? M Rtok2-1
Va(u) = )77 [a+—w2(4m1+x2+y ) = Az +y22MR2 P ——%(4.35)
Semi-Circular-Parabolic ({,n, o> 0) :
& al@+07) - 3 =) + HA(E +0Y)
R2 52 + 72

The effect of the x3- and p-path integration in both cases (x2,0 > 0) is that
in separating off the corresponding variable, the quantity o is shifted by the
additional quantum numbers. The resulting path integrals in the variables (y, z;)
and (£,7) separate, however, only the former can be evaluated. Indeed, almost
the same path integral problem we have already solved in [35]. The solution in
horicyclic coordinates then has the following structure (z = x; — A/4Mw?)

~(Vs)
K" W u',T) = = e Dx(t)
y(t')=y' o(t')=z' ‘
P IM e R M
- ___R2 _ 4 2 4 2 2 2 _/\
xexp{h/t’ {2 7 R2<a+.2w(zl+x2+y) T
UL kA P 4.37)
" 2MR? x3 @.
QMW\/-——— Z ! Mu} f ,, tka
—=z
Ttk + Tl +tks+1) 272

MUJ n2 +k Mw 72 Mw n2
Xexp(— o (a4 + T2 ))Lz( 2)(—h—x2 )L(ik2)< i T )
1/2
2Mw 1 2Mw 2Mw ,
* Z ( ) 2mm!H"‘<V h Z>H’”<VTZ>

Muw

X €xXp [—— T(z'2 + z”z)}
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Dy(t) iM U LRy 2 2
) y P ﬁ/ T — g (Bawr +20?) |

(4.38)

with the quantity E, .\ given by

/\2

Ea’w’k:a+hW(2m+2lﬂ:k2+2)*m .

(4.39)
A path integral like this was calculated in [26], and we must distinguish two
cases, first where F,, » > 0, and second E, , » < 0. In the first case only a
continuous spectrum occurs, whereas in the second one bound states can exist
with the number of levels given by n = 0,1,...,N, = [Equ /2w — 1/2].
According to [35] we obtain therefore the following path integral solution for

Vs (u) in horicyclic coordinates (v = —1\/2MR2E/h2 —1/4)

K9 (s T) RZ%(% bnle Zwmm Unat) [ GoeTETI

y Mi+v+ Ea,wﬁk/hw)]
VYy" hwl(1 + v)

Mw Mw
XWAEQ_N‘,,\/ZHLU,V/Q( & y>)\/l E,,W_A/znw,u/2( = y<> (4.40)

-y [Z o (05,45 RYRLE) (a4, 0, s R) e T8

l,m=0 Ln=0

—+—/ dp\I/;an)(:vl,xg,y” R)\I’p‘,/frg*(a:'l,x;,y’;R) e_iEvT/hjl ) (4.41)
0

The bound state wave-functions have the form
W) (21, 22,43 R) = ¥n(y; R)¥m (21)01(22), (4.42)

where

2nM|Eq o a|/fw —2n— 1)y [ Mw |Ba.wal/2ho—n=1/2
Un(y; R) = \/ [Panl/ ) ( yz)

R3T'(|Ea,wa|/hw —n) fi

Muw ooty [ M
xexp< Sy )L”E‘ ol /hw=2 1’(%";}) , (4.43)



1280 GROSCHE C., POGOSYAN G.S., SISSAKIAN A.N.

2Mw 1/4 2Mw A
Ym(71) = (7r7’z22’”(m!)2> H’”( h <“’1 N 875))
2
X exp (— % (xl — éi\ﬁ) ) , (4.44)

bi(a) = (| 2L I Mo , ha/2
) A T Ttk )2\ R

Mw +k Muw '
X exp ( - —ih—:C%) Ll( 2) (——h—x%> , (4.45)
with the discrete energy-spectrum given by
h? 7 (|Eawnl :
E, = — == —2n—-1} . 4.46
8MR?  2MR? ( hw " ) (4.46)
The continuous wave-functions and the energy-spectrum have the form
U8 (21, 22,43 R) = ©p(y; R)Ym (1)1 (22) (4.47)
[ h psinh7p _[1 . Egwa
: = — = " T|={1 it bk bl
Vrlyi ) Mw 272 R3y [2( tipt hw >j'
Mw
XW_E, . \/2kw,ip/2 (Ty2> ; (4.48)
h? , 1
= - 4.49

and the ¥, (x1), ¥i(z2) as in (4.44,4.45).

4.2. Minimally Superintegrable Potentials from the Group Chains
SO(3,1) D E(2), SO(3,1) D SO(3) and SO(3,1) D SO{2,1)

Whereas in the previous section we have presented the minimally superin-
tegrable potentials which are the analogues of the IR® case, there are several
potentials which emerge from the group structure of the three-dimensional hyper-
boloid. They are:

1. There are four potentials which emerge from SO(3,1) > E(2), i.e., the
four maximally superintegrable potentials in IR? are contained as minimally
superintegrable on A(®). The four potentials in IR? are the oscillator, the
Holt potential, the Coulomb potential, and a modified Coulomb potential.

2. There are two potentials which emerge form the group chain SO(3,1) D
S0O(3), i.e., the Higgs oscillator and the Coulomb potential on the two-
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dimensional sphere. However, the case of the Higgs oscillator is already
contained in the potential V7, i.e., a generalized radial potential.

3. There are five potentials which emerge form the group chain SO(3,1) D
S0O(2,1), and all superintegrable potentials on A® are minimally super-
integrable on A(®), among them the Higgs oscillator and the Coulomb
potential.

In ‘all cases the (path integral) solution is very easy. First, one can separate
off the underlying two-dimensional superintegrable potential term. In the first
case, the remaining path integral is a path integral in the horicyclic variable y
in the Poincaré upper half-plane #, say, in the second and third cases one is
left, for instance, with a modified Poschl-Teller or Rosen-Morse potential path
integral. The specific form depends, of course, on the remaining “hyperbolic
radial” potential, which can be chosen arbitrarily. It must be noted that in the
cases of the Coulomb potential on S and A the problem of self adjoint
continuation arises due to the negative bound states, a problem which will be
discussed in detail elsewhere.

The following Tables summarize our finding of the minimally superintegrable
potentials on A which are due to the group structure of SO(3,1). We omit
any details concerning the solution, and the interested reader is invited to consult
Refs. 33,34 and 35, respectively, to check for the solution of the corresponding
two-dimensional systems, in order to obtain the solution on AB),

5. SUMMARY AND DISCUSSION

The purpose of this paper has been to present a comprehensive discussion
of superintegrable potentials on the three-dimensional hyperboloid A 1t has
included an enumeration of the coordinate systems on A®) as known from the
literature, a systematic search for maximally and minimally superintegrable po-
tentials by appropriate generalizations from the Euclidean space, the statement
of the constants of motions, respectively operators, and in the soluble cases the
evaluation of the corresponding path integral representation in order to find the
quantum mechanical propagators, the Green functions, the discrete and continuous
wave-functions, and the energy spectra, respectively.

In the enumeration of the 34 coordinate systems in section 2 we have followed
[52,75], however, supplemented by the corresponding Hamiltonian and the form
of a corresponding separable potential, several rotated coordinate systems, i.e.,
the sphero-elliptic rotated, the equidistant-elliptic rotated, and the prolate-elliptic
rotated. These rotated systems correspond in their respective flat space limit
to sphero-conical I, cylindrical elliptic II, and prolate-spheroidal II coordinate
systems, which in turn contain as additional degenerate systems the respective



PATH INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1285

parabolic systems. However, for the complicated two-parametric systems XXIX—
XXXIV hardly any statement and usage could have been made.

In Section 3 we have presented our results concerning the maximally super-
integrable potentials on A(®). These have been the (generalized) Higgs oscillator
Vi(u), the (generalized) Coulomb potential Vz(u), and a specific scattering po-
tential V3(u). The potential V4(u), which is only minimally superintegrable on
A®)| has been included in this section due to the fact that its flat space analogue
in IR® is maximally superintegrable.

The Higgs oscillator and the Coulomb potential have been discussed in some
detail, first for the pure oscillator and the Coulomb case, second with the in-
corporation of additional centrifugal terms which do not spoil the property of
maximally superintegrability, similarly as the corresponding cases in IR® and on
SG). The energy spectrum and degeneracy of levels was also discussed.

In section 4 we have discussed the minimally superintegrable potentials on
A®). We have found the four analogues of the flat space case, in particular
the ring-shaped oscillator, the Hartmann potential, a radial potential, and a Holt
potential. The remaining minimally superintegrable potentials have emerged from
the subgroup structure of SO(3,1), i.e., we have had to take into account the
group chains SO(3,1) D E(2), SO(3,1) D SO(3), SO(3,1) D SO(2,1), which
have given rise to four, one and five new minimally superintegrable potentials,
respectively. In total, we have found 15 minimally superintegrable potentials
on A®). Whereas we have treated the ring-shaped oscillator and the Hartmann
potential in some detail, the discussion for the other potentials has been mostly
rather sketchy because the underlying superintegrable two-dimensional systems
have been already solved in previous publications.

We have therefore continued the study of superintegrable systems in spaces
of constant curvature. Furthermore, we would like to draw ones attention to the
following observations:

1. Let us consider the potential Vig in semi-hyperbolic coordinates

M, (gl
Vig(u) = 7002( 1;353 +u? +u§> + 2ksugus
1 1
PO b U et |
oM u? u?
R? M
= w1 + u3) + ks(ui — p3)
1t pe | 2
1 1
LN (k%_z+k%*z) (5.1)
2MR2? pypg \ cos?¢  sin®¢ )’

and this. potential is separable in this system. It has two flat-space limits in
its full range of parameters, i.e., circular polar and parabolic coordinates.
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Whereas it was possible to just simply state the potential V4 (u), no explicit
solution could have been found. This Stark-effect like potential could be
of some interest, in particular in comparison with the potential V1g(u). The
potential in this limit corresponds to the second maximally superintegrable
potential V5 (x) of [33], c.f. Table D.2, and the limiting case it separates in
these two coordinate systems, and in addition in the cartesian and circular
elliptic system.

2. Let us consider the potential V,g in semi-hyperbolic coordinates

Vao(u) = ‘Kuﬂ(

dudu? iF(uz/ul)
R? 2M u?+ud
R M . h*  F(tany)

20,3, 3
= —— —w(u] + py) + s,
1+ 2 2 s i)+ S3rre 111 12

5 +u§+u§> +

(5.2)

and this potential is separable in this system. The potential in the flat space
limit corresponds to the sixth minimally superintegrable potential Vg(x)
of [33], c.f. Table D.3, and the limiting case it separates in circular polar
and parabolic coordinates.

3. The previous observations allow the following statement: We have found all
five analogues of the maximally superintegrable potentials in IR®, where we
have the following identification (where the enumeration of the potentials
in IR®, is according to [33]; and the enumeration of the potentials on 56)
according to [34]):

Table 5.1." Correspondence of maximally
superintegrable potentials in three dimensions

Vi (u) | #Systems | Vga(x) [#Systems | Vg3 (s) |#Systems

Vl (u) 14(8) Vl (x) 8 V1 (S) 6(8)
Va(u) 5(4) Vi(x) 4 Va(s) 3(4)
Va(u) 354) Va(x) 4 Vi(s) 2(2) [3(4)]
Va(u) 4(4) Vs(x) |4 - 1(1)
Vie(uw) |1(2) Va(x) |4 - 1(1)

In parenthesis we have indicated the number of limiting coordinate sys-
tems, as B — oo. Note that for V3(s) we have two separating coordinate
systems. In V3(s) we have also indicated the additional coordinate sys-
tem which emerges, and causes an additional observable,4f k3 —1/4 =0, -
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c.f. Table D.5. From the rotated sphero-elliptic system on S two coordi-
nate systems on IR® can be obtained by means of contraction, as R — oo,
the cylindrical elliptic 11 and the cylindrical parabolic. Note also that V4 (u)
~ is only minimally superintegrable, but not maximally superintegrable. Fur-
thermore, in [34] several potential systems were overlooked. However, the
additional systems turn out to be only integrable but not superintegrable.

4. The linear potential on the hyperboloid seems to have a structure according
to wougz, which turns out to be separable in an appropriately chosen par-
abolic coordinate system. However, on spaces of constant (non-vanishing)
curvature, there seems to be no analogue of a cartesian coordinate system,
which separates these kinds of potentials as well.

5. The coordinate systems XXX-XXXIII separate a radial potential according
to V(uz,uz) < a/u3 + B/u2, and XXXIV — according to V(uz) < B/u?,
which are, however, trivial and not very interesting.

6. Let us finally note another application of the prolate elliptic coordinate
system. It has the property that it separates the two-center Coulomb problem
on the hyperboloid, similarly as the prolate elliptic system on the sphere
separates the two-center Coulomb problem on S} [6,76]. Let us consider
two point charges located at u; 5, = (1,0,0, £k')/k on the hyperboloid.
Then it is not difficult to show by means of the prolate elliptic coordinate
system that one has in algebraic form (7, = Z; + Z5)

up - u U - U
Viuy,ug,u) = -2 - Z:
(g, ez, ) ' (ug -u)? -1 ? (ug -u)?2 —1
_ _Z+\/(01 —ay)(01 — a3) = Z_\/(02 — a2)(02 — a3) (5.3)
01 — 02

A detailed investigation of this problem will be presented elsewhere [36].

We cannot say for sure whether we really have found all possible superin-
tegrable potentials on the hyperboloid. For a systematic search one must solve
differential equations which emerge from the general form of a potential sep-
arable in a particular coordinate system, and the following changing variables.
Because there are 34 coordinate systems on the hyperboloid which separate the
Schrodinger equation, there are 33! ~ 8.7 - 10%® of such differential equations.
This is not tractable, and one has to look for alternative procedures, in particular
physical arguments. In this respect, we have found the relevant potentials which
matter from a physical point of view, and which are the analogues of the flat
space limit IR, including the corresponding coordinate systems.
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Table 5.2. Correspondence of minimally superintegrable potentials

in three dimensions

Vo (1) [#Systems l VRa(x) T#Systems 1v5(3)(s) ]#Systems
Analogues of flat space
Vs(u)  |5(3) Vs(x) 4 Va(s) |4(4)
Velu)  |3(4) Va(x) 3 Vs(s) |20
Ve(u) |22 Vi(x) 2 Va(s) |2(2)
Va(u) A1 Va(x) 2 - K1)
Vao(u) 1(2) Ve(x) 2 - 1(2)
Potentials emerging from SO(3,1) D E(2)
Vo(u) 3(3) Va(x) 3 - -
, R (ki —-§ k-1
Vg 73 Wi ( pr e " ) + F(z) |3 - -
Vie(u) |2(2) Va(x) 2 - -
V11(11) 3(3) VA(X) 3 - -
Vlz(u) 2(2) Vs(x) 2 - —-
Potentials emerging from SO(3,1) D SO(3)
Vi(w) | 22) Vi(x) 2 Vs(s) |2(2)
Via(u)  |2(2) Vo (x} 2 Va(s) 2(2)
Potentials emerging from SO(3,1) D SO(2,1)
Vig(u)  |403) Va(x) 3 - -
Vls(u) 4(3) Vq(x) 3 - -
Vie(u) 1 2(1) Va(x) 2 - -
A k3 -1

V17(u) 5(2) m——;—i‘i + F(Z) 2 - -
Vis(u) 2(1) az + F(z) 2 - -

Summarizing, we have achieved an enumeration and classification of superin-
tegrable systems in spaces of constant (positive, zero, or negative) curvature. Fur-
ther studies along these lines could include the investigation of the corresponding
interbasis expansions, the contraction of the wave-functions in the curved spaces
with respect to their Euclidean flat space limit, their pseudo-Euclidean flat space
limit, and the solution of various superintegrable potentials in the generic, respec-
tively parametric coordinate systems [37]. Among the latter, the most important
cases are the Coulomb problems, for instance the Coulomb problem in A®) or
A® in semi-hyperbolic coordinates, and the investigation of the Stark-effect in
spaces of constant curvature which includes the solution of the corresponding

Schrodinger equations. We hope to return to these issues in future.
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A. PATH INTEGRAL IDENTITY FOR THE POSCHL-TELLER
POTENTIAL

As we shall see, we encounter particularly in the case of the Higgs oscillator,
the Pdschl-Teller and the modified Pdschl-Teller potential in our path integral
problems. The path integral solution of the Poschl-Teller potential reads as
follows (Bohm and Junker [7], Duru [14], [31,39,40], Fischer et al. [18], Inomata
et al. [48], Kleinert and Mustapic [60], 0 < z < 7/2)

”),_

M (et g
/ Da(t exp{h/ [7x _W<Sin2l’+COS2I di

= Z e—)EnT/h¢na,5)(I )¢na,ﬂ)(x1/) (A1)
n€lNg
:/ dE e ETIRG B (o o E) (A.2)
2mi

The bound state wave-functions and the energy spectrum are given by

1/2
(@B) (1 nlla+B8+n+1)
o () [2(““5”’” VG tn I ot D
x (sin z)* /2 (cos 2)P T2 P{P) (cos 22) ,  (A3)
B2
E,=—2n+a+ 8+ 1) ) (A.4)

2M

The P{*?) are Jacobi polynomials. The Poschl-Teller wave-functions ¢(*#) (z)
are normalized to unity with respect to the scalar product foﬂ/ ? |¢£La’ﬁ )(a:)]2dx =
1. The Green function Ggf%ﬁ )(E) has the form

P M - r — Lg)T'(L 1
G ("o, E) = 22 e em o o= L) (Le mit )
2h2 L(my +mg + 1)['(my —ma + 1)
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. <1 —cos2z’ 1 - cos 2x//>(m1—m2)/2

2 ' 9
« 1+cos2z 1+ cos2g™ mitma)/2
2 2
1—cos2z
><2F1(—LE+m1,LE+m1+1;m1—-m2+1;___2_____<_>

1+ cos2z
x2Fl<—LE+m11LE+m1 +1;m +m2+1;———2——3>, (A.5)

where my 2 = 1(B+ a),Lg = -} + $V2ME/h, 2Fi(a,b; ¢; z) is the hyperge-
ometric function, and z-, z< denotes the larger, respectively smaller of z', z".

B. PATH INTEGRAL IDENTITY FOR THE MODIFIED
POSCHL-TELLER POTENTIAL

r(t")=r"

The case of the modified Pdschl-Teller potential is given in [7,19,31,39,40,
r(t’):r"

48, 60]
i UM Rt (k-1 a2-1
Dr(t)exp { — —? - — 4 4>]dt
(B) exp {h /y [ 2 2M <sinh2r cosh?r
Ninaz

= Y e ETAGEN ()u r7)
n=0

_+_/ dpe—iEpT/ﬁwl()N,)\)*(Tl)w’(,n,)\)(rll) (B6)

0

:/ fiﬂe—iET/"Gﬁ,fﬁ}(r”,r';E) o (B.7)
R 2mi

The bound states have the form

PN (r) = N (sinhr)*+H1/2 (cosh )2 +1/2,

X Fy(=n,A —n;1+ &;tanh®r) | (B.8)
e — L [2A—k—2n—DI(n+1+ KA = n) 1/2
" I'(1+ k) A=k —n)n!
E ———h2—(2n+/~:—/\+1)2 (B.9)
"M ’ .
Here denote n = 0,1, ..., Npge = [%(/\ — k—1)] > 0, and only a finite number '

of bound states can exist depending on the strength of the attractive potential
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through and the repulsive centrifugal term as well. Here [z] denotes the integer
part of the real number z. The continuous states are

wl(,"’x)(r) = ng""\)(cosh )P (tanh r)*+1/2, Fy
X<A+K+1——ip K—A+1-1ip

-1+ k; tanh? r>

2 ’ 2
(B.10)
1 psinh7p A+k+1—ip k—A+1-—ip
N(Kv)‘) — F F
P T(1+r)V  2n2 2 2
The Green function Gg:;%(E) has the form
(%,A) M T(m; —L)I(Lx+m; +1)

G "ol By =
mpr (T, 175 E) 2R? T(my +my + )0 (my —my + 1)

x (cosh 7’ cosh r”’)~(m1=m2) (tanh ¢/ tanh ¢/ )™ tma+1/2

1
x o Fy ( —Ly+my,Ly+m+1;m —my +1; —7—)
cosh® ro

X2 F) < —Ly+my, Ly+my+1;my+my+ 1;t311112r>>,(8.11)

where we have set myy = §(k £ V=2ME/h), Ly = (A —1). We make
extensively use of the solutions of the Poschl-Teller and the modified Péschl-
Teller potential, respectively.
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