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We investigate how different magnetization distributions interact with an external electromagnetic
ˇeld. Strong selectivity to the time dependence of the external electromagnetic ˇeld arising for
particular magnetizations suggests that it can be used for the practical applications.

We review the properties of the known charge-current radiationless conˇgurations. The radi-
ation ˇeld of toroidal-like time-dependent current conˇgurations is investigated. The inˇnitesimal
time-dependent conˇgurations are found outside which the electromagnetic strengths disappear but
the potentials survive. For a number of time dependences, their ˇnite radiationless counterparts
can be found. In these cases topologically nontrivial (unremovable by a gauge transformation)
electromagnetic potentials exist outside sources. The well-deˇned rule obtained for constructing of
time-dependent inˇnitesimal sources suggests the existence of ˇnite nontrivial radiationless sources
with a rather arbitrary time dependence. The latter can be used to carry out time-dependent AharonovÄ
Bohm-like experiments.

Examples are given of nonstatic current conˇgurations generating the static electric ˇeld and
adequately described by the electric vector potential rather than by the scalar one.

�µ± § ´µ, ± ± · §²¨Î´Ò¥ ´ ³ £´¨Î¥´´µ¸É¨ ¢§ ¨³µ¤¥°¸É¢ÊÕÉ ¸ ¢´¥Ï´¨³ Ô²¥±É·µ³ £´¨É´Ò³
¶µ²¥³. „²Ö ´¥±µÉµ·ÒÌ ´ ³ £´¨Î¥´´µ¸É¥° Ì · ±É¥·´  ¸¨²Ó´ Ö ¨§¡¨· É¥²Ó´µ¸ÉÓ ± ¢·¥³¥´´µ° § -
¢¨¸¨³µ¸É¨ ¶µ²Ö. �Éµ ³µ¦¥É ¡ÒÉÓ ¨¸¶µ²Ó§µ¢ ´µ ¤²Ö ¶· ±É¨Î¥¸±¨Ì ¶·¨²µ¦¥´¨°.

�¡¸Ê¦¤ ÕÉ¸Ö ¸¢µ°¸É¢  ¨§¢¥¸É´ÒÌ ´¥¨§²ÊÎ ÕÐ¨Ì · ¸¶·¥¤¥²¥´¨° § ·Ö¤µ¢ ¨ Éµ±µ¢. „ ´ ·¥Í¥¶É
¶µ¸É·µ¥´¨Ö ¡¥¸±µ´¥Î´µ ³ ²ÒÌ · ¸¶·¥¤¥²¥´¨°, ¢´¥ ±µÉµ·ÒÌ ´ ¶·Ö¦¥´´µ¸É¨ Ô²¥±É·µ³ £´¨É´µ£µ
¶µ²Ö, ´µ ´¥ ¶µÉ¥´Í¨ ²Ò, · ¢´Ò ´Ê²Õ. „²Ö ·Ö¤  ¢·¥³¥´´ÒÌ § ¢¨¸¨³µ¸É¥° ´ °¤¥´Ò · ¸¶·¥¤¥²¥´¨Ö
§ ·Ö¤µ¢ ¨ Éµ±µ¢ ±µ´¥Î´ÒÌ · §³¥·µ¢. ‚ ÔÉ¨Ì ¸²ÊÎ ÖÌ ¢´¥ ¨¸ÉµÎ´¨±µ¢ ¸ÊÐ¥¸É¢ÊÕÉ Éµ¶µ²µ£¨Î¥¸±¨-
´¥É·¨¢¨ ²Ó´Ò¥ (Éµ ¥¸ÉÓ ´¥Ê¸É· ´¨³Ò¥ ± ²¨¡·µ¢µÎ´Ò³¨ ¶·¥µ¡· §µ¢ ´¨Ö³¨), § ¢¨¸ÖÐ¨¥ µÉ ¢·¥-
³¥´¨ Ô²¥±É·µ³ £´¨É´Ò¥ ¶µÉ¥´Í¨ ²Ò. �Éµ ³µ¦¥É ¡ÒÉÓ ¨¸¶µ²Ó§µ¢ ´µ ¤²Ö ¶µ¸É ´µ¢±¨ § ¢¨¸ÖÐ¥£µ
µÉ ¢·¥³¥´¨ ÔËË¥±É  � ·µ´µ¢ Äoµ³ .

�·¨¢¥¤¥´Ò ¶·¨³¥·Ò ´¥¸É Í¨µ´ ·´ÒÌ Î¨¸Éµ Éµ±µ¢ÒÌ · ¸¶·¥¤¥²¥´¨°, £¥´¥·¨·ÊÕÐ¨Ì ¸É É¨-
Î¥¸±µ¥ Ô²¥±É·¨Î¥¸±µ¥ ¶µ²¥ ¨  ¤¥±¢ É´µ µ¶¨¸Ò¢ ¥³ÒÌ Ô²¥±É·¨Î¥¸±¨³ ¢¥±Éµ·´Ò³ (´¥ ¸± ²Ö·´Ò³)
¶µÉ¥´Í¨ ²µ³.

1. INTRODUCTION

Probably, it should be at ˇrst explained what words ªremarkable charge-
current conˇgurationsª in the title of this paper mean. Under them we understand
charge-current distributions with unusual paradoxical properties. For example, it
is well known that a point charge radiates the electromagnetic energy when it
moves with acceleration. However, there are known speciˇc ˇnite-extension con-
ˇgurations of charges which do not radiate when they exhibit acceleration [1Å9].



892 AFANASIEV G.N., DUBOVIK V.M.

Further, everybody knows that time-dependent currents emit electromagnetic
energy into the surrounding space. However, there are known time-dependent
current conˇgurations which do not radiate the electromagnetic energy [6,9-12].
Up to now only those nonradiating time-dependent conˇgurations of charges and
currents were known for which the electromagnetic ˇeld (EMF) strengths �E, �H
as well as electromagnetic potentials �A,Φ have disappeared outside the ˇnite
space region S. It turns out that ˇnite time-dependent conˇgurations of charges
and currents exist outside which electromagnetic strengths �E, �H vanish, but the
nontrivial electromagnetic potentials �A,Φ differ from zero [13]. Under the term
ªnontrivialª we mean that the treated physical situation is described adequately
by electromagnetic potentials rather than electromagnetic strengths.

Further, it is known that electric and magnetic dipoles interact with electric
and magnetic ˇeld, respectively. However, there are known ˇnite conˇgurations
of magnetic (electric) dipoles whose interaction with an external EMF is propor-
tional to the time derivative (of the deˇnite order) of the electric (magnetic) ˇeld
[14-19].

It is the goal of present consideration to study the properties of these remark-
able charge-current conˇgurations.

The plan of our exposition is as follows.
In Sec. 2 we study how different conˇgurations of electric and magnetic

dipoles interact with external EMF. It turns out that the selectivity of the interac-
tion to the time dependence of an external EMF can be used for the storage and
ciphering of information.

In the same section the classiˇcation of current sources according to their
interaction with external ˇeld is given.

Consider the metallic ring embracing the cylindrical solenoid. When the
metallic ring becomes superconductive, the supercurrent arises on its surface.
This in turn leads to the appearance of magnetic ˇeld in the surrounding space.
These quantities are evaluated in Sec. 3.

The review of known radiationless time-dependent sources is given in Sec. 4.
The exposition is illustrated by the concrete examples of accelerated nonradiating
charge distributions.

In Sec. 5 we construct the toroidal charge-current conˇguration having the
property that the time-dependent magnetic ˇeld differs from zero only inside
the impenetrable torus while the time-dependent magnetic vector potential (VP)
and time-independent electric scalar potential differ from zero everywhere. In
the accessible region (i.e., outside the impenetrable torus) the static electric ˇeld
differs from zero inside the torus hole. Although charged particles may scatter
on this electric ˇeld, the latter contributes only to the static background. It
is just the time variation of the magnetic {ux conˇned to the excluded region
that leads to the time dependence of the interference picture. This may be
viewed as a new channel for the information transfer and can be used for the



SOME REMARKABLE CHARGE-CURRENT CONFIGURATIONS 893

performance of the time-dependent AharonovÄBohm effect. The classiˇcation
of more general radiationless sources is given in the same section. Examples
are given of current conˇgurations generating the static electric ˇeld adequately
described by the electric vector potential rather than by the scalar one.

2. INTERACTION OF MAGNETIZATIONS WITH EXTERNAL
ELECTROMAGNETIC FIELD

The plan of our exposition is as follows. In Sec. 2.1, we study how the choice
of magnetization inside the sample affects its interaction with external EMF.
The generalization of Ampere hypothesis is discussed in the same section. The
physical meaning of the scalar functions entering into the Debye parametrization
of the current density is clariˇed in Sec. 2.2. It turns out that the selectivity of
the interaction to the time dependence of an external EMF arises for a speciˇc
choice of these functions. Probably,this can be used for the storage and ciphering
of information. In the same section, we give the classiˇcation of the point-like
and extended current sources according to their interaction with an external EMF.

2.1. Magnetization, Toroidization and Generalization of Ampere Hypoth-
esis. Consider the circular current in the Z = 0 plane (the upper part of Fig.1):

Fig. 1. Two magnetizations �M and
�M ′ corresponding to the same cur-
rent density �j

�j = �nφIδ(ρ− d)δ(z) =

=
1

d
�nφIδ(ρ− d)δ(θ − π

2
). (2.1)

As div �j = 0, the equivalent magnetization can
be used instead of �j (see, e.g.,[20]):

�j = rot �M (2.2)

�M = I�nzδ(z)Θ(d− ρ) =

= −I�nθ
1

d
Θ(d− r)δ(θ − π

2
), div �M �= 0

(2.3)
(Θ(x) is the step function).This relation is a
mathematical expression of the Ampere hypoth-
esis according to which the closed circular cur-
rent is equivalent to the magnetized sheet. The
magnetic ˇeld can be evaluated from either (2.1)
or (2.3). For example, the magnetic vector potential is given by

�A =
I

c

∫
1

|�r − �r′|�n
′
φδ(ρ

′ − d)δ(z′)dV ′ = −1
c

∫
�r − �r′

|�r − �r′|3 ×
�M(�r′)dV ′. (2.4)
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Fig. 2. The poloidal cur-
rent �j {owing on the torus
surface is equivalent to the
magnetization �M which in
turn is equivalent to the
toroidization �T

For an inˇnitely small d, the current �j in Eq. (2.1) is
not well deˇned (the vector �nφ loses its sense at the

origin). On the other hand, the magnetization �M in
Eq. (2.3) is still well deˇned. In the limit d → 0,
Eqs. (2.1)Å(2.3) mean that the circular current of an
inˇnitely small radius is equivalent to the magnetic
dipole.

A more complicated case is the poloidal current
{owing on the torus surface (ρ − d)2 + z2 = R2 (see
Fig.2). As far as we know, the term ªpoloidalª orig-
inates to the Elsasser paper [21]. To parametrize �j,
it is convenient to introduce the coordinates R̃,Ψ (see
Fig.3)

x = (d+ R̃ cosΨ) cosφ, y = (d+ R̃ cosΨ) sinφ,

z = R̃ sinΨ.

In these coordinates,

�j = �nψ
δ(R − R̃)

d+ R̃ cosΨ

j0

R2d
. (2.5)

Here �nψ is the unit vector tangent to the torus surface

�nψ = �nz cosΨ− �nρ sinΨ.

It lies in the φ = const. plane and deˇnes the direction of j. The factor R2d in
the denominator of �j is introduced for convenience and may be absorbed into j0 .
The constant j0 may be expressed in terms of either magnetic {ux Φ penetrating
solenoid or the number of coils N and a current I in each of them:

j0 =
R2dcΦ

8π2(d−
√
d2 −R2)

=
NIR2d

2π
.

As div �j = 0, the current �j may be expressed through the magnetization: �j =
= rot �M . It turns out that �M is enclosed inside the torus T and has only the φ
component:

�M = −�nφ
Θ(R− R̃)

d+ R̃ cosΨ

j0

R2d
. (2.6)

As div �M = 0, it can be represented as �M = rot �T , div �T �= 0, where �T is
given by

�T = �nzj0T/Rd. (2.7)
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Fig. 3. Geometrical depiction of R̃, Ψ coor-
dinates used in the text

Here

T = ln
d−
√
R2 − z2

d+
√
R2 − z2

(2.8)

inside the torus hole (0 ≤ ρ ≤ d −√
R2 − z2, −R ≤ z ≤ R),

T = ln
ρ

d+
√
R2 − z2

(2.9)

inside the torus itself (d−
√
R2 − z2 ≤

ρ ≤ d+
√
R2 − z2, −R ≤ z ≤ R) and T = 0 in other space regions. Similarly

to the magnetization �M , the distribution �T may be called the toroidization (as far
as we know, this term has been introduced by M.A. Miller [22]). It follows from
Eqs. (2.5)Å(2.9) that

�j = (rot )2 �T , div �T �= 0 (2.10)

while the vector potential is given by

�A =
4π

c
�T (�r) +

1

c
∇
∫

1

|�r − �r′|div
�T (�r′)dV ′. (2.11)

The magnetic ˇeld strength differs from zero only inside the torus:

Hφ = −
4π

c

j0

dR2
1

ρ
.

Physically, Eqs. (2.5)Å(2.11) mean that the poloidal current �j given by Eq. (2.5)
is equivalent (i.e., produces the same magnetic ˇeld) to the toroidal tube with the
magnetization �M deˇned by (2.6) and to the toroidization �T given by (2.7). This
is illustrated in Fig. 2.

We consider now the case when the torus dimensions d,R tend to zero.
Since R is always less than d, we let R tend to zero ˇrst and d later. In the limit
R→ 0 the current �j (see Fig. 2) becomes ill-deˇned. On the other hand, �M and
�T remain well-deˇned:

�M → −�nφ
π

d2
j0δ(ρ− d)δ(z) (div �M = 0),

�T → −�nz
π

d2
j0Θ(d− ρ)δ(z) (div �T �= 0) for R→ 0. (2.12)

After performing the R → 0 limit we let d go to zero. Now it is the turn of the
magnetization �M to be ill-deˇned, but the vector �T is still well-deˇned:

�T → −�nzj0π2δ3(�r) (div �T �= 0) for d→ 0 (2.13)
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(δ3(�r) = δ(ρ)δ(z)/2πρ). The VP corresponding to this toroidization is given by
[15,23]:

Ax = −
3π2j0

c

xz

r5
, Ay = −

3π2j0
c

yz

r5
, Az =

π2j0

c

r2 − 3z2
r5

− 8π3

3c
j0δ
3(�r).

(2.14)

Fig. 4. The family of toroidal solenoids
each turn of which is again toroidal
solenoid (only the particular turns are
shown)

We consider now the sequence of
toroidal solenoids each turn of which
is again a toroidal solenoid. The sim-
plest conˇguration is obtained if we take
the usual toroidal solenoid (upper part of
Fig. 2) and install new toroidal solenoid
into each of its turns. As a result, we
arrive at the current conˇguration shown
in Fig. 4. For this case

�j ∼ (rot )3 �T (�r), div �T �= 0,

�A ∼ 4π

c
rot �T (�r). (2.15)

We see that for this current both the vec-
tor potential and the magnetic ˇeld differ from zero only in those space regions,
where �T �= 0. When the space region in which �T �= 0 shrinks to a point, the
vector potential and magnetic ˇeld differ from zero only at that point [18,19].

2.1.1. Currents, Magnetic Dipoles and Monopoles. We rewrite Eq. (2.14) in
a condensed form:

�A =
1

r3
[
3

r2
�r(�m�r)− �m] +

8π

3
�mδ3(�r), mi = −δiz

π2j0

c
. (2.16)

This equation is an analog of the well-known expression [24] for the magnetic
ˇeld created by the magnetic dipole �m:

�B =
1

r3
[
3

r2
�r(�m�r)− �m] +

8π

3
�mδ3(�r). (2.17)

Sometimes in a physical literature another representation of �B is used [25]:

�B =
1

r3
[
3

r2
�r(�m�r)− �m]− 4π

3
�mδ3(�r). (2.18)

This difference is due to the following reason [25]. If we identify the magnetic
dipole with the electric current {owing in the inˇnitely small circular current
loop, then VP is given by

�A =
1

cr3
(�me × �r), �me =

1

2

∫
(�r ×�j)dV. (2.19)
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Applying to �A the rot operator and using the identity (see, e.g., [26])

∂

∂xj
(
xi

r3
) =

1

r3
(δij − 3

xixj

r2
) +

4π

3
δijδ

3(�r), (2.20)

we get (2.17). On the other hand, if we suggest that magnetic dipoles consist of
the magnetic monopoles

�mm =

∫
ρm�rdV,

∫
ρmdV = 0, (2.21)

then the magnetic induction is obtained from the scalar magnetic potential:

�B = −�∇Φm, Φm =
�mm�r

r3
. (2.22)

Again, using the differentiation rule (2.20) we arrive at (2.18). This means that
different coefˇcients at δ3(�r) terms in (2.17) and (2.18) are due to different
deˇnitions of magnetic dipoles.

Fig. 5. The magnetic ˇelds of the
semi-inˇnite solenoid and the mag-
netized ˇlament coincide with the
ˇeld of magnetic monopole every-
where except for the position of
solenoid or ˇlament

The expression (2.17) leads to the so-
called hyperˇne contact interaction derived by
Fermi. It was observed experimentally by
measuring the splitting of hydrogen atomic
s levels. Above, we have used the fact that
�B = �H in the absence of medium.

Consider a semi-inˇnite cylindrical solenoid
of the radius R formed either by the circu-
lar currents or the magnetic current dipoles
(Fig. 5). The magnetic VP of a particular cur-
rent j lying in the z = z0 plane is given

�A =
1

c
j

∫
dφ′

|�r − �r′|�nφ
′ ,

where �nφ = �ny cosφ − �nx sinφ is the vector
deˇning the current direction. The sole non-
vanishing component of VP is

Aφ(ρ, z) =

=
2j

c
√
ρR

Q1/2(
ρ2 +R2 + (z − z0)

2

2ρR
).

Here Qν(x) is the Legendre function of the second kind. Using its asymptotic
behaviour

Qν(x)→
√
πΓ(ν + 1)/2ν+1Γ(ν + 3/2)xν+1 x→∞,
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one obtains for the inˇnitely small radius R (or large distances):

�A = Aφ�nφ, Aφ ≈
πRjρ

cr̃3
, r̃ = [x2+y2+(z−z0)

2]1/2, div �A = 0. (2.23)

The nonvanishing components of magnetic strength of a particular current coil
are given by

Hx =
πRj

c

∂2

∂x∂z

1

r̃
, Hy =

πRj

c

∂2

∂y∂z

1

r̃
,

Hz =
πRj

c
[
∂2

∂z2
1

r̃
+ 4πδ(x)δ(y)δ(z − z0)], div �H = 0. (2.24)

The magnetic ˇeld of semi-inˇnite solenoid is obtained by integrating �H from
z0 = −∞ to z0 = 0. This results in

�H =
πRj

c
[
�r

r3
+ 4π�nzδ(x)δ(y)Θ(−z)], div �H = 0. (2.25)

Thus, an inˇnitely thin semi-inˇnite magnetized ˇlament generates the ˇeld of a
magnetic monopole everywhere except for the position of the ˇlament itself. The
equalities

div �B = 0,

∫ ∫
BndS = 0

guarantee the absence of free magnetic charges. Due to the presence of the δ
function term in (2.25) thus obtained monopoles are not true ones.

Earlier, in a qualitative manner these results were obtained in [22].
2.1.2. Interaction with External Electromagnetic Field. Now we explain how

the current distributions just obtained interact with an external electromagnetic
ˇeld ( �Eext, �Hext). In the absence of medium, �Eext and �Hext satisfy the Maxwell
equations:

div �Bext = 0, div �Dext = 4πρext, rot �Eext = −
1

c

∂ �Bext

∂t
,

rot �Hext =
1

c

∂ �Dext

∂t
+
4π

c
�jext, �D = �E, �B = �H.

Let �j be of the form

�j ∼ (rot )n �T (�r), div �T �= 0, (2.26)

where �T is either conˇned to the ˇnite region of space or decreases sufˇciently
fast at inˇnity. Then the interaction energy of this conˇguration with an external
electromagnetic ˇeld is given by

U = −1
c

∫
�j �Aext ∼

∫
�T (rot )n−1 �HextdV. (2.27)
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The ˇnal answer is different for n even and odd. If n = 2k + 1 , then

U ∼ (−1)k
∫

�T (
1

c

∂

∂t
)2k �HextdV. (2.28)

For n = 2k + 2 one has

U ∼ (−1)k
∫

�T (
1

c

∂

∂t
)2k+1 �EextdV. (2.29)

For the distances large as compared to the dimensions of the particular current
conˇguration, the interaction energy has the form:

U ∼ �t �E
(2k+1)
ext and U ∼ �t �H

(2k)
ext , (2.30)

where the superscripts mean the corresponding time derivative and �t =
∫

�T (�r)dV
is the vector depending on the geometrical dimensions of the treated current,
magnetized or toroidized conˇguration, resp. The explicit form of �t for the
particular toroidal current conˇguration may be found in Ref. 27. In particular,
for the toroidization given by (2.12) the vector �t is: �t = −2π2j0�nz.

The current conˇguration corresponding to k = 0 in (2.29) (poloidal current
on the torus surface) was considered by Ya.B. Zeldovich [14] who referred to it
as to the anapole. In the modern physical literature, the anapoles are associated
with the radiationless charge-current sources (see, e.g., [15,28,29]), while the
charge-current conˇgurations corresponding to Eqs. (2.15) and (2.16) are referred
to as toroidal moments [15,30,31]. The next terms (k = 1 in Eqs (2.28) and
(2.29)) in the development of the interaction energy were written out in Ref. 19.
The general form of interactions (2.28), (2.29) was given in [18].

Thus, we obtain the sequence of current conˇgurations (or, magnetizations
corresponding to them) which interact with the time-dependent magnetic or elec-
tric ˇeld. For example, the usual current loop interacts with an external magnetic
ˇeld in the same way as the magnetic dipole orthogonal to it. The poloidal current
shown in the upper part of Fig. 2, the magnetized ring in its middle part and the
toroidal distribution in its lower part, all of them interact with the ˇrst derivative
of the electric ˇeld.

We turn now to Fig. 4. The current distribution �J shown in it, is obtained if
instead of each turn of TS shown in the upper part of Fig. 2 we insert new TS. The
current conˇguration �j, div �j = 0 of Fig. 4, the magnetization �T1, div �T1 = 0
distributed over the torus surface (in the same way as the current �j in Fig. 2),
the toroidization �T2, div �T2 = 0 conˇned to the interior of the torus (similarly
to the magnetization �M shown in Fig. 2) and the toroidization �T3, div �T3 �= 0,
all of them interact with the second derivative of the magnetic ˇeld. The words
ªinteract with time derivative...ª mean that the interaction energy has the form
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(2.30), i.e., it is proportional to the time derivative (of the deˇnite order) of the
electric or magnetic ˇeld.

Obviously, the equivalence between the current distributions and magnetiza-
tions (toroidizations) established in this section is the straightforward generaliza-
tion of the original Ampere hypothesis.

One may ask why Eqs. (2.28)Å(2.30) do not contain the even time deriva-
tives of the electric ˇeld and the odd derivatives of the magnetic one. It turns
out [15,18,19,32] that missing terms describe the interaction of the closed conˇg-
urations composed of electric dipoles. To see this, consider the electric dipoles
distributed inside the space region S with the vector density �d(�r). Their interac-
tion with an external EMF is given by

U ∼
∫

�d(�r) �Eext(�r)dV. (2.31)

Let �d(�r) be distributed over the torus surface in the same way as the magnetization
�M shown in the middle part of Fig. 2. As in the treated case div �d = 0, the
vector function can be represented in the form �d = rot �T , div �T �= 0, where
�T ∼ �nzT and T is deˇned by Eqs. (2.8), (2.9) and shown at the bottom of Fig. 2.
Substituting �d into (2.31) and integrating by parts one gets for the distances large
as compared to the dimensions of the torus:

U ∼ ∂ �Hext(�r0)

∂t
�t, (2.32)

where �t =
∫

�TdV and �r0 is some point inside the torus. Further, let the electric

dipoles be distributed over the torus surface like the current �J in the upper part
of Fig. 2. Then

�d = (rot)2 �T (�r), div �T �= 0, (2.33)

where T is the same as before (see Eqs. (2.8), (2.9)). Substituting this �d into
(2.18) one easily obtains

U ∼ ∂2 �Eext(�r0)

∂t2
�t. (2.34)

The continuation of this procedure ensures us that the interaction of electric
dipoles with the external EMF is indeed the missing link in Eqs. (2.28)Å(2.30).
In particular, the term �t(∂ �H/∂t) describes the interaction of the closed electric
dipole ring (see the middle part of Fig. 2 where the distribution M of the magnetic
dipoles should be changed by the distribution of electric ones) with the time
derivative of an external magnetic ˇeld. The corresponding experiments were
performed by Tolstoy and Spartakov [16], their interpretation was given in [17].
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2.2. Magnetizations and the Debye Potential Representation. According to
the Helmholtz-Neumann theorem (see, e.g., [33]) an arbitrary vector function and,
in particular, the current density can be presented as the sum of the longitudinal
and transversal parts:

�j = �jl +�jt, rot �jl = 0, div �jt = 0,

�jl and �jt can be presented in the form

�jl = �∇Ψ1, �jt = rot (�rΨ2) + (rot )2(�rΨ3).

As a result, one arrives at

�j = ∇Ψ1 + rot (�rΨ2) + (rot )2(�rΨ3). (2.35)

The functions Ψ1, Ψ2 and Ψ3 are known as the Debye potentials. They were in-
troduced by Debye [34] when evaluating the light pressure on a sphere of arbitrary
material. Various other authors (Thomson, Mie Whittaker, Bromwich, Sommer-
feld) applied these potentials to the electromagnetic problems. Earlier, Lamb
used representation (2.35) when he studied {uid mechanics and electromagnetic
problems [35-37].

Comparing (2.35) with (2.1), (2.2) we get

Ψ1 = Ψ3 = 0, Ψ2 =
1

2
δ(ρ− d)Θ(

π

2
− θ). (2.36)

The corresponding magnetization is given by

�M ′ = �nrδ(r − d)Θ(
π

2
− θ). (2.37)

This magnetization covers the upper semisphere of the radius d and is directed
along its radius (see Fig. 1). It certainly differs from the magnetization (2.3).
The magnetizations �M and �M ′ are connected by the gradient transformation

�M ′ = �M +∇χ, χ = −Θ(d− z)Θ(
π

2
− θ),

i.e., the function χ differs from zero inside the upper semisphere. This equation
means that the magnetizations �M and �M ′ , despite their different functional forms,
lead to the same observable effects. The reason for the appearance of different
magnetizations is that the equation rot �M = �J does not ˇx �M uniquely. We
note that the magnetic strength �H satisˇes almost the same equation rot �H = �J
but with the auxiliary condition div �H = 0. These two equations are sufˇcient
for ˇxing �H. In general, the condition div �M = 0 is not imposed on �M . It turns
out that the requirement for �M to disappear in the nearest vicinity of �J does not
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ˇx �M unambiguously. On the other hand, if both rot �M = �j and div �M are
known, then (see, e.g., [33])

4π �M = rot

∫
rot �M(�r′)

dV ′

|�r − �r′| −
�∇
∫

div �M(�r′)

|�r − �r′| . (2.38)

Obviously, rot �M and div �M deˇne �M up to a constant vector which is chosen
to be zero in Eq. (2.38).

2.2.1. On the Inversion of the Debye Parametrization. An interesting question
is the inversion of the Debye parametrization (2.35), i.e., the expression of Ψ1,
Ψ2 and Ψ3 functions in terms of the current density �j. Rearranging the terms in
(2.35) one gets

�j = �∇Ψ′1 + (�r × �∇)Ψ′2 + �rΨ′3. (2.39)

This parametrization is used on the same footing as (2.35) (see, e.g., [38,39]). To
ˇnd Ψ′i one applies to �j the div and rot operators

(�r ·�j) = r
dΨ′1
dr

+ r2Ψ′3, r2div �j = (�r × �∇)2Ψ′1 +
d

dr
[r(�r ·�j)],

�r · rot �j = (�r × �∇)2Ψ′2, �r · rot rot �j = −(�r × �∇)2Ψ′3.
As a result, the following equations are obtained for ψ′i

(�r × �∇)2Ψ′1 = r2div �j − d

dr
[r(�r ·�j)],

(�r × �∇)2Ψ′2 = �r · rot �j, (�r × �∇)2Ψ′3 = −�r · rot rot �j. (2.40)

Consider the equation
(�r × �∇)2Ψ = f. (2.41)

Its Green function

G(�n, �n′) = −
∑
l,m

1

l(l + 1)
Y ml (�n)Y m∗l (�n′), �n = (θ, φ), l ≥ 1

satisˇes the equation

(�r × �∇)2G =
1

sin θ
δ(θ − θ′)δ(φ− φ′)− 1

4π
.

Thus,

Ψ =

∫
G(�n, �n′)f(�r′)dΩ′. (2.42)

The functions Ψ′i are obtained if one substitutes the right-hand sides of (2.40)
instead of f .
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We still need the relations between Ψi and Ψ′i. They are

∆Ψ3 = Ψ′3, Ψ2 = −Ψ′2, Ψ1 = Ψ′1 + (1 + �r�∇)Ψ′3. (2.43)

These equations are easily resolved:

Ψ3 = −
1

4π

∫
1

|�r − �r′|Ψ
′
3(�r
′)dV ′, Ψ1 = Ψ′1−

1

4π
(1+�r�∇)

∫
1

|�r − �r′|Ψ
′
3(�r
′)dV ′.

(2.44)
Equations similar to (2.42)Å(2.44) were proved with different degree of rigour
many times (see, e.g., [40Å45]).

2.2.2. Physical meaning of the Ψ functions. Now we are able to clarify
the physical meaning of the functions Ψi deˇning the current density �j. For
this purpose, we consider the interaction of the pure current density �j (which
corresponds to Ψ1 = 0) with an external electromagnetic ˇeld deˇned by the
vector potential �Aext

U = −1
c

∫
�j �AextdV. (2.45)

Substituting here �j, integrating by parts and assuming that �j does not overlap
with the space region S, where Jext �= 0, we get

U = Ud + Ut, Ud = −
1

c

∫
�r �HΨ2dV, Ut = −

1

c2

∫
�r �̇EΨ3dV. (2.46)

Here �H and �E are the electromagnetic strengths of the external ˇeld. The dot
above the letter means the time derivative. Let the dimensions of S be small
as compared with the distance from the sources of the external ˇeld. Then, the
external ˇelds varying rather slowly over S can be approximated by their values
taken at some point �r0 inside S:

U
(1)
d = −1

c
�H(0)

∫
�rΨ2dV, U

(1)
t = − 1

c2
�̇E(0)

∫
�rΨ3dV. (2.47)

Here �H(0) = �H(r0), �E(0) = �E(r0). It then follows that �µd =
∫
�rΨ2dV and

�µt =
∫
�rΨ3dV are the magnetic dipole and toroidal moments (as they interact

with external magnetic ˇeld and with time derivative of the external electric ˇeld,
resp.) The next terms in the development of Ud are

U
(2)
d = −1

c

∂Hi(0)

∂xk
µik, µik =

∫
q
(2)
ik Ψ2dV, q

(2)
ik = (xixk −

1

3
δikr

2)

U
(3)
d =

1

2c

∂2Hi(0)

∂xk∂xj
µijk −

1

10c3
∂2 �H(0)

∂t2
�µ
(2)
d , �µ

(2)
d =

∫
�rr2Ψ2dV
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µijk =

∫
q
(3)
ijkΨ2dV, q

(3)
ijk = [xixjxk −

1

5
(δijxk + δikxj + δjkxi)r

2]. (2.48)

Obviously, µij and µijk are the quadrupole and octupole magnetic moments,
resp. Thus, the function Ψ2 describes the set of magnetic moments of different
multipolarities. Similarly, one obtains the next terms in the expansion of Ut:

U
(2)
t = − 1

c2
∂Ėi(0)

∂xk
tik, tik =

∫
q
(2)
ik Ψ3dV

U
(3)
t = − 1

2c2
∂2Ėi(0)

∂xk∂xj
tijk −

1

10c
(
∂

c∂t
)3 �E(0)�µ

(2)
t , �µ

(2)
t =

∫
�rr2Ψ3dV

tijk =

∫
q
(3)
ijkΨ3dV. (2.49)

This means that the function Ψ3 describes the toroidal moments of higher mul-
tipolarities [15]. Their physical realization via the toroidal solenoids embedded
into each other has been given in Ref. 46.

Let Ψ2 be of the form
Ψ2 = ∆Ψ

(1)
2 . (2.50)

Then,

Ud = −
1

c3
∂2 �H(0)

∂t2

∫
�rΨ
(1)
2 dV. (2.51)

It follows from this that such a current conˇguration interacts neither with the
stationary nor with the linearly growing with time external magnetic ˇeld. It
interacts with the magnetic ˇeld whose polynomial growth is not slower than t2.
Further, if Ψ2 is presented in the form

Ψ2 = (∆)nΨ
(n)
2 , n ≥ 1, (2.52)

then

Ud = −
1

c
(
∂

c∂t
)2n �H(0)

∫
�rΨ
(n)
2 dV. (2.53)

Such a current distribution interacts with the magnetic ˇeld whose polynomial
growth is not slower than t2n. If the external magnetic ˇeld grows as tα (where
α is not integer), then the interaction energy decreases as a function of time for
α < 2n and increases for α > 2n.

Now we turn to the toroidal moments. Taking into account the Maxwell
equations and the fact that at large distances jext is not overlapping with S, we
rewrite Ut as

Ut = −
1

c2

∫
�r �̇EΨ3dV = − 1

c2
�̇E(0)

∫
�rΨ3dV. (2.54)
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Now let Ψ3 be of the form

Ψ3 = (∆)nΨ
(n)
3 , n ≥ 1. (2.55)

Then

Ut = −
1

c
(
∂

c∂t
)2n+1 �E(0)

∫
�rΨ3

(n)dV. (2.56)

This means that this current conˇguration interacts with the polynomial electric
ˇeld which grows not slower than t2n+1.

It then follows that the magnetized sample consisting of magnetic dipoles, all
of which are united into the ring-like structures (thus, realizing toroidal magnetic
moments), does not interact with a spatially uniform magnetic ˇeld �H0 (although
each of magnetic dipoles does interact with �H0). This sample interacts with the
rot of �H0 (or, that is the same, with the time derivative of the electric ˇeld). The
magnetized sample, all magnetic moments of which are organized into the toroidal
moments of higher multipolarities, interacts with higher derivatives of the electric
and magnetic ˇelds. Thus, we obtain a one-to-one correspondence between the
hierarchy of magnetic structures and the electromagnetic ˇelds interacting with
them. Probably, this selectivity of interaction can be used for the storage and
ciphering of information. There are known ˇrst practical attempts in this direction
(see,e.g., [47]).

When representing Ψ2 or Ψ3 in the form (2.52) or (2.55), we have implicitly
assumed that Ψ2

(n) or Ψ3
(n) are conˇned to a ˇnite space region or that they

decrease sufˇciently fast for large distances. This is required for the disappearance
of surface integrals arising when the transition from (2.50) to (2.51), or from
(2.55) to (2.56) is performed. In fact, every function Ψ can be represented in the
form

Ψ = ∆f, where f = − 1

4π

∫
|�r − �r′|−1Ψ(�r′)dV ′,

but there is no guarantee that f decreases sufˇciently fast (which is needed for
its physical meaning). As a result, Eqs. (2.51), (2.53), (2.54) and (2.56) are valid
for very speciˇc current conˇgurations.

We elucidate now which magnetic ˇeld corresponds to the choice of functions
in the form (2.50) and (2.55). The convenient parametrization of VP correspond-
ing to the stationary current density has been found in Ref. 45 (see Eqs. (2.10)
and (2.14) therein). Substituting the current parametrization (2.35) into it, we get,
outside the space region S to which the current density is conˇned,

�A =
4π

c

∑ 1

2l+ 1
r−l−1(�r × �∇)Y ml

∫
rlY m∗l Ψ2dV+

+
4π

c
�∇
∑ l

2l + 1
r−l−1Y ml

∫
rlY m∗l Ψ3dV. (2.57)
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The magnetic ˇeld H disappears if
∫

rlY m∗l Ψ2dV = 0. (2.58)

This relation is automatically satisˇed if Ψ2 has the form (2.52). The condition
for the vector potential to vanish is (2.58) and

∫
rlY m∗l Ψ3dV = 0. (2.59)

Obviously, it is satisˇed if Ψ3 has the form (2.55). Thus, the simultaneous
fulˇllment of Eqs. (2.52) and (2.55) leads to the disappearance both of the VP
and magnetic ˇeld outside of the space region S to which the current conˇguration
J is conˇned.

The representation (2.57) of VP, valid only outside S, disappears for speciˇc
current distributions deˇned by Eqs. (2.52) and (2.55). This does not mean that
VP vanishes everywhere. Inside S one should use either the general formula

�A =
1

c

∫
1

|�r − �r′|
�j(�r′)dV ′

(as it was done in Sec. 3.1) or its development over the vector spherical har-
monics. The latter certainly differs from (2.16) inside S. It follows from this
that none of experiments performed outside S (including the AharonovÄBohm-
like experiments) can give information on the just mentioned current distribution
inside S.

Obviously, Eqs. (2.53) and (2.56) generalize Eqs. (2.28) and (2.29) obtained
earlier. In fact, Eqs. (2.53) and (2.56) contain two arbitrary functions Ψ2 and Ψ3
while only one function T enters into (2.28) and (2.29).

The inspection of Eqs. (2.46)Å(2.56) ensures us that there are two degrees
of freedom. First of them is due to the appearance of deˇnite multipoles in the
expansions of �E and �H (see Eqs. (2.47)Å(2.49)). Let Ψ2 (or Ψ3) be transformed
according to the particular representation of the rotation group with the ˇxed value
l2 (l3) of an angular momentum. Then, only terms with these angular momenta
survive in the expansion of Ud (or Ut). In particular, for l2 = l3 = 1 one gets:

Ud(l2 = 1) = −1
c
�H(0)

∫
�rΨ2dV −

1

10c3
�̈H(0)

∫
�rr2Ψ2dV−

− 1

280c5
�H(4)(0)

∫
�rr4Ψ2dV − ....

Ut(l3 = 1) = − 1

c2
�̇E(0)

∫
�rΨ3dV −

1

10c4
�E(3)(0)

∫
�rr2Ψ3dV−
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− 1

280c6
�E(5)(0)

∫
�rr4Ψ3dV − ....

Let l2 = l3 = 2. Then,

Ud(l = 2) = −1
c

∂Hi(0)

∂xk
µik −

1

42c3
∂Ḧi(0)

∂xk

∫
q
(2)
ik r2Ψ2dV...

Ut(l = 2) = − 1

c2
∂Ėi(0)

∂xk
tik −

1

42c4
∂E
(3)
i (0)

∂xk

∫
q
(2)
ik r2Ψ3dV...

The second degree of freedom is due to the fact that for the given multipole
it is possible to change the interaction with an external electromagnetic ˇeld by
choosing Ψ2 and Ψ3 in the form (2.52) and (2.55), resp. To this end, we have
a wonderful electromagnetic object with a number of interesting properties. It
does not act on the test charge or magnetic needle. On the other hand, it interacts
with a time-dependent external electromagnetic ˇeld. The difˇcult question on
the equality of action and counter-action is beyond the scope of the present
consideration. The question arises on the practical realizations of this object.
One of them is the family of toroidal solenoids considered in Sec. 2.1 (when
each turn of a solenoid is changed by a toroidal solenoid). The ambiguity in the
magnetization choice implies that this realization is not unique.

2.2.3. Transition to the Point-Like Sources. For the point-like current source
carrying the magnetic moment of the multipolarity l2 and the toroidal moment of
the multipolarity l3 we have [13,18]

Ψ
(k2,l2)
2 = f2(t)∆

k2(Q(l2)�∇)δ3(�r), Ψ
(k3l3)
3 = f3(t)∆

k3 (Q(l3)�∇)δ3(�r). (2.60)

Here f2(t) and f3(t) are functions of time only,

(Q(l)�∇) = Q
(l)
i1i2...il

�∇i1 �∇i2 ...�∇il

(the summation over the repeated indices is implied), �∇i = ∂
∂xi

. Further,

Q
(l)
i1i2...il

(nk) is the traceless symmetric form of the order l of the unit vec-
tors ni, i = 1, ..., 3 deˇning the orientation of the current conˇguration (e.g.,

Q1i = ni, Q
(2)
i,j = ninj − δij/3 (i=1,..,3), etc.). Then, the point-like analogues

of the interaction energies deˇned by Eqs. (2.46) are given by

Ud = (−1)l2+1f2(t)c−2k2−1l2(�vl2 �H(2k2)),

Ut = (−1)l3+1f3(t)c−2k3−1l3(�vl3 �E(2k3+1)).

Here �v is a vector with Cartesian components (�vl)i = Q
(l)
ii2...il

�∇i2 ...�∇il . Super-

scripts of �E and �H denote the time derivatives. We write out a few particular
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terms. The choices l2 = 1, k2 = 0 and l3 = 1, k3 = 0 correspond to the dipole
magnetic and toroidal moments, resp. Their interaction with the external EMF is
given by

U
(1)
d = f2(�n �H)/c and U

(1)
t = f3(�n �̇E)/c2.

The quadrupole magnetic and toroidal moments correspond to l2 = 2, k2 = 0 and
l3 = 2, k3 = 0, resp. The interaction energies are

U
(2,0)
d = −2

c
f2(�n�∇)(�n �H), U

(2,0)
t = − 2

c2
f3(�n�∇)(�n �̇E).

Further, for l2 = 1, k2 = 1 and l3 = 1, k3 = 1 one gets

U
(1,1)
d =

1

c3
f2(�n �̈H), U

(1,1)
t =

1

c3
f3(�n �E(3)).

Again we see that indices l and k describe different degrees of freedom. The
index l deˇnes the particular multipole, while k shows how much is ªtoroidizedª
the treated magnetic distribution.

2.2.4. Interaction of Charge Densities with an External Field. One may won-
der why we have limited ourselves to the consideration of pure current conˇgura-
tions imbedded into the external electromagnetic ˇeld. The obvious generalization
including charge density is (see, e.g., [24, 48])

U =

∫
ρφextdV −

1

c

∫
�j �AextdV. (2.61).

We rewrite this equation as

U = Uq + Ud + Ut. (2.62)

Here Ut and Ud were deˇned earlier (see Eqs. (2.46)) and

Uq =

∫
ρφextdV −

1

c

∫
�jl �AextdV. (2.63)

Here �jl is the longitudinal part of �j (�jl = �∇Ψ1, div �j = −ρ̇). Developing Uq
we get [18, 31]:

Uq = eφext(0) + (�d�∇)φext(0) +
1

2
qik

∂2φext(0)

∂xi∂xk
−

−1
c
�̇d �Aext(0)−

1

2c
q̇ik

∂(Aext)i(0

∂xk
− 1

2
�µl �Hext(0) + · · · (2.64)

where �d =
∫
ρ�rdV, qik =

∫
xixkρdV and �µl =

1
2c

∫
(�r × �jl)dV are electric

dipole, electric quadrupole and longitudinal magnetic dipole moments, resp. Let
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the function Ψ1 entering into the Debye parametrization (2.35) of �jl (�jl = �∇Ψ1)
decrease sufˇciently fast outside the region S to which the current j is conˇned.
Then, �µl disappears. If, in addition, the external ˇeld is a pure induction (i.e., it
is generated by the pure current density), then:

φext = 0, �Aext =
1

c

∫
R−1�jext(�r

′, t−R/c)dV ′, �Eext = − ˙�Aext/c,

�Hext = rot �Aext, R = |�r − �r′|.
It follows from this that

Uq = −
1

c
�̇d �Aext −

1

2c

∂Ai

∂xk
q̇ik. (2.65)

On the other hand, for the charge conˇguration carrying the electric dipole mo-
ment �d and the quadrupole moment qik the appearance of the following interaction
term

−�d �Eext −
1

2

∂(Eext)i
∂xk

qik (2.66)

is intuitively expected. But these terms are absent in (2.65). According to
K.H.Yang and D.H.Kobe (see, e.g., [49] and Refs. therein) this is due to the
gauge noninvariance of the interaction energy:

φext → φ′ext = φext − χ̇/c, �Aext → �A′ext = �Aext + �∇χ,

U → U ′ = U − 1

c

d

dt

∫
ρχdV.

It follows from this that the interaction energy is a gauge-invariant quantity for a
pure current density (ρ = 0). There is no ambiguity mentioned above.

We note also that the transformed interaction energy differs from the original
one by the total time derivative. This means that both of them should lead to
the same equations of motion. In particular, after the insertion of (2.65) into the
Lagrangian and subsequent variation relative to ḋi and q̇ik we obtain the usual
expression for the Lorentz force acting on the dipole and quadrupole moments.

3. ON THE SUPERCURRENT ARISING IN A SUPERCONDUCTING RING

Consider the closed circular metallic ring C encircling the inˇnite cylindrical
solenoid with a constant {ux Φ0 in it (Fig. 6). Suppose that initially there is no
current in C. Let the ring C be cooled. At some temperature Tc its transition
to the superconductive state occurs. The following two properties were observed
experimentally [50-52] and explained theoretically [53-55]:
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Fig. 6. The cylindrical solenoid
with magnetic {ux Φ0 is en-
circled by the metallic ring C.
When C becomes superconduc-
tive, the supercurrent Is arises
on its surface (although C is
in the region where electromag-
netic strengths are zero)

1) Magnetic ˇeld �H vanishes inside C (it is,
therefore, assumed that penetration depth is zero);

2) The total magnetic {ux trapped by C turns
out to be integer (in units hc/2e).

The appearance of the supercurrent {owing
on the surface of C (despite its location in a ˇeld-
free region, where �E = �H = 0) for T < Tc was
predicted in Refs. 56, 57. Indeed, as the {ux
inside the cylindrical solenoid is not in general
integer, the supercurrent in C arises making the
total {ux to be integer. This supercurrent was,
in fact, observed in Tonomura experiments (see
Refs. 59, 62, where this fact was clearly stated).
It is our aim to explicitly evaluate the distribu-
tion of supercurrent on the surface of C and the
arising magnetic ˇeld. The density of the current
Js {owing on the torus C surface and providing
�H = 0 inside C was obtained in [58]. Let the
surface of C be given by

(ρ− d)2 + z2 = R2.

It is convenient to introduce toroidal coordinates

ρ = a
sinhµ

coshµ− cos θ , z = a
sin θ

coshµ− cos θ , φ = φ. (3.1)

For a given value of µ the points ρ, z, φ (where ρ, z, φ are deˇned in (3.1)) ˇll
the surface of the torus with the parameters d = a cothµ, R = a/ sinhµ, (a =√
d2 −R2) (see Fig. 7). Let µ = µ0 corresponds to the surface of C. Then, the

surface current providing the vanishing of �H inside C is given by [58]:

�Js = δ(µ− µ0)j(θ)�nφ

j(θ) = − C0

2
√
2π2a2

(coshµ0 − cos θ)5/2
sinhµ0

∑ cosnθ

1 + δn0
[P 1n−1/2(coshµ0)]

−1.

This current gives the following VP

Aφ = C0
coshµ− cos θ

sinhµ

inside C(µ > µ0) and

Aφ = C0

√
2

π
(coshµ− cos θ)1/2×
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×
∑ cosnθ

1 + δn0

1

n2 − 1/4
Q1n−1/2(coshµ0)

P 1
n−1/2(coshµ0)

P 1n−1/2(coshµ)

Fig. 7. Geometrical depiction of toroidal coor-
dinates

outside C(µ < µ0). In particular,
on the circle z = 0, ρ = d−R (that
is, for µ = µ0, θ = π) one gets

Aφ = C0
1 + coshµ0
sinhµ0

.

The integral
∮

Aφdl = 2πC0a

taken along the same circle coin-
cides with the {ux Φs of the mag-
netic ˇeld produced by the supercurrent Js. The total magnetic {ux trapped by
the superconducting ring is the sum of the cylinder solenoid {ux Φ0 and the
supercurrent {ux Φs:

2πC0a+Φ0 =
hcn

2e
,

where n is the integer nearest to 2eΦ0/hc. From this we ˇnd C0

C0 = −(Φ0 −
hcn

2e
)/2πa.

The corresponding magnetic ˇeld is given by

Hµ =
(coshµ− cos θ)2

a sinhµ

∂

∂θ
(

sinhµAφ
coshµ− cos θ ),

Hθ = −
(coshµ− cos θ)2

a sinhµ

∂

∂µ
(

sinhµAφ
coshµ− cos θ ).

At large distances VP and ˇeld strengths fall like r−2 and r−3, resp.:

Aφ ∼
2a2

πr2
sin θsconst., const. = C0

∑ 1

1 + δn0

Qn−1/2(coshµ0)

Pn−1/2(coshµ0)

Hr ∼
4a2

πr3
cos θs · const., Hθ ∼

2a2

πr3
sin θs · const.

Here r and θs are usual spherical coordinates.
It turns out that the cooling of the ring C below the critical temperature Tc

inevitably leads to the appearance of the magnetic ˇeld in a space surrounding
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C. Obviously, the appearance of supercurrent in C is a pure quantum effect as
the ring C is located in the region where �E = �H = 0. But for the creation
of supercurrent in C the energy is needed. Where it comes from? Theory says
[59] that for T > Tc the electrons in C are in chaotic motion and the average
current is zero. For T < Tc the external vector potential correlates the phases
of the electrons wave functions. As a result, the macroscopic {ow of electrons
arises in C.

It would be interesting to observe this supercurrent experimentally. This is
not an easy task as the quantity Φ0 − hcn/2e entering into the deˇnition of the
vector potential and ˇeld strengths is rather small (it is of the order hc/2e).

Fig. 8. The lines with ar-
rows mean the poloidal cur-
rent {owing on the torus sur-
face

Theoretically, in Tonomura experiments the rea-
son for the quantization of the total magnetic {ux
penetrated by the toroidal solenoid is the appearance
(for T < Tc) of the poloidal supercurrent on the
torus surface. But the poloidal supercurrent (Fig. 8)
uniformly distributed over the torus suface produces
no magnetic ˇeld outside the toroidal solenoid. Thus,
the magnetic {ux quantization observed in Tonomura
experiments is only indirect evidence of the supercur-
rent existence. On the other hand, the supercurrent
arising in a particular circular turn embracing either
cylindrical or toroidal solenoids may be observed by
the detection of the magnetic ˇeld created by this
supercurrent. There are many experiments in which
the dependence of the physical parameters (e.g., re-
sistivity) of the multi-connected sample embracing
the magnetic {ux (but lying outside the region where
H = 0) was studied as a function of magnetic {ux

value (see, e.g., Resource Letter [60]). As in Tonomura experiments, the aris-
ing supercurrent is not measured directly, but its existence is needed for the
explanation of experimental data.

4. RADIATIONLESS TIME-DEPENDENT CHARGE-CURRENT SOURCES

It is usually believed that a charged body radiates, when it exhibits acceler-
ation. We demonstrate now that this intuition is not always correct. We follow
closely Ref. 5.

At ˇrst we clarify under which conditions the accelerated conˇguration of
charge ρ(�r, t) and current �j(�r, t) densities does not radiate. The corresponding
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VP is given by

�A =
1

c

∫
1

R
�j(�r′, t′)δ(t′ − t+

R

c
)dV ′dt′.

Here R = |�r − �r′|. Obviously, only the terms of the order not higher than r−1

contribute to the radiation ˇeld. Developing VP over the powers of r′/r and
neglecting the terms of the order r′2/r2 and higher ones we get

�A =
1

cr

∫
�j(�r′, t′)δ(t′ − t+

r

c
− 1

c
�nr�r′)dV

′dt′. (4.1)

Here �nr = �r/r. Now, making the Fourier transformation of �j

�j(�r, t) =

∫
�j(�k, ω)ei(

�k�r−ωt)d3kdω

and inserting this into (4.1) one gets

�A =
(2π)3

cr

∫
�j(�nr

ω

c
, ω)e−iω(t−r/c)dω.

Obviously, �A disappears if
�j(�nr

ω

c
, ω) = 0. (4.2)

Now, let �j(�r, t) be a periodical function of time with a period T . Most easily
this may be achieved if one chooses

�j(�k, ω) =
∑

�jn(�k)δ(ω − ωn), ρ(�k, ω) =
∑ 1

ωn
(�k�jn(�k))δ(ω − ωn),

ωn = ω1n, ω1 = 2π/T.

Then,

�j(�r, t) =
∑
n

∫
d3kei(

�k�r−ωnt)�jn(�k).

From this we ˇnd �jn(�k)

�jn(�k) =
1

(2π)3
1

T

∫
�j(�r, t)e−i(

�k�r−ωnt)d3xdt.

It turns out that the condition (4.2) reduces to

�jn(�nr
ω

c
, ω) = 0. (4.3)
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Let ρ(�r, t) be centered around the time-dependent position �a(t) which is the
periodic function of time. That is, we suppose ρ(�r, t) and �j(�r, t) to be of the
form

ρ(�r, t) = ef(�r − �a(t)), �j(�r, t) = e�̇af(�r − �a(t)). (4.4)

The Fourier components are given by

�j(�k, t) =
1

(2π)3

∫
�j(�r, t)e−i

�k�rd3x =
1

(2π)3
e�̇aei

�k�a(t)

∫
f(�z)e−i

�k�zd3z.

Here �z = �r − �a(t). Let f(�z) be spherically-symmetric: f(�z) = f(|�z|) = f(z).
Then,

I(k) =

∫
f(�z)e−i

�k�zd3z =

∫
f(z)z2dz

sinkz

kz
.

Obviously, this expression should vanish for k = ωn/c. Consider the particular
choices of f(z). Let

f(z) =
1

4πr2
δ(z −R). (4.5)

Then,

In = I(ωn) =
c

ωnR
sin

ωnR

c
.

It is seen that In disappears if

ω1R = lπc, (4.6)

where l is integer. This means that charge-current distributions (4.4) and (4.5),
where �an(t) is an arbitrary vector periodical function of time, do not radiate if
the condition (4.6) is fulˇlled.

The charge-current conˇguration (4.5) corresponds to the surface distribution.
The nonradiating volume distributions are also easily found. Let

ρ(y) = AΘ(b− y)z−1 cosωmy, (4.7)

here A is a constant, Θ(x) is a step function, m is an integer. Then,

In,m = 4πA

∫ b
0

dy sinωny cosωmy =

= 2πAc[
1− cos(ωn − ωm)

b
c

ωn − ωm
+
1− cos(ωn + ωm)

b
c

ωn + ωm
].

Clearly, In,m disappears and, correspondingly, accelerated volume distribution
(4.7) does not radiate if the condition ω1b = 2πc is satisˇed.
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In the same way, the spherically-symmetric conˇguration

ρ(y) =
∑
m

AmΘ(b− y)y−1 cosωmy

does not radiate provided ω1b = 2πc.
The examples of nonradiating spherically-nonsymmetric distributions may be

also presented. Let
ρ(�z) = Rl,m(z)Ylm(θz , φz), (4.8)

where Rl,m(z) = AlmΘ(b− z), Alm = const. Then, condition for the absence
of radiation is

Ilm(ωn) = Alm

∫ b
0

dzz2jl(
ωnz

c
) = 0

(jl(x) is the spherical Bessel function). For l = 1 one gets

I1m(ωn) ∼ A1m[2(1− cos
ωnb

c
)− ωnb

c
sin

ωnb

c
]
c3

ω3n
.

It is easy to see that I1m = 0 if ω1b = 2πc.
Another example [9] of nonradiating charge distribution is the uniformly

charged sphere
ρ = σδ(r −R), σ = e/4πR2,

which oscillates around a ˇxed axis with the angular velocity

�Ω = U(ω) cosωt �nω.

Here �nω is the constant unit vector. The current is given by

�j = σδ(r −R)(�Ω(t)× �r) cosωt.

The corresponding VP is

�Aω =
ekR

cr
(�Ω(t)× �r)j1(kr<)h1(kr>) cosωt,

where r< = min (r,R), r> = max (r,R); j1(x) and h1(x) are the spherical
Bessel and Hankel functions of the ˇrst order. Thus, outside the charged sphere
one gets

�Aω =
ekR

cr
(�Ω(t)× �r)j1(kR)h1(kr) cosωt.

We observe that the considered oscillating charge distribution does not radiate
when x = kR coincides with the zero of j1(x), i.e., when x satisˇes the equation
tanx = x.
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We summarize: There are charge distributions of the ˇnite extension which
do not radiate when they exhibit an arbitrary periodic accelerated motion described
by the time-dependent vector �a(t).

As we have seen the condition for the nonradiation of the treated charge-
current conˇguration is

�j(�k, ω)|k=ω/c = 0.

Now we apply this condition to the uniformly moving charge. In this case
�j(�r, t) = �vρ(�r − �vt) and

�j(�k, ω) = 2π�vδ(ω − �k�v)ρ(�k).

Consider at ˇrst the motion in a vacuum. For ω = ck one gets

δ(ω − �k�v) = ω−1δ(1 − β cos θ), β = v/c.

As in a vacuum β < 1, the argument of the δ-function is always greater than 1
and the nonradiation condition is satisˇed.

Let the charged particle move uniformly in the medium. Then, conditions
for the absence of radiation are: ω = kcn, cn = c/n (cn is the light velocity in
the medium, n is the refraction index) and

�j(�k, kcn) = 2π�vρ(�k)δ(1− βn cos θ) = 0.

It is seen that nonradiation condition is satisˇed everywhere except for the angle
cos θn = 1/βn. For the arbitrary density the quantity

ρ(�k)|ω=kcn,cos θ=1/βn
differs from zero and this is just the reason for the appearance of the Vavilov-
Cherenkov radiation. This takes place, e.g., for the point-like charge and for an
arbitrary spherically-symmetric charge distribution conˇned to the ˇnite region of
space. Now we prove the existence of the nonradiating ˇnite charge distributions
moving with the superluminal velocity in the medium. We choose ρ to be in the
form

ρ(�r) = ρ(r)Pl(cos θrv),

where θrv is the angle between the charge velocity �v and the radius-vector �r, Pl
is the Legendre polynomial. The Fourier transform of this density is

ρ(�k) =
1

2π2
(−i)lPl(cos θkv)

∫
jl(kr)ρ(r)r

2dr.

As the Cherenkov radiation differs from zero only for the deˇnite angle cos θkv =
1/βn the nonradiation condition is

Pl(1/βn) = 0.
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Let l = 2. P2(x) has zero at x = 1/
√
3 that corresponds to βn =

√
3. This means

that the charge distribution ρ2(�r) = ρ(r)P2(cos θrv) does not radiate if it moves
with the velocity βn =

√
3. Similarly, the charge distribution ρ(r)P3(cosrv) does

not radiate when its velocity in a medium is equal to βn =
√
5/3. Further,

there are two velocities for which the charge distribution ρ(r)P4(cos θrv) does
not radiate. These interesting results were obtained in Ref. 7.

Consider the current �j {owing on the cylinder surface:

�j = �nφjδ(ρ−R).

Let j be a periodical function of time: j = j0 cosωt. Then, outside the cylinder
the VP and ˇeld strengths disappear for a discrete set of frequencies satisfying
equation [6, 61]:

J1(kR) = 0

(J1 is the Bessel function). The same is true for the sphere. Let on its surface
(of the radius R) {ows the current

�j = �nφj P 1l (cos θ) δ(ρ−R)

which is a periodical function of time (j = j0 cosωt). Then, the VP and ˇeld
strengths disappear outside the sphere for the inˇnite set of frequencies satisfying
the equation

j1(kR) = 0 jl(x) = (π/2x)1/2Jl+1/2(x).

In Ref. 22 a point-like electric solenoid was considered by using the following
nonstatic point charge and current densities

ρ = D exp(−iωt)∆δ3(�r), �j = iωD exp(−iωt)�∇δ3(�r). (4.9)

Here D is a constant. Under the electric solenoid we mean a charge-current
conˇguration generating magnetic ˇeld equal to zero everywhere and the electric
ˇeld conˇned to the ˇnite region of space. The corresponding electromagnetic
potentials are:

Φ = − exp(−iωt)D[4πδ3(�r) + k2

r
exp(ikr)], �A = ikD exp(−iωt)�∇exp(ikr)

r
.

(4.10)
Only the electric ˇeld is nonzero:

�E = −�∇Φ− 1

c

∂ �A

∂t
= 4πD exp(−iωt)�∇δ3(�r). (4.11)

These relations are easily generalized to the case of charge and current distribu-
tions of ˇnite size [12,32]. We choose ρ and �j in the form

ρ = exp(−iωt)∆f, �j = iω exp(−iωt)�∇f. (4.12)
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The following potentials and ˇeld strengths correspond to these sources:

Φ = − exp(−iωt)[4πf + k2
∫

G(�r, �r′)fdV ′], �A = ik exp(−iωt)�∇
∫

GfdV ′,

�E = 4π exp(−iωt)�∇f, �H = 0, G =
exp(ik|�r − �r′|
|�r − �r′| ). (4.13)

The factor exp(−iωt) will be omitted below when it is obvious.
Equations (4.9)Å(4.11) are obtained for the choice f = Dδ3(�r). It follows

from (4.13) that if the function f is nonzero inside some region of space, �H = 0
everywhere, while �E �= 0 only in the region where f �= 0. On the other hand,
the electromagnetic potentials differ from zero everywhere. Thus, Eqs. (4.12),
(4.13) realize a nonstatic electric solenoid. In particular, f can be chosen to
be nonzero inside the torus (ρ − d)2 + z2 = R2. For this it is enough to take
f = DΘ(R−

√
(ρ− d)2 + z2), where D is a constant. As an example, consider

a spherical capacitor which is obtained for a special choice of the function f . We
have

ρ =
e

4πr2
[δ(r − r1)− δ(r − r2)], �j =

iωe

4πr3
�rΘ(r − r1)Θ(r2 − r), r1 < r2.

(4.14)
This spherical capacitor consists of two oppositely charged spheres and a radial
current between them. Using the general expressions

Φ =

∫
Gρ(�r′)dV ′, �A =

1

c

∫
G�j(�r′)dV ′,

we easily ˇnd the scalar and vector potentials (only the radial component of the
vector potential is nonzero):

Φ = ikeh
(1)
0 (kr)[j0(1)− j0(2)], Ar = −keh(1)1 (kr)[j0(1)− j0(2)] for r > r2,

Φ = ikej0(kr)[h
(1)
0 (1)− h

(1)
0 (2)], Ar = −kej1(kr)[h(1)0 (1)− h

(1)
0 (2)] for r < r1

and
Φ = ike[h

(1)
0 (kr)j0(1)− j0(kr)h

(1)
0 (2)],

Ar = ek[j1(kr)h
(1)
0 (2)− h

(1)
1 (kr)j0(1)]−

ie

kr2

for r1 < r < r2. Here we put

jl(x) =

√
π

2x
Jl+1/2(x), h

(1)
l (x) =

√
π

2x
H
(1)
l+1/2(x), jl(1) = jl(kr1), etc.
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The magnetic ˇeld is zero everywhere, while the electric ˇeld �E = e�r/r3 differs
from zero only inside the spherical capacitor (i.e., for r1 < r < r2).

It is seen that the waves of electromagnetic potentials appear outside a non-
static electric solenoid. The question arises on the physical meaning of such
waves and the possibility to detect them experimentally. Let the region S in
which �E and �H are nonzero be inaccessible to observation. Can the observer
located outside S verify the existence of electromagnetic potential waves? Since
�E = �H = 0 in these waves, they do not carry an energy. Therefore, they can
be detected only at the quantum level. This is the case because the Schréodinger
equation

ih̄
∂Ψ

∂t
= HΨ, H = − h̄2

2m
(�∇− ie

h̄c
�A)2 + eΦ

describing the scattering of charged particles on the waves of electromagnetic
potentials involves the potentials Φ and �A rather than the ˇelds �E and �H . The
gauge transformation

Ψ→ Ψ′ = Ψexp(−ieχ/h̄c), χ = ik exp(−iωt)
∫

GfdV ′ (4.15)

eliminates the electromagnetic potentials outside S. If χ is a single-valued func-
tion outside S, Eq. (4.15) is a unitary transformation between the single-valued
wave functions in the presence and absence of electromagnetic potentials outside
S. In this case the presence of electromagnetic potential waves outside S does
not lead to observable consequences. On the other hand, if χ is discontinuous
outside S (which, in turn, depends on the choice of the source function f ), the
possibility in principle arises of observing electromagnetic potential waves, e.g.,
by observing a phase difference acquired by the wave function of a charged par-
ticle as the particle travels around a closed contour. A necessary condition is that
the region of space accessible to charged test particles be multiply connected (as
nontrivial electromagnetic potentials corresponding to �E = �H = 0 are allowed
only in non-simply connected spaces).

Up to now we considered only those nonradiating charge-current sources
outside which electromagnetic strengths �E, �H disappeared. No attention was
payed to the existence of electromagnetic potentials in the surrounded space. In
the next section we will be interested in studying those charge-current distributions
outside which �E = �H = 0, but �A,Φ �= 0. To be observable the nonvanishing
electromagnetic potentials should be nontrivial, i.e., unremovable by a gauge
transformation. The static analog of such distributions is TS with a constant
current in its winding. Outside such TS �E = �H = Φ = 0, but �A �= 0. This static
VP was observed in Tonomura experiments [62]. The existence of the nontrivial
nonstatic electromagnetic potentials with mentioned above properties makes the
observation of the time-dependent AharonovÄBohm effect to be possible.



920 AFANASIEV G.N., DUBOVIK V.M.

5. ELEMENTARY TIME-DEPENDENT TOROIDAL SOURCES

Interest in the time-dependent currents {owing in the toroidal coils is due to
the following remark made by James Clerk Maxwell in his memoir ªOn Physical
Lines of Forceª [63]:

ªLet B, Fig. 3, be a circular ring of uniform section, lapped uniformly with
covered wire. It may be shown that if an electric current is passed through this
wire, a magnet placed within the coil of wire will be strongly affected, but no
magnetic effect will be produced on any external point. The effect will be that
of magnet bent round till its two poles are in contact.

If the coil is properly made, no effect on a magnet placed outside it can be
discovered, whether the current is kept constant or made to vary in strength; but
if a conducting wire C be made to embrace the ring any number of times, an
electromotive force will act on this wire whenever the current in the coil is made
to vary; and if the circuit be closed, there will be an actual current in the wire C.ª

Figure 3 mentioned in this passage shows the torus with a poloidal winding
on its surface (see our Fig. 7). At the present time, it is known that in general
this Maxwell assertion is not correct. It turns out that for the time-dependent
current in the toroidal coil the electromagnetic ˇeld strengths appear outside it.
Qualitatively this was shown by Mitkevich [64] and Page [65]. The corresponding
experiments were performed by Mitkevich [64], Ryazanov [66], Bartlett and Ward
[67] and many others. The quantitative results were obtained in Ref. 58 where
the electromagnetic ˇelds were evaluated for a number of time dependences of
the current {owing in the toroidal coil. After all, experimentalists widely use
the toroidal transformers for their own purposes without philosophizing on this
subject. The sole exception for which Maxwell's claim holds is the current
linearly rising in time which {ows in the toroidal coil. In this case H = 0 and E
is independent of time outside the torus (see, e.g., Miller [22, 68]). The question
of the energy transfer into the wire C embracing the torus was considered by
Heald [69] (the difˇculty is that the Poynting vector equals zero for the linear
growing current).

In Sec. 3, we have studied the electromagnetic ˇeld of the static toroidal-
like conˇgurations, their interactions with the external electromagnetic ˇeld and
possible physical applications. It is our nearest goal to study nonstatic current
conˇgurations. Probably, it would be appropriate to explain the meaning of
the words ªelementary toroidal sourcesª in the title of this section. The words
ªtoroidal sourceª mean the poloidal current {owing in the winding of the toroidal
solenoid (TS), which in turn may be an element of a more complex conˇguration.
When the dimensions of this conˇguration tend to zero, we obtain an ªelementary
toroidal sourceª. The reason for the treatment of an elementary toroidal source
is due to the considerable simpliˇcation of the theoretical consideration. The TS
with ˇnite dimensions has a number of nontrivial topological properties (see, e.g.,
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reviews [12, 61, 70]). Suppose that these properties survive when the TS dimen-
sions tend to zero. Thus, if we ˇnd some interesting property for the elementary
toroidal source, there is a chance for it to be survived for the ˇnite toroidal con-
ˇguration. This is conˇrmed for the simplest toroidal conˇgurations for which
the analytical solutions can be found. As an example, mention the conˇguration
consisting of the TS with a linearly growing current {owing in its winding and the
double charged layer lying at the hole of TS (see Sec. 5.3). Outside this conˇg-
uration, there is time-dependent vector potential. The electromagnetic strengths
everywhere disappear except for the static electric ˇeld ˇlling the torus hole.
Thus, the possibility arises to perform a time-dependent AharonovÄBohm-like
experiment. However, the linear time-dependence of the current is unrealistic. It
is the aim of this consideration to ˇnd elementary charge-current conˇgurations
possessing radiationless properties mentioned above but with a rather arbitrary
time dependence.

The plan of our exposition is as follows. The radiation of elementary time-
dependent toroidal-like conˇgurations, in the winding of which the time-dependent
current {ows, is studied in Sec. 5.1. It turns out that two different branches of
these conˇgurations generate essentially different electromagnetic ˇelds. On the
other hand, the current sources of the same branch generate the same electro-
magnetic ˇeld if their time dependencies are properly adjusted. In Secs. 5.2,
5.3 we give the examples of the elementary radiationless charge-current source
having the property that electromagnetic ˇeld strengths disappear outside it, but
the time-dependent potentials survive there. In Sec. 5.4 examples are given of
current conˇgurations generating the static electric ˇeld adequately described by
the electric vector potential rather than by the scalar one. In Sec. 5.5 these results
are applied to the consideration of the time-dependent AharonovÄBohm effect.
The extended toroidal-like current sources are considered in Sec. 5.6. By using
the Neumann-Helmholtz parametrization for the current density the convenient
formulas for the time-dependent electromagnetic ˇelds are obtained. Basing on
them, the more general elementary radiationless charge-current sources of differ-
ent multipolarities are constructed in Sec. 5.7. These elementary conˇgurations
have their ˇnite counterparts. Those of them which can be treated analytically
are radiationless and have nontrivial electromagnetic potentials outside them. Al-
though the electromagnetic ˇeld of more complicated ˇnite conˇgurations cannot
be obtained in a closed form, the electromagnetic ˇeld of their inˇnitesimal
analogues can. The well prescribed rule for the construction of the elementary
radiationless conˇgurations found in Sec. 5.7 suggests that their ˇnite radiation-
less counterparts will also possess nontrivial electromagnetic potentials. Short
discussion of the results obtained and their summary are given in Sec. 5.8.

5.1. The Radiation of the Elementary Toroidal Sources. 5.1.1. A Peda-
gogical Example: Time-Dependent Circular Current. According to the Ampere
hypothesis the distribution of the magnetic dipoles �M(�r) is equivalent to the
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current distribution �J(�r) = rot �M(�r). For example, the circular current {owing
in the Z = 0 plane (upper part of Fig. 1)

�J = I�nφδ(ρ− d)δ(z) (5.1)

is equivalent to the magnetization

�M = I�nΘ(d− ρ)δ(z) (5.2)

different from zero in the same plane and directed along its normal �n (Θ(x) is a
step function). When the radius d of the circumference along which the current
{ows tends to zero, the current �J becomes ill-deˇned (it is not clear what does
the vector �nφ mean at the origin). On the other hand, the vector �M is still well-
deˇned. In this limit the elementary current (5.1) turns out to be equivalent to the
magnetic dipole oriented normally to the plane of this current. It is convenient to
introduce I/πd2 instead of I in Eqs. (5.1), (5.2). Then, in the limit d → 0 one
gets

�M = I�nδ3(�r), (δ3(�r) = δ(ρ)δ(z)/2πρ) (5.3)

and
�J = Irot (�nδ3(�r)). (5.4)

Eqs. (5.3) and (5.4) deˇne the magnetization and current density corresponding
to the elementary magnetic dipole. These questions were considered in detail in
Sec. 3. Now let the intensity of the elementary current change with time

�J0 = f0(t)rot (�nδ
3(�r)) (5.5)

(the factor I is absorbed into f0). The VP corresponding to this current is
elementarily obtained:

�A0 = −
D0

c2r2
(�r × �n), D0 = D(f0) = ḟ0 +

c

r
f0. (5.6)

From now the time derivative will be denoted either by the point above the
letter or (especially for higher derivatives) by the superscripts. For example,
f (2) = f̈ = d2f/dt2. The argument of the f functions, if not indicated, means
t− r/c everywhere in this section. The electromagnetic ˇeld strengths are

�E0 =
1

c3r2
(�r × �n)Ḋ0, �H0 =

�r�n

c3r3
�rF0 −

1

c3r
�nG0, (5.7)

where for brevity we put

F0 = F (f0) = f̈0 + 3
c

r
ḟ0 + 3

c2

r2
f0, G0 = G(f0) = f

(2)
0 +

c

r
ḟ0 +

c2

r2
f0.



SOME REMARKABLE CHARGE-CURRENT CONFIGURATIONS 923

The {ux of the electromagnetic energy through the sphere of the radius r is

S =

∫
Prr

2dΩ =
2

3c5
Ḋ0G0, �P =

c

4π
(E0 ×H0). (5.8)

This {ux is positive for large distances and determined by the second derivative
of f0, S0 =

2
3c5 |f̈k|2. These results are well-known and may be found in many

text-books (see, e.g., Stratton [71]).
In the subsequent consideration the following notation will be used

Dk = D(fk) = ḟk +
c

r
fk, Fk = F (fk) = f̈k + 3

c

r
ḟk + 3

c2

r2
fk,

Gk = G(fk) = f
(2)
k +

c

r
ḟk +

c2

r2
fk.

From the classical electrodynamics it is known ([24, 48]) that there are two
types of multipole radiation. For the multipole radiation of magnetic type �r �E =
0, �r �H �= 0, while for the radiation of electric type should be �r �H = 0, �r �E �= 0
(it is, therefore, assumed that the origin lies within the region where ρ,�j �= 0).
It follows from (5.7) that �r �E0 = 0, �r �H0 �= 0. Thus, radiation ˇeld of the
time-dependent current {owing in a circular turn is of magnetic type.

5.1.2. The Elementary Radiating Toroidal Solenoid. The next in complexity
case is the radiation of the current {owing in the winding of elementary (i.e.,
inˇnitely small) toroidal solenoid. As stated in Sec. 3 (see upper part of Fig. 2)
this elementary current is given by

j1 = f1(t)rot
(2)(�nδ3(�r)), (5.9)

where rot (2) = rot rot and �n means the normal to the equatorial plane of TS.
The electromagnetic potentials and ˇeld strengths are equal to

φ1 = 0, �A1 = −�n
1

c3r
G1 +

1

c3r3
�r(�r�n)F1,

�E1 = �n
1

c4r
Ġ1 −

1

c4r3
�r(�r�n)Ḟ1, H1 =

1

c4r2
D̈1(�r × �n). (5.10)

In this and the following equations of this section we omit the δ-function terms
giving the ˇeld values at the origin (to which the current is conˇned). Thus,
Eqs. (5.10) are valid everywhere except for the origin. Since �r �H1 = 0, �r �E1 �= 0,
the electromagnetic ˇeld radiated by the time-dependent current {owing in the
winding of TS is of electric type.

5.1.3. More Complicated Elementary Toroidal Sources. We consider now
the hierarchy of TS each turn of which is again TS. The simplest example is the
usual TS (which is obtained by an installing of the inˇnitely thin TS in a single
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turn with the current (5.5) in it). We denote this TS by T1 (the initial current
source (5.5) will be denoted by T0 ). The next-in-complexity case is obtained
when each turn of T1 is replaced by the inˇnitely thin TS with alternating current
in its winding. Thus obtained current conˇguration is denoted by T2 (Fig. 4).
When its dimensions tend to zero, we get (see Sec. 2):

�j2 = f2(t)rot
(3)�nδ3(�r). (5.11)

The corresponding VP and ˇeld strengths are given by

�A2 =
1

c4r2
D
(2)
2 (�r × n),

�E2 = −
1

c5r2
D
(3)
2 (�r × n), (5.12)

�H2 = �n
1

c5r
G
(2)
2 −

1

c5r3
�r(�r�n)F

(2)
2 .

By comparing Eqs. (5.6), (5.7) with (5.12) we conclude that the electromagnetic
ˇelds coincide for the current conˇgurations T0 and T2 everywhere except for
the origin if the following relation between time-dependent intensities is fulˇlled

f
(2)
2 = −f0/c2. This means, in particular, that the electromagnetic ˇeld of the
static magnetic dipole (f0 = const) coincides with that of the current conˇguration
T2 if the current in it quadratically varies with time (f2 = −f0c2t2/2). It follows
from this that the magnetic ˇeld of the usual magnetic dipole can be compensated
everywhere (except for the origin) by the time-dependent current {owing in T2.

Compare now the periodical currents {owing in T0 and T2: f0 = f00 cosωt
and f2 = f20 cosωt. It turns out that electromagnetic ˇelds of T0 and T2 coincide
if f20 = f00c

2/ω2.
Obviously, the radiation emitted by T2 is of magnetic type. Now we are able

to write out the electromagnetic ˇeld for the point-like toroidal conˇguration of
the arbitrary order. Let

�jm = fm(t)rot
(m+1)(�nδ3(�r)). (5.13)

Then, for m even (m = 2k, k ≥ 0)

�A2k = (−1)k+1 1

c2k+2r2
D
(2k)
2k (�r × n), �E2k = (−)k 1

c2k+3r2
D
(2k+1)
2k (�r × n),

�H2k = (−1)k 1

c2k+3
[
1

r3
�r(�r�n)F

(2k)
2k − �n

1

r
G
(2k)
2k ]. (5.14)

From the facts that: (i) �A transforms like a vector under space rotations, (ii) VP
changes its sign under space re{ections and (iii) �r �E2k = 0, �r �H2k �= 0 it follows
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[24, 48] that toroidal conˇguration of the even order emits the radiation of the
magnetic type. The {ux of the electromagnetic energy through the sphere of the
radius r is equal to

S =
2

3c4k+5
G
(2k)
2k D

(2k+1)
2k .

On the other hand, for m odd (m = 2k + 1, k ≥ 0)

�A2k+1 = (−1)k 1

c2k+3
[
1

r3
�r(�r�n)F

(2k)
2k+1 − �n

1

r
G
(2k)
2k+1],

�E2k+1 = (−1)k+1 1

c2k+4
[
1

r3
�r(�r�n)F

(2k+1)
2k+1 − �n

1

r
G
(2k+1)
2k+1 ],

�H2k+1 = (−1)k 1

c2k+4r2
D
(2k+2)
2k+1 (�r × n) S =

2

3c4k+7
G
(2k+1)
2k+1 D

(2k+2)
2k+1 . (5.15)

From the facts that: (i) VP �A in (5.15) transforms like a vector under the rotations,
(ii) VP does not change its sign under space re{ections and (iii) �r �H2k = 0,
�r �E2k �= 0, it follows that electromagnetic ˇeld (5.15) is of electric type.

We see that there are two branches of toroidal point-like currents generating
essentially different electromagnetic ˇelds. A representative of the ˇrst branch is
the usual magnetic dipole. The electromagnetic ˇeld of the k-th member of this
family reduces to that of the circular current if the time dependences of these
currents are properly adjusted:

f
(2k)
2k = (−1)kf0(t)/c2k, (k ≥ 0). (5.16)

We remember that the lower index of the f functions selects a particular member
of the ˇrst branch, while the upper one means the time derivative.

The representative of the second branch is the elementary TS. Again, the
electromagnetic ˇelds of this family are the same if the time dependences of
currents are properly adjusted:

f
(2k)
2k+1 = (−1)kf1(t)/c2k, (k ≥ 0). (5.17)

From the equations deˇning the energy {ux it follows that, for high frequencies,
the toroidal emitters of the higher order are more effective (as the time derivatives
of higher orders contribute to the energy {ux).

Earlier, the electromagnetic ˇelds of T0, T1 and T2 current conˇgurations
were considered by Nevessky [11]. Further, the radiation ˇeld originating from
the instantaneous change of dipole moments (i.e., the radiation emitted by the cur-
rent conˇguration T1 for the very particular choice of f1) was given by Dubovik
and Shabanov [72].
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5.1.4. Toroidal Solenoids of Higher Multipolarities. So far we have used the
usual TS as a corner-stone for constructing more complicated current conˇgura-
tions. Under the term ªusualª we mean the torus (ρ − d)2 + z2 = R2 with the
poloidal current {owing on its surface. The VP corresponding to this current falls
as r−3 at large distances:

�A ∼ 3�r(�r�n)− �nr2

r5
for r →∞. (5.18)

Here �n is the unit vector normal to TS' equatorial plane. This VP can be
represented in a slightly different form:

Ai ∼ r−5
∑

Qik(x)nk,

where Qik(x) = xixk − δikr
2/3 is the symmetric traceless tensor of the sec-

ond rank.
It has been shown in Ref. 46] that it is possible to distribute the currents inside

the torus in such a way (for the same magnetic {ux) as to cancel the leading term
(∼ r−3) in the expansion of the VP. It turns out that the ˇrst nonvanishing term
in the expansion of the VP has the form

Ai ∼ r−9
∑

njnknlQ
(4)
ijkl(x), (5.19)

where Q
(4)
ijkl(x) is the symmetric traceless tensor of the fourth rank:

Q
(4)
ijkl(x) = xixjxkxl−

−1
7
(δijxkxl + δikxjxl + δilxjxk + δjkxixl + δjlxixk + δklxixj)r

2+

+
1

35
(δijδkl + δikδjl + δilδjk)r

4.

This VP falls like r−5 for r → ∞ and carries the same magnetic {ux as the
initial solenoid with asymptotic behaviour r−3 of the VP. With this TS taken
as a corner-stone and using the procedure described above we can construct a
new hierarchy of TS's. This game may be continued further. More complicated
current conˇguration may be found inside the torus for which the VP falls like
r−7 [46]. This current conˇguration may be in turn used as a corner-stone for
the construction of the TS installed in each other. These corner-stone current
conˇgurations correspond to higher order toroidal multipoles [15]. At large
distances these VP have the following asymptotic behaviour

A
(l)
i ∼ r−2l−1

∑
Qli1,i2,...,il(x)ni1ni2 ...nil . (5.20)
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Here Qli1,i2,...,il is the symmetric traceless form of the order l. Correspondingly

the VP �A(l) falls as r−l−1 for r → ∞. Only even values of l correspond to the
ˇnite conˇgurations of poloidal currents found in [46]. As asymptotic form (5.20)
satisfy conditions div �A = 0, rot �A = 0 for any l , the question arises on the
possible existence of ˇnite current toroidal-like conˇgurations (i.e., ones outside
which �E = �H = 0) corresponding to odd l. So far we did not identify them.

5.2. On the Radiationless Topologically Nontrivial Sources of Electromag-
netic Fields. Consider the electric dipole oriented in the �n direction. Its charge
density is

ρd = e[δ3(�r + a�n)− δ3(�r − a�n)].

For small separation a this reduces to

ρd = 2ea(�n∇)δ3(�r).

Let the intensity of this dipole change with time

ρd = fd(t)(�n∇)δ3(�r)

(the factor 2ea is absorbed into fd). The corresponding current density is given
by

�jd = −ḟd(t)�nδ3(�r).
These densities generate the following potentials and ˇeld strengths (see, e.g.,
Weinstein [73]):

φd = −
1

cr2
(�n�r)Dd, �Ad = −�nḟd/rc

�Hd =
1

c2r2
(�r × �n)Ḋd, Ed =

1

c4r
�nGd −

1

c2r3
(�n�r)�rFd. (5.21)

Evidently, the radiation emitted by the oscillating electric dipole is of electric type.
From a comparison of Eqs. (5.10) and (5.21) we conclude that the ˇeld

strengths of the time-dependent current {owing in the winding of the inˇnitely
small TS can be compensated by that of the electric dipole if their time de-
pendences are properly adjusted: fd = −ḟ1/c2. Then, the total charge-current
densities are

ρ = − 1

c2
ḟ1 · (�n∇)δ3(�r), �j = f1(t)rot

(2)�nδ3(�r) +
1

c2
f̈1�nδ

3(�r). (5.22)

In the surrounding space �E = �H = 0, but the potentials differ from zero

φ =
1

c3r2
(�n�r)Ḋ1, �A = − 1

c2r2
�nD1 +

1

c3r3
�r(�r�n)F1. (5.23)

Thus, outside this composite object (electric dipole and TS placed at the same
point) there are nonvanishing time-dependent electric and vector potentials despite
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disappearance of the ˇeld strengths. The simplest example corresponds to f1 =
const. Then,

φ = 0, �A = f1[3�r(�r�n)− �nr2)/cr5

which coincides with VP of the elementary (i.e., inˇnitely small) static TS. The
next-in-complexity case is the composite object consisting of the static electric
dipole (fd = f = const) and the current which linearly changes with time in the
winding of TS

ρ = f(�n∇)δ3(�r), �j = −c2ftrot (2)�nδ3(�r)

�E = �H = 0, φ = −f(�n�r)/r3, �A = −ctf [3�r(�r�n)− �nr2)/r5. (5.24)

A counterpart of (5.24) with ˇnite dimensions is linearly rising with time current
{owing in the winding of TS and the double charged layer ˇlling the hole of
the same TS. Outside this conˇguration electromagnetic strengths vanish, but the
nontrivial (that is, unremovable by a gauge transformation) VP exists.

Another interesting case is the compensation of the electromagnetic ˇeld
generated by the oscillating electric dipole by that of the periodical current {owing
in the winding of the TS:

ρ = ρd = f cosωt(�n∇)δ3(�r), �j = �jd+�j1 = fω sinωt[�nδ3(�r)− c2

ω2
rot (2)�nδ3(�r)],

�E = �H = 0, φ =
f

cr2
(�n�r)(ω sinΩ− c

r
cosΩ), Ω = ω(t− r/c),

�A =
f

r2
�n(cosΩ +

c

ωr
sinωt) +

ωf

cr3
(�r�n)�r(sinΩ− 3 c

ωr
cosΩ− 3 c2

ω2r2
sinωt).

It turns out that the ˇeld strengths are compensated if the phase of the charge
density of the electric dipole is shifted by π/2 relative to the phase of the current
{owing in the winding of toroidal solenoid.

In the wave zone the equivalence of EMF radiated by the oscillating electric
dipole to that of produced by the periodical current {owing in the winding of TS
was established earlier in Ref. 30. There is no equivalence in the whole space if
the ˇnite-dimensional counterparts of the afore-mentioned charge-current conˇgu-
rations are nontrivial. In this case there is no global gauge transformation between
the corresponding potentials and this could in principle be observable. The fol-
lowing sections illustrate this. There are references [6,10,12,22,32,45,74,75] in
which the nonradiating sources were treated. Outside these sources both elec-
tromagnetic strengths and potentials were zero and, thus, they are of no interest
for us. Up to now it was not known whether the nontrivial nonradiating time-
dependent sources can exist in principle. As far as we know, the ˇrst such
example has been given in Ref. 13. Nontrivial time-dependent electromagnetic
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potentials can be used as a new channel for the information transfer (by modu-
lating the phase of the charged-particle wave function) and for the performance
of time-dependent AharonovÄBohm-like experiments.

5.3. On the Current Conˇgurations Generating the Static Electric Field.
Consider the poloidal current (Fig. 8) on the torus surface ((ρ − d)2 + z2 = R2)
which increases linearly with time: �j = �j0t. To parametrize j0 it is convenient
to introduce the coordinates R̃,Ψ (Fig. 3):

x = (d+ R̃ cosΨ) cosφ, y = (d+ R̃ cosΨ) sinφ, z = R̃ sinΨ.

In these coordinates,

�j0 = �nψ
j0t

R2
δ(R − R̃)

d+R cosΨ
.

Here �nψ is the unit vector tangential to the torus surface: �nψ = �nz cosψ −
�nρ sinψ. It lies in the φ = const plane on the torus surface (R̃ = R) and deˇnes
the direction of �j. It turns out [58, 68] that for this current only the electric
strength �E differs from zero outside the torus. For simplicity we consider the
inˇnitely thin torus (R << d). The following representation for the VP is valid
[76, 77]:

Ax =
Φ0t

4π

∂2α

∂x∂z
, Ay =

Φ0t

4π

∂2α

∂y∂z
, Az = −

Φ0t

4π
(
∂2α

∂x2
+

∂2α

∂y2
), div �A = 0.

Here

Φ0 = −
4π2j0
cd

, α =

∫ ∫
dx′dy′

|�r − �r′| . (5.25)

The integration in α is performed over the circle z = 0, ρ ≤ d coinciding with
the hole of the inˇnitely thin torus (R << d). It was shown in [77] that VP
has nowhere singularities except for the line z = 0, ρ = d into which torus T
degenerates itself. The electromagnetic strengths are

Hρ = Hz = 0, Hφ = Φ0tδ(z)δ(d− ρ),

Ex = −
Φ0
4πc

∂2α

∂x∂z
, Ey = −

Φ0
4πc

∂2α

∂y∂z
, Ez =

Φ0
4πc

(
∂2α

∂x2
+

∂2α

∂y2
). (5.26)

On the other hand, the electric ˇeld produced by two oppositely charged layers
(ρ ≤ d, z = ±ε) ˇlling the torus hole is given by

Edx =
2eε

πd2
∂2α

∂x∂z
, Edy =

2eε

πd2
∂2α

∂y∂z
,

Edz =
2eε

πd2
∂2α

∂z2
=

2eε

πd2
(
∂2α

∂x2
+

∂2α

∂y2
)− 8eε

d2
δ(z)Θ(d− ρ). (5.27)
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Fig. 9. The poloidal current �j linearly grow-
ing with time is equivalent to the doubly
charged layer (the upper part of the ˇgure).
The lower part of this ˇgure illustrates that
the electric ˇeld of the current may be com-
pensated by that of the doubly charged layer

We see that Edz has a singularity on
the circle z = 0, ρ ≤ d. It follows
from Eqs. (5.26) and (5.27) that if

Φ0
4πc

=
2eε

πd2
,

then the electric ˇeld of the linearly
growing poloidal current is compen-
sated by that of the double layer every-
where except for the position of the
layer itself (see Fig. 9). The electro-
magnetic potentials and ˇeld strengths
of this combined conˇguration are
given by

φ = − Φ0
4πc

∂α

∂z
,

Ax =
Φ0t

4π

∂2α

∂x∂z
, Ay =

Φ0t

4π

∂2α

∂y∂z
, Az = −

Φ0t

4π
(
∂2α

∂x2
+

∂2α

∂y2
),

Ex = Ey = 0, Ez = −
1

c
Φ0δ(z)Θ(d− ρ), (5.28)

Hρ = Hz = 0, Hφ = Φ0tδ(z)δ(d− ρ).

We observe that the time-independent electric ˇeld �E differs from zero only
inside the torus hole (ρ ≤ d, z = 0), while the magnetic ˇeld �H �= 0 only on
the ˇlament ρ = d, z = 0 coinciding with an inˇnitely thin torus.

The situation remains essentially the same for the TS with a ˇnite value of
R. Let the linearly rising current {ow in its winding. The corresponding VP is
�ATS = t �A0, where A0 is independent of time and up to nonessential constant
coincides with the VP of the static TS. The corresponding electric ˇeld strength is
�ETS = − �A0/c. It is known [58, 77] that A0 is everywhere continuous function
of coordinates. Further, outside the solenoid �A0 can be written as a gradient of
some function χ: �A0 = gradχ. This representation is valid everywhere except
for the circle ρ ≤ d − R, z = 0 ˇlling TS hole. Function χ suffers a ˇnite jump
from the value χ = Φ0 on the lower side (z = 0−) of this circle up to value
χ = −Φ0 on its upper side (z = 0+). Here Φ0 = dΦ/dt is the magnetic {ux
change per unit of time. Obviously, it does not depend on time. Now we identify
−χ/c with the scalar potential of some electric ˇeld. The corresponding electric
strength is:

�Ed = −grad (−χ/c) =
1

c
grad χ =

1

c
�A0 −

1

c
Θ(d− ρ)δ(z)Φ0�nz.
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The associated charge density

ρd = (1/4π)div �Ed = −(1/4πc)Θ(d− ρ)δ̇(z)Φ0

describes the electric dipoles layer ˇlling the TS hole. The total electric ˇeld is:

�E = �ETS + �Ed = −
1

c
Θ(d− ρ)δ(z)Φ0�nz.

Fig. 10. The torus T is densely covered
by the inˇnitely thin toroidal solenoids
t (only few of them are shown) in the
windings of which {ows the current
linearly rising with time. The magnetic
ˇeld H differs from zero only inside t
(that is, at the surface of T in the limit
of inˇnitely thin t), while independent
of time electric ˇeld E differs from
zero inside T . A scalar electric po-
tential is zero everywhere. The vector
magnetic potential equals zero outside
T and t. Although electromagnetic po-
tentials and strengths are zero outside
T and t, there is nonzero electric vec-
tor potential ( �E = rot �α) there. The
Stokes theorem (see the text) ensures
us that �α cannot be removed by the
gauge transformation

This means that EMF of the TS with
a linearly rising current can be compen-
sated by the EMF of the static elec-
tric dipoles layer ˇlling the TS hole
everywhere except for the TS hole itself.
5.3.1. On the Current Electrostatics. Al-
though the toroidal solenoid with a linearly
growing current and the double charged
layer produce the same electric ˇeld in the
space surrounding them, they in fact repre-
sent quite different systems. The following
example illustrates this. Consider an arbi-
trary closed curve C at each point of which
we install (perpendicular to this curve) an
inˇnitely thin toroidal solenoid with a cur-
rent linearly growing with time. The whole
set of these solenoids forms a toroidal-like
surface S. The magnetic strength is every-
where zero except on the surface S. The
electric strength and time-dependent mag-
netic VP will be different from zero only
inside the tube T , surrounded by the surface
S. It seems at ˇrst that this contradicts the
vanishing of VP outside S (VP should be
everywhere continuous). The reason is the
same as the discontinuity of the usual elec-
tric scalar potential on the surface of a dou-
ble charged layer: it turns out that the sur-
face S is an example of the double current
layer. This construction (Fig. 10) realises
a pure current capacitor (the static electric
ˇeld produced by the time-dependent cur-
rent is conˇned to the interior of the tube T ). If the set of charged layers (instead
of TS) were installed along on the same curve C (perpendicular to it), the elec-
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tric strength would vanish inside the tube T . However, the nontrivial electric
induction will be different from zero there [32].

Fig. 11. A semi-inˇnite set of in-
ˇnitely thin TS with linear ris-
ing currents in their windings (left
part of the ˇgure) and linear ris-
ing currents {owing along the
semi-inˇnite parallel cylindrical
surfaces (right part) generate the
ˇeld of an electric charge every-
where except for the position of
the cylinder

Consider a semi-inˇnite cylinder C densely
covered by the inˇnitely thin toroidal solenoids
(Fig. 11). For simplicity, consider the case when
the radius of the cylinder tends to zero. In the
limit one obtains a semi-inˇnite ˇlament com-
posed of the toroidal moments µt. The VP of a
particular toroidal moment lying at z = z0 is

Ax = µt
∂2

∂x∂z

1

r̃
, Ay = µt

∂2

∂y∂z

1

r̃
,

Az = µt[
∂2

∂z2
1

r̃
+ 4πδ(x)δ(x)δ(z − z0)],

r̃ =
√

x2 + y2 + (z − z0)2, div �A = 0.

To obtain the VP of the semi-inˇnite ˇlament
composed of the toroidal moments, we integrate
these equations from z0 = −∞ to z0 = 0:

Ax = µt
x

r3
, Ay = µt

y

r3
,

Az = µt[
z

r3
+ 4πδ(x)δ(y)Θ(−z)], div �A = 0.

Let in the windings of toroidal solenoids covering
the surface of C {ows the current linearly rising

with time. The VP of a particular inˇnitely small solenoid located at z = z0 was
obtained in Ref. 58. It is given by

Ax = tµ̇t
∂2

∂x∂z

1

r̃
, Ay = tµ̇t

∂2

∂y∂z

1

r̃
,

Az = tµ̇t[
∂2

∂z2
1

r̃
+ 4πδ(x)δ(x)δ(z − z0)], div �A = 0.

Here µ̇t is the independent of time constant characterizing the rate of the current
change. The total VP of the semi-inˇnite ˇlament densely covered by the inˇnitely
small toroidal solenoids with time-dependent currents in their windings is obtained
by integrating these equations from z0 = −∞ to z0 = 0:

Ax = tµ̇t
x

r3
, Ay = tµ̇t

y

r3
, Az = tµ̇t[

z

r3
+ 4πδ(x)δ(y)Θ(−z)], div �A = 0.
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To this semi-inˇnite ˇlament corresponds the static electric ˇeld

�D = �E, Ex = −µ̇t
x

cr3
, Ey = −µ̇t

y

cr3
,

Ez = −
µ̇t

c
[
z

r3
+ 4πδ(x)δ(y)Θ(−z)], div �E = 0,

and the singular magnetic ˇeld conˇned to the negative z semiaxis

�B = �H = Hφ�nφ, Hφ = −4πtµ̇t
d

dρ

δ(ρ)

2πρ
, div �H = 0.

The resulting EMF coincides with that of the point electric charge e = −µ̇t/c
everywhere except for the semi-inˇnite ˇlament (left part of Fig. 11). Above,
we have used the fact that �D = �E, �B = �H in the absence of medium. The
same electric ˇeld may be also realized via two linearly-rising currents {owing
in opposite directions along the cylindrical surfaces parallel to the z axis (right
part of Fig. 11). The equalities

div �D = 0,

∫
DndΩ = 0

guarantee the absence of free charges. Obviously, thus obtained electric charges
are not true ones (due to the presence of δ function term).

In a qualitative manner these results were obtained earlier by M.A. Miller [68]
who pointed out on the possibility to simulate the charge distributions by the time-
dependent currents. He referred to it as to ªcurrent electrostaticsª. The present
investigation may be viewed as a concrete realization of these ideas. Excellent
measurements of the static electric ˇelds produced by the time-dependent currents
have been reported in [66].

There are known attempts (see, e.g., [78] and references therein) to measure
the electric ˇeld arising from the stationary currents. Maxwell's theory negates
the existence of this ˇeld. On the other hand, we have seen that there exist
nonstatic current conˇgurations generating the static electric ˇeld.

5.4. On the Electric Vector Potentials. As we have learned from the
previous section, it is possible to ˇnd current conˇgurations producing a static
electric ˇeld �E inside the tube T . As �E is due to the currents, so div �E = 0,
and it can be represented in the form �E = rot �Ae. The possibility of such
representation for a free electromagnetic ˇeld was pointed out earlier by Stratton
[71]. The integral

∫
�EdS taken over the tube T cross section differs from zero.

Then, the Stokes theorem
∫

�EdS =
∮

�Aed�l (the linear integral is taken along the

contour embracing the tube T but lying outside it) tells us that �Ae differs from
zero outside T . Or, in other words, there is a nontrivial electric VP outside T
(Fig. 10). The same is valid for a closed chain of electric dipoles [32]. The
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drawback of the present consideration is that we have not taken into account
singular ˇelds in the inˇnitely thin layer on the surface of T (where the currents
{ow). It may happen that they exactly compensate the {ux of �E inside T . Then
the total {ux of the electric strength will be zero and there will be no need to
introduce the electric vector potential. To clarify this point, we turn again to the
closed chain of TS, installed along the closed curve C perpendicular to it. The
total VP and electric ˇeld strength are given by

�A(�r) =

∫
�ATS(�r, �r0(s))ds, �E = − �̇A/c. (5.29)

Here �ATS is the VP of the particular inˇnitely thin TS with its center at the
point �r0(s) . The integration in (5.29) is performed along the curve C deˇned
as �r = �r0(s). For the treated case the time-dependent VP is given by [58]:
�ATS(t) = t �A0TS , where �A0TS is the VP of TS with a static current. However,
we are unable to evaluate the integral (5.29) along an arbitrary closed curve.
Instead, we integrate along the inˇnite straight line parallel to the TS' symmetry
axis. In the special gauge the VP of TS with its axis parallel to the Z one
is [76, 77]: �A0TS = −g�nzT , where T is given by Eqs. (2.8), (2.9) in which
one should use z − z0 instead of z (z0 is the position of the TS' center); g =
Φ0[2π(d −

√
d2 −R2]−1 and Φ0 is the magnetic {ux inside TS, d and R are its

geometrical parameters. Now we integrate this VP along the Z axis

Az =

∫
( �A0TS)zdz0.

It turns out that
Az = Φ0 for ρ < d−R,

Az = Φ0 − 2gξ ln ρ+ 2g

ξ∫
0

dz ln(d−
√

R2 − z2)

for d−R < ρ < d, ξ =
√

R2 − (ρ− d)2,

Az = −2gξ ln ρ+ 2g

ξ∫
0

dz ln(d+
√

R2 − z2) for d < ρ < d+R

and Az = 0 for ρ > d+R. The {ux of the VP �A is obtained by integration over
the cylinder C cross section

∫
Azρdρdφ = π2gdR2.
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In the limit R → 0 this expression goes into πd2Φ0 that coincides with the
integral of VP taken over the interior of the cylindrical tube without taking into
account the singular magnetic ˇeld concentrated on the surface of the cylinder.
This means that the surface magnetic ˇeld contributes nothing in the limit R→ 0.

Fig. 12. The torus T is
densely covered by the
magnetized rings (only few
of them are shown). The
magnetic strength �H dif-
fers from zero at the sur-
face of T , while the mag-
netic vector potential �A
differs from zero only in-
side T and at its surface.
Outside T there is nontriv-
ial (that is, unremovable by
the gauge transformation)
vector �α the curl of which
is vector potential �A

Thus, we have proved that for the treated cur-
rent conˇguration (TS continuously distributed over
the cylinder C surface) the VP equals zero outside C,
but its {ux over the cross section of C differs from
zero. As div �A = 0, we may put �A = rot �α. Using
the Stokes theorem one sees that there is the non-
trivial vector function �α outside C although A = 0
there. The main problem is that α does not enter into
the Schroedinger or the Dirac equation. Nevertheless,
such a current conˇguration interacts with an external
electromagnetic ˇeld (see Sec. 2.2) and, in particular,
with that of the incoming charged particle.

The existence of the nontrivial (that is, unremov-
able by the gauge transformation) vector �α, the rot of
which is just VP may be proved without recourse to
the just considered rather complicated nonstatic current
conˇgurations. Consider the set of the closed magne-
tized ˇlaments uniformly distributed over the surface
of the torus T (see Fig. 12 where the lines on the torus
surface mean the magnetized ˇlaments). This conˇgu-
ration can be assembled from the ferromagnetic rings
used in Tonomura experiments [62] testing the exis-
tence of the AharonovÄBohm effect. The VP differs
from zero only inside the torus T although the mag-
netic strength �H vanishes there (it differs from zero
on the surface of T ). Then, reasonings similar to the
previous ones prove the existence of the vector �α ( �A = rot �α) in the space
external to T . It seems that �α cannot be eliminated by a gauge transformation.

5.5. Time-Dependent AharonovÄBohm Effect. Consider the scattering of
charged particles on a charge-current conˇguration shown in the lower part of
Fig. 9. It consists of the impenetrable toroidal solenoid with a layer of electric
dipoles ˇlling torus hole. The corresponding Schroedinger equation is

ih̄
∂ψ

∂t
= [− h̄2

2m
(∇− ie

h̄c
�A)2 + eφ]ψ. (5.30)

To prevent the particle penetration into the torus interior, it can be made impen-
etrable. Outside it the magnetic ˇeld �H = 0 everywhere, the electric ˇeld is also
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everywhere zero except for the torus hole where it has the δ-type singularity.
The static scalar and linearly growing with time vector potentials differ from zero
everywhere. The integral

∮
Aldl taken along the closed path passing through the

torus hole also grows linearly with time. The question arises to what extent the
electromagnetic potentials can be removed from the Schroedinger equation (5.30).

But at ˇrst we remember the situation for the usual inˇnitely thin static
magnetic toroidal solenoid without the double charged layer [76, 77]. In this case

Φ = 0, Ax =
Φ0
4π

∂2α

∂x∂z
, Ay =

Φ0
4π

∂2α

∂y∂z
, Az = −

Φ0
4π

(
∂2α

∂x2
+

∂2α

∂y2
),

�E = 0, �H = �nφΦ0δ(ρ− d)δ(z)

(Φ0 is the magnetic {ux inside the TS and α is deˇned in Eq. (5.25)). The
following gauge transformation

�A→ �A′ = �A−∇χ, ψ → ψ′ = ψ exp(ieχ/h̄c), χ =
1

4π
Φ0

∂α

∂z

leads to VP ˇlling the torus hole:

A′x = A′y = 0, A′z = Φ0δ(z)Θ(d− ρ), (5.31)

ih̄
∂ψ′

∂t
= − h̄2

2m
[∇2x +∇2y + (∇z −

ie

h̄c
Φ0δ(z)Θ(d− ρ))2]Ψ′.

The VP cannot be expelled from this equation by the gauge transformation and
this leads to the shift of interference picture on the screen installed behind TS.
The corresponding experiments have been performed by Tonomura [62], their
theoretical description is given in [79]. For the treated time-dependent case the
gauge transformation which partially eliminates the electromagnetic potentials is

�A→ �A′ = �A−∇χ, φ→ φ′ = φ+ χ̇/c,

ψ → ψ′ = ψ exp(ieχ/h̄c), χ =
1

4π
Φ0t

∂α

∂z
.

After this transformation

φ′ = A′x = A′y = E′x = E′y = 0, A′z = Φ0tδ(z)Θ(d− ρ),

E′z = Ez = −
1

c
Φ0δ(z)Θ(d− ρ), H ′φ = Hφ = Φ0tδ(z)δ(d− ρ).

ih̄
∂ψ′

∂t
= − h̄2

2m
[∇2x +∇2y + (∇z −

ie

h̄c
Φ0tδ(z)Θ(d− ρ))2]Ψ′. (5.32)
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Fig. 13. The magnetic time-
dependent AB effect. For the
charge-current conˇguration dis-
cussed in the text the time-
dependent magnetic {ux differs
from zero only inside the impene-
trable torus T . Outside T the in-
dependent of time electric strength
E differs from zero only inside the
torus hole. It is the time-dependent
magnetic {ux inside T that leads to
the time variation of the intensity of
the scattered charged-particles

Eqs. (5.31) and (5.32) have essentially the
same form. Likewise the static VP can-
not be expelled from Eq. (5.31), the time-
dependent VP cannot be removed from Eq.
(5.32). This means that changing with
time interference picture inevitably arises on
the screen installed behind the impenetrable
toroidal solenoid (Fig. 13). The static elec-
tric ˇeld E ˇlling the torus hole certainly de-
{ects the incoming charged particles (via the
Lorentz force). The charged particles scatter-
ing cross section evaluated according to the
laws of classical mechanics does not depend
upon the time. The time dependence of the in-
terference picture is a pure quantum effect. It
is due to the time-dependent magnetic {ux en-
closed into the impenetrable torus. We observe
that effects of excluded ˇelds (time-dependent
magnetic ˇeld conˇned to the impenetrable
torus) are observed against a background of
accessible ones (i.e., the static electric ˇeld
ˇlling torus hole).This agrees with a standard
deˇnition of the AharonovÄBohm effect as ob-
servable effects of enclosed (or, inaccessible)
ˇelds (see, e.g., [62]). For the cylindrical geometry the magnetic time-dependent
AB effect was considered recently in Refs. 80, 81.

5.6. Finite Toroidal-Like Conˇgurations. 5.6.1. The Debye Parametriza-
tion for the Electromagnetic Potentials and Strengths. Consider now the time-
dependent current distribution conˇned to a ˇnite region of space

�j(�r, t) = f(t)�j(�r). (5.33)

An arbitrary vector function and, in particular, the current distribution can be
presented in the form (Debye parametrization)

�j(�r) = ∇Ψ1 + rot (�rΨ2) + rot (2)(�rΨ3). (5.34)

It turns out that the VP corresponding to the current density (5.33) in the Lorentz
gauge (div �A+ Φ̇/c = 0) is given by

�A = �∇a1 + rot (�ra2) + rot 2(�ra3). (5.35)

Clearly, Eq. (5.35) is the Debye parametrization of VP. The functions entering
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into it are

ak = Ik/c, Ik =

∫
1

R
f(t−R/c)Ψk(�r

′)dV ′. (5.36)

Here R = |�r−�r′|. To be complete, we write out the corresponding scalar electric
potential

φ = −İ1/c+ 4πF (t)Ψ1(�r) + φstat. (5.37)

Here the point above Ik means the time derivative, F (t) =
∫ t

f(t)dt and φstat
is the scalar potential arising from time-independent part of the charge density
(if it exists): φstat =

∫
R−1ρstat(�r

′)dV ′. It is convenient to represent the ˇeld
strengths in the same form as j and A:

�E = �∇e1 + rot (�re2) + rot (2)(�re3),

�H = �∇h1 + rot (�rh2) + rot (2)(�rh3). (5.38)

It turns out that

e1 = −φstat − 4πF (t)Ψ1(�r), e2 = −İ2/c2, e3 = −İ3/c2,

h1 = 0, h2 = −Ï3/c3 + 4πf(t)Ψ3(�r)/c, h3 = I2/c. (5.39)

These representations are convenient because the potentials and strengths are
obtained from the relatively simple integrals, their time and space derivatives.

We know from Sec. 3 that the functions Ψ2 and Ψ3 carry information on
the magnetic and toroidal (electric) moments, resp. Thus, putting Ψ2(�r) =
ψ2(r)Ylm(θ, φ) and Ψ3(�r) = ψ3(r)Ylm(θ, φ) we obtain the formulae describing
the radiation of particular magnetic and toroidal (electric) multipoles. The func-
tions ψ2 and ψ3 deˇne the radial distribution of the current sources. Developing
the function g = f(t−R/c)/R over the spherical harmonics:

g = 4π
∑ 1

2l+ 1
gl(r, r

′, t)Ylm(θ, φ)Y
∗
lm(θ

′, φ′) (5.40)

we obtain for the particular lm multipole

Ilm =
4π

c

1

2l+ 1
Ylm(θ, φ)

∫
gl(r, r

′, t)ψk(r
′)r′2dr′ (5.41)

(no sum over l,m here).
5.6.2. Transition to the Point-Like Limit. Eqs. (5.41) deˇne the integrals for

the ˇnite spatial current distribution. To obtain the point current limit we follow
the method used by E.G.P.Rowe [82] for the evaluation of the integral I1 entering
into the deˇnition of φ (see Eq. (5.37)). One simply puts

Ψk(�r) ∼ Ylm(−∇)δ3(�r). (5.42)
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It should be clariˇed what does Ylm(−∇) mean in the r.h.s. of this equation. We
write

Ylm(x) = rlYlm(θ, φ), (5.43)

where Ylm(θ, φ) is the usual spherical harmonic. Clearly, Ylm(x) is the homoge-
neous function (of the order l) in Cartesian variables x, y, z. For example,

Y20(x) ∼ 2z2 − x2 − y2. (5.44)

To obtain Ylm(−∇) we change xi by −∂/∂xi in Eq. (5.43). In particular,

Y20(−∇) ∼ 2
∂2

∂z2
− ∂2

∂x2
− ∂2

∂y2
. (5.45)

Many of the properties of the functions Ylm(x) and their physical applications
are collected in Ref. 83. Now we substitute (5.42) into (5.36) and integrate by
parts:

Ik ∼ Ylm(∇)f(t− r/c)/r. (5.46)

Inserting this expression into Eqs. (5.35), (5.38) we obtain the electromagnetic
potentials and strengths describing the elementary source.

5.7. More General Radiationless Sources. Having obtained the explicit
expressions for the extended and point-like sources, we now try to construct
the radiationless sources of higher multipolarities. Consider charge and current
densities corresponding to the oscillating quadrupole moment:

ρq = fq(t)[(�n�∇)2 −
1

3
∆]δ3(�r), �jq = −ḟq[�n(�n�∇)−

1

3
∇]δ3(�r). (5.47)

On the other hand, consider the pure current density (5.34) with

Ψ1 = Ψ2 = 0, Ψ3 = [(�n�∇)2 − 1

3
∆]δ3(�r), �jc = fc(t)rot

2(�rΨ3). (5.48)

It turns out that the oscillating quadrupole charge-current conˇguration (5.47) and
a pure current conˇguration (5.48) being placed at the same point generate the
total ˇeld strengths equal to zero everywhere except for the origin if the following
relation is fulˇlled: fq = 2ḟc/c

2. The total charge-current densities are equal to

ρ =
2

c2
ḟc(t)[(�n�∇)2−1

3
∆]δ3(�r), �j = fc(t)rot

2(�rΨ3)−
2

c2
f̈c[�n(�n�∇)−

1

3
∇]δ3(�r).
(5.49)

Nevertheless, the electromagnetic potentials are not zero:

φ = φq =
2

c4r3
[(�n�r)2 − 1

3
r2]Ḟc,
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�A = �Aq + �Ac = −
4

c3r3
[(�n�r)�n− 1

3
�r]Fc +

2

c4r4
�r[(�n�r)2 − 1

3
r2]

×(f (3)c + 6
c

r
f (2)c + 15

c2

r2
ḟc + 15

c3

r3
fc), (Fc = F (fc) = f̈c + 3

c

r
ḟc + 3

c2

r2
fc).

(5.50)
For fc = const., fq = 0 we get the following static conˇguration:

�j = fc(t)rot
2(�rΨ3), �A = − 12

cr5
fc[(�n�r)�n−

1

3
�r]+

30

cr7
fc�r[(�n�r)

2− 1
3
r2]. (5.51)

This VP falling at large distances as r−4 corresponds to l = 3 in Eq. (5.20). As we
have mentioned at the end of Sec. 6.1.3, we did not succeeded in identifying the
ˇnite static current conˇguration whose inˇnitesimal limit coincides with (5.51)
and corresponds to odd l in (5.20). The next-in-complexity case corresponds to
octupole oscillations of the charge density

ρq = fq(t)(�n∇)[(�n�∇)2 −
3

5
∆]δ3(�r), �jq = −ḟq�n[(�n�∇)2 −

3

5
∆]δ3(�r). (5.52)

The elementary toroidal current distribution giving the same ˇeld strengths cor-
responds to

Ψ1 = Ψ2 = 0, Ψ3 = fc(t)(�n∇)[(�n�∇)2 −
3

5
∆]δ3(�r), fq = −3ḟc/c2. (5.53)

The ˇnite poloidal current distribution whose inˇnitesimal limit coincides with
Eq. (5.53) was obtained in Ref. 46. The asymptotic behaviour of the correspond-
ing VP is determined by Eq. (5.19).

Now we are able to write out more general radiationless charge-current con-
ˇgurations. The extension of Eqs. (5.47) and (5.52) to an arbitrary multipolarity
l is given by

ρq = fq(t)(�v∇)δ3(�r), �jq = −ḟq(t)�vδ3(�r). (5.54)

Here ∇i = ∂/∂xi, while �v is the vector whose cartesian components are

vi =
∑
i2...il

Q(l)i,i2,...,il∇i2 ...∇il ;

Q(l)i,i2,...,il is the symmetric traceless tensor (see Sec. 3.2.2) of the rank l of the
variables nx, ny, nz deˇning the direction of the ˇxed 3-vector (this vector can
be identiˇed with the direction of TS' axis). The electromagnetic potentials and
ˇeld strengths corresponding to these densities are

φq = (�v�∇)fq
r
, �Aq = −�v

1

c

ḟq

r
,
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Eq = −∇(�v�∇)
fq

r
+

1

c2
�v
f̈q

r
, �Hq = −

1

c
(∇× �v)

ḟq

r
(5.55)

(remember that argument of the f functions, if not indicated, means t− r/c). On
the other hand, a pure current conˇguration generalizing Eqs. (5.48) and (5.53)
is given by

ρc = 0, �jc = fc(t)rot
(2)(�rΨ3), Ψ3 = (�v∇)δ3(�r). (5.56)

The corresponding electromagnetic potentials and ˇeld strengths are

φc = 0, �Ac = −
l

c
∇(�v�∇)fc

r
+

l

c3
�v
f̈c

r
+
4π

c
fc(t)�r(�v∇)δ3(�r),

�Ec =
l

c2
∇(�v�∇)fc

r
− l

c4
�v
f3c
r
− 4π

c2
ḟc(t)�r(�v∇)δ3(�r),

�Hc =
l

c3
(∇× v)

f̈c

r
− 4πl

c
fc(t)(�r × �∇)(�v∇)δ3(�r). (5.57)

Now we place charge-current densities (5.54) and (5.56) at the same point. It
turns out that if fq = ḟc/c

2, then the total electromagnetic ˇeld strengths are
everywhere zero except for the origin:

�H = −4πl
c

fc(t)(∇× �v)δ3(�r), �E =
4πl

c2
ḟc(t)�vδ

3(�r). (5.58)

Nevertheless, the electromagnetic potentials differ from zero in the whole space:

φ = −χ̇/c, �A = ∇χ− 4πl

c
fc(t)vecvδ

3(�r), χ = − l

c
(�v∇)fc

r
. (5.59)

Evidently, these equations generalize particular cases considered earlier.
5.8. Concluding Remarks on the Toroidal Radiationless Sources. In the

previous section we have found elementary charge-current conˇgurations with the
property that electromagnetic strengths, not potentials, disappear outside them.
Turning to Eq. (5.59) we observe that outside the source one gets �A = ∇χ and
φ = −χ̇/c, that is, electromagnetic potential can be presented there as a 4-gradient
of a singular function χ. Does this mean that electromagnetic potentials can be
eliminated by a gauge transformation? One cannot comment on the topological
nontriviality of electromagnetic potentials without going beyond the framework
of the elementary source. This is due to the fact that it is not clear what is the
topologically nontrivial point-like source. As an illustration consider the vector
potential (5.18) of the usual static elementary toroidal solenoid. It turns out that
outside the origin (where the TS is placed) the VP may be presented as a gradient
of the singular function χ = −f1(�n�r)/r3. On the other hand, outside the ˇnite
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TS (whose inˇnitesimal counterpart is elementary source (5.18)) the VP cannot
be eliminated by the gauge transformation (despite the fact that E = H = 0
there). This leads to numerous experimental consequences and, in particular,
to the static magnetic AharonovÄBohm effect. The experiments in which the
electrons were scattered on the impenetrable magnetized ring were performed by
Tonomura et al. [62].

Now we turn again to Eqs. (5.54), (5.56). We know [46] how to ˇnd ˇnite
counterparts of the elementary sources (5.52). For time dependences for which
VP can be found in a closed form, the rules (6.50), (5.57) lead to the topologi-
cally nontrivial electromagnetic potentials outside the radiationless sources. The
uniformity of these prescriptions suggests that nontrivial potentials should exist
for an arbitrary time-dependence. To the best of our knowledge the nontrivial
radiationless sources considered in [13] are their ˇrst concrete realizations.

Further, it turns out that the ˇeld strengths vanish in the space surround-
ing radiationless sources. Since the electromagnetic strengths generated by the
oscillating charge densities and the elementary toroidal sources are the same (if
their time dependences are properly adjusted), particular terms of the multipole
expansions deˇning these strengths coincide and have the double names known in
a physical literature as electric (see, e.g., [24, 48]) or toroidal [15, 30, 31] multi-
poles. Despite the coincidence of the electromagnetic strengths, the corresponding
potentials may be physically different. In these cases the multipole expansion of
the ˇeld strengths does not describe the whole physical situation (since the same
multipole expansion of the ˇeld strengths corresponds to physically different
electromagnetic potentials which can be discriminated experimentally).

We brie{y summarize the main results obtained in this section:

1. The radiation ˇelds of toroidal-like current conˇgurations are investi-
gated. There are two different representatives which generate essentially different
electromagnetic ˇelds. These representatives are the circular turn and toroidal
solenoid with time-dependent currents {owing in them.

2. There are found elementary time-dependent charge-current conˇgurations
outside which the electromagnetic ˇeld strengths disappear but the potentials
survive. In the solvable cases their ˇnite-dimensions counterparts have nontrivial
(i.e., unremovable by the gauge transformation) electromagnetic potentials outside
them. This can be used for performing time-dependent AharonovÄBohm-like
experiments and the information transfer (modulating the phase of the charge
particle wave function).

3. Using the Debye parametrization of the current density we present the
electromagnetic ˇeld of the arbitrary time-dependent charge-current density in a
form convenient for applications. The contributions of different multipoles in it
are explicitly separated.
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