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We present a description of calculations of the amplitude for ete~ — ff process taking into
account the electroweak and QED one-loop corrections. This study is performed in the framework of
the project SANC. The calculations are done within the OMS (on-mass-shell) renormalization scheme
in two gauges: in R, which allows an explicit control of gauge invariance by examining cancellation
of gauge parameters and search for gauge-invariant subsets of diagrams, and in the unitary gauge as a
cross-check. The formulae we derived are realized in two independent FORTRAN codes, eeffLib,
which was written in an old fashioned way, i.e., manually, and another one, created automatically
with the aid of s2n.f (symbols to numbers) software — a part of SANC system. We present a
comprehensive comparison with the results of the well-known program ZFITTER for all the light
fermion production channels, as well as with the results existing in the world literature for the process
ete™ — ti.

B 0630pe MpeficT BJIEHO OMHC HHe BHYHCIEHHH MIUTHTYNB Tpomece ete™ — ff ¢ yuerom
9NIEKTPOCT OBIX U KB HTOBO-dieKTpoxuH mudeckux (KD[I) omHomeTieBbIX momp BoK. P cuersl mpose-
JIeHbl B p MK X npoekT SANC. BrruuciieHus BBIIIOIHEHBI C HCIOIb30B HUEM PEHOPM JIM3 LHOHHOM
cxeMbl H M ccoBoii nosepxHoctd (OMS) B 1ByX K JMHMOPOBK X: B R¢-K MMOpPOBKE, KOTOp 1 MO3BO-
JISIeT MOJTHOCTBI0 KOHTPOIMPOB Th K JINOPOBOYHYIO HHB PU HTHOCTH IIPOBEPKOIl COKP ILIEHHS K JIHOpO-
BOYHBIX II P METPOB U NOWCKOM K JIMOPOBOYHO-MHB PH HTHBIX ITOATPYIII IM TP MM, ¥ B YHUT PHOI
K uOpoBKe st mpoBepku. IloydeHHble (POPMYNIBI pe JH30B HbI B AByX He3 BUCHMbIX FORTRAN-
nporp MM x: eeffLib, korop s H muC H B TP AMUHOHHOM CTHIE, T.€. BPYYHYI, M B IPYroH,
KOTOp 5 CO31 H BTOM THYECKH ¢ momolnpio mMoaynsi s2n.f — u cru cucremsr SANC. Ilpexcr -
BJIEHO MCYEPIIBIB IOLIEE CP BHEHHE IIOJYYEHHBIX PE3YJIbT TOB C M3BECTHOM mnporp mmoii ZFITTER
IUI BCeX K H JIOB C POXICHHUEM JIeTKHX (DepMHOHOB, T KXe C pe3yJabT T MH, CyLIECTBYIOIINMU B
MUpOBOii JTUTep Type ms nporecc ete™ — tE.

INTRODUCTION

The process ete™ — ff with taking into account of the higher-order Stan-
dard Model (SM) corrections has been studied already several decades, yet in
pre-LEP times. We mention papers from late seventies [1-4], which eventually
lead to producing of precision theoretical predictions realized in the well-known
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kalinov@nusun.jinr.ru, nanava@nusun.jinr.ru
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computer codes of LEP-era: ZFITTER [5], BHM [6], ALIBABA [7] and
TOPAZO [8]. These codes played a very important role throughout the full
lifetime of LEP providing experimental community with precision tools for fit-
ting the experimental data to the SM predictions, see, for instance, [9,10]. A
comprehensive review of underlying theory and methods which has been used for
creation of these codes may be found in the monograph [11].

At LEP, the higher-order corrections for process ete™ — ff might be
studied ignoring external fermion masses, since the c. m.s. energy was far below
tt threshold. However, studies of finite mass effects have been started more than
ten years ago [12—-14] in connection with experiments at future linear colliders
(see, for instance, the reviews [15, 16]).

New wave of papers on finite mass effect was triggered by studies of the
electroweak radiative corrections (EWRC) in the MSSM which may involve ad-
ditional heavy fermions and sfermions [17, 18].

The process eTe™ — tt in reality
is a six-fermion process (see [19]); one
of the channels is shown in Fig. 1.

However, the cross-section of a
hard subprocess, 0'(6+€7 — tt), with
tops on the mass shell is an ingre-
dient within various approaches, such
as DPA [20] or the so-called Modified
Perturbation Theory (MPT), see [21].

One should emphasize that the
treatment of even one-loop corrections
with taking into account of finite-state
fermion masses is extremely cumber-
some and practically undouble «man-
vally». Nowadays, all the calculations
of such a kind are being performed with
the aid of automatic computer systems, among which one should mention first
of all FeynArts package, which exists already more than ten years [22] and
which is able to compute the cross-section of the process o(ete™ — tt) at the
one-loop level.

In this article, we present a review of a new calculation (based on preprints
[23-25]) of the ete™ — ff process at the one-loop level made with the aid of
the computer system SANC where all the calculations from the Lagrangians up
to numbers are going to be eventually automatized. This system is being created
at the site brg.jinr.ru. It roots back to dozens of supporting form [26]
codes written by the authors of the book [11] while working on it. Later on, the
idea came up to collect, order, unify and upgrade these codes up to the level of
a «computer system». Its first phase is described in [25].

+

Fig. 1. The six-fermion e*e™ — tt process
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One of the main goals of this new calculation was to create a platform for the
treatment of any 2f — 2f process within the SANC and to cross-check its results
against the results obtained with the other existing codes for a rather complicated
2f — 2f process at one-loop level taking into account final state masses.

At present, SANC, like FeynArts, uses the OMS renormalization scheme,
a complete presentation of which was made in [11]. However, for the first time
the calculations are performed in two gauges simultaneously: R, and the unitary
gauge.

Note, that there was a wide experience of calculations in the R, gauge for the
processes such as H — ff . WW, ZZ,~Z,~vv, or ete™ — ZH,WW. So, in [27,
28] a complete set of one-loop counterterms for the SM is given. Electromagnetic
form factors for arbitrary & are discussed in [29, 30]. Explicit expressions can be
found in the CERN library program EEWW [31].

However, we are not aware of the existence of calculations in the ¢ gauge
for the ete™ — tt process, although there are many studies in the & = 1
gauge [12,14] and [17,18].

Additional purposes of this review are:

— to explicitly demonstrate gauge invariance in [7¢ by examining cancellation
of gauge parameters for gauge-invariant subsets of diagrams;

— to offer a possibility of comparing the results with those in the unitary
gauge, as a cross-check;

— to present a self-contained list of results for one-loop amplitude in terms of
Passarino—Veltman functions Ay, By, Cp, and Dy (as well as auxiliary functions
ao, bo, co, and dy which originate because of a particular form of the photonic
propagator in the R¢ gauge) and their combinations in the spirit of the book [11],
where the process eTe™ — tt was not covered; this review may thus be considered
as an Annex to the book, which completes its pedagogical aims for 2f — 2f
processes at one loop;

— to provide a FORTRAN code, eeffLib [32] for the calculation of the
cross-section of this process for a complementary use within the MPT framework;

— to compare the results derived with the aid of eeff£Lib with the results
of another code, which was created automatically using the s2n. f software —
a part of SANC system, thereby benchmarking s2n. £ software.

This review consists of seven sections.

In Sec. 1, we present the Born amplitude of the process, basically to introduce
our notation and then define the basis in which the one-loop amplitude was
calculated. We explain the splitting between QED and EW corrections and
between «dressed» v and Z exchanges.

Section 2 contains explicit expressions for all the building blocks: self-
energies, vertices and boxes, both QED and EW. Note that no diagram was
computed by hand. They all were supplied by the SANC system.



1128 ANDONOV A. ET AL.

In Sec. 3, we describe the procedure of construction of the scalar form factors
of the one-loop amplitudes out of the building blocks. One of the aims of this
section was to create a frame for a subsequent realization of the renormalization
procedure within the SANC project.

Section 4 contains explicit expressions for the improved Born approximation
(IBA) cross-section and the explicit expressions for helicity amplitudes made of
the scalar form factors at the one-loop level.

Section 5 contains some additional expressions for different QED contribu-
tions that might be derived analytically. They are not in the main stream of our
approach: Lagrangian — scalar form factors — helicity amplitudes — one-loop
differential cross-section. However, they are useful for the pedagogical reasons,
and their coding in complementary FORTRAN branches of eeffLib provided
us with the powerful internal cross-checks of our codes for numerical calculations.
In reality, the eef£Lib version of February 2002 has three QED branches.

Finally, in Section 6 we present results of a comprehensive numerical com-
parison between eeffLib and ZFITTER. Here we also present a comparison
with one of our codes, which was created automatically using the s2n.f soft-
ware. We also present a comprehensive comparison between the results derived
with our two codes and the results existing in the world literature. In partic-
ular, we found a high-precision agreement with FeynArts results up to 11
digits for the differential cross-sections with virtual corrections, and with recent
results of [33] within 8 digits, even when the soft photon radiation is included,
see [34,35].

1. AMPLITUDES

1.1. Born Amplitudes. We begin with the Born amplitudes for the process
et (py)e (p—) — f(g-)f(q+), which is described by the two Feynman diagrams
with v and Z exchange. The Born amplitudes are:

—i . e
Af =eQc.eQfv, ® ’Yu@ =—i 4#@(0)%’m ® Vs (1.1)

AB — < € >2’yu [16(3)'y+ — 2@85%4,} ® Yu [I}B)’H - 2Qf5%/v} X

2swew
—1 . 9 1 { (3) 7(3)
X ————— = —je LV vuvs @ Yuv+ +
Q%+ M2 453,y (Q + M2) . g

3
+ 5eI](f )'Yu & Yu Y+ + Ié3)5f7u7+ &Y + 566f7u Y 'Vu} , (1.2)



UPDATE OF ONE-LOOP CORRECTIONS 1129

where 7+ = 1++5 and the symbol ® is used in the following short-hand notation:

Yu (L17+ + Q1) @ vy (Lavs + Q2) =
= 0(p4 )7 (L1vs + Q1) u(p-)u(q-)vw (Lavs + Q2)v(gy); (1.3)

furthermore
5f=vf—af=—2Qfs%V. (1.4)

Introducing the LL, QL, LQ, and QQ structures, correspondingly (see
Eq.(1.2)), we have four structures to which the complete Born amplitude may
be reduced: one for the v-exchange amplitude and four for the Z-exchange
amplitude (v, ® 7, structure presents in both amplitudes).

1.2. One-Loop Amplitude for ete~ — ff. For the ete™ — ff process
at one loop, it is possible to consider a gauge-invariant subset of electromag-
netic corrections separately: QED vertices, AA and ZA boxes. Together with
QED bremsstrahlung diagrams, it is free of infrared divergences. The total elec-
troweak amplitude is a sum of «dressed» «y- and Z-exchange amplitudes, plus the
contribution from the weak box diagrams (WW and ZZ boxes).

Contrary to the Born amplitude, the one-loop amplitude may be parametrized
by 6 form factors, a number equal to the number of independent helicity ampli-
tudes for this process if the electron mass is ignored and the unpolarized case is
studied™.

We work in the so-called LQD basis, in which the amplitude may be
schematically represented as:

[+ FE(s) + i FG(s)] ®
® |74 FL(s) + vuF§() + myID,Fh(s)| . (15)
with
Dy =(q+ —q-)u- (1.6)

Every form factor in the [Z¢ gauge could be represented as a sum of two terms:

FE o.p(s) = Fi'b pls) + F349 1 (s). (1.7)

The first term corresponds to the £ = 1 gauge and the second contains all £
dependences and vanishes for £ = 1 by construction.

*If the initial-state masses were not ignored too, we would have ten independent helicity ampli-
tudes, ten structures and ten scalar form factors.
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The LQD basis was found to be particularly convenient to explicitly demon-
strate the cancellation of all {-dependent terms. We checked the cancellation of
these terms in several groups of diagrams separately: the so-called A, Z, and
H clusters, defined below; the W cluster together with the self-energies and the
WW box; and the AA, ZA, and ZZ boxes. Therefore, for our process we found
seven separately gauge-invariant subgroups of diagrams: three in the QED sector,
and four in the EW sector.

The «dressed» y-exchange amplitude is

ATQeQ
AIVBA = Z%fa(s)fyu ® Yy, (1.8)
which is identical to the Born amplitude of Eq.(1.2) modulo the replacement of
«(0) by the running electromagnetic coupling a(s):
@
afs) = T —— — . (1.9)
1-— E H’Y’Y(S) — H'Y’Y(O)

In the LQD basis, the Z exchange amplitude has the following Born-like
structure in terms of six (LL, QL, LQ, QQ, LD, and QD) form factors:

. axz(8) A 3
APS =i eQT( {'Yu’7+ DY+ FrL(8:8) + v © v+ For (s, t) +

974 @ VuFro(s,t) + 70 ® vuFoo (s, t) +
s ® (—imyD,) Fpp(s,t) + 7, ® (—imyD,.) FQD(s,t)}, (1.10)

where we introduce the notation for Fij (s,t):

Frp(s,t) = IéB)I}B)FLL(Svt)a

Fop(s,t) = 8.1V Fyy (s.1),

?LQ(Svt) = IéB)(sfFLQ(Svt)a (1L11)
Foq(s,t) =005 F (s, 1),

Frp(s.t) = IO TP F p(s,1),

Fop(s,t) =01 Fyp(s,t)

Note that tilded form factors absorb couplings, which leads to a compactification
of formulae for the amplitude and IBA cross-section, while explicit expressions
will be given for untilded quantities. The representation of Eq. (1.10) is very
convenient for the subsequent discussion of one-loop amplitudes.
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Furthermore, in Eq. (1.10) we use the Z/v propagator ratio with an
s-dependent (or constant) Z width:

1 s
xz(s) = —— - (1.12)
sy ew s — M% + i—Z s
Z

2. BUILDING BLOCKS IN THE OMS APPROACH

We start our discussion by presenting various building blocks, used to con-
struct the one-loop form factors of the processes ete™ — ff in terms of the
Ay, By, Cp, and Dy functions. They are shown in order of increasing complex-
ity: self-energies, vertices, and boxes.

2.1. Bosonic Self-Energies. Z-, v-Bosonic Self-Energies and Z—v Transition.
In the ¢ gauge there are 14 diagrams that contribute to the total Z- and ~y-bosonic
self-energies and to the Z—y transition. They are shown in Fig. 2.

With Szz, Sz, and S, standing for the sum of all diagrams, depicted by a
grey circle in Fig. 2, we define the three corresponding self-energy functions X 4 5:

2

SZZ = (2ﬂ)4imzzz, (21)
2
. s
Sy, = (277)42%227, (2.2)
9252
Sy = (277)4Zg167:g Yy (2.3)

All bosonic self-energies and transitions may be naturally split into bosonic
and fermionic components.

e Bosonic components of Z, y self-energies and Z—v transitions (see diagrams
in Fig. 2).

11 1
5% (s) = M%{gR—Z (5 — Gy — 903{/) -

3 11 8 1 1 .
-5 [(1 + 2cyy) reak B iy + gc‘év + sz] }E— +305F(s), (24
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Fig. 2. Z(~)-boson self-energy; Z—~ transition
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M2
bos,F
ZZOZ’ (s) = —122 X

1
X { [4c%’,v (5 =8y —12cfy) + (1 — 4cjy, — 36¢hy) R_z] B (—s; My, M) +

1
+ {R_ +10—2rgz + (raz — 1)2 Rz} BE (—s; My, Mz) +
z

18
+ [E +14+(1—7rgz) Rz} L(M%)+rpz {7 —(1—ruz) RZ}LH(M?{) +

18 4
+ 2, | —— + 1+ 8¢y, —24cy, | Lu(Mpy) + = (1—2¢5) — —
THW 3 RZ

1
—6(1+2cyy) — - 3(1+2c%) —9rgz — (1 — rHZ)QRZ}. (2.5)
HZ

Here L, (M?) denotes the log containing the 't Hooft scale y:

M2

L,(M?*)=1In e (2.6)

and it should be understood that, contrary to the one used in [11], we define here

Bo(—s; My, My) = = + B (—s; My, Ms), 2.7)

M| =

meaning that B{" also depends on the scale z. We will not explicitly maintain z
in the arguments list of L, and B{". Leaving p unfixed, we retain an opportunity
to control 1 independence (and therefore UV finiteness) in numerical realization
of one-loop form factors, providing thereby an additional cross-check.

Next, it is convenient to introduce the dimensionless quantities H}%‘;S(s) and
bos ot ong):
I155°(s) (vacuum polarizations):
552(s) = —sI152(s), (2.8)
bos o bos
Y0 (s) = —sI(s). (2.9)

In Egs. (2.4), (2.5) and below, the following abbreviations are used:

EiE
SN SN

_ My

M3 M2
2 - _ Mw _ Mz
W=z T Rw =—=, Rz=—=. (2.10)

Since only finite parts will contribute to resulting expressions for physical ampli-
tudes, which should be free from ultraviolet poles, it is convenient to split every
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divergent function into singular and finite parts:
oS 1 os
HS’Y (S) = 3% + Hg'y 7F(S)a
155" (s) = (3 +4Rw) By (—s; My, M) + 4Rw L. (M),
and

1 1 os
5es(s) = (6 36k + 2RW> = I (s),

os 1 1
2" (s) = [6 +3c}, +4 <§ + c%v> RW] BE (—s; My, M) +

1 2
+35- <§ - 40%/) Rw L, (M}).
With the Z-boson self-energy, >, we construct a useful ratio:

1 35, (s) =Bz, (M)
ek, MZ —s ’

Dy(s) =
which also has bosonic and fermionic parts. The bosonic component is:

1 1 1 1 P
bos bos,
'DZOS(S) = CT (_6 + gC%V + 3C4II’> g_ + 'DZOS (S),
with the finite part:

bos. F 1 1 4 17
D% (s) = % 2 + gc%v — ?cév — 40?4/ X

M2
X2 Z [Bg(—S;MW,MW) - B{(—M%;MW,MW)} -
Z—S
1 1 1 1
~ (- geb —3eb ) B st 2w+ (1= Sz + v

M3 P  pF a2, B

M2 BO( S7MH)MZ) BO( MZyMH7MZ)
Z—S

! 1
T [1 - (1 —THz)QRZ} Bl (—s; My, Mz) — ERZ (1—riz) %

X |rz (Lu(ME) = 1) = Lu(Mg) +1] - % (1- 20@)}.

@2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

e

(2.17)
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e Fermionic components of the Z- and ~-bosonic self-energies and of the
Z — ~y transition.
These are represented as sums over all fermions of the theory, > s+ They, of
course, depend on vector and axial couplings of fermions to the Z boson, vy and
ayr, and to the photon, electric charge e@ ¢, as well as on the colour factor ¢y and
fermion mass my. The couplings are defined as usual:

v =18V —2Qys%,, ap =1V, (2.18)

with weak isospin I(?’), and

2 1
Q¢ = —1 for leptons, + 3 for up quarks, -3 for down quarks,

¢y =1 for leptons, 3 for quarks. (2.19)

The three main self-energy functions are:
Zfer v (s ) — Zcf |:(v]2¢ + a?e) st(—s; myg, mf) +
f

+ 2a3m3Bo(—s;my,mys)|,  (2.20)

ST (s) = —sIIkI(s), (2.21)
S (s) = —sIIE (s). (2.22)

The quantities Hfﬁ and Hfzefy are different according to different couplings,
but proportional to one function By (see Eq. (5.252) of [11] for its definition):

I (s) =4 ¢;Q3By(—s;my,my), (2.23)
f

err = QZCfovaf( S mf,mf) (2.24)
f

As usual, we subdivided them into singular and finite parts:

T 1 1 T
155 0) =~ (53 — a5t X3 )2+ o),
I
(2.25)

=5 ( { ZCfmf+ K SW> Nf+4SWZCfo]} —+375(5)-
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In Eq. (2.25), Ny = 24 is the total number of fermions in the SM. We do not
show explicit expressions for finite parts, marked with superscript F, because
these might be trivially derived from Eq. (2.20) and Egs. (2.23), (2.24) by re-
placing complete expressions for By and By with their finite parts Bf and BY,
correspondingly.

W -Boson Self-Energy. Next we consider the W -boson self-energy, which is
described, in the R¢ gauge, by 17 diagrams, shown in Fig. 3.

First, we present an explicit expression for its bosonic component:

19 1 1 6 1 3
bos _ 2 s - = . _
Eww(s) = MW{ 6 Ry 4 LHW (cév + 2> k& * 10+3THW]} *

1
X+ Soonf(s),  (2.26)

where
. M2 1 5
Swiw (5) = o { [(1 — 40ciy ) T T2 (CT — 27— 80%‘/) +
w

53 1
S (T n 8) RW]Bg(—s;MW,MZ> +
CW CW

1
4 [E +2GB—rgw)+(1- 7“HW)2 RWj| By (—s; M, Mp) —

5
—8s2, (E +2— RW) B{ (—s; M, 0)+rgw [7—(1 —raw) RW}LH(MIQJH

1 18 1 1
+— [_T+1—1603V+S%V (CT+8> Rw} Lu(M3z) +
w

C%/V THW CW
18 1
+ |:2< —7> — <T—2+7"HW> RW:| LM(M%/)_
THW Cw
4 1 19 11 1 1 3 1 Iy 9
_ - _ - _ _— —9r _
3 Rw 2 ¢y THW Gy HW

1 1
w w

Secondly, we give its fermionic component:
yherr(s) = —s Z cyBy(=s;myp,my) + Zcfm?»Bl(—s;mff,mf), (2.28)
f=d f

where summation in the first term extends to all doublets of the SM.
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u W+
wt W
W :Zd 'WM %N\A\/\, + +
i \%
) d 2 =z
w* wt
+ M%NN + wvvfl\‘%a/ww +
3) Y @ H
oF ',
PR SRS PR RS
+ W + ’\/W\W +
(5) Z (6) Y
+ +
a a
VAV GAMA - VWAV MM+
LI ® g
¢— ¢
Y, Xt
P, e S
+ VAR AN - VAV B +
.~*" '~*"
) X~ (10) Yz,v
w 7z
+ + +
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( ! [ !
+ VWOWARAMAMA WA, +
(15) (16)
B,
+ AWMV
(17)

Fig. 3. W-boson self-energy
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Bosonic Self-Energies and Counterterms. Bosonic self-energies and tran-
sitions enter one-loop amplitudes either directly through the functions D, (s),
I, (s), and Il ;. (s), or by means of bosonic counterterms, which are made of
self-energy functions at zero argument, owing to electric charge renormalization,
or at p2 = —M?, that is on a mass shell, owing to on-mass-shell renormalization
(OMS scheme).

e Electric charge renormalization.

The electric charge renormalization introduces the quantity 2, — 1:

9 _
(3= 1) = s |11, (0) = 32 S0 0)], (2.29)
w
with bosonic (see Eq. (6.161) of [11]):
bos 2 1 2 2
(24 —1)°% = sy {3(2_ — L“(MW)) + 5]’ (2.30)
and fermionic
fer 2 4 2 1 fer, F
(2, — 1) = 5%, K—g > cfo) I (0)] (2.31)
f

components.
e p-parameter.
Finally, two self-energy functions enter Veltman’s parameter Ap, a gauge-

invariant combination of self-energies, which naturally appears in the one-loop
calculations:

1

Ap=—
P MI%V

{wa(M%’v) - Zzz(Mé)} , (2.32)
with individual components, where we explicitly show the pole parts:

14 1
ApP = —— — — + Tl | = + Ap"F 233
P ( 62 "6 + CW) FTer (2.33)

182, (1 1
Apttt =2 5F (‘Nf —dsiy Y Cfov> AV (2.34)
i \ 2 7 €
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The finite part of ApP° is given explicitly by

1 417
A bos, F' — S 2
P (120‘;‘, T3a, T3 )

x | BE M3y Mw, M) = &y BE (- M35 My, Mw)| +

1 1
+ <1 = graw + ET%W> By (~ My My, Mpr) —

1 1 1
— 1——7'HZ+—7'?.IZ TB(‘)F‘(—M%,Mz,MH)—
3 12 iy

1 1 6
— 4s3, B (— M3 M, 0) + — || = + 4 — 24 +7uw | L (M3) —
12 Civ Ciy

1
- <T + 14 4 16¢%, — 48cyy + rHW) L, (M) +

‘w
119 22
+ sty [ Lu(ME) — 1] - gt g]’ (2.35)

while the finite part of Ap" is not shown, since it is trivially derived from the
defining equation (2.32) by replacing the total self-energies with their finite parts.
2.2. Fermionic Self-Energies. Fermionic Self-Energy Diagrams. The total

self-energy function of a fermion in the IZ¢ gauge is described by the six diagrams
of Fig. 4.

;

! ! I
! ! ! ! ! !
= + + +
m @) A 3) h
f ! f
! ’/’\' f ! '/’\‘ / / '/’\' !
= + +
@ 5 & g ©

Fig. 4. Fermionic self-energy diagrams
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A detailed calculation of the wave-function renormalization factors ,/z7 r
associated with these diagrams may be found, for instance, in [5].
It is convenient to distinguish the electromagnetic components,

em em ]- ]- 3 2
(Ve — D" = (Var - D" = WQf< stz tyn u_Qf_Q>’ (2.36)

and the weak components,

‘. /—zm‘ — T = (wy + wa), (2.37)
where five nonzero contributions are:
Z 11 2 2 2 1 1 2
wy =g (vf—l—af—l-Zafer)g_—i—(vf—l—af) o [BO( my; Mz, my)+
w

+ L (M%) — 1} +2(1+2rsz) M%Bop(—m?;mf,Mz) - Lu(m?)) +
+ 2aﬂ“fZ( {Bo (=m; Mz,my) + Ly(M7) - 1} -
riz

— 6M% Boy(—m7;my, Mz) — L, (m7) + 1) } (2.38)

W= - 116{1(2+r )_r++rfiw((2+r+) (M) =rpw Ly(m)] +

+ (24 2rw 1 ) [B{(—mi;MW,mi,) - 1}) +
+2M3, [2 S (r—)Q}Bop(—m?;MW,m?p,)}, (2.39)
1 1
wh = BT {g +ryf [Bé?(—mfc;MH,mf) + L, (ME) — 1] -

—2(4rpm — 1) M Bop(—m3;my, M) — L (m3) + 1}, (2.40)

1 11
_—4C%VUfaf{_ = [BO iy Mz, my) + Lu(Mz) = 1] +

SN

+ 2B (=m3; Mz, my) + L, (m3) — 2}, (2.41)
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é (2-r") +r—+rfiw [(2 —r) [LM(MI%V)—rfIWLM(m?»,)} n

+ (2= 2rpw — 1 ) [B()F(—m§; My, m3) — 1H } (2.42)

with 7+ = rew £ rpw, and f’ being the weak isospin partner of fermion f.

23. The Zff and ~ff Vertices. Consider now the sum of all vertices
and corresponding counterterms whose contribution originates from the fermionic
self-energy diagrams of Fig. 4. This sum is shown in Fig. 5.

Fig. 5. Zff and vff vertices with fermionic counterterms

The formulae which determine the counterterms are:

Fy* =2(/zr— 1), (2.43)
FP = (Vzr = 1) = (Var = 1), (2.44)
F5® =67 (Vzr — 1), (2.45)
Fp =0} (Ver — 1) = 67 (Vzr — 1), (2.46)
where
d0f =vy—ay, of=vy+ay. (2.47)

For the sum of all v — ff and Z — ff vertices (the total v(Z)ff vertex
depicted by a grey circle in Fig. 5) we use the standard normalization

1
= 2m)iz—s, (2.48)
and define
1
4.

VJ(S) = (2m)% 1672 Gu(s)a (2.49)

1
VZ(s) = (2#)4ZWZH(S), (2.50)
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while we denote the individual vertices as follows:
A z w H
GH(S)zGH(s)—i—Gu(s)—I—GH (s)—l—GH (s), (2.51)
_ A z w H
Zu(s)qu (s)—i—Zu (s)—i—ZM (s)—i—Zu (s). (2.52)

All vertices have three components in our LQ D basis.

Scalar Form Factors. Now we construct the 24 = (4 : B = A, Z, H, W-vir-
tual) ® (3: L,Q, D) ® (2 : v, Z-incoming) scalar form factors, originating from
the diagrams of Fig. 5. They are derived from the following six equations —
three projections for vf f vertices:

2 . .
FpP(s) = ——5 { GE)lig ] + swQr P, 2:53)
SWIf
1 . c
FP(s) = preP {G{f(s)[zg%y] +swQFY t}, (2.54)
2
FpP(s) = e —— G (s)lg*meI D, (2.55)

and three projections for Z f f vertices:

2 1 .

FiP(s) = = {ZB( ig*yur+] + —Fp t}, (2.56)
Iy w
2ew z,C

Fgo(s) =, {ZB( )lig® m+—FQ t}, (2.57)
2

FiB(s) = %Zf(s)[fmtIDu]. (2.58)
!

Here we introduce the symbol |...] for the definition of the procedure of the

projection of G, (s) and Z,(s) to our basis. It has the same meaning as in form
language [26], namely, e. g., GE (8)[ig37,7+] means that only the coefficient of
[ig®7,7v+] of the whole expression G (s) is taken (projected).

The factors 1/(Qssw), 2/(5WI}3)), and QC%V/(SWI}?’)) for ~ff vertices,

and the factors 2CW/I](03), 2¢cw /6y, and QCw/IJ(c3) for Zff are due to the form
factor definitions of Eq. (1.10).

The total v f f and Z f f form factors are sums over four bosonic contributions
B=A,Z W,H. All 24 components of the total scalar form factors in the LQD
basis look like:

A Z w H
FYOH(s) = F)Gp(s) + FLG 0 () + F1G N (5) + F1 B (). (2.59)

The quantities FZ(CZ?) g(s) originate from groups of diagrams, which we will call
clusters.
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2.4. Library of Form Factors for B f f Clusters. Here we present a complete
collection of scalar form factors F; (5) g (s) originating from a vertex diagram with
a virtual vector boson, contribution of a scalar partner of this vector boson, and
relevant counterterms.

Actually three gauge-invariant subsets of diagrams of this kind, A, Z, and
H, appear in our calculation. They may be termed clusters, since they are natural
building blocks of the complete scalar form factors, which are the aim of our
calculation. Again, in the spirit of our presentation, we write down their pole and
finite parts.

The remaining vertices with virtual W and ¢™, ¢~ with relevant counterterms
we also define as the W cluster. However, the latter diagrams do not form a
gauge-invariant subset.

We note, that F7*(s) and F7"(s) are equal to zero.

Library of QED Form Factors for Att Clusters. Up to the one-loop level,
there are two diagrams that contribute to the A cluster, see Fig. 6.

f

Fig. 6. A cluster. The fermionic self-energy diagram in brackets gives rise to the counter-
term contribution depicted by the solid cross

Separating out pole contributions 1/&, we define finite (calligraphic) quanti-
ties. We note that, if a form factor F}(s) has a pole, then the corresponding
finite part Fi‘j (s) is p-dependent.

Since the scalar form factors of A cluster become UV-finite after wave
function renormalization, for all form factors, which are also separately gauge-
invariant, we have:

8 = 790, (2.60)
Individual components are:

]-“ZA =0, ]-“g)“‘ = Q?cs%,v{2 (s— mec) CO(—m?c, —m?c, —s;myg,0,my) —

— 3Bé’(—s; myg,mys) + 335(—m?; my,0) — 4m?»Bop(—m?; O,mf)},
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Q?}S%/V 4 Ia F 2
IS E [Bo (—s;myp,my) — By (_mf;mfvo)}v
f T

YA _
Fpo=-

8m?
z A
Fit =FO" + Qisiy 3f {35(—8;mf7mf) — Bj (—m3;my, 0)},

Az,

(2.61)

z A v A 2 .2 8 ?CI](CB) F F 2

Fo =T —Qpsw x5 [Bo (—s;my,my) — By (_mf;mf’o)}’
3r f
Q%s%, 2v
Fit = — [f(?’) A—gf B(I):‘(—S;mf,mf) — B{(—mf«;mf70)}7
f T
with

Az, = 4m7 — s. (2.62)

Form Factors of the Z Cluster. The diagrams shown in Fig. 7 contribute to
the Z cluster.

Separating out pole contributions 1/, we define finite quantities:
Fy2(s) = 737 (s), FG(s) = P (s), FRY(s) = FBU(s),

1 1
Fi?(s) = —wZt Fi%(s),

2.63
L (2.63)

1
T I61Q0sy e

Fi?(s) = Fi (5)

Fig. 7. Z cluster. The two fermionic self-energy diagrams in the second row give rise to
the counterterm contribution depicted by the solid cross in (3)
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Here the finite parts are:

1 1
]-“ZZ(S) =2 vaf{Z (2 + 7 ) MZC'O( mf, m?c, —symy, Mz, mys) —
w Z

— 335(—5;mf,mf) + 235(—m§»;mf,MZ) — Lu(m?p) +
2

M
+ Bl (=m%imy, Mz) — 2 (1 + 4ryz) =% Lap(my, my, MZ)}, (2.64)

A37‘

5 (s) =

1 2
=z {@K (1—rfz)+R—)MZCO( mf, m?,—s;mf,MZ,mf)_
Cw

5)
- 3B0 (_S;mfvmf) +4B(I):(_m?;mf7MZ) + LM(M%) - 5 -

—ryzBi(—mismyp, Mz) — 2 (1 + 2rz) M3 Boy(—m7;my, MZ)] +

+2vfafrfz[ AMZCo(— mf, m?c,—s;mf,MZ,mf)—l—
+2(Lu(m}) — Lu(M3)) —2(1 —rpz) Big(—m;my, Mz) +1 —

2 1
2 ((1 20 y2) M2 Boy(—mimy. M) + —)} n
Tz 2

+2ajrs7 {Bg(—s% my,my) + Lu(Mz) = 157 Bip(—m3;my, Mz) +
5
+6MZBo,(— mf,mt,MZ) - 5} _
5 M2
—4|-L — (dvpap — ) rpz| TE Lay(my myp, Mz) b, (2.65)
2 A37‘
Z
Fpo(s) =

_ 209y 1 v} + a}
I](c?’)c%v AB?" 2

[ 4MZCo(— mf, m?,—s;mf,MZ,mf)—i—

+ By (—s;ymyp,my) — 2By (=m3;my, Mz) — L (m7) +
2

M
—ZLab(mf;mvaZ) +

+ Bh(—m%imy, Mz) +2+6
AB?"

1
—l—afc[Z <3rfz RZ>MZC'0( mf, mfc,—s;mf,MZ,mf)—i—
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—l—Bg(—mfc; my, MZ)—I—LH(M%)—l—er [B(I;(—s; my, mf)—i—Lu(m?c)—Z} —

m2
(2—3 )Lab(mf,mf,Mz)}}, (2.66)
A&r

1 (302 + a2 1
Fi(s :—{MP(?) <2+—) — o ) x
L () 40%/[/ 3 RZ 1z

x M%Co(— mf, m?, —symyg, Mz,mys) —
— 9By (=symyg,my) +8Bg (=my;my, Mz) — Ly (m}) =2+

+ Bl (—m%imy, Mz) —2(1+ 2rs7) M%Bop(—mfc;mf,Mz)] -
2
_gaf 4me'0( mf,—mf, —s;my, Mg, my) +

+3r¢z {Bg(—s;mf,mf) + Lu(m?c)} + Bg(—m?;mf,MZ) +
+ 3L, (M3) + 2L, (m7) — L+ 2Bj) (—mF;mys, Mz) +

+2(1—"Trsz) M%Bop(—mfc;mf, MZ)} -
M2
—9 [(311]2« + af«) (1+4rsz) — 2@?sz:| A—j

T

Lap(my,my, Mz)}, (2.67)

TéZ(s)z
1 (1, 9

= Zéf 2 2—2er+R— MZCo(— mf, —my, —s;myg, Mz, myg) —
W

— 3B (—s;my,mys) + ABE (—m3;my, Mz) + Ly(m3) — 2 —

— Bjy(=mFymy, Mz) — 2 (14 2ryz) M3 Bopy(—m7;my, Mz) —
2

_9 72
AB?"

Lab(mf;mvaZ)] +
+afrfz<vf{ 2M2Co(— mf, mfc,—s;mf,MZ,mf)—l—

1
+ o | BE (i, Mz) + L) = 1 = Bl (s, Mz) -

M2
-1+ QTfZ) M%Bop(—mfc;mf,Mz)] + GA—BZLab(mf,mf,MZ) _
T

1
-5 {SMZC’Q( mf, mfc, —s;my, Mz ,my) —
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— B{ (—=symyg,mys) — Ly(m3) + 2+ Bi) (—m7;my, Mz) —

2

M
A ZLab(mf7mfa MZ):| -
3r

— 6M% Boy(—m7;mys, Mz) — 10
2

5f |:4MZCO( mfv m?a_s;mfaM27mf)_

M2
_Bg(—s;mf,mf)—kl—GA—BZLab(mf,mf,Mz)]>}, (2.68)

1
TC%VA:i {(Saf +Uf) 'Uf X

x{ 4MZC’0( mf, m?c,—s;mf,MZ7mf)+

+ Bg(—s;mf,mf) — 235(—m?p;mf,MZ) — Lu(m?) + 24

2

M
A ZL(Lb(mfa mg, MZ):| +
3r

+ Bjy(—m;my, Mz) + 6

1
+2vfaf[ (7rfz—2R—) MZCo(— mf, m?,—s;mf,MZ,mf)—i—

+B§ (—mFimg, Mz)+ Ly(M3Z)—1—7s7 [35(—8; my,mys)+ L, (m7)— 2} -

m2
—2(4—3Af >Lab(mf,mf,MZ)} } (2.69)

3r

In Eq. (2.65) and below the «once and twice subtracted» functions B(Ifl and BgQ
are met:

1
By (=g, Ma) = | B (s, Mz) + Ly(M3) ~1].

1
ng(—m’j; mys, Myz) = [B{(—m‘j; mp, Mz)+ L, (M%) —1—  (2.70)
fz

—rpz (Lutor) - 201 + 5|

They remain finite in the limit my — 0.

We note that, for the Z cluster, all the six scalar form factors Fg(é) D( ) are
separately gauge-invariant.

Form Factors of the H Cluster. The diagrams of Fig. 8 contribute to the H
cluster. Separating UV poles, we have:
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Fig. 8. H cluster: the vertices and the counterterm

Fy(s) = F(s), R (s) = F(s),

11
Fif(s) = rwz T Fil(s),

; . ) ; 2.71)
F5'(s) = 35 v 7+7'—52 (s);
FD (S)ZFD (s),

with the finite parts:

1
7§H() STfW{Smeo( m%, —m7, —s;my, Mg, myg) +

+ BE (—s;my,my) + Lu(m?) -2 B(ﬁ(—mfc;mf,MH) —
2

M
—2 (1 — 4TfH) MIQ_IBQP(—TTL?; my, MH) — QA—fLab(mf, my, MH)}, (2.72)
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v Qerw [ 2 e M
fD (S) 2[(3 AB { 6 HCO( mfa —Mmy, —Ss;my, vaf)+

+3Bg (—s;my,my) — 4Bg (—=mF;my, M) — Ly (m3) +
M2

1
Fill(s) = erw{élmcho(—m?c, —m?, —symyg, Mg, my) +

+ [4(1—7“]02)—!-(1—7“}12) Rz MZCO( mf, mf, —5; MH,mf,Mz)—l-

1 1
+2BE (—s; Mz, My) — 535(—s;mf,mf) + iLu(m?‘) +2—

1
— EBQ(—m?;mf,MH) —(1- 47“fH)M12{B0p(—m?;mf,MH) +

+ (1 —ruz)Rz [35(—m?;MZ7mf) - Bg(—mfv;mﬁMH)} +
2

M
+ AZ [(THZ —8ryz) Lap(myg,mys, Mp) —
3r

—2B—ruz +4ryz) Lui(my, My, Mz)} }, (2.74)

Fol(s) = rfw{mch’o(—mfc, —m3, —s;my, My, my) +
[1+(1—THZ)RZ}MZCO( mf, mf, s; Mg, myg, Mz) +
+ %{Bg(—s;mf,mf) + Lu(m?) - 2} +
Ry {Bg(—m?;MZ,mf) —Bg(—m?;mf,MH)} -

1
—Bﬂ(—mfv;mfa Mp) = 7 (1 —drym) M3 Bop(—m3;my, M)
1 M2 lay
Lap(my,myp, Mgr) 4+ — == [47'fZ +@B+raz)(1- THZ)RZ} X
4A3 495

x M2Co(— mf, mf, —s;My,myp, Mz) +

+ BO (—s;myp,my) — 2BO (=s; Mz, My) — 3+
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+ (3+7”HZ)RZ [Bg(—m?c;MZ,mf) — Bg(—m?c;mf,MH)} —

M2
-2 3Z [(1 — 47’fH) THzLab(mf,mf,MH) -
_(3_THZ+4er)LHi(mf7MH7MZ):|>}; (2.75)
FRH(gy — VS L—S M2Cn(—m2. —m2. —s: M
D (8)* ®B) 2 A Tz VL 0( mf; mfv S;myg, vaf)+
ZIf Cyy 3r

2
m
+ 2|:2 (THZ - ]-) ?f —THz + 27"ij| M%CO(_miv_m?a _S;MvafaMZ) -

2
m
- 4?f {Bg(—mfc;MZWf) - Bg(—mfv;mﬁMH)} -

— 235(—8;M2,MH) + ZB(I;(—m?c;MZ,mf) +

3
+ 575z [Bg(—s;mf,mf) - Bg(—m?;mﬁMH)} +

2
1
+ STHZ [Bé?(—m?;mf,MH) + L (M%) — 1} _
1
L [35(—m?;mf,MH) + Ly (m}) — 2} +
M2
+3ryz A;{ Lab(mfamvaH)}. (2.76)

Again, the five (one does not exist) scalar form factors in Eq. (2.71) are separately
gauge-invariant. Note also that UV poles persisting in the scalar form factors of
the H cluster cancel exactly the corresponding poles of the Z cluster. In other
words, the form factors of the «neutral sector» cluster (Z 4+ H) are UV finite.

In total, we have 11 separately gauge-invariant building blocks that originate
from Z and H clusters.

Form Factors of the W Cluster. Finally, the W cluster is made of the
diagrams shown in Fig. 9.

In the formulae below, we present contributions to scalar form factors from all
the diagrams of the W cluster, not subdividing them into Abelian and non-Abelian
contributions. To some extent two sub-clusters are automatically marked by the
type of arguments of Cy functions and typical coupling constants. Separating
poles, we have:

Y=+ A7, B =R, e =76,
2.77)
1
V() = 2k 2+ FEV (), FEV () = FVGs), FRY () = FY (o)
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/

(6)

Fig. 9. W cluster: (1)—~(3) show the Abelian diagrams of the cluster; (6)—(8) — the
non-Abelian diagrams; (4), (5) show diagrams that contribute to both counterterm crosses

((3), (8))
Here the finite parts are:

wo_ Qp
o .

2
X{{?)—i—(l—i—r ) "‘R—]MWCO( mf, m?,—s;mf/,MW,mf/)_

(6+r )[35(—8;mfumf) B (-m3;my, MW)} +

l\3|H

+

N | =

(2= 77) |Blw (s mpr, Mw) = 1] +
M2
+ [4 —(24+7r7)B+3rw +7'f’W)} A—;/VLab(mfvmf/aMW)} -
T

—Tf/W (2—7“ )MWCO( mf, mf, S, Mw,mf/ Mw)
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1
3 (6—7r") {Bg(—S;MmMW) - Bg(—mfv;mf',MW)} +

1
+ ZBg(—m?e;mf/,MW) + 3 (2 — 37“*) {Bfw(—mfc;mf/,MW) + 1} —

M2
— (4— {2—}—wa (134 wa) —Trpw (1+ ’I“flw)} —W>Lm(mf,mf/,MW) —

A?)r
- &(Af - S)iImBF(—mQ-MW mp), (2.78)
4[(3) Im 0 fr s 1L ), .
f
2 '
where Ar, = (1 —7rpw) @tryw) + 7w
Tfrw

The last term in Eq. (2.78) is due to a noncancellation of the imaginary
part of the function BE'( —m?c; My, my+) which appears in real counterterms and
complex-valued vertices.

.
7 = %{Qﬁ {‘4M3v00(—m?, —m%, —s;myp, My, my) +

+ By (=s;mp,mp) — By (—m3;myp, My) — 1 —
_2trmw
Tfw

- ((1 —rpw) @+ rpw)
Tfw

By (=msmgr, M) —

—-1- rrw + 2Tf/W>M3VBQp(—m?c;mf/, Mw) +

2

M
A—WLab(mfvmf/v MW):| -
3r

+2 (3 + 7"*)
— 21}3) {Qm?,Co(—m?, —m?, —s; Mw,mygr, My ) —

— B{ (—s; Mw, Mw) + B§ (—=m3;my, M) — 1+

241w
+ T W B R (—m% g, M) +
Tfrw
2—rp 1+7re
+< fW( fW)—l—wa+27“f/W>><
Tfrw

M2
X M%Bop(—m?;mff, Mw) + 2(7 + 7“+) A;/V

Lna(mf,mfr,Mw):| } +

1 .
+ ZAy:ImZImBg(—m?c;MW,mf/), (2.79)
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1 Q ’ 2 2
YW _ I -2 _ , e
Fp ” { 3)< 2{8—#7’ 67'fI/V+F }x

x M2, Co(— mf, m?, —symygr, My, myr) +
+ (10 + 7w = 3rpw) [35(—8; myprmypr) = By (=m3myr, Mw)} +

+ (24 1) [ By (-m3imp, M) +1] +

2

M
W Lap(myp,myr, MW)) +

+ 6{(1 + ’I“fw) (2 + wa) —Tpw (1 + ’rf/W)} A,

+2 [(1 ) @2 —rpw) —rpw (1 —drpw — %)} X
XMWC'O( mf, mf, —s; Mw,myr, My ) +
+ (6 — 1w —Brpw) [B(If(—s;MW,MW) — Bg(—mfc;mf/,MW)] +
+ (2 —|—7“+) {ng(—m?;mf/,MW) — 1} —
- 6[(1 —rw) (24 rrw) —rpw (L4 2rmw + TfIW):| X

2

M
x—WLna(mf,mf/,MW)}, (2.80)
A3r

O 2 2
FV = L {{3+ 1+7~ +—]><
P G+ gy,
x M2, Co(— mf, m?,—s;mf/,MW,mf/)—

(64+77) [35(—8;mfumf/) - Bép(—mfv;mf/,MW)} +

l\3|H

+

N | =

(2—7r7) {ng(—m?;mf/,MW) - 1] +
2

M
+ |:4— (24—7“_) (3+37“fw —l—’l“flw):| W

A Lap(myg,my, MW)} +
3r

—l—rfWMWC'O( mf, mfc,—s;mf/,MW,mf/)—l-
1 _
+Z{r B (—s; My, M) — 7w {Bg(—mi;mf/,MW)—l} +
1w | BE (—simprmp) = 2| = @+ rpw) Bl (=m3myr, M) -
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(1- TfW) 2+ wa) —Trpw (1- 2ryw + Tf/W):| X

2

M
X M%Bop(—m?;mf/,MW) —2rpw (1 +r ) A—;/VLab(mf,mf/,MW)} —
2 2
— (40— )+1 44+ W W (g4 )] ) x
‘w TIw) Tt rew =2 r
W

x M2, Co(— mf, mf, s; My, myp, M) +
1 _
+5(2+77) [B(If(—mfc;MW,MW) —Bg(—mfc;mf,7MW)} _

— = (2—7"*) {ng( mf,mf/ Mw) + 1] —QBO( mf,mf/ Mw) —

2 _ 2

1 S
- = <4+ 127’fW - urfw (7+ wa) —
2 Ciy

s&, — 2, M3,
—Trpw 4+f(1_7ﬂf’W) A Lna(mfamf’vMW) +
Cw 3r

1
+8I(3) (3af 5fAﬁm>z‘ImB§(—m§;Mw,mf,), (2.81)

" Tew O
fQW:—fT 6]; {4MWCO( mf, mfc,—s;mf/,MW,mf/)—

— Bj (—=s;myp,mypr) + B (—m3;myp, My) +1—
2

—2(3+1r7) ]\ZW
3r

1
Lap(mg,mp, M) ¢ == (2+ rpw) Bl (=mFymyp, My ) —
4 f

1 _ _
- = [(1 —rw) (2 +7r ) +rpwr ]MgVBop(—mfc;mff,MW) +

W

2 2
3 rew [ 85 —c
+I})C%V{S—t{w<rf/Wcho( mf, mf, s; My, my, M) —

1
-3 {Bg(_5§MWaMW) — By (—=m3;mg, Myw) + 1D -
2

M
—WLna(mfvmf/aMW)} +

82 —C2
—[8—7”/2 W(3+7'fW+7"f/W)}A
3r

1 .
+ ZAy:ImZImBg(—m?c;MW,mf/), (2.82)
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1 (o 2
W _ = f —2_ , e
Fp Agr{gﬂ?ﬂqgﬂr ) 6”W+RW]X

x M2, Co(— mf, m?, —s;myp, My, mypr) —
1
=5 10+ rpw = 3rpw) [Bo (—=symyp,myp) — By (—m3;mye, MW)} -

1
-3 (2 + r+) [ng(_m?c;mf',MW) + 1} —
2

M
-3 [ (X +rpw) 2+riw) —rpw (1+ Tf’W)} A—Z/Lab(mﬁmfu Mw)> +

+rf’W<MWCO( mf; m?“a_s;mf'7MWamf')+
1
+3 [Bg(—s;mf'amf') — B (—mF;my, My) — 1} -

2

1 M
—Eng(—m?c;mf/,Mw)—:‘}(l—l—T )A;:/Lab(mf,mf/,Mw)> —

2 S%V _C%V
-y ( [47“]0/[/1/ - = ((1 — ’rfw) (2 — wa) -
w

1
—Tffw(5—7’fw—47’ffW—R—Z)>]MWCO( mfv mfv s; Myy,myr, My ) +

1 s2, —c?
+§ [4-%(4—wa—57’flw):| X
Cw

x [BE (=5 My, My) = BE (=m3mypr, Myw)| +
1 Siv — ¢+ F 2
+§ 4—T7” BdW(—mf,mf/,MW)—l—

w
2

—6 (1) ]A”_vam(mf,mf,,MW)D } (2.83)

Here we introduce more ratios, which were not given in Eq. (2.10):

rE =rpw e (2.84)

Furthermore, we used one more «subtracted» function:

1
Bl (i M) = == { (1= vy [B (o ) +

# L) 1] = o [, - 1O 289
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and the three auxiliary functions:
Lap(My, Mo, Ms) = (M3 + M7 — M3) Co(—m%, —m7, —s; Ma, M3, My) —
— B (—s; Ma, Ms) + By (—m7; Ma, Ms),  (2.86)

Lya(Mi, M2, M3) = (M?? - M1 Mz) Co(— mfa mfv —s; M3, M, M3) +
+ By (—s; M3, M3) — By (—=m7; M3, Ms), (2.87)

L (03 4 F) - 20

Lyi(My, Ma, M3) = >

XC()( mf, mf, SMQ,M17M3)+BO( S;Mg,Mg)—

- —Bé”(—m?»;Ml,Mz) -

5 —Bg(—m?;Mg,Ml). (2.88)

2
Four scalar form factors, FW(Z)W as follows from calculations, are both gauge-
invariant and finite, thus enlargmg the number of gauge-invariant building blocks
to 15. On the contrary, two form factors, fz(z) W, are neither gauge-invariant
nor finite. Gauge dependence on &, as well as UV poles, of L form factors cancel
in the sum with the WW box and the self-energy contributions.

2.5. Library of Scalar Form Factors in the Limit m; = 0. In the limit
my = 0 only nine scalar form factors of vertex clusters give nonzero contribu-
tions: F%A, FfAQ FZ%, FfZQ and FZ’ZW, which, in turn, may be expressed in
terms of three auxiliary functions Ff | FiZ and FV . These nine form factors
are:

YA  _ pzA _ A
E = Llim = th Q 57y Fitn:

1

zZ Z

thm ZCTQvafaf'Flimv
w

4 27
FQllm FQlim 4¢ 2 5fﬂ1m7

—_

FL im B 3’[)2 + a2 a’fF‘liva
li 4]}3)0%4, ( f f)

- {Tf’W(2 +rpw) + ddw + diy (2 + Tf’W)RWi| X

1
X M‘%VC()(O,O, —S;Mw,mf/,Mw) — [1 — ETf/W + dw (2 + Tf/W) RW:| X
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3
x | B (—s: My, M) Ly ()~ 1}”{2652 + g @+ rpw) Rav | x
3 T "W
x | Lu(mf) = Lu(My) | = 2Lu(m3) + g +2+
W Uf/ w
im Fim
L1 41_](03) 1

+ TféW {(2 + d%VRw)MI%VCQ(O, 0, — 83 mf/, Mw, mf/) —

1
-3 [Bg(_S;MW;MW) — Bl (=s;mpr,myr) + 2} —

—rpw (Bg (=simyr,myr) + Lu(m},) — 1)}} -

—c%v{[4+rf2w [4+ (4 = rpw) tw] +< : W(4+dwtw)> x

2
X dwa] M‘%VC()(O, 0, —s; My, myr, Mw) +
1

+ 3 (2 —Trpw + [4 - Tffw(4 + dwtw)]RW) X

x [BE (=5 My, M) + Lu(M§,) — 1] =

3 1 1
— <—2d%‘, + —2dW -2+ Erflw [1 + (4 - Tflwtw)Rw]> X
2 2 2 3 1
x [Lu(mf/) - LM(MW)] F2LL (M) — =2 —2— —rpw b, (2.89)
2y 1

while the three auxiliary functions read:

Fi = 25Co(— mf, m?, —s;myg, A, my) —
—3B{ (—5;0,0) — 3L, (m}) + 2LA(m%) + 2,

2(1 + Ry)?

FZ —
lim RZ

M%CO(Ov Oa —S; Oa MZv O) -

~ (34 2Rz) [BE(=5:0,0) + (M) —1] - 5
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2
FliV}/n: (E'F?H—d%v [1+ (2+rpw) RW] ) M‘%VC()(O, 0, —s;myp, My, mys) —

1
- 5 {6 —Trrw + 2dyw (2 + Tflw) Rw} [B(I;(—S; mf/,mff) + Lu(m?u) — 1} +

1] 3 1 2 2
+ 5 [% + E +2+2(2+7”f’W) RW:| {Lu(mf’) _LH(MW)} +
3 3

— —2— Zrp 2.90

+ S AL (2.90)
where 2
A mf =n )\25

dW = 1_7”f’W, (2.91)

tw = C%,V 2,
with A being the photon mass.

The formulae, presented in this subsection, are useful to compute the one-
loop corrections for the channels with massless or light final state fermions f and
heavy virtual fermions f’.

2.6. Library of Scalar Form Factors for Electron Vertex. Besides Bit
clusters, we need also Bee clusters, which can, in principle, be taken from [5]
or derived from the formulae of previous subsection in the limit my — 0 and
mys = m.. Here we simply list the results:

ee 2 e na,e
Fl(s) = —CTQeveae}'Z’ (s5) + FWnae(s),
W

1
Fore(s) = FA(s) + 1 02F54(s),
1W (2.92)
Fie(s) = .7-"’4’6(5) ~ 5 (31)5 + ai) ae]-'Z’e(s) + fW’e(s),
1%
zee Ae 1 Z e
F&e(s) = F24(s) + @537 “(s),
with
FWoe(s) = —FWabe(s) 4 &, FVnae(s). (2.93)

In Eq. (2.92) we use four more auxiliary functions:
FAe(s) = Q%sy, [2800(—7712, —m2, —8;Me, A, M) —

— 3BL(~5;0,0) — 3L, (m2) + 2L (m2) + 2} . (2.94)
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(1 + Rz)2

Z,e — 2
F2e(s) R,

M%Co(0,0, —5;0, Mz,0) —

— 3] B (=5:0,0) + L (M3)] +

+ g — 2Ry [B{(—s; 0,0) 4+ L, (M3) — 1}, (2.95)

FWnae(s) = 2Ry, [M&Vco(o, 0, —s: My, 0, Myy) +
+ B (—s; My, M) + L, (M§,) — 1} — 4M§,Co(0,0, —s; My, 0, My ) —

9
— BY (—s: Mw, M) = 3Lu(Miy) + 5. (2.96)

(1 + Rw)2

MY%VCO(Oﬂ 07 -5 07 MW; 0) -
Rw

]:Wab,e(s) _ Uu{
3 F 2
= 2 [BE(=5:0,0) + L)) +
+ Z - Rw [B{(—s; 0,0) + L, (M3, — 1} } (2.97)

where Ly(m?) = In (m?2/)\?).

2.7. Amplitudes of Boxes. The contributions of QED AA and ZA boxes
form gauge-invariant and UV-finite subsets. In terms of six structures (L, R) ®
(L, R, D) they read:

d+c 4
9
(BLK) = KM (e @ v FLL (56, 0) +

+ Vuv+ @ V=] FLE (5, t,0) + [Yuy— @ Yuv+] FRL (s, t,u) +
+ Y= @ =] Fig (st u) + [vuys ® (—imgI D) FLE (s, u) +
+ [Yuv= ® (—imeID,) FEp (s, t,u)],  (2.98)

where LK = AA,ZA,ZZ and for shortening of presentation we factorize out
normalization factors:

s3 1
B = s QIQT, K = —W%Qf K=o (299
w w
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AA Box Contribution. There are only two AA diagrams, direct and crossed:

Fig. 10. Direct and crossed AA boxes

The six form factors of AA boxes might be expressed in terms of four

auxiliary functions F; and H; 2 3:

fff(satvu) :féé(satvu) = H1(8,t) - Hl(sau) +H2(87t) +H3(S,U),
ffﬁ(s,t,u} :Téf(s,t,u) =Hi(s,t) — Hi(s,u) — Ha(s,u) — Hs(s,t),

ffg(satvu) :ffg(satvu) = fl(svt) _Fl(svu)'

The auxiliary functions are rather short:

1 s 1
fl(s,t):—§A4 {A4 [—t?iJAA(—s,—t;me,mf)—i—

+t52Co(—m?2, —m? s;O,me,O)} +

er

4m?€ . s (s — 2m?)

+t|:A3T A4r :|C0(_m?fa_m?“a_s;0amfﬂ0)_
t
23— | B (=5:0,0) — B{ (=mj;my,0)] +

t
+ 2t_ {Bg(—t; Me, Mf) — Bg(—m?e;mf, 0)} },

4 A4r A4r
+t_Co(—m?, —mfc, —t;me,0,my) +

t_ tyt?
Hi(s,t) = ——[2— (t—l— a ) i] Jaa(—s,—t;me,my) +

2

sm t
+ 2A4f (1 - 215_) [Bg(—t;me,mf) — Bg(—m?e;mf,O)},

(2.100)

(2.101)

(2.102)
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Ha(s,t) = 424 {(s +2t_) (1 —ty AS ) sCo(—m?2, —m?, —5;0,m,0) —

4r

- [mecs — (s —4m73) <s+ 2t_ — (sty +2tt_) AS ﬂ X
4r
x Co(— mf, m?,—s;(),mf,())—i-
+ 2t [Bf (=5:0,0) = BY (~tyme,my)| -

—

2 BE (—t;me,my) — B (— mf,mf,())}}, (2.103)

Hs(s,t) = (s+2t_)t> Jaa(—s, —t;me, my). (2.104)

4AZT
Here
Ay = —tu+mj, (2.105)

and J44(Q?, P%; My, M>) is due to a procedure of disentangling of the infrared
divergences from Dy. Its explicit expression reads (P? > 0,Q? < 0, and M is
ignored everywhere but for the arguments of In):

1 A2 p? 1 M?
JAA(QQ’PQ;MI;MQ) A {ln —Q2P2 1n<_Q2>—51n2<_6212>_
1.,/ M2 ) M2
——hl ( Q2)+1 (14—? -
. [ P? : A%
— 2Liy (A—P> + i In [MfMQQ} } (2.106)

Furthermore, the relevant infrared divergent Cy function (again P2 > 0), is

2A M2M?2 A2

PPN L o (MY 1o, (ME M3

where Ap = P? + M2,

Z A Box Contribution. In R gauge there are eight ZA boxes; however,
since the electron mass is ignored, only four diagrams without ¢y contribute,
see Fig. 11.

1 A2 P2
COR(—M3, —M3, P* My, \, M>) = {1 { }1 =
P
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et VA f + A

Fig. 11. Direct and crossed Z A boxes
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The six relevant scalar form factors are conveniently presentable in the form
of differences of ¢- and u-dependent functions:
FEr (s, t,u) = FEM(s,t) — FE (s, ), (2.108)

where the index I.J is any pair of L, R® L, R, D. The 12 F## functions depend
on 6 auxiliary functions by means of equations where the coupling constants are
factored out:

Fff(s,t) = Ueafgl(s,t) + Ueéfgg(s,t),
A (s,u) = 0.0 Hi(s,u) + 0.0 Ha(s, u),

Fhn(s,:t) = 0.64G1(s,t) + 6,0,Ga(s, ),

FEa(s,u) = 0.0 H1(s,u) + 6.6, Ha(s,u),
Z8(s,t) = o.0;H1(s,t) + 0.0, Ha(s, 1),

Fid(s,u) = 0.01G1(s,u) + 0.0;Ga(s,u), 2.109)
gf(s,t) = 0,0 H1(s,t) + 0.0, Ha(s, 1), )
fi1 (s,u) = 8.04Gi(s,u) + 6,8;Ga(s, u),

fzg(s,t) =0,0;F1(5,t) + 0,0, Fa(s,1),

Zg(s,u) = Ueéf}'l(s, u) + Jeaf}'g(s, u),
gg(s,t) = 0,0 F1(s,1) + 0.0, Fa(s, 1),

fﬁg(s,u) = 560f.7-'1(s, u) + 665f.7-'2(s,u).

Finally, we present these 6 auxiliary functions:

1 t _
Fi(s,t) = —=—> {t_ (Rz +=- 2—}—21&2

s_t2
- (S+ +2 A4>CO(_mz7 —mz7 —s; Mz, me,0) —

tM?2 tt_
—2(t+2t + 2 9% )Co( m, —ml, —t;mys, Mz, me) —

t A4r
ty 2 t-ty
[ A, (MZ 4mf)—|—s_ (1+2A4r>}x

t
x Co(— mf, mf, —s; Mz,mf,0)+2t— {235(—t;me,mf)_

—Bg(—m?p;MZ,mf) BO( mf,mf,O)} {230( s;Mz,0) —

A37‘

- Bg(_m?;MZamf) - Bg(_m?‘;mfao)} }7
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Fo(s,t) =

H1 (S, t) =

X JAZ(_

1 s [t
S

SA, —Jaz(—s,—t;me,my) —

— 2tCo(— mf,—m —t; mf,MZ,me)] (2.110)

sm2 1 t 1
s 4 B (R P _ S-l+
G-l (e 50 5)

R s_t 1
e (o (52 )

1 t
x Co(— mf, 57—t§mf,MZ,me)—H([S++S (s+2t_ )A4 } X

X CQ(

t_
—m?2, —m?, —s; Mz, m,,0) + {5_ — 2y —s_ (s - 4m?) A } X
4r

x Co(— mf, mf, —s; MZ,mf,O)—i—Z[Bg(—s;MZ,O) —Bg(—t;me,mf)} -

2
m
— 2L [2Bf (~time,my) — BY (~mF: Mz, my) -

- B{(—mi;mf,o)D } 2.111)

2

_sf[ = mp/1 my :
HQ(S;t)Z{|:_s_+7<__A4T>:|JAZ(_87_t7meamf)+

gl (S, f,) =

+ _CO(_mzv _m?”a —t;me, 0, mf) -

t. myf
_ (__|_ t )CO(—m?c,—mi,—t;mf,MZ7me)}7

tom o1 [, ) s_tt_ty
{(____+2A4r [mf+t_(2t+_mfRZ)_ Ay .

X Jaz(—s,—t;me,my) + S;Co(—mg, —m?, —t;me,0,my) —

t1 miMat s tt_ty
~-|=- 2t_t - X
|: A4r <mf + + + t_ A47"

5_
x Co(— mf, g,—t;mf,MZ,me)—i—

1 s_t2ty s o
+ — | ts+ + Co(—mzZ,—mZ, —s; Mz, me,0) —
2A4r

A47’
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s_t_t2
- (2mfct_—t(s+—4mfc)— A, +>C’0( mf, mf, —s; Mz,mys,0) +

2
m
+ Zt(Bg(—s;MZ,O) — Bf (—t;me,my) — t_f [235(—t;me,mf) —

— Bf (=m3; Mz, my) — B{ (- mf,mf,O)D]}, (2.112)

sm3 [ (/1 t
Ga(s,t) = Tf {(g ", ) Jaz(—=s,—t;me,my) —

A4 CO( mfa iv_t;mf;MZ;me)]a (2.113)
T
where a new notation was introduced for the invariants:

sy =s+t Mz, ty=tEtm}, (2.114)

and for the new function J7;(Q?, P%; My, M>):

1 Q2+M2 M2M2
Jaz(Q? P? My, M) = P2+M21 ( 2 Z)m{(Per]\;%)Q} (2.115)

The WW Box. There is only one, direct or crossed, WW diagram contribut-
ing to our process, see Fig. 12.
Here we give the contribution of this diagram to the scalar form factor LL:

4
¢ gt 1
(B WW) - (2”)4’—1%2 ST+ ® W+ FLL (s,u), (2.116)

Fig. 12. Crossed and direct WW boxes
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where

S
F%W(Sa U) = ﬁ [(u - m%) DO(Oa 07 —m%, _m%, =S, U MWv Oa Mvab)+
t

+C0(_mt27_mt2a_S;MWa07MW)+C0(0;07_S;MW7OaMW) ) (2117)
with s, ¢, and u being the usual Mandelstamm variables satisfying
s+t+u=2m}, f=torb. (2.118)

For the processes, where the direct box contributes, we have:

) , t_
Fw ZL{ [_@ ~ Ko+ (2M€Vt+ +Kamgt —mity) 7 ) A

1
—:| DO(Oa 07 _mga _m§7 -, _t7 MW) 07 MW; mt) -

mé 1 22 1
- | K Kotyt_ — Ky —2 +¢ ;G —
(160 [t a6 (Bt | 105 )

X CQ(_mi, _m§) _t7 MW; mg, MW) +

1 1
+ 2<K2t + K1t+t—>t—C0(O, —mZ, —t;0, My, m;) —
A4r A4r
t_ 1 ttd 1
— 12 - K. Kott_ — Kity)——+ K1 ———
{ 2+ (K2 1+)tA4T+ 1= AZT]X

x Cp(0,0, —s; My, 0, My ) +
1
Ay
1

~ 2ty 5 [B{(—t; 0,my) — BE (—m2; MW,mt)} } (2.119)
T

|BE (=i My, Myy) = BE (=mis M, my)| =

Fww sm% { < zt,— 1 {(t/ )2 VKt ( zt,— K >2] 1 i
=——2 < (mi=—=|(t_)— —mp——
LQ 4Ié3)S%VQb t 2 104 b 1 1 A4r

1
+ K12t+tA—2>DO(07 Oa —mﬁ, _mﬁa =S, _t; MWv Oa MW; mt) +
4r

2 2 2

my my\ 1 tit 1

— — [ Kat Ki—> - Ki———| %
+{t <2++ 1t>A4,« 17 A2

2 2
x Co(—mi, —mi, —s; My, my, Myy) +
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K
+2[<K2 + t—1> t+ Kitot_

111 )
_ —t:0. M _
A4r:| A4r CO(Oa my, 7Oa W;mt)

2 2 2
m; mp\ 1 titc 1 ]
S A KL—K—) + K== —|Co(0,0, —s; My, 0, My) +
[tg ( 2 ) an TR A of w w)

1

25— [BE (s Myw Mw) = BY (=mis Mig.my)]| -
T
2, 1
t A47”

| BE (—t:0,m0) = BY (=m}: My, my)| } (2.120)

1 X
A4r

X DO(O) 07 _mga _mia -, _t7 MW) 07 MW; mt) +

WW S 1 2 / 2

2/
myt, 1 1 1
K )t Kyt _t
: 3) A, TR AL

+|Kaea(

2 2 .
X CO(_mba —my, —S; MW7mt; MW) -
!’

t K 1
—t —++—1+2K1t, C()(O, —m%,—t;O,MW,mt)—
t t_ AV

1
A4r

— (Kg—Klta )Co(0,0,—S;Mw,O,Mw)—

1
- 2t+E [Bg(_S§MW7MW) - Bg(_mg;MW;mt)} +
T

¢
+2- [Bg(—t; 0,my) — BE (—m2; My, mt)} } (2.121)

where
t ot
Ky =2M3, + —
2,.,2
mim
K2 = ;2 b + ]_,

" (2.122)
Ks =2M3, — m%T_,

t=t—m? t,=t+m?

t.=t—mj, t,=t+mi
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In the limit m, — 0, for F}¥"V one has:

1t , Lt (K2
FWW — S _ _ 11t — Kllm_ 1 ° - %
LLlim 21_;3) 2 u + — 1 u + u — u + B

t Klim /¢
><DO(0,0,0,0,—S,—t;MW,O,MW,mt)+ E—l— " E—’_l X

X |:CO(05 07 —S; MW) 07 MW) + CO(Oa 07 —S; MW7mta MW):| -

t Klim
—2—(1— L )CO(O,O,—t;O,MW,mt)—
u u

2
— = |BS (=5 M, Myy) = BY (~:0,my)], - (2.123)
u
where
Kim —op2 44 (2.124)

The ZZ Box. There are two ZZ box diagrams, which form a gauge-invariant
and UV finite subset, see Fig. 13.

Fig. 13. Crossed and direct ZZ boxes

First, we use three auxiliary functions F,H, G:
FEE (s t,u) = Floe,04,07,8,1) — Floe, 07,07, 8,1),
F(be,0p,0¢,8,t) — F(be,00,05,8,u),
H(oe,0¢,05,8,t) —G(0e,0¢,0¢,s,u),
H(be,0f,0f,8,t) —G(0e,08,05,5,u),
G(oe,05,07,8,t) — H(oe,df,05,8,u),
(0e,0f,0f,8,t) — H(de,0f,05,5,u).

s, t,u) =

s, t,u

FRp (s t.u)
}—LZI%( ) (2.125)
FLZ(s,t,u)
FLL(s,t,u)
Fii (s t.u)

s, t,u

s,t,u) =G
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Separating out Z fermion coupling constants and some common factors, we
introduce more auxiliary functions. For F(oe,0y,d¢, s,t) defined as

F(oe,07,05,8,t) = Ai (0207 F1(s,t) + 020505 Fa(s, t)], (2.126)
4r

there are two functions

Fils) = (14085 2+ (o 222) € 4 a0011) =)
Ar

X DO(Ov Oa _m?% _m?fv —-S, _t; MZv Oa Mvaf) -

~ (-t +2M3ty ) + sm N 2ty (M3 — 2m§)} y

2 2
—|\m2 - M2 —
|: ! z A47" AB?"
x Co(— mf, mf,s Mz, ms, Mz) —

M2 3+ 2tt_ M2 — m3(3tt_ + m4
) ).

14 22
* t_ A4r
x Cy(0, —m?e, t;0, Mz, my) —

(t—2t- —2MZ)t2 + smj}
A4r

- [Mg —mj + }CO(O,O,S;MZ,O,MZ) -

s+ 2t_
_ <1+ A, ) [BO(—S;MZ7MZ) —BO(_m?Qszmf)] +

+ f—_t [Bo(t;my,0) = Bo(—m3; Mz,my)], (2.127)
and
Fo(s,t) = — (t2_ + ZM%t) Dy(0,0, —m?e, —mfc, —s,—t; Mz,0, Mz, my) —
—t1Co(—m}, —m7, s; Mz, my, Mz) +
+2tCo (0, —=m3, 50, Mz, my) — t_Co(0,0,5; Mz, 0, Mz). (2.128)
For 'H written out as

H(oe,00,07,8,t) =
2

_ mys
A4r

(0203 1 (s,t) + 02005 Ha(s, t)] + 0207 Hs(s, 1), (2.129)
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we need three auxiliary sub-functions:

st_ 2t ¢t
Hi(s,t) = [7—@ + M2)? 2M§t—sz—+] X

4r

X DO(Ov Oa _m?% _miv —-S, _t; MZv Oa Mvaf) -

o, S [ti + Ag,«m?]
* 2A47"

2M2¢ t_t
(2t + 2220 =) 0000,0, 5 Mg, 0, My) —
t_ A4r
' 5= (smj — 1) Co(0, —m2,4:0, M
- +T4r 0( a_mf7 y Yy Z7mf)_

m}
— 2t_ (Bo(t;mf,()) - Bo(—m?;MZ;mf)) -

— Bo(t;mf,O) + Bo(s; Mz, Mz),

Ha(s,t) = [t—(s+t-) +2m7M3] x
x Dy(0,0, —m?,—m?,— —t; Mz, 0, Mz,mf) —
—(s+1t_ —2mf)C0( mf, mf,s Mz, mg, Mz) —
—meCo( mf, mf,s 0,Mz,my) +

+ (S +t*) Co(0,0, S,Mz,O,MZ),

and

Hs(s,t) = —s[t,Do(O, 0, —m?, —m?, -8, —t; Mz,0, Mz, my) +

+ CO(_m?a _mf“a S MZ7mf7 MZ) + 00(07 _m?a t7 MZ; 07 MZ)} .

Finally, G also, defined as follows:

G(oe,07,05,8,t) = [Ugo;gl(s,t) + Ugoféfgg(s,t)],

S
A4r

needs only two additional functions:

)CO(_m?”a _m?% S5 MZ; mg, MZ) +

(2.130)

(2.131)

(2.132)

(2.133)

s3t sm 2 2 2
Gi(s,t) = —[t_t, [ 2MZ+ —t_ | —*—t_t|+tMz (2m} — M)

2A,, 2
X D()(0,0, _mfv _mfv —-S, _t;MZ7OaMZ7mf) +
t_t?

Sz
+ {m_t—l— ?(t ~A +>}Co(—m?c,—mfc,s;MZ,mf,MZ) —
4r



UPDATE OF ONE-LOOP CORRECTIONS 1171

t tot_ts,
t_ A4r

- [u (t+t_)+2Mzm7

C()(O, _m?a _t; 07 MZ; mf) -

. tot?
et 22 (= EE) [ 0000,0, 8 My, 0, M) +
2 A47’

m2
+ 2m? (1 + t_f> [Bo(t;mf,O) - Bo(—m?;MZ,mf)] -
— t[Bo(s; Mz, Mz) — Bo(t;mys,0)], (2.134)
and
Ga(s,t) = m?» [(t% + ZM%t)DO(O, 0, —m?», —m?, —s,—t; Mz,0, Mz, mys) +
+ t+Co(—m?», —m?», s;Mz,my, Mz) — 2tCy(0, —m?,t; 0,Mz,m¢) +
+1-Cp(0,0,5,Mz,0,Mz)]. (2.135)

We recall that Ay, = —tu—l—m‘} together with Ag,. of Eq. (2.84) denotes remnants
of Gram determinants that remained after cancellation of factors s and 4, leading
to a simplification of the expressions.

Transition to the L, (), D Basis. Since the box contributions are given in the
L, R, D basis, while all the rest is in the L, (), D basis, we should transfer one
of them to a chosen basis. At this phase of the calculations there is not much
difference which basis is chosen. For definiteness we choose the L, ), D basis
and transfer the box contributions to it. The transition formulae are simple:

FEE (s, t,u) = FEE (s, t,u) + FEE (s, t,u) — FEE (s, t,u) — FEE (s,t,u),
FGr (s, tu) = 2[FEL (s, t,u) = Frg (s,t,u)]
ffg(s,t,u) = Q[fLLg(s,t,u) — fég(s,t,u)],
fég(s,t,u) = 4FLE(s,t,u), (2.136)
FLp (sit,u) = FLp (s, u) = Fgp (s,t, ),
fég(s,t, u) = 2.7:}%5(5,15,1;).

Box—Born Interferences. Any box, described by the amplitude in Eq. (2.98),
interfering with v and Z exchange tree-level amplitudes, gives rise to two con-
tributions to the differential cross-sections, which are useful for internal cross-
checks:

UB()X@BOHLY X SQth Re { ([(S + t—)Q + Sm?‘} (]:LL + fRR) +

+ (sm3 + 8)(Frr + Frr) — 2m3 (st + 2)(Fup + Frp)) |, 2.137)
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OBox@Bor, X 8Re {([(s + t_)2 + smﬂ dp(0eFrLrL + 0. FrR) +
+2(s+t-)apo.Frr +2t2 a6, Frr +
+ (smfc + t2_)5f(0'e]:LR +9,FrL) + ZSm?caf(Ue}"LR +9,FrRr) —
— 2m3 (st + 12 vg (0. Frp + 567313));(2*}. (2.138)

3. SCALAR FORM FACTORS FOR ELECTROWEAK AMPLITUDE

Having all the building blocks, it is time to construct complete electroweak

scalar form factors.
3.1. Vertices Scalar Form Factors. We begin with two vertex contributions:

Fig. 14. Electron (a) and final fermion (b) vertices in e — (v, Z) — ff

In the same way as described in [5], we reduce two vertex contributions to
our six form factors:

Fri(s) = FE*“(s) + F{'7 (5) = dcly A(Mw),
Fou(s) = F5(s) + Fi!? (s) = 263 A(Mw) + b [FJ (s) = 28(Mw)] |

Fro(s) = Fi(s) — 2ch, A(Mw) + F3'7 (s) + k[F7*(s) — 2A(Mw))] )

zee z k ee
Fools) = F&(s) + F5 ¥ (s) - e [Py () + FE(s)]
FLD(S) = FE”(S%
Fop(s) = Fill(s) + kF3!(s),
where

k=ci(Rz —1). (3.2)
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With the term containing A(Myy),

1 M2
we explicitly show the contribution of the so-called special vertices [36]. Note
that they accompany every L form factor. The poles 1/ originating from special
vertices will be canceled in the sum of all contributions, including self-energies
and boxes.

3.2. Bosonic Self-Energies and Bosonic Counterterms. The contributions
to form factors from bosonic self-energy diagrams and counterterms, originating
from bosonic self-energy diagrams, come from four classes of diagrams; their
sum is depicted by a black circle in Fig. 15. Their contribution to the four scalar
form factors is derived in [5,11]:

C 62 B 82 —_bos
Fi'(s) = Dy(s) = siyIl,, (0) + T (Ap + A5"),  (34)
w

Fig. 15. Bosonic self-energies and counterterms for e — (Z,v) — ff
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FgL(LQ)(S) =Dy(s) — (T, (s) + Hbog( ) —
— sy IL,,(0) — (Ap + Ap"%), (3.5

FccgtébOS(s) _ Dl%os( ) —9 [Hbos( ) bos } + k‘[HbOS Hbos (O)] _

1
Hbos (0) _ (Apbos + Apbos), (3.6)
Sty
1
Foo™ (s) = DEY(s) = 21 (s) = siy 1155 (0) = =40 (37)

w

We note that the term & [Hfﬁ(s) - Hfzefy(s)] is conventionally extracted from
F&2(s). This contribution is shifted to A™PA, Eq. (1.8).

In Eqs. (3.4)~(3.7) Ap" and I:I%‘Zys(s) stand for shifts of bosonic self-
energies. They have the same origin as special vertices and they are equal to:

ApPS = 452, A(Myy), (3.8)
%% (s) = —2Rw A (Mw), (3.9)

see Eqgs. (6.137) and (6.139) of [11]. These poles also cancel in the sum of all
contributions.

3.3. Total Scalar Form Factors of the One-Loop Amplitude. Adding all
contributions together, we observe the cancellation of all poles. The ultraviolet-
finite results for six scalar form factors are:

Frp(s tou) = Fi(s) + Fi7 (s) + Fii(s) + 16kFLP (s, u),
Fop(s,t,u) = F&o(s) + Fil T (s) + kFP (s) + FSL(s) + 16kF S (s, t,u),
Fro(s t,u) = Fi®(s) + ]—‘éf T(s) + kF1(s) + Fio(s) + 16kFLE (s, t,u),

FQQ(Sat7u):fg)ee( ) fof( )
k ee C OX
- %[fg? (5) + FF(5)] + Fép(5) + 16kFE (s, t,u),  (3.10)
Fpp(s,t,u) = F5lT (s) + 16kFES (s, t,u),
Fop(s,t,u) = Fil 7 (s) + k FH (s) + 16kFEE (s, t,u).
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For IJ = LQ,QL,QQ,LD,QD components of a box contribution we have:

T (s,t,u) = KAATFLA (st u) + KZAFE (s, t,u) + K22 FE7 (st u) +

+ EYWEIW (s, t,u), (3.11)

where
\a1% 1
EPTY = —. (3.12)
16
Moreover,
z z)B
T =3 FYNe) (3.13)
B=A,Z HW

except for F7*(s) = 0 and F"(s) = 0.

4. IMPROVED BORN APPROXIMATION CROSS-SECTION

4.1. Improved Born Approximation Cross-Section. In this section we give
the improved Born approximation (IBA) differential in the scattering angle cross-
section. It is derived by simple squaring the (v + Z) exchange IBA amplitude,
Egs. (1.8)—(1.10), and accounting for proper normalization factors. We simply
give the result:

dO‘IBA 2

T
T = g OrNe(o3t + 0y + 077), (4.1)
where ;= /1 — 4m?/s and
oBA — Q2(s? + 2st + 262 ) als) 2, 4.2)

ULBZA =2QsRe {x(2[(s + t_)* + smﬂFLL(s,t,u) +
+ (s? +2st +2t2) [For(s, t,u) + Fro(s, t,u) + Foo(s, t,u)] —
—4m?(st+t2,)[FLD(s,t,u)+FQD(s,t,u)])a* (s)}, (4.3)
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o5 = X2 Re {8 (s + ) [|Fuals, tow)l® + Fro(s,t,u) Fop (s, t,u)] +

+2[(s+t_)? +12]|For(s, t,u))* +
+4[(s +t-)* + sm}] [2F; 1 (s, t, u)FL*Q(s, t,u) +
+ Fro(s,t,u)Es (s, tu) + For(s,t,u)Ffo(s, t,u)] +
+ [+ 2(st + £2)] [2|Fro(s. t,w)|* + [Foq(s, t,u)|® +
+ Z(FQL(S, t,u) + FLQ(S, t, u))ﬁéQ(s, t, u)] —
— 8m7 (st + %) [(2FLp(s,t,u) + Fop(s, t,u)) F} (s, t,u) +
+ (FLD(S, t,u) + FQD(S, t,u))ﬁéL(s, t,u) +
+ (2FLp(s,t,u) + Fop(s, t,u)) Fio(s, t,u) +
+ (FLD(s,t, u) + FQD(s,t, u))ﬁéQ(s, t,u)] -
—2m5 (st +t2)Asy [2|Fpp (s, t,u)|* +

+2Fp (s, t,u) Fgp (s, tu) + [ Fop(s,t,u)?] } (4.4)

4.2. The ete™ — ff Process in the Helicity Amplitudes. According to the
analysis of the EW part and QED parts, we have the complete answer for the
amplitude of the process eTe™ — tt.

The aim of this section is to adapt the helicity amplitude techniques for the
description of our process. We produced an alternative analytic answer for the
same amplitude using the method suggested in [37].

In general, there are 16 helicity amplitudes for any 2f — 2f process. For
the unpolarized case, and when the electron mass is ignored, we are left with only
six helicity amplitudes, which depend on kinematical variables and our six scalar
form factors:

Appy+ =0, A4y =0, Ay =0, A =0,
Ay =5 (1= cos 9) (QeQsFoc + xz0 [(1+ B) I} For + 0, Foq)).

Ayt =51+ cos V) (QeQrFaa + xz0e [(1 — ﬁf)IJSB)FQL +07Fgq]),

A=Ay 1y =2Vsmysin ﬁ(QleFGG +

1
+ Xz0e {1}3)FQL +07FqQ + isﬁfQI}?))FQD})?
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Appy=A 4 = -2/smysin ﬁ(QleFGG +

+ Xz [2[6(3)1}3)FLL + 215(3)5fFLQ + 561}3)FQL + 565fFQQ +

1
+ §Sﬂf21§c3) 21 Frp + 5eFQD)D7

Ay =51+ cos ¥) (QleFGG +xz X

X {(1 + 80 RIOIP Frp + 6.1 For) + 65 (219 Frg + 56FQQ)} )

A4+ =s(1—cos?) (QleFGG +Xz %

x (1= B) I (219 Fup + 60Fqu) + 07 (21 Frg + 6.Faq) | )

Ay =0, A _4_ =0, A __,=0, A ___=0. (45

Here

— 2 5\ 2
cost = (t—mf+§) %,

and for the amplitude A)\i)\])\k)\l each index A(; ; x.1) takes two values (& = &1)
meaning 2 times the projection of spins e™,e™, f, f onto their corresponding
momentum. The differential cross-section for the unpolarized case is:

(4.6)

do

2
dcosd ﬂ:si?’ﬁch’ Z |'A)\i>\7/\k>\1|2' “4.7)

PV

We checked that this expression is analytically identical to Eq. (4.1). Both
expressions, Eq. (4.1) and Eq. (4.7), contain, however, spurious contributions
of the two-loop order (squares of one-loop terms), which should be suppressed,
since we would like to have a complete one-loop result.

This may be achieved with a simple trick. First of all, let us note that if
all form factors are: Fyy = 1 for IJ = LL, LQ, QL, QQ and F;; = 0 for
1J = LD, QD, we have the tree level. At the one-loop level LL, LQ, QL, QQ
form factors may be represented as:

(07

F[J=1+ FIJ7 (4'8)

2
dmsy,
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and

=—Fi;, (4.9)

for IJ = LD, QD.
Instead of Eq. (4.8) for the four form factors we write

«
F[J:Z+—2 Fry (4.10)
4msy,

and note that the cross-section is a function of six form factors.
Then the one-loop result is apparently equal to:

do™ do do
dcos? dcosﬁ[ ) dcosﬁ[ 0]

A.11)

5. ANNEX

5.1. QED Vertices and Soft-Photon Contributions. Here we present vir-
tual corrections due to QED vertices, a factorized part due to QED boxes and
soft-photon contributions. The expressions in this subsection can be also cast
from [11].

The formal structure of factorized virtual and soft contributions is as follows:

. « i i i
5v1rt+soft _ ; [Q55¥é§+80ft + Qleéi%rIt-&-soft + Q?P(S%lgr{:g_w&]- (5'1)

There are thus three types of contributions: ISR, FSR, and IFI.

Initial-State Radiation (ISR). The contributions of the initial-state QED eTe ™~
vertex and ISR soft photon contribution are short, since the electron mass is ig-
nored:

2
. 1
St — _n —m; (le =1) = =12+ §ze —244Liy (1),
A 2 2 (5.2)

4 2 2 1
5§§g —In <%%> (le — 1) + 513 — 2Lis (1) )

where

I, =In (%) . (5.3)
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Initial-Final State Interference (IFI). This originates from contributions of
QED boxes: 77, Z~v and initial-final state soft photons interference:

virt __ S i
6IFI = —QIHEIH u_77 (54)
dw?  t_
S — 91n % In— + [F*f (s, t) — F*%(s,u)] , (5.5)
u—

with

o Byt
st st t2 2
(- ) +2n({—= )In(14+ =) +2Liy (1 — -
+n<t2)+ n( t2>n<+st>+ 12< t_ﬁ+)

2Li —B-t- 2Li £ 2Li, (1 5.6
- 12 m - 12(—§>— 12()a (5.6)

where we introduce the notation:

4m?
B=p8r=y1-—L
8 (5.7)

Jr:]-—’_ﬁa 67:1_6a 77_%_

Final-State Radiation (FSR). The contributions of one-loop QED f f~ vertex
and final-state soft photon radiation are:

~ mi[_ (1+6%)
—

]. ]_ 2m2 2m2
Fsoft(sat) :—§lg— 51112774—211177111 <1-|— ﬁ tf> _1n2 <1+ f ) +

3
23 lnn—l] —5[311177—2—1-

2
T (1;'7;){_ %1n277+21n771n(1 —n) + 2Liy (n) +4L12(1)}’
(5.8)

42 1+ 32 1
S8t —1n =2 [—( +B)ln —1]——ln77+

FSR =M 57| T o B
+<1-2F7552>{_ %1n277+21n771n(1—77)+2L12 (77>—2L12<1>}

The contribution of the ISR given in Eq. (5.2) may be obtained from these
expressions in the limit my = m, — 0.



1180 ANDONOV A. ET AL.

Non-Factorized Final-State Vertex «Anomalous» Contributions. To present
this contribution let us introduce the definition

B—1
B+1

The «anomalous» part of the QED vertex contribution to the differential cross-
section reads:

L, =1n

(5.9)

do® m?
Jeosd = 4043NCS—4fQ? [(QiQ?—l—ZQlevevae (XZ)—i—(vg + az) Ut2|XZ|2) X

x (st +12)Re (Ln) + QeQracays (s + 2t_)Re (Lyxz) +
+ ((vz +a2)a? [s(s — 4m7) + 2(st + t%)} +
+ 2veacvrars(s + 2t_)) Ixz|*Re (Ln)} . (5.10)

5.2. An Alternative Form of the Cross-Section for QED Boxes. Here we
present some useful formulae, which are not in the main stream of our approach
(described in the previous sections), but were used for internal cross-checks of
the calculations of the QED part of the process under consideration.

The QED boxes, Egs. (2.137) and (2.138), may be greatly simplified purely
algebraically if the cross-sections are calculated analytically. For the sum of AA
and Z A boxes one may easily derive the cross-section:

do.Box 2043

_ - 22
= T 0Q.Qs N Re {QXQ}Fy +

+QeQpxz [vevy (Fy +Hy) + acay (Fi+Gv) | +
+ |XZ|2 [ (vg + az) (v?')‘(v + a?«'HA) + 2acvearvy (Gy + QA)} }, (5.11)
where xz(s) is defined by Eq. (1.12) and the six cross-section form factors are:

Fv=Fv(t)—Fv(u), Fa=ZFa(t)+ Falu),
Hy :Hv(t)—Hv(u), HA:HA(t)—HA(u), (5.12)
Gv =Gv(t)+Gv(u), Ga=Ga(t)+Ga(u),

1(¢-
Fv(t) = E{Z {Zm? + (s+2t2) |Jaa(—s,—t;me,my) +

st
+ ECO(_mia _m57 —S; O7me7 0) +
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s—4m2  4m?
+ t<7f Ll >Co(—m?, —m?, —s;0,my,0) +

2 A37‘
2tm>
f F( . 2.  pF B
v [Bo( m3%;my,0) — BE( 5,0,0)}
2
sm
_ t_f {Bg(—t;me,mf) B (- mf,mfvo)} _
(s +2t,) (B (—time,my) = B (~5,0,0)] } (5.13)
1(s+2t_
fA(t) = g{ 1 LJAA(—S,—t;me,mf) _

_m?c( sCo(— mf, mfc,—s;O,mf,O)—l—

+ (t +1) |BE (~time,my) — Bg(_m?;m’c’o)D -

(s+1t-)
2

| B (—time,my) = B (=50,0)] } (5.14)

1 t_
Ho(t) = 5—2{ <t2, +(s+ tf)Q) 7JAA(—87 —t;me, my) +

1
+i_ |:§S (s+ +2t) — <t2_ + (s+ t)Q)} Jaz(—s, —t;me,my) +

(50 v - (2 )] )

XCO( mfv_m tmvaZ;me)+S<StCO( _mga_S;MZ;mevo)+
+ st Co(— mf, mf, —s; Mz, my,0) —

2
_ I [oBF (—t: B — B (—m2, M -
t 2 0( t7m€7mf) 0( mf7mf50) 0( mf7 Zamf)

—(s+1t.) {Bg(—t; me,my) — BE (=s; Mz, O)D } (5.15)

2t_m7 1
Hy (t) = Ho(t) — Jaz(—s,—t;me, my) — §JAA(_5a —t;me, my) +
5 Zm?cs_t
+CO( mfa ea_t;mf;MZ7me) - 82 X
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1
X ((l_A—g,T)CO( mf, mf, sMZ,mf,O)—ABT X

x[ng(—s;MZ,O) BE (- mf,mf,())—B§(—m§;MZ,mf)}>}, (5.16)

2
2mf

Ha(t) = Hol(t) + ?{t_ [M%JAz(—S, —t;Mme,my) —
1
—5§JAA(—5,—t;me,mf)]+(s Sy+i_ s)Co( mf, mZ, —t;mp, Mz, me)+
—l—s_[—tCo( mf, mf, —s; Mz, my,0) —

— Bf (—t;me,my) + B (—s; Mz, 0)] } (5.17)

1 1
Gy(t) = —g{ ~3 (s+2t_)t_Jaa(—s,—t;me,mys) +

+i_ {s +2t_ — Z; (s++ 2t)} Jaz(—s,—t;me,my) +
s

XCO( mfv 2 _t;mvaZ;me)_

( M {Co( 2, —m2, —s; Mz,me,0) +

+ Co(— mf, mf, s; MZ,mf,O)] +
m} F 2
+t_ —ZBO( t: me,mf)—l—BO( mf,mf,O)—l—BO (—mf;MZ,mf) —

_(sHto) [Bg(_t;me,mf) - Bg(—s;Mz,o)D}, (5.18)

s
Ga(t) =Gy (t) — mf = [25 Co(— mf,—m —t;my, Mz, me) +
+S+CO( mfa mfa =S5 MZ7mf;0)+

+235(—t;me,mf)—B(I;(—mfc;MZ,mf) BO( mf,mf,O)]. (5.19)
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Note the cancellation of Ay,., leading to a great simplification of the expressions.
Equations (5.11)—(5.19) were coded as a separate branch of eeffLib and,
together with the vertex QED contributions described in the previous subsections,
were used for an internal cross-check of the QED part of the calculations.
Some factorized part of the AA and Z A boxes contribution is not included
in Eq. (5.11). It has the form
do «

virt
dcos?d m QeQyorer (5.20)

where 0! is given by Eq. (5.4).
The whole QED contribution can be written as follows

dO‘QED _ dUBorn virtteoft do® N dO.Box
dcos?¥  dcosd dcos?  dcos?’

(5.21)

where §Virt+soft is defined by Egs. (5.1)—(5.8).

6. NUMERICAL RESULTS AND DISCUSSION

All the formulae derived in this article are realized in the FORTRAN code
with the tentative name eeffLib. Numbers presented in this section are pro-
duced with the February 2002 version of the code. As compared to the December
2000 version, used to produce numbers for [23], the current version contains
full QED corrections together with the soft-photon contribution to the angular
distribution do/dcos . In this section we present several examples of numerical
results. In particular, we will show a comparison of the electroweak form factors
(EWFF) including QED corrections between eef£Lib and another FORTRAN
code, which was automatically generated from form log files with the aid of
system s2n. £ (symbols to numbers), producing a FORTRAN source code. This
comparison provides a powerful internal cross-check of our numerics that practi-
cally excludes the appearance of bugs in numerical results.

We begin with showing several examples of comparison with ZEITTER
v6 .30 [38]. In the present realization, eef£fLib does not calculate My, from
1 decay and does not precompute either Sirlin’s parameter Ar or the total Z width,
which enters the Z-boson propagator. For this reason, the three parameters: Myy,
Ar, T'z were being taken from ZFITTER and used as INPUT for eeffLib.
Moreover, present eef £Lib is a purely one-loop code, while it was not foreseen
in ZFITTER, to access just one-loop form factors with the aid of users flags.
To accomplish the goals of comparison at the one-loop level, we had to modify
the DIZET electroweak library. The most important change was an addition to
the SUBROUTINE ROKANC:
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*

* For eett

*

FLL=(XROK(1)-1D0+DR )*R1/AL4PI
FQL=FLL+ (XROK(2)-1D0)*R1/AL4PI
FLO=FLL+ (XROK(3)-1D0)*R1/AL4PI
FQO=FLL+ (XROK(4)-1D0)*R1/AL4PI

with the aid of which we reconstruct four scalar form factors from ZFITTER’s
effective couplings p and x’s (F,p and Fgp do not contribute in the massless
approximation).

6.1. Flags of eeffLib. Here we give a description of flags (user options)
of eeffLib. While creating the code, we followed the principle to preserve
as often as possible the meaning of flags as described in the ZFITTER descrip-
tion [5]. In the list below, the comment «<as in ZFD» means that the flag has
exactly the same meaning as in [5]. Here we describe the set of flags of the
February 2002 version of eeffLib.

ALEM=3 ! asin ZFD

e ALE2=3 ! asin ZFD

VPOL=0 ! =0 «(0); =1,=2 as in ZFD; =3 is reserved for later use
Note that the flag is extended to VPOL=0 to allow calculations «without
running of a».

OCDC=0 ! asin ZFD

ITOP=1 ! asin DIZET (internal flag)

GAMS=1 ! asin ZFD

WEAK=1 ! asin ZFD (use WEAK=2 in v6.30 to drop out some higher-

order terms)
IMOMS=1 ! =0 «-scheme; =1 GFermi-scheme
New meaning of an old flag: switches between two renormalization schemes.

BOXD=6
Together with WEAK=0 is used for an internal comparison of separate
boxes and QED contributions:
BOXD ! =1 with AA boxes
! =2 with ZA boxes
! =3 with AA and Z A boxes
! =4 with all QED contributions
Together with WEAK=1 (working option), it has somewhat different mean-
ings:
BOXD ! =0 without any boxes
! =1 with AA boxes
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! =2 with ZA boxes

! =3 with AA and ZA boxes

I =4 with WW boxes

! =5 with WW and ZZ boxes

! =6 with all QED and EW boxes

«Treatment» Options

GAMZTR=1 treatment of I'.

The option is implemented for the sake of comparison with FeynArts:
GAMZTR=0 I'z =0

GAMZTR=1 Tz £0

EWFFTR=0 treatment of EW form factors.

Switches between form factors and effective ZFITTER couplings p and
x’s. The option is implemented for comparison with ZFITTER:
EWFFTR=0 electroweak form factors

EWFFTR=1 effective couplings p and x’s

FERMTR=1 treatment of fermionic masses

Switches between three different sets of «effective quark masses»:
FERMTR=1 a «standard» set of fermions masses

FERMTR=2, 3 «modified» sets

VPOLTR=1 treatment of photonic vacuum polarization

Switches between lowest-order expression a(s) = « [l + Aa(s)] and its
«resummed» version, a(s) = «/ [1 — Aa(s)]:

VPOLTR=0 lowest order

VPOLTR=1 resummed

EWRCTR=2 treatment of electroweak radiative corrections

Switches between three variants for vertex corrections:

EWRCTR=0 electroweak form factors contain only QED additions
EWRCTR=1 electroweak form factors do not contain QED additions
EWRCTR=2 electroweak form factors contain both QED and EW addi-
tions

EMASTR=0 treatment of terms with In(s/m?) in AA and Z A boxes, which
are present in various functions but cancel in sum:

EMASTR=0 these terms are suppressed in all functions they enter
EMASTR=1 these terms are retained in all functions, which may result
in loss of computer precision owing to numerical cancellation; results for
EMASTR=0 and EMASTR=1 are equal, however

EWWFFV=1 treatment of vertex and box diagrams with virtual W boson,
switches between two variants:

EWWFFV=0 variant of formulae without b-quark mass

EWWFFV=1 variant of formulae with finite b-quark mass
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Options Affecting QED Contributions

e TQED=4 variants of inclusion of virtual and soft photon QED contribu-
tions:
IQED=1 only initial-state radiation (ISR)
IQED=2 only initial-final interference (IFI)
IQED=3 only final-state radiation (FSR)
IQED=4 all QED contributions are included
e ITBOX=4 is active only if IQED=2 or 4 and affects only Eq. (5.11):
IBOX=0 AA boxes interfering with y-exchange BORN
IBOX=1 AA boxes
IBOX=2 ZA boxes
IBOX=3 or 4 AA+ZA boxes

6.2. eeffLib-ZFITTER Comparison of Scalar Form Factors. First of
all we discuss the results of a computation of the complete EW part of the four
scalar form factors (i.e., with WW and ZZ boxes),

FLL(Sat)7 FQL(Sat)7 FLQ(Sat)7 FQQ(Sat)7 (61)

for three channels: ete™ — wi, dd, and bb for light final fermion masses (we
set m,, = mg = 0.1 GeV), and for bb channel we use the formulae in the limit
my = 0). We remind that ZFITTER is able to deliver only massless results.

In this comparison we use flags as in subsec. 6.1 and, moreover,

Myy = 80.4514958 GeV,
Ar = 0.0284190602, (6.2)
I'z =2.499776 GeV.

The form factors are shown as complex numbers for the three c.m.s. energies
(for t = m? — s/%) and for y = My*. Table 1 shows very good agreement
with ZFITTER results (up to 6 or 7 digits agree). It should be stressed that
total agreement with ZEITTER is not expected because in the eeffLib for
ete™ — uu and dd channels we use massive expressions to compute the nearly
massless case. Certain numerical cancellations leading to losing some numerical
precision are expected. We should conclude that the agreement is very good and
demonstrates that our formulae have the correct m; — 0 limit. Note, that there is
an all-digits agreement for e*e~ — bb channel since in both cases one uses the
formulae in the limit m?e = 0.

*In the preprints [23,24] we presented this and the following tables for the three values of scale
u= My /10, My, 10My and demonstrated the scale independence of eeffLib numbers.
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Table 1. EWFF for the process e"e™ — ff. eeffLib-ZFITTER comparison

NE 100 GeV 200 GeV 300 GeV
Fry

uw channel, m, = 0.1 GeV, mq =0

Frp [12.89583 — ¢1.84786 | 8.24737 — 710.64653 | 8.98371 — i12.88466
ZF |12.89583 — 41.84786| 8.24736 —410.64651 | 8.98370 — ¢12.88466

For [29.30446 + 13.67330(29.38217 + 42.27613|31.59711 + ¢1.59304
ZF |29.30445 + 43.67330|29.38216 + 42.27613|31.59710 + ¢1.59304
Frg[29.10831 + 43.26973|29.48511 + 140.92311 |31.65835 — ¢0.89711
ZF |29.10832 + 43.26973|29.48512 + ¢0.92312|31.65835 — 0.89711
Foq|44.88228 4 ¢8.85688 |43.31854 + 19.48286 |44.18773 + ¢10.25197
ZF |44.88228 4 18.85688|43.31854 + 19.48286|44.18773 + 410.25196

dd channel, mgq = 0.1 GeV, m, =0

Frp (1370781 — ¢1.51002|15.18630 — 43.93706| 8.86000 — ¢1.80409
ZF |13.70781 — 41.51002]15.18629 — 1 3.93706| 8.86000 — ¢1.80409

For|29.64340 + 44.12394|31.96819 + 16.97877|31.69945 + 8.03876
ZF |29.64340 + 144.12394|31.96818 + 6.97877(31.69944 + 148.03876
Frg[29.12112 + 43.2278030.28990 + 41.73736|31.69321 — <0.07000
ZF |29.12113 + 43.22780|30.28990 + 41.73733|31.69323 — ¢0.07001
I |44.87608 + 48.79014 [43.94906 + 19.86523 |44.19463 + ¢10.38253
ZF |44.87609 + 148.79014 43.94905 + 19.48286 |44.19462 + 110.38251

bb channel, my, = 0, my = 173.8 GeV

Frp |11.16367 — 10.65244 |14.68726 — ¢1.85834 [11.26568 — 13.38026
ZF |11.16367 — 140.65244|14.68726 — 11.85834|11.26568 — ¢3.38026

For,|26.88634 + 44.76865|28.08780 + 45.27877|31.02060 + 43.91962
ZF |26.88634 + 14.76865|28.08780 + ¢5.27877|31.02060 + ¢3.91962
Fro(29.12113 + 43.22780(30.28990 + 41.73733 |31.69323 — ¢0.07001
ZF |29.12113 + 43.22780|30.28990 + ¢1.73733(31.69323 — ¢0.07001
Foq |44.87609 + 8.79014 |43.94905 + ¢9.86523 |44.19462 + i10.38251
ZF |44.87609 + 148.79014|43.94905 + 9.86523 [44.19462 + 410.38251

6.3. eeffLib-ZFITTER Comparison of IBA Cross-Section. As the next
step of the comparison of eeffLib with calculations from the literature, we
present a comparison of the IBA cross-section.

In Table 2 we show the differential cross-section Eq. (4.1) in pb for four
leptonic channels and in Table 3 for three quarkonic channels (bb channel being
shown twice for massless and massive b quarks) for three values of cosv =
—0.9, 0, +0.9 with running e. m. coupling «(s). Since the flag setting VPOL=1,
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Table 2. Comparison of the differential EW cross-sections (pb), leptonic channels. First
row — ZFITTER, second row — eeffLib

Vs | 100 GeV | 200 GeV | 300 GeV | 400 GeV | 700 GeV | 1000 GeV
cos 1

v channel, m, =0

—0.9{49.100086 | 0.579630 | 0.198147 | 0.101625 | 0.030297 | 0.014381
49.100085 | 0.579630 | 0.198147 | 0.101625 | 0.030297 | 0.014381

0 |31.834491|0.358941 | 0.122362 | 0.062455 | 0.018431 | 0.008648
31.834490 | 0.358941 | 0.122362 | 0.062455 | 0.018431 | 0.008648

0.9 |66.267213 | 0.739640 | 0.234000 | 0.115572 | 0.032285 | 0.014601
66.267213 | 0.739640 | 0.234000 | 0.115572 | 0.032285 | 0.014601

e~ et channel, m. =0

—0.9| 7.991109 | 0.533194 | 0.286463 | 0.169610 | 0.058032 | 0.028672
7.991110 | 0.533194 | 0.286463 | 0.169609 | 0.058032 | 0.028672

0 |19.773604 | 1.121915 | 0.474004 | 0.262276 | 0.084408 | 0.040933
19.773604 | 1.121915 | 0.474004 | 0.262276 | 0.084408 | 0.040933

0.9 |63.501753 | 3.504349 | 1.466665 | 0.811430 | 0.263378 | 0.128882
63.501750 | 3.504348 | 1.466665 | 0.811430 | 0.263378 | 0.128882

wtp™ channel, m, = 0.106 GeV

—0.9| 7.991040 | 0.533195 | 0.286463 | 0.169610 | 0.058032 | 0.028672
7.991028 | 0.533195 | 0.286463 | 0.169610 | 0.058032 | 0.028672

0 |19.773498 | 1.121915 | 0.474004 | 0.262276 | 0.084408 | 0.040933
19.773506 | 1.121915 | 0.474004 | 0.262276 | 0.084408 | 0.040933

0.9 |63.501436 | 3.504346 | 1.466665 | 0.811430 | 0.263378 | 0.128882
63.501422 | 3.504345 | 1.466664 | 0.811430 | 0.263378 | 0.128882

7777 channel, m, = 1.77705 GeV

—0.9| 7.971611 | 0.533509 | 0.286519 | 0.169627 | 0.058034 | 0.028673
7.968192 | 0.533295 | 0.286477 | 0.169613 | 0.058032 | 0.028672
0 |19.743430| 1.121827 | 0.473992 | 0.262273 | 0.084407 | 0.040933
19.745968 | 1.121978 | 0.474021 | 0.262282 | 0.084408 | 0.040933

0.9 |63.412131 | 3.503720 | 1.466558 | 0.811398 | 0.263375 | 0.128882
63.408973 | 3.503524 | 1.466520 | 0.811385 | 0.263373 | 0.128881

which is relevant to this case, affects the ZFITTER numbers, we now use,
instead of Eq.(6.2), the new INPUT set:

My, = 80.4467671 GeV,
Ar = 0.0284495385, (6.3)
I'z =2.499538 GeV.
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Table 3. Comparison of the differential EW cross-sections (pb), quarkonic channels.
First row — ZFITTER, second row — eeffLib

NG 100 GeV | 200 GeV | 300 GeV | 400 GeV | 700 GeV | 1000 GeV
cos

uw channel, m, = 0.1 GeV

—0.9| 45.404742|0.386966 | 0.225923 | 0.138065 | 0.048621 | 0.024156
45.404602 | 0.386966 | 0.225923 | 0.138065 | 0.048621 | 0.024156

0 60.382423 | 1.882835 | 0.771939 | 0.421410 | 0.133475 | 0.064245
60.382566 | 1.882837 | 0.771939 | 0.421410 | 0.133475 | 0.064245

173.467517 | 6.450000 | 2.510881 | 1.346620 | 0.417295| 0.198842
0.9 |173.467551 | 6.450000 | 2.510881 | 1.346620 | 0.417295 | 0.198842

dd channel, mq = 0.1 GeV

—0.9| 86.554414|0.430807 | 0.136720 | 0.069644 | 0.020899 | 0.009978
86.554110 | 0.430807 | 0.136720 | 0.069644 | 0.020899 | 0.009978

0 72.820806 | 1.180211 | 0.419410 | 0.219070 | 0.066312 | 0.031351
72.820908 | 1.180212 | 0.419411 | 0.219070 | 0.066312 | 0.031351

0.9 |176.717336 | 3.770861 | 1.469194 | 0.796291 | 0.255118 | 0.124714
176.717376 | 3.770861 | 1.469194 | 0.796291 | 0.255118 | 0.124714

dd channel, my = 0.1 GeV

—0.9| 84.970331|0.416155|0.136467 | 0.071144 | 0.020786 | 0.009868
84.970030 | 0.416155 | 0.136467 | 0.071144 | 0.020786 | 0.009868

0 71.762397 | 1.185284 | 0.426009 | 0.219777 | 0.067063 | 0.031698
71.762496 | 1.185285 | 0.426009 | 0.219777 | 0.067063 | 0.031698

0.9 | 174.716111 | 3.819650 | 1.442852 | 0.764945 | 0.249501 | 0.123086
174.716145 | 3.819651 | 1.442852 | 0.764945 | 0.249501 | 0.123086

dd channel, my = 4.7 GeV
—0.9| 84.350009 | 0.416665 | 0.136590 | 0.071186 | 0.020792 | 0.009870
84.084519 | 0.415686 | 0.136435 | 0.071137 | 0.020786 | 0.009868
0 71.232935 | 1.183490 | 0.425748 | 0.219707 | 0.067058 | 0.031697
71.248102 | 1.184186 | 0.425882 | 0.219745 | 0.067061 | 0.031697
0.9 |173.420486 | 3.812786 | 1.441766 | 0.764642 | 0.249478 | 0.123084
173.041374 | 3.811860 | 1.441592 | 0.764577 | 0.249464 | 0.123077

The numbers shown in the first two rows of Tables 2 and 3 exhibit a very good
level of agreement with ZFITTER.

Finally, in Table 4, we give a comparison of the cross-section integrated
within the angular interval |cosd| < 0.999. (Flag setting is the same as for
Table 4.)
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Table 4. Comparison of the total EW cross-sections (pb). First row — ZFITTER,
second row — eeffLib

100 GeV 200 GeV 300 GeV

Ttot OFB Ttot OFB Ttot OFB

v channel, m, =0
84.81710 [ 9.509864 | 0.963362 | 0.089665 | 0.320985 | 0.021592
84.81710 [ 9.509865 | 0.963362 | 0.089665 | 0.320985 | 0.021592
e~ e’ channel, me =0
52.61662 | 30.78899 | 2.980668 | 1.654673 | 1.276008 | 0.648414
52.61662 | 30.78899 | 2.980667 | 1.654673 | 1.276008 | 0.648414
wtp™ channel, m, = 0.106 GeV
52.61634 | 30.78885 | 2.980667 | 1.654671 | 1.276008 | 0.648414
52.61634 | 30.78885 | 2.980667 | 1.654671 | 1.276008 | 0.648414
7777 channel, m, = 1.77705 GeV
52.53632 | 30.75010 | 2.980435 | 1.654149 | 1.275972 | 0.648324
52.53661 | 30.75024 | 2.980443 | 1.654156 | 1.275974 | 0.648326
uw channel, m, = 0.1 GeV
160.8980 | 70.98406 | 5.021808 | 3.360848 | 2.031754 | 1.269556
160.8981 | 70.98416 | 5.021810 | 3.360848 | 2.031754 | 1.269556
dd channel, mq = 0.1 GeV
193.7658 | 50.03208 | 3.120724 | 1.867871 | 1.149479 | 0.725581
193.7658 | 50.03227 | 3.120725 | 1.867871 | 1.149479 | 0.725581
bb channel, mp = 0.1 GeV
191.0416 | 49.76543 | 3.134547 | 1.892628 | 1.149243 | 0.720476
191.0416 | 49.76562 | 3.134547 | 1.892629 | 1.149243 | 0.720476
bb channel, m, = 4.7 GeV

189.6321 | 49.39098 | 3.129824 | 1.888530 | 1.148541 | 0.719805
189.3855 | 49.32791 | 3.129858 | 1.888542 | 1.148565 | 0.719802

A typical deviation between eeffLib and ZFITTER is of the order ~
1079, i.e., of the order of the required precision of the numerical integration over
cos 1. Examples of numbers obtained with eef £Lib, which were shown in this
section, demonstrate that ZFITTER numbers are recovered for light m;.

We conclude this subsection with a comment about the technical precision
of our calculations. We do not use the looptools package [39]. For all PV
functions but one, namely the Dy function, we use our own coding, where we can
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control precision internally and, typically, we can guarantee 11 digits precision.
For the Dy function we use, instead, REAL*16 TOPAZO coding [8] and the
only way that is accessible to us to control the precision is to compare our results
with those computed with the 1ooptools package. This was done for typical
Dy functions entering the ZZ box contributions. We obtained an agreement
within 14 or 15 digits between these two versions for all 1/s = 400-10000 GeV
and cosd = 0.99, 0, —0.99.

6.4. Comparison with a Code Generated by s2n.f. Here we present a
numerical comparison of the complete scalar form factors of Eq. (3.3), extracted

Table 5. EWFF for the process e" e~ — tf. First row — eeffLib, second row —

s2n.f
Vs 400 GeV 700 GeV
cos? | Fry
-09 | FrL 68.36399900074 — i1.24743850729 79.63957322115 — i20.53758995637
68.36399900068 — i1.24743850728 79.63957322113 — i20.53758995637
For | 75.12465846647 + i34.81991916400 76.19283172015 + i28.44336684106
75.12465846641 + i34.81991916400 76.19283172013 + i28.44336684106
Frq | 81.01546270426 4+ 19.81343626967 82.67283873006 4+ 713.79952080171
81.01546270420 + 19.81343626968 82.67283873004 4+ 713.79952080171
Foo | 225.63977621858 + i154.37838168488 | 207.09189805263 + i133.45188150116
225.63977621832 + ¢154.37838168491 | 207.09189805254 + 3133.45188150117
Frp | —0.57522852857 + 40.34010611241 —0.33030593699 + 40.14897150833
—0.57522852857 + ¢0.34010611241 —0.33030593699 + 10.14897150833
Fgop 0.16677424366 — i0.34326069364 0.29925308488 — i0.14107543098
0.16677424366 — i0.34326069364 0.29925308488 — 40.14107543098
00 | Frr 48.42950001713 + 8.26103890366 28.23570422021 + i2.43705570966
48.42950001707 + 8.26103890367 28.23570422019 + i2.43705570966
Fgor | 68.02678564355 + 437.08805801477 58.00469565609 + 33.82433896562
68.02678564349 + i37.08805801477 58.00469565607 4 133.82433896562
Frq | 73.37133716227 4 i22.69397728402 62.40775508619 + i20.75544388763
73.37133716220 + i22.69397728403 62.40775508616 + i20.75544388764
Fgo | 196.60425612149 + i162.74818773960 | 132.63279537966 + i152.68259938740
196.60425612123 + ¢162.74818773963 | 132.63279537957 + 1152.68259938741
Frp | —0.56319765502 + 40.33645326768 0.29067043403 + 70.13992893252
—0.56319765502 + ¢0.33645326768 —0.29067043403 + 10.13992893252
Fop 0.15893936555 — i0.37254018572 0.26429138671 — 40.15437851127
0.15893936555 — i0.37254018572 0.26429138671 — 40.15437851127
09 | Frr | 35.17736865724 + i14.84038724783 0.21531292996 + i13.66645015866
35.17736865718 + i14.84038724784 0.21531292994 + $13.66645015866
Fgr | 61.03099608330 + 39.09196533610 40.77942026097 4 37.94118444135
61.03099608324 + ¢39.09196533611 40.77942026095 + 37.94118444136
Frq | 66.08215572935 + i25.04151178684 44.50915974057 + 125.51875704261
66.08215572929 + i25.04151178685 44.50915974055 + 125.51875704261
Fqq | 167.63393504156 + ¢170.36384103672 | 59.87568281297 + ¢168.13599380718
167.63393504130 + ¢170.36384103675 | 59.87568281288 + 1168.13599380719
Frp | —0.56772633347 + 10.34299744419 —0.32035310873 + 10.14419510235
—0.56772633347 + 10.34299744419 —0.32035310873 + 40.14419510235
Fop 0.18031346246 — i0.40091423652 0.34968026058 — 10.16945266925
0.18031346246 — 0.40091423652 0.34968026058 — i0.16945266925
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from two independently created codes: the «manually written» eef£fLib and a
code «automatically generated» by the s2n. f software. We use a special input
parameter set here: all lepton masses o and a conversion factor from GeV~! to
pb are taken from the 2000 Particle Data Tables while for quark and photon and
gauge boson masses we use:

Mud.ests = 0.062, 0.083, 1.50, 0.215, 173.8, 4.70 GeV,
A =1GeV, My = 91.1867 GeV, My, = 80.4514958 GeV.

(6.4)

As is seen from Table 5, the numbers agree within 11-13 digits, i.e.,
REAL*8 computational precision is saturated. The form factors Frp op are
multiplied by 10* to make more digits visible.

The next Table 6 shows a comparison of eeffLib-s2n. f for the complete
one-loop differential cross-sections do(!) /d cos 19, for the standard input parameter
set Eq. (6.4). As is seen, numbers agree within 12 or 13 digits.

(1) _
Table 6. éjgw for the process e"e~ — tf. eeffLib-s2n.f comparison

NG 400 GeV 700 GeV 1000 GeV
cos
—0.9 | 0.22357662754774 | 0.06610825350063 | 0.02926006442715
0.22357662754769 | 0.06610825350063 | 0.02926006442715
0.0 | 0.34494634728716 | 0.14342802645636 | 0.06752160108814
0.34494634728707 | 0.14342802645634 | 0.06752160108813
0.9 | 0.54806778978208 | 0.33837133344667 | 0.16973989931024
0.54806778978194 | 0.33837133344664 | 0.16973989931023

6.5. About a Comparison with the Other Codes. As is well known, the one-
loop differential cross-section of eTe™ — ¢ may be generated with the aid of the
FeynArts system [22]. Previous attempts to compare with FeynArts are described

V's/10

do.(l) + - - . max __
Table 7. TcosT for the process e ¢~ — tt with soft photons, £ =

NG

cos ¥

400 GeV

700 GeV

1000 GeV

-0.9

0.17613018248935

0.05199100267864

0.02310170508071

-0.5

0.21014509428358

0.06560630503586

0.02882301902010

0.0

0.27268108572063

0.11496514450150

0.05495088904853

0.5

0.35592722356682

0.19615154401629

0.09941700898317

0.9

0.43637377538440

0.27915043976042

0.14426233253975
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in [23]. In December 2001, we were provided with the numbers computed with
the FeynArts system [41] for do/d cos, with and without QED contributions,
at /s = 700 GeV and three values of cos? = 0.9, 0, —0.9. With the current
versions of eeffLib and s2n. f, we have an 11-digits agreement for both the
tree-level and one-loop-corrected cross-sections.

Recently, the Bielefeld—Zeuthen team [33] performed an alternative calcu-
lation using the DIANA system [40]. Working in close contact with this team,
we managed to perform several high-precision comparisons, reaching for separate
contributions an agreement up to 10 digits.

The results of a comparison between the FeynArts and the Bielefeld—Zeuthen
team are presented in detail in [34].

dcos v
as given in the tables of [34]. For the complete cross-section, including soft pho-
tons, we agree with the Bielefeld—Zeuthen calculations within 8 digits. (See
also [35].)
Two more graphical examples of the differential and the total EWRC for the
process ete™ — tt are shown in Figs. 16 and 17, correspondingly.

. . do
As another example we present in Table 7 the same cross-section [ ]
SM

S, %

40 G b bovw b b b b b e b
-1 -08 -06-04-02 0 02 04 0.6 08 1 100
cos D s, GeV

1)
Fig. 16. Relative EWRC §(+/s, cos ) = %
o) (s

cross-section. Curve I — /s = 400 GeV; curve 2 — /s = 500 GeV; curve 3 —
V/s = 1000 GeV; curve 4 — /s = 5000 GeV

—1 to the ete™ — tt differential

Fig. 17. Relative EWRC to ete™ — tt for My = 100 GeV (solid line) and My =
1000 GeV (dashed line)
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