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Finding the eigenstates of the total Hamiltonian H or its diagonalization is the important problem
of quantum physics. However, in relativistic quantum ˇeld theory (RQFT) its complete and exact
solution is possible for a few simple models only. Unitary transformations (UT's) considered in this
survey do not diagonalize H, but convert H into a form which enables us to ˇnd approximately some
H eigenstates. During the last years there have appeared many papers devoted to physical applications
of such UT's. Our aim is to present a systematic and self-sufˇcient exposition of the UT method. The
two general kinds of UT's are pointed out, distinct variations of each kind being possible. We consider
in detail the problem of ˇnding the simplest H eigenstates for interacting mesons and nucleons using
the soÄcalled ®clothing¯ UT and Okubo's UT. These UT's allow us to suggest deˇnite approaches
to the problem of two-particle (deuteron-like) bound states in RQFT. The approaches are shown to
yield the same two-nucleon quasipotentials in the ˇrst nonvanishing approximation. We demonstrate
how the particle mass renormalization can be fulˇlled in the framework of the ®clothing¯ procedure.
Besides the UT of the Hamiltonian we discuss the accompanying UT of the Lorentz boost generators.

‚ ¦´µ° ¶·µ¡²¥³µ° ±¢ ´Éµ¢µ° Ë¨§¨±¨ Ö¢²Ö¥É¸Ö ´ Ìµ¦¤¥´¨¥ ¸µ¡¸É¢¥´´ÒÌ ¸µ¸ÉµÖ´¨° ¶µ²´µ£µ
£ ³¨²ÓÉµ´¨ ´  H ¨²¨ ¥£µ ¤¨ £µ´ ²¨§ Í¨Ö. ‚ ·¥²ÖÉ¨¢¨¸É¸±µ° ±¢ ´Éµ¢µ° É¥µ·¨¨ ¶µ²Ö (�Š’�)
¶µ²´µ¥ ¨ ÉµÎ´µ¥ ·¥Ï¥´¨¥ ÔÉµ° § ¤ Î¨ ¢µ§³µ¦´µ Éµ²Ó±µ ¤²Ö ´¥³´µ£¨Ì ¶·µ¸ÉÒÌ ³µ¤¥²¥°. � ¸¸³ -
É·¨¢ ¥³Ò¥ ¢ µ¡§µ·¥ Ê´¨É ·´Ò¥ ¶·¥µ¡· §µ¢ ´¨Ö (“�) ´¥ ¤¨ £µ´ ²¨§ÊÕÉ H, µ´¨ ¶·¨¢µ¤ÖÉ H ±
¢¨¤Ê, ¶µ§¢µ²ÖÕÐ¥³Ê ¶·¨¡²¨¦¥´´µ ´ °É¨ Éµ²Ó±µ ´¥±µÉµ·Ò¥ ¸µ¡¸É¢¥´´Ò¥ ¸µ¸ÉµÖ´¨Ö ¨ §´ Î¥´¨Ö
H. ‡  ¶µ¸²¥¤´¨¥ £µ¤Ò ¶µÖ¢¨²µ¸Ó ³´µ£µ · ¡µÉ ¶µ Ë¨§¨Î¥¸±¨³ ¶·¨²µ¦¥´¨Ö³ É ±¨Ì “�. ‚ µ¡§µ·¥
¤ ´µ ¸¨¸É¥³ É¨Î¥¸±µ¥ ¨§²µ¦¥´¨¥ ³¥Éµ¤  “�. “± §Ò¢ ÕÉ¸Ö ¤¢  £² ¢´ÒÌ ¢¨¤  “� ¸ ¢µ§³µ¦´Ò³¨
¢ ·¨ Í¨Ö³¨ ± ¦¤µ£µ ¢¨¤ . „¥É ²Ó´µ · ¸¸³ É·¨¢ ¥É¸Ö § ¤ Î  ´ Ìµ¦¤¥´¨Ö ¶·µ¸É¥°Ï¨Ì ¸µ¡¸É¢¥´-
´ÒÌ ¸µ¸ÉµÖ´¨° H ¤²Ö Õ± ¢¸±µ£µ ¢§ ¨³µ¤¥°¸É¢¨Ö ´Ê±²µ´µ¢ ¨ ³¥§µ´µ¢ ¸ ¶µ³µÐÓÕ É ± ´ §Ò¢ ¥³µ£µ
®µ¤¥¢ ÕÐ¥£µ¯ “� ¨ “� �±Ê¡µ. �É¨ ¶·¥µ¡· §µ¢ ´¨Ö ¶µ§¢µ²ÖÕÉ ¶·¥¤²µ¦¨ÉÓ ¤¢  ¶µ¤Ìµ¤  ± ·¥Ï¥-
´¨Õ ¶·µ¡²¥³Ò ¤¢ÊÌÎ ¸É¨Î´ÒÌ (¤¥°Épµ´µ¶µ¤µ¡´ÒÌ) ¸¢Ö§ ´´ÒÌ ¸µ¸ÉµÖ´¨° ¢ �Š’�. �µ± § ´µ, ÎÉµ
ÔÉ¨ ¶µ¤Ìµ¤Ò ¢ ¶¥·¢µ³ ¶·¨¡²¨¦¥´¨¨ ¤ ÕÉ µ¤¨´ ±µ¢Ò¥ ¤¢ÊÌ´Ê±²µ´´Ò¥ ±¢ §¨¶µÉ¥´Í¨ ²Ò. „¥³µ´-
¸É·¨·Ê¥É¸Ö, ± ± ¸ ¶µ³µÐÓÕ ®µ¤¥¢ ÕÐ¥£µ¯ “� µ¸ÊÐ¥¸É¢²Ö¥É¸Ö ¶¥·¥´µ·³¨·µ¢±  ³ ¸¸Ò Î ¸É¨ÍÒ.
Š·µ³¥ “� £ ³¨²ÓÉµ´¨ ´  µ¡¸Ê¦¤ ¥É¸Ö “� £¥´¥· Éµ·µ¢ ²µ·¥´Í¥¢¸±¨Ì ¡Ê¸Éµ¢.

1. INTRODUCTION

The so-called unitary transformation (UT) method has the same age as the
quantum theory itself. Its ˇrst applications for constructing Hermitian effective
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interactions (HEI) can be found in [1] and [2] (in this connection, see a review
article [3] where the different perturbation expansions of HEI were discussed). In
quantum ˇeld theory the ˇrst considerations using the UT method were given by
Wentzel [4] and Heitler [5].

A number of the schemes for reduction of the exact eigenvalue problem to
the modelÄspace problem via the various UT's were put forward in 50's ([6Ä8])
during the extensive development of the meson theory of nuclear forces (see, e.g.,
[9]). Owing to the work [10] this approach has proved to be very useful in studies
of electromagnetic (e.m.) interactions with nuclei for nonmesonic channels (in
particular, when constructing the effective operators of meson exchange currents
(see, e.g., [11], surveys [12,13] and refs. therein).

Along with this guideline the UT method was used for the formulations of
RQFT in terms of physical or ®clothed¯ particles ([14Ä18], see also our talks at
the recent conferences [19] and [20]).

By using the Okubo UT the authors of [21] constructed effective generators
for the Poincar�e algebra, acting on nucleonic degrees of freedom only. It was
made in the framework of perturbation theory for a simple model of ®spinless¯
nucleons exchanging scalar mesons. Therefore, we have an instructive example
of how some noncommuting Hermitian operators can be reduced by one and the
same UT to Okubo's block form.

Late 80's and 90's have brought a renewed interest to this area. First of
all, we mean applications [22,23] of the UT method to a covariant treatment
of the two-body bound-state problem (cf. [24]). The corresponding transformed
Hamiltonian and boost operators do not couple (in the second order in meson-
nucleon coupling constants) the nucleon (no-meson) subspace with its complement
in the full Fock space of hadron states. In the work [25] the same method has
been employed to derive the effective nucleon-nucleon and nucleonÄantinucleon
interactions starting from a ˇeld Hamiltonian with the exchange of π, ρ, ω and,
σ mesons. Then, within the Hartree approximation, these effective interactions
have been introduced for describing the saturation properties of nuclear matter.
Note also recent explorations [26, 27] of the hardÄcore problem in the theory of
nuclear forces.

In papers [28,29] some extensions of the UT method have been suggested for
constructing effective current operators in the theory of photomeson processes on
nuclei (see also Ref. 30 where one can ˇnd the calculations of the four structure
functions for pion electroproduction on the deuteron near threshold). Recently,
the UT method has been used [31] for deriving effective two-particle one-meson
exchange potentials in the instant and front forms of relativistic quantum me-
chanics. At last, with the aid of a modiˇcation of the method the authors of [32]
have proposed a meson-exchange model for πN scattering and γN-πN reaction.
Certainly, one may say that nowadays the UT method has survived its second
birth.
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This review is focused upon an application of UT's in RQFT and aimed at
an approximate treatment of the physical vacuum, the observable one-particle and
two-particle bound and scattering states. These states have a common feature,
viz., they do not change in time. The simplest example is the state without
observable particles, i.e., the physical vacuum. Other examples give free particles
with a deˇnite four-momentum (elementary particles, atoms and nuclei in their
ground states).

Our point of departure is that such states should be eigenvectors of a Hamil-
tonian H , which are stationary. In the context, the ®bare¯ states, i.e., eigenvectors
of a free part H0 of the total Hamiltonian H , are inappropriate for theoretical
description of the physical objects. Firstly, they change in time although the
possible transitions to other states are virtual and can be considered undetectable
because of their small probabilities. Secondly, H0 has no eigenvectors which
would correspond to bound states (e.g., the hydrogen atom or the deuteron).

From this postulate there follows such a deˇnition for a bound state of
the deuteron-type in RQFT: it should be described by a proper eigenvector
of the total Hamiltonian of the theory. In other words, the deuteron prob-
lem should be reduced to an exact or approximate solution of the H eigen-
value problem. There are various approaches to this problem, viz., within the
BetheÄSalpeter formalism, via its three-dimensional versions, etc. (see, e.g.,
[33,34] and refs. therein). However, the links between the respective ®wave-
functions¯ (for instance, the BetheÄSalpeter amplitudes for bound states) and
the exact or approximate H eigenvectors are very sophisticated. According to
our postulate similar links in the framework of the approach developed below
are much more direct and transparent (see Sec. 4). In addition, the description
of particle scattering can be reduced to calculation of the relevant scattering
wavefunctions.

The reasons for employing just RQFT when describing bound and scattering
states are well known. Being not satisˇed with the multitude of disconnected phe-
nomenological explanations we strive for a uniˇed description of Nature. RQFT's
are the best known candidates for uniˇed theories. Firstly, they give a qualita-
tive and natural consideration of particle creation and destruction. Secondly,
local RQFT's ensure in a sense the relativistic causality unlike phenomenological
approaches.

General idea of constructing the UT's in question can be formulated in the
following way.

Any UT of H can be considered as a transformation expressing the H-matrix
determined with respect to a new basis in the Hilbert (Fock) space of a given
physical system through the H-matrix with respect to the old basis in the same
space (details see in Sec. 6). Normally, the latter is composed of eigenvectors (the
®bare¯ states) of the free part H0 in the partition H = H0+V , where V represents
the interaction between the ˇelds involved. In general, the new H-matrix turns
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out to be more complicated. For example, in the case with Yukawa coupling
V ∼

∫
ψ̄(x)γ5ψ(x)φ(x)dx, that conserves the baryon number and may change

the meson number merely by unit, nonzero elements of the initial H-matrix are
either diagonal, or near diagonal (e.g., they can be of the 〈N ′ | H | πN〉-kind).
In a new representation for this matrix all its elements can be nonzero (e.g., along
with the aforementioned elements one can meet the elements (N ′N ′ | H | NN)),
(π′N ′ | H | πN), (N ′ | H | ππN), and the others in which the meson number
can be arbitrarily altered∗). The elements (N ′N ′ | H | NN) contribute to the
NN scattering even in the ˇrst order of perturbation theory. Of course, there
are other elements of the transformed H-matrix, which contribute to the NN
scattering as well, but in higher orders.

Let us impose the following constraint upon the transformation associated
with the basis change: in the new H-matrix the NN interaction should be
described only through the elements (N ′N ′ | H | NN), i.e., all the other elements
which could contribute to the NN scattering should be zero. This means that the
H-matrix must be reduced to a block diagonal form where speciˇc off-diagonal
blocks consist of zero elements (other clariˇcations can be found in Sec. 6). This
requirement (the Okubo condition [7]) can be replaced by the other constraints,
more 	exible and easier realizable.

Our aim is to present a systematic exposition of the UT method. A main
attention within the method is paid to the two approaches, viz., the clothing
procedure and the blockdiagonalization after Okubo. We strive for a self-sufˇcient
presentation which may be understood without referring to original papers. As a
rule, we avoid to point out mistakes and obscurities in the latter (but sometimes
allow ourselves to note their tacit assumptions).

This review is organized as follows.
In Sec. 2 we consider the problem of obtaining the simplest H eigenstates.

The lowest H eigenstate Ω can be juxtaposed to the state without observable
particles (the physical vacuum). Further, we seek one-particle-like H eigenstates
which have ®bare¯ partners (e.g., in the case of the interacting pion and nucleon
ˇelds the ®bare¯ one-meson a†(k)Ω0 and one-nucleon b†(p)Ω0 states, Ω0 being
the ®bare¯ vacuum). These H eigenstates may be called ®clothed¯ [14] because
meson-nucleon interaction is taken into account when constructing such states.
At this point, instead of the usual ®bare¯ creation-destruction operators a†(k),
a(k), ... we introduce the ®clothed¯ operators ac

†(k), ac(k), ..., so that the
physical one-meson state is described by the vector ac

†(k)Ω.
While ˇnding the above H eigenstates one has to determine a ®clothing¯ UT

such that the transformed Hamiltonian does not contain the interaction terms which

∗In order to distinguish the matrix elements with respect to the new basis we employ round
brackets.



UNITARY TRANSFORMATIONS IN QUANTUM FIELD THEORY 35

correspond to some virtual energy-nonconserving processes (e.g., N → πN ,
π → NN̄). These terms are called ®bad¯.

As one might expect the mass of the clothed particle turns out to be unequal
to the respective bare mass. The related problem of mass renormalization is
explored in Subsec. 2.5.

The clothing transformation of the Hamiltonian results in its representation
through the clothed creationÄdestruction operators. A basic task of Sec. 3 is to in-
vestigate how transformed generators of the Lorentz boosts depend on the clothed
operators. We show that the bad terms can be removed via the same clothing
transformation simultaneously from the total Hamiltonian and these generators. A
consequence of such reduction is that the ®clothed¯ vacuum Ω remains invariant
under Lorentz transformations (unlike the bare vacuum Ω0) while the clothed
one-particle states have the proper transformation properties (in particular, their
momenta being suitably changed).

Along with the clothed one-particle states the total Hamiltonian can have
one-particle-like states (e.g., bound states of the deuteron-type) without any bare
partners. In Sec. 4 within our clothing procedure we suggest an approximate
way of ˇnding such states. The resulting bound-state equations resemble the
Schroedinger equation for stationary states in nonrelativistic quantum mechan-
ics, where the usual potentials are replaced by the interactions between clothed
particles (the quasi-potentials). Explicit analytical expressions for the model
nucleon-nucleon and meson-nucleon quasipotentials are given in Subsec. 4.3.

In Sec. 5 we discuss some modiˇcations and extensions of the clothing
approach.

Section 6 starts with a deˇnition of the similarity transformation H →
U−1HU (U−1 = U †) as a transformation of the matrix 〈n′ | H | n〉 (determined
with respect to a set of orthonormal vectors | n〉) into the matrix (ν′ | H | ν) with
respect to another basis | ν).

The Okubo condition on U and the corresponding decoupling equation from
[7] are presented in Subsec. 6.2.

Two operator kinds of the Okubo UT are considered in the framework of
the Okubo approach using the new particle creationÄdestruction operators which
correspond to the clothed operators determined in Sec. 2. This allows us to
establish the relation to the clothing procedure and its modiˇcations (cf. Secs. 2
and 5).

Some original results of this work are summarized in Sec. 7.
More technical details and some auxiliary calculations are referred to Ap-

pendix A. Appendix B is devoted to some mathematical aspects related to the
UT method. We suggest an algebraic approach which enables one to treat the
clothing UT as an element of an algebra lacking any operator representation. At
last, Appendix C exempliˇes an explicit solution of Okubo's decoupling equation
for a simpliˇed ˇeld model.
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2. CLOTHED PARTICLES IN QUANTUM FIELD THEORY

The notion of clothed particles will be considered using the following model:
a spinor (fermion) ˇeld ψ interacts with a neutral pseudoscalar meson ˇeld φ by
means of the Yukawa coupling. The model Hamiltonian is H = H0 + V , where

H0=
∫

ψ̄(x)[−iγ∇ + m0]ψ(x)dx+
1
2

∫ [
π2(x)+(∇φ(x))2 + µ0

2φ2(x)
]
dx,

(2.1)

V = ig

∫
ψ̄(x)γ5ψ(x)φ(x)dx. (2.2)

For simplicity, we do not employ a more reˇned form of H properly symmetrized
in the ˇelds involved (see, e.g., [15,37]). This model has much in common with
more realistic models for the interacting ˇelds (e.g., the nucleon isodoublet (p,n)
interacting with the meson isotriplet (π+, π0, π−).

The Hamiltonian can be expressed in terms of bare destruction (creation)
operators a(k) (a†(k)), b(p, r) (b†(p, r)) and d(p, r) (d†(p, r)) of the meson,
the fermion and the antifermion (see Eqs. (2.8) and (2.16)). Here k and p denote
the momenta; r is the spin index. An exact deˇnition of the bare operators
which we use will be given in Subsec. 2.2. In what follows, the set of all these
operators is denoted by a symbol a, while ap is used for one of them. The state
without bare particles Ω0 and the bare one-particle states a†(k) Ω0, b†(p, r) Ω0

and d†(p, r) Ω0 are not H eigenvectors.
2.1. Clothed Particle Operators and States. Now, we introduce new de-

struction (creation) operators

ac(k)(ac
†(k)), bc(p, r)(bc

†(p, r)) and dc(p, r)(dc
†(p, r)) ∀k,p, r (2.3)

with the following properties:
i) The physical vacuum (the H lowest eigenstate) must coincide with a new

no-particle state Ω, i.e., the state that obeys the equations

ac(k) | Ω〉 = bc(p, r) | Ω〉 = dc(p, r) | Ω〉 = 0 ∀k,p, r, (2.4)

〈Ω | Ω〉 = 1.

ii) New one-particle states ac
†(k)Ω, etc., are H eigenstates as well.

iii) The spectrum of indices that enumerate the new operators must be the
same as that for the bare ones (this requirement has been used when writing
Eq.(2.3)).

iv) The new operators satisfy the same commutation rules as their bare
partners do. For instance,

[ac(k), ac
†(k′)] = δ(k − k′) ,
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bc(p, r), bc

†(p′, r′)
}

=
{
dc(p, r), dc

†(p′, r′)
}

= δrr′δ(k − k′) . (2.5)

Following [14,15] we shall call clothed the new operators and states. Note
that the name is sometimes used in a sense which differs from that deˇned by the
points i) Ä iv).

As one can see, the problem of clothing is equivalent to determination of
some H eigenvectors. In fact, the property iii) means that we do not pretend to
ˇnd all H eigenstates which are one-particle-like. For example, H may have a
deuteron-like eigenstate with a mass < 2m, where m is the nucleon mass. No
bare one-particle state corresponds to such a state. Now we intend to ˇnd only
those one-particle-like eigenstates of H which have bare partners.

One should stress that the clothing problem may turn out to be unsolvable.
A solvability condition will be pointed out in Subsec. 2.4. Note also that the
properties i) Ä iv) can be supplemented by some physical constraints which will
be discussed in Sec. 3, but are not needed here.

Some clothing procedures have been realized within simple ˇeld models (see,
e.g., [14, 15, 17]). In the paper, we use a kind of perturbation theory developed
in [5,16] and [18]. It can be applied to any ˇeld theory to yield an approximate
solution of the problem.

2.2. Bare Particles with Physical Masses. By deˇnition, the bare one-fermion
eigenstate | p, r〉0 of the operator H0, being simultaneously the eigenstate of
total momentum P , belongs to the H0 eigenvalue E0

p =
√

p2 + m0
2. Let us

consider an H eigenstate | p, r〉 for which | p, r〉0 is a zeroth approximation
(ZA). Perturbation theory shows that the corresponding H eigenvalue Ep differs

from E0
p. In the relativistic case the function Ep must be of the form

√
p2 + m2

where m is the mass of an observed free fermion. We shall call it physical mass.
Analogously, one can argue appearance of the meson physical mass µ which
differs from the trial mass µ0.

So, we expect that the physical fermion and meson masses m and µ arise in
a natural manner when ˇnding H eigenvalues which correspond to the clothed
one-particle states.

Such an introduction of the masses m and µ can be used to divide the total
Hamiltonian into the new free part HF and the new interaction HI . Namely, let
us rewrite H = H0 + V as H = HF + HI , where

HF =
∫

ψ̄(x)[−iγ∇ + m]ψ(x)dx +
1
2

∫ [
π2(x) + (∇φ(x))2 + µ2φ2(x)

]
dx,

(2.6)

HI = V + (m0 − m)
∫

ψ̄(x)ψ(x)dx +
1
2
(µ0

2 − µ2)
∫

φ2(x)dx ≡ V + Mren .

(2.7)
The decomposition H = HF + HI is the well-known trick (see, e.g., [15]),

but this is not necessary for our clothing program: all the following results can be
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obtained without the introduction of the mass counterterms Mren
∗. However, it

simpliˇes the program realization. In other words, the separation H = HF + HI

may be justiˇed not ab initio but post factum.
The operator HF can be brought to the ®diagonal¯ form∗∗

HF =
∫

ωka†(k)a(k)dk+
∫

Ep

∑
r

[b†(p, r)b(p, r)+d†(p, r)d(p, r)]dp (2.8)

by means of the standard expansions

φ(x) = (2π)−3/2

∫
(2ωk)−1/2[a(k) + a†(−k)]exp (ikx)dk , (2.9)

π(x) = −i(2π)−3/2

∫
(ωk/2)1/2[a(k) − a†(−k)]exp (ikx)dk , (2.10)

ψ(x)=(2π)−3/2

∫
(m/Ep)1/2

∑
r

[u(p, r)b(p, r)+v(−p, r)d†(−k, r)]exp (ipx)dp,

(2.11)
where u(p, r) and v(p, r) are the Dirac spinors, which satisfy the conventional
equations (p/− m)u(p, r) = 0 and (p/ + m)v(p, r) = 0 with p/ = Epγ0 − pγ. In

these formulae Ep =
√

p2 + m2 and ωk =
√

k2 + µ2.
2.3. The Unitary Transformation. The operators (2.3) are the corner-stone

of the clothing procedure. Our aim is to ˇnd clothed operators which should
satisfy the requirements i)Äiv). Now, the symbol α will be used for set (2.3),
with αp being one operator of the set (cf. a and ap). In order to implement the
properties iii) and iv), we suppose that the clothed operators α are related to bare
ones a via a unitary transformation

αp = W †apW, W †W = WW † = 1 , (2.12)

where W is a function of all the bare operators a. Therefore, Eq. (2.12) represents
αp as a function (functional) of a.

Note that W is the same function of either clothed or bare operators (see
[14]). Indeed, if f(x) is a polynomial or a series of x, the relation f(α) =
W †(a)f(a)W (a) follows from Eq. (2.12). Replacing f(α) by W leads to

W (α) = W †(a)W (a)W (a) = W (a) , (2.13)

∗A simple example of the calculation of radiative correction to particle ®bare¯ mass can be
found in App. C.

∗∗Nonessential c-number terms are henceforth omitted.
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i.e., to the above statement. Hence, the operator ap, when expressed in terms of
α, is given by

ap = W (α) αp W †(α) . (2.14)

Unitarity of W is automatically ensured if W is represented as the exponential
of an antihermitian operator R: W = expR. For a given R, the r.h.s. of Eq. (2.14)
can be evaluated with the help of

eABe−A = B + [A, B] +
1
2
[A, [A, B]] +

1
3!

[A, [A, [A, B]]] + ... (2.15)

and the commutation rules (2.5).
In the context, the total Hamiltonian can be written as H = H(a) = HF +HI ,

where HF (a) is determined by Eq. (2.8) and HI = V (a) + Mren(a) with ∗

V (a) =
ig

(2π)3/2

∫
dp′ dp dk

m

(2ωkEp′Ep)1/2
δ(p + k − p′)×

×{ū(p′r′)γ5u(pr) b†(p′r′)b(pr) +

+ ū(p′r′)γ5v(−pr) b†(p′r′)d†(−pr) + v̄(−p′r′)γ5u(pr) d(−p′r′)b(pr) +

+ v̄(−p′r′)γ5v(−pr) d(−p′r′)d†(−pr)} [a(k) + a†(−k)] . (2.16)

By using Eq. (2.14), one can replace the bare operators by the clothed ones

H(a) = H(W (α)αW †(α)) ≡ K(α) . (2.17)

The operator K(α) represents the same Hamiltonian, but it has another depen-
dence on its argument α compared to H(a). K(α) can be found as follows.
First, Eq. (2.17) can be written as

K(α) = W (α)H(α)W †(α) . (2.18)

Second, putting W (α) = expR(α) and using Eq. (2.15) we have

H = K(α) = eR [HF + HI ] e−R =

= HF (α)+HI(α)+[R, HF ]+[R, HI ]+
1
2
[R, [R, HF ]]+

1
2
[R, [R, HI ]]+... (2.19)

Eq. (2.19) gives a practical recipe for the K(α) calculation: at the beginning one
replaces a by α in the initial expression H(a) and then calculates W (α)H(α)W †(α)
using Eqs. (2.15) and (2.5). The above transition H(a) → H(α) generates a
new operator H(α) as compared to H(a), but Eqs. (2.17) and (2.18) show

∗In cumbersome formulae summations over the dummy spin indices are sometimes omitted.
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that W (α)H(α)W †(α) turns out to be equal to the original total Hamiltonian
(cf. [35]).

We would like to stress that the transformation WHW † under consideration
should not be understood here as W (a)H(a)W †(a). The latter would be a new
operator H ′(a), which, in general, does not coincide with H . For a detailed
discussion of different unitary transformations, see Sec. 6.

2.4. Elimination of ®Bad¯ Terms. The next step is to fulˇl the requirements
i) Ä ii). If we want the no-clothed-particle state Ω and clothed one-particle states
to be H eigenvectors, the r.h.s. of Eq. (2.19) must not contain some undesirable
terms. Particularly, K(α) must not contain the bc

†dc
†ac

†Ätype terms because
they would give rise to the f̄fm states∗, when acting on Ω, and K(α)Ω could not
be proportional to Ω. Similarly, bc

†bcac
† converts a one-fermion state bc

†Ω into a
fm state. But just terms of this kind enter into the operator V (α) which occurs in
the r.h.s. of Eq. (2.19). In this connection, recall that HI(α) = V (α)+Mren(α),
where V (α) is derived from V (a), see Eq. (2.16), by means of the replacement
a → α.

As we have argued above, the terms

bc
†bcac

†, bc
†dc

†ac, bc
†dc

†ac
†, dcdc

†ac
† (2.20)

in V (α) do not allow the clothed no-particle and one-particle states to be H
eigenvectors. The remaining terms in V (α) are Hermitian conjugate of (2.20).
We shall call ®bad¯ all these terms. The contribution bc

†dc
†ac

† will be called
the ®bad¯ term of the class [3.0]: it is a product of three creation operators with
destruction operators not included. The other three terms in (2.20) belong to the
class [2.1]: two creation operators and one destruction operator.

The interaction HI includes also the mass counterterm Mren (see Eq. (2.7)).
The latter contains bad terms of the class [2.0] (see, e.g., Eq. (2.27)). The
self-energy correction to the particle mass can be represented by a series which
starts with the terms of the g2-order (see Eq. (2.31)). So, Mren(α) ∼ g2 while
V (α) ∼ g1.

Let us eliminate from K(α) the bad terms of the g1-order. For this purpose
we choose such R that

V + [R, HF ] = 0 . (2.21)

One readily veriˇes that Eq. (2.21) cannot be satisˇed until R(α) is linear or
bilinear in α. To meet the equation, R(α) must be a three-operator, e.g., have
the structure of V (α). Then, the commutator [R, HF ] will also be three-operator
expression since HF (α) is the two-operator∗ .

∗With a transparent abbreviation f̄fm for a ®fermion-antifermion-meson¯.
∗Note that the commutator of the m-operator term and n-operator one yields a (m + n − 2)-

operator contribution.
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Let us assume that the antihermitian R(α) contains the bad terms of the same
kind as V (α) is. Namely, we put R(α) = R−R†, where (cf. Eq. (2.16))

R =
∫

dp′ dp dk
∑
r′r

{Rk
11(p

′r′; pr)bc
†(p′, r′)bc(p, r) +

+Rk
12(p′r′; pr)bc

†(p′, r′)dc
†(−p, r) + Rk

21(p′r′; pr)dc(−p′, r′)bc(p, r)+

+ Rk
22(p

′r′; pr)dc(−p′, r′)dc
†(−p, r)} ac(k) . (2.22)

The c-number coefˇcients Rk
ij(i, j = 1, 2) are to be derived from Eq. (2.21), see

Appendix A. We ˇnd that the solution exists if µ < 2m. This condition has a
clear physical meaning, viz., the meson can decay into the f̄f-pair if µ > 2m, and,
therefore, one-meson state cannot be stable, i.e., it cannot be an H eigenvector.
Once [R, HF ] = −V , Eq. (2.19) can be rewritten as

K(α) = HF (α) + Mren(α) +
1
2
[R, V ] + [R, Mren] +

1
3
[R, [R, V ]] + ... . (2.23)

Thus we have removed from K(α) all the bad terms of the g1-order.
However, the r.h.s. of Eq. (2.23) embodies other bad terms of the g2- and

higher orders. For example, [R, V ] contains the terms g2bc
†dc

†ac
†ac

† of the class
[4.0], which do not destroy the physical vacuum Ω (our evaluation of [R, V ] is
given in Appendix A). In addition, we ˇnd in [R, V ] the terms g2bc

†dc
†ac

†ac

of the class [3.1], which neither destroy ac
†Ω, nor retain it with a multiplicative

factor. These and similar bad terms can be eliminated in a way analogous to the
described above via one more transformation

αp = W4(α′)α′
pW4

†(α′) , (2.24)

where W4 = exp R4 and R4 is an expression of the g2-order, which consists of
the above bad four-operator terms. This R4 should be such that [R4, HF ] would
cancel the latter terms.

Note also terms of the classes [2.0] and [1.1], which are present in M (see
Eq. (2.27)), and similar terms, which appear after normal ordering of [R, V ] (see
Appendix A). The bad terms of the class [2.0] must be removed from K(α) as
well. We shall show in Subsec. 2.5 how they may be cancelled under a condition
that relates the physical masses with the input parameters m0, µ0 and g.

Further, the double commutator [R, [R, V ]] in Eq. (2.23) is composed of ˇve-
operator terms (cf. the footnote on page 41), and there are bad terms among them.
In particular, after reshuf	ing the operators into normal order, new three-operator
bad terms occur. However, they are of the g3-order. This type of bad terms can
also be found in [R, M ]. The subsequent unitary transformation makes it possible
to remove all bad terms of the g3-order.
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Along the guideline, one may eliminate from the Hamiltonian the bad terms
of increasing orders in the coupling constant g. It is assumed that in the limit the
requirements i) and ii), which are equivalent to the absence of bad terms in K ,
will be fulˇlled.

Finally, if our clothing procedure were perfect, the resulting representation
K of the total Hamiltonian would possess the property

K(α)| k〉c = HF (α)| k〉c = ωk| k〉c (2.25)

with | k〉c = ac
†(k)Ω . In other words, the new interaction term KI(α) = K(α)−

HF (α) would satisfy the equation KI(α)| k〉c = 0. Analogous equations will
hold for the physical vacuum Ω and the clothed one-fermion and one-antifermion
states.

2.5. Particle Mass Renormalization. The cancellation of the bad two-
operator terms in K(α) will be demonstrated for those of them which are bilinear
in meson operators ac and ac

†. The latter originate, ˇrst of all, from the meson
mass counterterm

Mmes =
1
2
(µ0

2 − µ2)
∫

φ2(x)dx . (2.26)

Indeed, substituting the expansion (2.9) for φ(x) into Eq. (2.26), we obtain

Mmes =
∫

µ0
2 − µ2

4ωk
[2ac

†(k)ac(k) + ac(k)ac(−k) + ac
†(k)ac

†(−k)]dk .

(2.27)
As shown in Appendix A, terms of the same operator structure occur in K(α)
after normal ordering of the commutator [R, V ] from Eq. (2.23):∫

tk
ωk

[2ac
†(k)ac(k) + ac(k)ac(−k) + ac

†(k)ac
†(−k)]dk , (2.28)

where tk is determined by Eq. (A.20).
Now, we see that the sum of (2.27) and (2.28) gets equal to zero if

µ0
2 − µ2 = −4tk or µ2 = µ0

2 + 4tk . (2.29)

Here the quantity tk must not depend on k along with µ2 (cf. our argumentation
in Subsec. 2.2). Unfortunately, this independence is not automatically provided in
the Schroedinger picture that we use throughout. The integral that determines tk
(see Eq. (A.20)) is quadratically divergent and one needs to overcome the trouble
(e.g., by introducing a cutoff factor). So, special efforts are required to yield the
proof of independence (see, e.g., [5], Ch.6).

In the same way, the fermion mass counterterm

Mferm = (m0 − m)
∫

ψ̄(x)ψ(x)dx (2.30)
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cancels, under a proper condition, all the terms bilinear in the fermion operators,
which arise from 1

2 [R, V ] as a result of normal ordering.
Up to now we have considered the bilinear terms of the g2-order. Normal

ordering of the six-operator and other terms of K(α) gives bad two-operator terms
of the g4- and higher orders. To eliminate them we suppose that δµ2 ≡ µ0

2 − µ2

and δm ≡ m0 − m may be expanded in the series

δµ2 =
∞∑

n=1

g2n(δµ2)2n, δm =
∞∑

n=1

g2n(δm)2n. (2.31)

Let us assume that (δµ2)2 and (δm)2 are used to remove the two-operator terms of
the g2-order as described above. Then, the terms (δµ2)4 and (δm)4 are destined
to cancel two-operator terms of the g4-order, and so on.

2.6. Some Remarks. So, the transformation realized by W = expR fulˇlls
an incomplete clothing, viz., it removes bad terms of the least order in g. The
no-particle Ω and one-particle states bc

†Ω, dc
†Ω and ac

†Ω constructed at this
stage are merely approximate H eigenvectors.

We shall conˇne ourselves to the consideration of this transformation only
while discussing the bound state problem like the deuteron (Sec. 4). Even this
simplest application of our approach turns out to be rather cumbersome.

This section has been aimed to show how the unitary transformations of
the original Hamiltonian for a system of interacting ˇelds can be regarded as
the introduction of new creation (destruction) operators instead of the initial
®bare¯ ones. These new operators and corresponding one-particle states occurring
at the ˇrst stage of the clothing procedure may be called ®partially clothed¯.
We juxtapose the one-particle states to the observable particles (say, pion and
nucleon).

Let us note that the clothed states (operators) are not the in(out)-states
(operators) of RQFT (see, e.g., [15], Ch. 17). Indeed, the two-particle in-
states ain

†(k1)ain
†(k2)Ω are H eigenstates while the two-particle clothed states

ac
†(k1)ac

†(k2)Ω do not (simple models with noninteracting particles are the ev-
ident exception). Within the in(out)-formalism it is supposed that H has the
following eigenstates, viz., no-particle state (physical vacuum), states with one
in-particle, two-, three-, etc., these states being analogous to the corresponding
H0 eigenstates. Meanwhile, the clothing formalism needs not such a supposition:
one can ˇnd explicit expression for no- and one-particle clothed states in terms
of bare states (using formulae of this section under the condition µ < 2m). In
addition, the in(out)-formalism does not consider two-particle states which have
no H0 bare partners, e.g., an in-state describing the deuteron. In the clothing
formalism the problem of deuteron-like states is subject to further investigation
(see Sec. 4).
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3. GENERATORS FOR SPACE TRANSLATIONS AND SPACE-TIME
ROTATIONS WITHIN THE CLOTHING PROCEDURE

In the previous section we have expressed the total Hamiltonian H in terms
of the clothed operators. H is the time translation generator of the Poincar�e
group. Here we shall discuss how the rest of the group generators (total linear
and angular momenta, and generators of Lorentz boosts) depend upon the clothed
operators. This will allow us to formulate the transformation properties of the
clothed no-particle and one-particle states under the Lorentz boosts. First of
all, let us consider various constraints imposed on clothing transformations by
the general symmetries in RQFT and those which are speciˇc for a given ˇeld
model.

3.1. Total Momenta and Other Motion Integrals in Terms of Clothed
Operators. Similar to the determination of the total Hamiltonian H as a function
K(α) of the clothed operators α we can obtain the expression Pc(α) for the total
linear momentum P (cf. Eq. (2.17)):

P (a) = P (W (α)αW †(α)) = W (α)P (α)W †(α) ≡ Pc(α) . (3.1)

One can show that WPW † is simply equal to P . Indeed, this is equivalent to
WP = PW that follows, in its turn, from [R, P ] = 0 (remind that W = exp R).
The validity of the latter can be veriˇed using Eq. (2.22), (A.1), (A.2) and the
well-known expression of the total linear momentum in terms of the creation
(destruction) operators

P =
∫

ka†(k)a(k)dk +
∫

p
∑

r

[b†(p, r)b(p, r) + d†(p, r)d(p, r)]dp (3.2)

(see, e.g., Eq. (7.33) in [15]). Alternatively, one can take the representation (A.4)
for R and use the equation [P , V ] = 0 that holds because of the invariance of V
with respect to space translations.

So, we have found that Pc(α) = P (α). This means that P is the same
function of the clothed operators as of the bare ones.

Analogous statements are valid for the total angular momentum M∗ and the
baryon (fermion) number operator B =

∫
ψ†(x)ψ(x)dx. This means that the

clothed states Ω, ac
†Ω, bc

†Ω, and dc
†Ω have the following properties: a) they

are eigenvectors of P ; b) they are transformed under space rotations in the same
manner as the relevant bare states do; c) they possess deˇnite B values.

Instead of verifying the properties [R, P ] = [R, M ] = [R, B] = 0 with
the solution R of the equation [R, HF ] + V = 0 one may consider them as

∗The ˇeld-theoretical formula for the generator can be found in [38](Ch.11), see also Subsec. 3.2.
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some new requirements supplementary to those listed in Subsec. 2.1 as i) Ä iv).
These requirements would result in deˇnite restrictions on the coefˇcients in-
volved in the expansion (2.22) for R. For example, it follows from [R, P ] = 0
that Rk

ij(p
′r′; pr) must have the form δ(p + k − p′)rk

ij(p
′r′; pr). The equa-

tion [R, M ] = 0 means that Rk
ij(p

′r′; pr) must depend on rotationally invariant
combinations of its arguments. Besides, the condition [R, B] = 0 prevents R
to be dependent on terms of the bc

†dc- kind (we eliminate such terms from the
beginning assuming the form (2.22) for R).

One may add to these restrictions those which are consequences of the fol-
lowing requirements: clothed operators and clothed one-particle states must have
the same transformation properties with respect to space inversion, time reversal
and charge conjugation as their bare partners.

Let us stress that all the constraints are exact whereas the equation [R, HF ]+
V = 0 considered in Subsec. 2.4 is merely approximate one. However, its solution
has all the properties in question since the interaction V commutes with P , M ,
B, etc. (see Eq. (A.4)).

3.2. Transformations of Bare Operators and States under Lorentz Boosts.
A distinctive feature of the conventional relativistic dynamics (®instant¯ form
after Dirac [39] ) is that the generators N = (N1, N2, N3) of the Lorentz boost
Λ = exp(iβN)∗∗ contain interaction terms while the linear P = (P 1, P 2, P 3) and
angular M = (M1, M2, M3) momenta are determined by the same expressions
as for free ˇelds.

In order to see this explicitly let us resort to the Lagrangian formalism where
the quantities of fundamental importance are the energy-momentum density tensor
T µν(x) and the angular momentum density tensor Mλµν(x)∗∗∗ (see, e.g., Ch.11
in [38]). By deˇnition, Pµ = (H, P) =

∫
T 0µ(x)dx, M j = εjklM

kl, and
N j = M0j , where Mµν =

∫
M0µν(x)dx. According to the Noether theorem

all the ten operators are time independent, i.e., they are the motion integrals. In
other words, they can be evaluated at t = 0, i.e., they can be expressed through
ˇeld operators in the Schréodinger picture.

The corresponding representation of N depends on the form of T µν(x) (non-
symmetrized or symmetrized∗), that is utilized. Here we shall use the nonsym-

∗∗Here β = βn, n = v
v

and thβ = v, where v is the velocity of a reference frame moving
along the n direction. In this paper we use the system of units in which the light velocity c is equal
to unity.

∗∗∗Greek labels run the values 0,1,2,3.
∗The symmetrized form with the Belinfante ansatz [36] for Lorentz boosts has been employed

in our talks [19, 20]. Another application of the form can be found in a covariant description of
electromagnetic interactions with nuclei [40].
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metrized form (see Eqs. (13.45) and (13.47) in [38]), which leads to

N = NF −
∫

xV (x)dx + Nren , (3.3)

where NF is the free part of N:

NF = Nferm + Nmes , (3.4)

Nferm = −
∫

xψ̄(x)[−iγ∇ + m]ψ(x)dx +
i

2

∫
ψ̄(x)γψ(x)dx , (3.5)

Nmes = −1
2

∫
x

[
π2(x) + (∇φ(x))2 + µ2φ2(x)

]
dx . (3.6)

In accordance with the particle mass renormalization described in Subsec. 2.5 we
have separated the contribution to N from meson and fermion mass counterterms
(cf. Eqs. (2.26) and (2.30)):

Nren = Nmes
ren + Nferm

ren , (3.7)

Nmes
ren = −1

2
(µ0

2 − µ2)
∫

xφ2(x)dx , (3.8)

Nferm
ren = −(m0 − m)

∫
xψ̄(x)ψ(x)dx . (3.9)

Now, to express the generators through the creation (destruction) operators
let us take the expansions (2.9)Ä(2.11) and employ the relation∫

xjexp (iqx)dx = −i(2π)3
∂

∂qj
δ(q).

Then, e.g., we ˇnd

N j
mes =

i

2

∫
a†(k′)a(k)

ωk′ωk + k′k + µ2

√
ωk′ωk

∂

∂kj
δ(k′ − k)dk′dk (3.10)

or

N j
mes =

i

2

∫
ωk

[∂a†(k)
∂kj

a(k) − a†(k)
∂a(k)
∂kj

]
dk . (3.10′)

Simultaneously, we get (cf. Eq. (2.16))

N j
I ≡ −

∫
xjV (x)dx =

=
ig

(2π)3/2

∫
dp′ dp dk

m

(2ωkEp′Ep)1/2

∂

∂kj
δ(p + k − p′)×
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×{ū(p′r′)γ5u(pr) b†(p′r′)b(pr) +

+ ū(p′r′)γ5v(−pr) b†(p′r′)d†(−pr) + v̄(−p′r′)γ5u(pr) d(−p′r′)b(pr) −
− v̄(−p′r′)γ5v(−pr) d†(−pr)d(−p′r′)} [a(k) + a†(−k)] (3.11)

with the Yukawa interaction density V (x) (see Eq. (2.2)).
These formulae enable one to perform directly transformations of the bare

operators and states under the Lorentz boosts. In particular, in the inˇnitesimal
case with | βj |� 1 (j = 1,2,3) one has

ΛΩ0 = exp [iβ(NF + NI + Nren)]Ω0 	

	 [1 + iβ(NI + Nren)]Ω0 	 (1 + iβNI)Ω0 , (3.12)

where we took advantage of the relation

NF Ω0 = 0 , (3.13)

and omit terms of the order higher than g1.
Equation (3.12) means that the bare vacuum is not invariant with respect to

Λ, viz., ΛΩ0 
= Ω0. A moving observer ®sees¯ ΛΩ0 as the superposition of
no-particle state Ω0, NN̄π states, etc.

Similarly, bare one-particle states (e.g., a†(k)Ω0) are not transformed with
respect to Λ as in the free case where along with Eq. (3.13) one has the property∗

eiβNF a†(k)e−iβNF = a†(Lk) . (3.14)

In Eq. (3.14) L denotes a pure Lorentz transformation (®boost¯) with the matrix:

L =
[
Lµ

ν

]
=




u0
... uj

. . . . . . . . .

−ui
... δi

j −
uiuj

1+u0


 , (3.15)

where uµ = (u0, u) = (chβ, nshβ) is the four-velocity vector. The boost con-
verts the four-momentum k = (ωk,k) into k′ = Lk = (ωk′ ,k′).

We have Λa†(k)Ω0 = aΛ
†(k)ΛΩ0 with the transformed meson operator

aΛ
†(k) = Λa†(k)Λ†. For an inˇnitesimal boost the operator

aΛ
†(k) = eiβNa†(k)e−iβN 	 a†(k) + iβ[Nmes, a

†(k)] + iβ[NI , a
†(k)] (3.16)

∗Under the discussion it is convenient to proceed with the operators a(k) which obey the
covariant commutation relation [a(k), a†(k′)] = ωkδ(k − k′) (cf., e.g., Eq. (7.23) in [15]). In the
framework of our consideration it is equivalent to replacement of a(k) by a(k)/

√
ωk. It is true for

the respective clothed operators, so that, for instance, the ˇrst of the relations (2.5) should be replaced
by [ac(k), ac

†(k′)] = ωkδ(k − k′).
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contains bare fermion operators due to the last (®interaction¯) term in the r.h.s.
of the equation. By using Eq. (3.10′) one can see that the two ˇrst terms yield

a†(k) − βj ∂a
†
(k)

∂kj ωk 	 a†(ωk − βk,k − ωkβ) that coincides with the operator
a†(Lk) in Eq. (3.14) for the inˇnitesimal L.

Now, taking into account Eqs. (3.12) and (3.16), one can ascertain that the
transformed state Λa†(k)Ω0 is composed of the one-meson state a†(k′)Ω0 with
the properly changed momentum k′ = k−ωkβ and the states | f f̄〉 and | f f̄ππ〉
containing fermions.

3.3. Boost Generators for Clothed Particles. Elimination of Bad Terms.
It is reasonable to anticipate that the physical vacuum Ω and clothed one-particle
states (e.g., ac

†(k)Ω) should be, respectively, the no-clothed-particle state and
clothed one-particle states from the point of view of a moving observer. More
exactly, they should meet the relations

ΛΩ = Ω (3.17)

and
Λac

†(k)Ω = ac
†(Lk)Ω . (3.18)

The previous experience of handling with Eqs. (3.12) and (3.16) prompts that
these conditions could be provided (at least, approximately) if we shall manage to
remove bad terms from N (in practice, some of them) while expressing it through
the clothed operators. In this connection, let us write down

N ≡ N(a) = WN(α)W † ≡ B(α) = eR(α)[NF (α) + NI(α) + Nren(α)]e−R(α) =

= NF + NI + [R, NF ] + [R, NI ] + ... (3.19)

(cf. Eq. (2.19)) and then remove from the r.h.s. of (3.19) all the bad terms of the
g1-order by requiring that

[N j
F , R] = N j

I = −
∫

xjV (x)dx (j = 1, 2, 3) . (3.20)

Now, we want to show that Eqs. (3.20) will automatically hold if R satisˇes
the condition (2.21). For this purpose, one can use the representation (A.4) for
such R:

R = −i lim
ε→0+

∫ ∞

0

dte−εt

∫
V (x)dx , (A.4)

where V (x) = V (x, t) = eiHF tV (x)e−iHF t is the interaction operator in the
Dirac picture. Being a scalar, it is transformed as

eiβNF V (x)e−iβNF = V (Lx) (3.21)
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under the Lorentz boost L determined by the matrix (3.15). Note that one
can directly verify the validity of Eq. (3.21) in case when NF is the Schroedinger
operator (as it does in Eq. (3.19)) while V (x) being any Lorentz invariant operator
in the Dirac picture.

In order to exploit this property note that

[N1
F , R] = −i

∂

∂β1

[
eiβ1N1

F Re−iβ1N1
F
]∣∣

β1=0
(3.22)

or taking into account ˇrstly Eq. (A.4) and then Eq. (3.21),

[N1
F , R] = − lim

ε→0+
lim

β1→0

∂

∂β1

∫ ∞

0

dte−εt

∫
V (Lx)dx. (3.23)

For the inˇnitesimal boost we have

V (Lx) = V (x − βt, t − βx) = V (x1 − β1t, x2, x3, t − β1x1) (3.24)

and

[N1
F , R] = − lim

ε→0+

∫ ∞

0

dte−εt

∫
lim

β1→0

∂

∂β1
V (x1 − β1t, x2, x3, t − β1x1)dx =

= − lim
ε→0+

∫ ∞

0

dte−εt

∫
(−t

∂

∂x1
V (x, t) − x1 ∂

∂t
V (x, t))dx =

= lim
ε→0+

[∫
x1dx

∫ ∞

0

e−εt ∂

∂t
V (x, t)dt +

∫ ∞

0

tdte−εt

∫
∂

∂x1
V (x, t)dx

]
.

(3.25)
One can show (cf., the proof of the relation (A.4)) that the ˇrst term in the

square brackets yields −
∫

x1V (x)dx. At the same time the second term is equal
to zero since the operator V (x, t) (more exactly, its matrix elements) vanishes at
x1 = ±∞. So, we get the desirable relation (3.20) with j = 1 (the cases j = 2, 3
are analogous).

So, the transformation W = exp R eliminates simultaneously the three-
operator terms ∼ g1 both from the total Hamiltonian K(α) and from the boost
generators B(α). One should emphasize that the proof is valid for any Lorentz
scalar function V (x, t). Speciˇc expressions for NF have not been required as
well since all we have needed is Eq. (3.21).

After this elimination of bad terms we get by analogy to Eq. (2.23),

B(α) = NF (α) + Nren(α) +
1
2
[R, NI ] + [R, Nren] +

1
3
[R, [R, NI ]] + ... (3.26)

We shall not exemplify separate interaction terms in the r.h.s. of this equation
since their structure repeats that for the corresponding contributions to K(α) (cf.,
e.g., Eqs. (3.11) and (2.16)).
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4. EQUATIONS FOR BOUND AND SCATTERING STATES IN RQFT

The clothed one-particle states are eigenstates of the total Hamiltonian H
according to their deˇnitions (see Subsec. 2.1). There may be other H eigenstates
which describe physical systems resembling one-particle states, viz., the states
with discrete values of the system mass that may be deˇned as the system energy
in the rest frame of reference (scattering states belong to continuous values of the
mass).

First of all, we keep in mind the simplest bound states similar to the hydrogen
atom or the deuteron. In the nonÄrelativistic approach the wavefunction of such
two-body state is the product of a function that describes the system as a whole
and other function being dependent on the internal variables (for instance, the
relative momentum p = 1

2 (p1 − p2) for two identical particles). Therefore, the
centre-of-mass motion is separated from the internal motion. It is not the case for
any relativistic model which satisˇes the Poincar�e algebra. In fact, the coupling
between the internal and centre-of-mass motions is inherent to relativistic theories
of interacting particles (see, e.g., the papers [22,23] where within simple ˇeld
models the two-body bound states are studied in a moving reference frame).

For the Yukawa model the corresponding states may be fermionÄfermion
states (deuteron-like), meson-fermion ones, etc. Of course, we are not able
to ˇnd the exact Hamiltonian eigenstates, except some exactly solvable models
(see [14]). However, within the clothing procedure in question one can suggest
reasonable approximations to this problem.

4.1. New Zeroth Approximation for the Total Hamiltonian K . Our ap-
proach is based on the choice of an appropriate zeroth approximation (ZA) to the
total Hamiltonian expressed through the clothed operators, i.e., the operator K
determined by Eq. (2.17). Since its free part K2 = HF (α) has no deuteron-like
eigenstates, we shall try to take

KZA = K2 + g2K
(2)
4 (4.1)

by adding to the two-operator (one-body) contribution

K2 =
∫

ωkac
†(k)ac(k)dk+

+
∫

Ep

∑
r

[bc
†(p, r)bc(p, r) + dc

†(p, r)dc(p, r)]dp ≡ Kπ + KN (4.2)

the four-operator (two-body) contributions of the g2-order which arise from the
commutator 1

2 [R, V ] ≡ 1
2 [R3, V ] in the r.h.s. of Eq. (2.23). This commutator is

evaluated in Appendix A. Doing so, we obtain the decomposition

K4 ≡ g2K
(2)
4 = K(NN → NN) + K(N̄N̄ → N̄N̄) + K(NN̄ → NN̄)+
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+K(πN → πN) + K(πN̄ → πN̄) + K(ππ → NN̄) + K(NN̄ → ππ) (4.3)

with the separate interactions between the different clothed particles. They are dis-
played (very schematically) in Fig. 1 where the graph (a) represents the nucleonÄ
nucleon interaction

K(NN → NN) =
∑
r,r′

∫
dp′

1dp
′
2dp1dp2×

×VNN (p′
1, r

′
1,p

′
2, r

′
2;p1, r1,p2, r2)bc

†(p′
1, r

′
1)bc

†(p′
2, r

′
2)bc(p1, r1)bc(p2, r2)

(4.4)
while the pionÄnucleon interaction

K(πN → πN) =
∑
r,r′

∫
dk′dp′dkdp×

×VπN (k′,p′, r′;k,p, r)ac
†(k′)bc

†(p′, r′)ac(k)bc(p, r) (4.5)

is displayed by the graph (c).

Fig. 1. Schematic representation of separate contributions to the effective operator K4:
a) bc

†bc
†bcbc, b) dc

†dc
†dcdc, c) bc

†ac
†bcac, d) dc

†ac
†dcac, e) bc

†dc
†acac, f) ac

†ac
†dcbc,

g) bc
†dc

†dcbc

Explicit expressions for the coefˇcients VπN and VNN will be given in the

next Subsecs. Here, however, one should note that all these terms of K
(2)
4

describe only real processes such as N + N → N + N , π + N → π + N , etc.
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The bad terms of [R3, V ] are not included in KZA for the reasons discussed in
Subsecs. 2.4 and 2.5. For example, the terms of the kind [4.0] (e.g., b†d†b†d†

and b†d†a†a†) and [3.1] (e.g., b†d†b†b and b†d†a†a) must be removed during our
clothing procedure via the transformation W4 = expR4 (see Eq. (2.24)). Recall
that [R4, K2] must cancel these bad terms.

In its turn, the transformation W4 (see Eq. (2.23) for K)

W4K(α′)W4
† = W4(K2(α′) +

1
2
[R3(α′), V (α′)] + ...)W4

† =

= K2(α′) +
1
2
[R3(α′), V (α′)]4 + [R4, K2] +

1
2
[R4, [R3, V ]4] + ... , (4.6)

brings in the Hamiltonian new four-operator terms in addition to those mentioned
above, see Eq. (4.3). Here, [R3, V ]4 denotes the four-operator part of [R3, V ]∗.
After the normal ordering, the double commutator [R4, [R3, V ]4] yields new four-
operator interactions in the total Hamiltonian. However, they are of the g4-order
whereas the interaction terms which we have included in KZA are of the g2-order.
So, the latter are not altered by W4. They exhaust all the interaction terms of the
g2-order, which remain in KZA.

We hope that KZA eigenstates are good approximations to exact K eigen-
states. The former should be found nonperturbatively (e.g., by means of numerical
methods). Five-operator and more complicated interaction terms can be taken into
account via perturbation theory recipes.

4.2. Meson-Nucleon Eigenstates of KZA and Pion-Nucleon Quasipotential.
The operator KZA has an important property: it conserves the total number of
clothed particles. In particular, KZA transforms clothed two-particle states (e.g.,
of the NN or πN types) to two-particle ones. Moreover, the Fock subspace of
all the clothed states can be divided into several sectors (the NN sector, the πN
sector, etc.) such that KZA leaves each of them to be invariant, i.e., for any state
vector Φ of such sector KZAΦ belongs to the same sector.

Let us show in the simplest case of the πN sector that the property just
mentioned allows us to reduce the eigenstate equation KZAΦE = EΦE to the
related Schroedinger equation of the particle-number-conserving quantum me-
chanics. For this purpose we seek ΦE as the following superposition of the πN
sector states ac

†bc
†Ω,

ΦE
πN =

∑
r

∫
dkdpΦE

πN (k;p, r)ac
†(k)bc

†(p, r)Ω . (4.7)

∗The two-operator terms of [R3, V ] are supposed to be cancelled with the respective mass
counter terms.
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In the πN sector KZA is equal to Kπ + KN + K(πN → πN) because the rest
terms of KZA give zero when acting on ΦE

πN . Thus, the equation KZAΦE
πN =

EΦE
πN reduces to

[Kπ + KN + K(πN → πN)]ΦE
πN = EΦE

πN . (4.8)

Taking the scalar products of both the parts of (4.8) with 〈ac
†(k)bc

†(p, r)Ω |,
we get the relevant equation for ΦE

πN (k;p, r),

(E−ωk−Ep)ΦE
πN (k;p, r) =

∑
r′

∫
dk′dp′VπN (k,p, r;k′,p′, r′)ΦE

πN (k′;p′, r′) .

(4.9)
The kernel VπN of this integral equation is determined by Eq. (4.5) (an

explicit expression for it is given below). This kernel can be called a quasi-
potential: in the coordinate representation it may depend not only on the particle
coordinates but on their derivatives as well. In our opinion, a popular name
®effective Hamiltonian¯ is inappropriate for KZA. When one deals with an
effective Hamiltonian one has to argue that its eigenvalues and eigenvectors
coincide (at least, approximately) with those of an original Hamiltonian. In the
framework of our approach we do not need such a proof since we believe that
KZA is in a sense a major part of the total Hamiltonian H and, therefore, the
above approximate coincidence is provided.

The solutions of Eq. (4.9), which belong to a discrete spectrum (if it ex-
ists), describe πN bound states. As emphasized above, the solutions should
be found nonperturbatively. Continuous πN -mass values correspond to πN -
scattering states. The respective S-matrix elements may be evaluated either ex-
actly by using numerical methods of solving the LippmannÄSchwinger equation
for the T -matrix with the interaction K(πN → πN) (see, e.g., [41]), or approxi-
mately in the framework of oldÄfashioned noncovariant perturbation theory (see,
e.g., Ch.1 in [42] or Ch.11 in [15]).

To obtain the explicit expression for K(πN → πN), one needs to seper-
ate out the ac

†bc
†acbc-kind terms of the commutators [R,V†] and [R,V†]† (see

Eq. (A.14))

K(πN → πN) =
1
2

:
{

[R,V†]πN + [R,V†]†πN

}
:=

= −1
2

∫
dk2dp2dk1dp1×

×
{

[V −k2 , Rk1 ]11(p2r2;p1r1) + [V −k1 , Rk2 ]†11(p2r2;p1r1)
}
×

×ac
†(k2)bc

†(p2, r2)ac(k1)bc(p1, r1) , (4.10)
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Fig. 2. The g2-order Feynman diagrams for πN scattering: a) the s-pole graph; b) the
u-pole graph

where the symbol : : denotes the normal ordering∗.
This result has been obtained in [18] (cf. Eq. (A.7) therein). The cor-

responding coefˇcients VπN (k′,p′, r′;k,p, r) that determine the pion-nucleon
quasi-potential (see Eq. (4.5)) are equal to

〈ac
†(k′)bc

†(p′, r′)Ω | K(πN → πN) | ac(k)bc(p, r)Ω〉 . (4.11)

They can be represented in the following covariant (Feynman-like) form

VπN (k2,p2, r2;k1,p1, r1) =
g2

(2π)3
δ(k2 +p2−k1−p1)

1
2√ωk2ωk1

m√
Ep2Ep1

×

×ū(p2, r2)

{
1
2

[
1

k/2 + p/2 + m
+

1
k/1 + p/1 + m

]
+

+
1
2

[
1

p/2 − k/1 + m
+

1
p/1 − k/2 + m

]}
u(p1, r1) (4.12)

(see also Appendix in [32]).
In order to comment this expression, let us consider the Feynman graphs in

Fig. 2 for the S-matrix elements of πN scattering. According to Feynman rules
the four-momentum of the internal nucleon line in graph 2,a equals either the sum
k1 + p1 of the incoming four-momenta or the sum k2 + p2 of the outgoing four-
momenta. These sums are equal due to the energy and momentum conservation,
viz., the S-matrix contains the multiplier

δ(k2 + p2 − k1 − p1) = δ(ωk2 +Ep2 −ωk1 −Ep1)δ(k2 +p2 −k1 −p1). (4.13)

Therefore, the Feynman propagator corresponding to the internal line can be
written either as (k/1 + p/1 + m)−1 or as (k/2 + p/2 + m)−1. In the case of quasi-
potential the energy conservation is not assumed (only the total three-momentun is
conserved) and hence k1+p1 is not necessarily equal to k2+p2. The representation
(4.12) shows that VπN includes the contribution associated with graph 2,a and

∗Henceforth summation over the dummy spin indices is implied.
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it can be obtained if we juxtapose to the internal nucleon line the half-sum

1
2

[
1

k/2+p/2+m + 1
k/1+p/1+m

]
.

In the case of S-matrix we juxtapose to the internal line in graph 2,b either the
propagator (p/2 − k/1 + m)−1 or (p/1 − k/2 + m)−1. In the case of quasipotential
p1 − k2 
= p2 − k1, in general, and the half-sum of these propagators does
correspond to the internal line (it is the second half-sum in the curly brackets in
the r.h.s. of Eq. (4.12)).

It follows from these observations that multiplying VπN by the factor
−2πıδ(ωk2 + Ep2 − ωk1 − Ep1) we shall obtain the S-matrix elements for πN
scattering in the g2-order.

So, we have seen that the r.h.s. of Eq. (4.12) resembles the Feynman
amplitudes being different from them in the two respects: i) the multiplier
δ(k2 + p2 − k1 − p1) is substituted instead of (4.13); ii) the above Feynman
propagators are replaced by the corresponding half-sums.

4.3. Clothed NucleonÄNucleon Eigenstates and Nucleon-Nucleon Quasipo-
tential. Now, we consider the KZA eigenstates which belong to the NN sector,
being superpositions of the kind,

ΦNN =
∑

r

∫
dp1dp2ΦNN (p1, r1;p2, r2)bc

†(p1, r1)bc
†(p2, r2)Ω . (4.14)

A subset of such states with a deˇnite momentum P is determined by Eq. (4.14)
with the coefˇcients ΦNN (1; 2) ∼ δ(p1 + p2 − P )∗. Obviously, KZAΦNN is
the state vector of the same sector. In fact, the operators Kπ, K(πN → πN),
K(πN̄ → πN̄), K(NN̄ → NN̄), K(ππ → NN̄), and K(NN̄ → ππ) involved
in KZA do not contribute to KZAΦNN (see Eqs. (4.1) and (4.3)), and we ˇnd
that KZA is reduced to the operator KN + K(NN → NN). So, the eigenvalue
equation KZAΦE

NN = EΦE
NN yields the equation

[KN + K(NN → NN)]ΦE
NN = EΦE

NN (4.15)

in the sector.
The corresponding equation for ΦE

NN (1; 2) (see Eq. (4.14)) can be derived
from Eq. (4.15) by taking scalar products of both the parts of the latter with
〈bc

†(p1, r1)bc
†(p2, r2)Ω |. Doing so, we get

(E−Ep1 −Ep2)Φ
E
NN (p1, r1;p2, r2) =

=
∫

dp′
1dp

′
2ṼNN (p1, r1,p2, r2;p′

1, r
′
1,p

′
2, r

′
2)Φ

E
NN (p′

1, r
′
1;p

′
2, r

′
2) (4.16)

∗Here and sometimes below we use the evident abbreviations, viz., 1 = (p1, r1), etc.
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with the properly symmetrized interaction (the quasipotential)

ṼNN (1, 2; 1′, 2′) = −1
2

[VNN (1, 2; 1′, 2′) − VNN (1, 2; 2′, 1′) −

−VNN (2, 1; 1′, 2′) + VNN (2, 1; 2′, 1′)] (4.17)

for the two clothed nucleons.
The two-body operator K(NN → NN) (see Eq. (4.4)) is generated by the

second term in the curly brackets of Eq. (A.14) and its H.c.:

K(NN → NN) =
1
2

:
{

[R,V†]NN + [R,V†]†NN

}
: (4.18)

One should note that the coefˇcients VNN (1, 2; 1′, 2′) in Eq. (4.4) are not in
the one-to-one correspondence with K(NN → NN), viz., they can be changed
without altering the latter. For instance, the property

b(1)b(2) = −b(2)b(1) (4.19)

enables one to replace VNN (1, 2; 1′, 2′) in Eq. (4.4) by −VNN (1, 2; 2′, 1′), and so
on.

Moreover, the operator K(NN → NN) remains unaltered when adding to
VNN arbitrary functions SL(1, 2; 1′, 2′) or SR(1, 2; 1′, 2′) which are symmetrical
under the transpositions 1 ↔ 2 or 1′ ↔ 2′, respectively. The above-mentioned
replacement VNN (1, 2; 1′, 2′) → −VNN (1, 2; 2′, 1′) is equivalent to the replace-
ment

VNN (1, 2; 1′, 2′) → VNN (1, 2; 1′, 2′) + SR(1, 2; 1′, 2′) (4.20)

with SR(1, 2; 1′, 2′) = −VNN (1, 2; 1′, 2′) − VNN (1, 2; 2′, 1′).
A distinctive feature of the coefˇcient (4.17) is its invariance with respect to

the transformation (4.20) with arbitrary SR.
After these notations, we write down one of the possible expressions for

VNN , that can be obtained using Eq. (4.18),

VNN (1, 2; 1′, 2′) = −1
2

∫
dk

{
1

Ep1 − Ep′
1
− ωk

+
1

Ep′
2
− Ep2 − ωk

}
×

×V −k
11 (p1r1;p′

1r
′
1)V

k
11(p2r2;p′

2r
′
2) . (4.21)

The respective quasipotential is

ṼNN (1, 2; 1′, 2′) = − g2

(2π)3
δ(p1 + p2 − p′

1 − p′
2)

m2

2
√

Ep1Ep2Ep1′Ep2′
×
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Fig. 3. The one-pion-exchange Feynman diagrams for NN scattering

×ū(1)γ5u(1′)
1
2

{
1

(p1 − p′1)2 − µ2
+

1
(p2 − p′2)2 − µ2

}
ū(2)γ5u(2′)

−(1 ↔ 2). (4.22)

Expression (4.22) is the NN part of an one-boson-exchange interaction derived
via the Okubo transformation method in [25] (cf. [43]). The potential ṼNN

consists of the direct term written explicitly and the exchange term (1 ↔ 2). In
order to obtain the latter one needs to replace p1, r1 by p2, r2 and p2, r2 by
p1, r1 in the former.

As has been pointed out in [25]∗, a distinctive feature of the potential is the
appearance of a covariant (Feynman-like) ®propagator¯

1
2

{
1

(p′1 − p1)2 − µ2
+

1
(p′2 − p2)2 − µ2

}
, (4.23)

where p = (Ep,p) is the nucleon four-momentum. On the energy shell, that is,
when

Ei ≡ Ep1 + Ep2 = Ep′
1
+ Ep′

2
≡ Ef , (4.24)

the r.h.s. of Eq. (4.23) becomes the genuine Feynman propagator which appears
when evaluating the S-matrix for NN scattering in the g2-order. The respective
graphs are displayed in Fig. 3. Like VπN the quasipotential ṼNN can be associated
with these Feynman graphs being different from the corresponding Feynman
amplitude in the two respects, viz., ṼNN does not contain δ(Ep1 + Ep2 −Ep′

1
−

Ep′
2
), and ®propagator¯ (4.23) now corresponds to the internal meson line in

graph 3,a. A more extended analysis of this observation has been given in [25].
In conclusion, one should note that all the quasipotentials are nonlocal since

the vertices and propagators in Eqs. (4.12) and (4.22) are dependent not only
on the relative three-momenta involved but also on their total three-momentum.
They include the nonstatic (recoil) effects in all orders of the so-called 1

c2 expan-
sion [44].

∗There one can ˇnd another representation of the nucleonÄnucleon quasipotential, which resem-
bles the expressions of old-fashioned perturbation theory (see, e.g., Ch. 13 in [15]).
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4.4. Other Clothed Eigenstates of Meson-Fermion System. Up to now we
have focused upon the clothed πN and NN states. Let us discuss other clothed
states.

If we start with the same ®zeroth¯ approximation to the total Hamiltonian,
our description of clothed πN̄ and N̄N̄ states will be very similar to that given
for πN and NN states. Actually, it is the case where one has to deal with the
charge-conjugated states. Here, we mean the nucleonÄantinucleon conjugation.

A different situation holds in the case of clothed fermionÄantifermion and
two-meson states. In fact, the operator K

(2)
4 contains the interactions K(ππ ↔

NN̄). Therefore, superpositions of the ππ states ac
†ac

†Ω and the NN̄ states
bc

†dc
†Ω taken separately cannot be KZA eigenvectors. So, one has to consider

the eigenstates of a mixed kind,

Φ =
∫

dk1dk2Φππ(k1;k2)ac
†(k1)ac

†(k2)Ω+

+
∫

dp1dp2ΦNN̄ (p1, r1;p2, r2)bc
†(p1, r1)dc

†(p2, r2)Ω . (4.25)

Calculation of the scalar products of KZAΦ = EΦ with 〈ac
†ac

†Ω | and
〈bc

†dc
†Ω | leads to a set of coupled equations for the coefˇcients Φππ and ΦNN̄ .

Of course, one may obtain separate equations for each of them. Thereat, the
eigenvalue equation for ΦNN̄ will involve some terms of the g4-order. Obviously,
to be consistent they should be disregarded within the ZA considered.

In the analogous manner one can study the eigenvalue problem for clothed
three-nucleon and more complicated states. However, handling with KZA, we
enter into the 3N -problem only with the two-body interaction K(NN → NN). It
would be interesting to take into account the three-body (six-operator) interactions
(irreducible to two-body ones) that are present in the total Hamiltonian K starting
from the term [R, [R, [R, V ]]] ∼ g4 not explicitly written in Eq. (2.23).

5. POSSIBLE MODIFICATIONS OF THE CLOTHING APPROACH

5.1. Heitler's Unitary Transformation. The ®clothing¯ in Sec. 2 has been
realized in the framework of the Schréodinger picture, the ®bare¯ and ®clothed¯
operators being the Schréodinger ones. Heitler in his book [5] discussed the
corresponding UT's in the framework of the interaction picture. To establish
the relation with Heitler's approach we shall derive Heitler's equation (which
determines his UT) starting from our equation (2.19) of Sec. 2:

W (α)[HF (α) + HI(α)]W †(α) = K(α) = K0(α) + KI(α). (5.1)

Remind that the free part K0(α) of the total Hamiltonian K(α) (expressed in
terms of the clothed operators α) is equal to HF (α), HF (α) being given by
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Eq. (2.6) in which bare operators a, b, and d are replaced by the clothed ones
ac, bc, and dc. Now, let us write Eq. (5.1) in terms of interaction picture operators
deˇned, e.g., as

αp(t) = eiK0(α)tαpe−iK0(α)t. (5.2)

For this purpose multiply both parts of Eq. (5.1) by exp (iK0t) from the left and
by exp (−iK0t) from the right and use the notation

A(t) = eiK0tA(α)e−iK0t = A(eiK0tαe−iK0t) = A(α(t)).

Then we obtain,

W (t)[HF (t) + HI(t)]W †(t) = K0(t) + KI(t). (5.3)

Multiply both parts of this equation by W †(t) from the left and use W †W = 1
and K0(t) = HF (t) (see above). We get

[HF (t), W †(t)] = −HI(t)W †(t) + W †(t)KI(t). (5.4)

The l.h.s. of this equation is equal to −i ∂
∂tW

†(t) (see, e.g., Eq. (11.52) in [15]).
So, we ˇnd,

HI(t)W †(t) − i
∂

∂t
W †(t) = W †(t)KI(t). (5.5)

This equation coincides with Heitler's equation written in [5] (Ch. 4, between
Eqs. (15.6) and (15.71)). The relation of Heitler's notations and ours is

S = W †, K = KI , H = HI .

So, Heitler's basic equation is equivalent to our Eq. (2.19) or (5.1). But his
goal differs from the goal of ®clothing¯. He requires that KI must not contain
interaction terms which give rise to virtual processes. By deˇnition, the latter can
proceed in spite of the inequality of energies of the initial and ˇnal states (here
®energy¯ means an eigenvalue of the free part of the total Hamiltonian). Our
bad terms also lead to virtual processes (e.g., Ω → πN̄N or N → Nπ) but there
are many other virtual processes not generated by bad terms (e.g., ππ → N̄N or
πN → ππN at low initial energies).

Of course, Heitler's requirement can be imposed also in the Schroedinger
picture and this has been done by Sato et al. [32,35].

5.2. HeitlerÄSato Approach Versus the Clothing One. We shall show here
that under a condition all bad terms produce virtual processes. As there are many
virtual processes which are not induced by bad terms, one may state that the
HeitlerÄSato condition is stronger than the bad terms elimination requirement.

Let us remind the exact deˇnition of bad terms. They are either two-,
three-, . . . operator terms which contain only creation operators (and do not
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contain destruction operators) or three-, four-, . . . operators containing only one
destruction operator. We call bad also the terms which are Hermitian conjugated
to the above-mentioned. Using the notion of the class deˇned in Sec. 2 one may
deˇne the bad terms as terms of the class [n, 0] and [n, 1], n ≥ 2 and their
H.c. Note that two-operator terms of the kind a†(k)a(k) are not attached to the
bad ones.

Bad interaction terms are responsible for the processes

no particles ↔ 2, 3, . . . particles
one-particle ↔ 2, 3, . . . particles. (5.6)

This property also may be considered as the bad terms deˇnition. The processes
(5.6) will be called bad below.

Let us prove the Statement: All bad processes are virtual ones under a
condition on the masses of interacting particles. Indeed, energy is evidently not
conserved in the bad process ®vacuum → several particles¯: the initial energy is
zero while the ˇnal state energy cannot be less than the sum of the ˇnal masses.
Further, consider the bad process aj → a1 + a2 + . . . , in which the particle aj

with the mass mj converts into particles with masses m1, m2, . . . . In the particle
aj rest frame the initial energy is mj . The energy is not conserved trivially if sum
of the masses Σimi of the ˇnal particles exceeds mj . The energy is conserved if
mj > Σimi and ˇnal particles possess nonzero momenta. The set of inequalities
mj < Σimi, ∀j is the very Statement condition on the particle masses.

In the Yukawa model the bad processes N → Nπ, N → NN̄N , N → Nππ,
etc., are certainly virtual, the process π → N̄N being virtual if µ < 2m. Under
this condition all the bad processes generated with the Yukawa model are virtual.

Let us consider the simplest virtual processes of the Yukawa model which
are of the order g1, namely Ω → NN̄π, N → Nπ, π → N̄N (if µ < 2m). They
coincide with the (simplest) bad processes of the order g1. The corresponding
three-operator interaction terms are of the order g1 and can be removed by the
unitary operator W = exp R, where R is a three-operator expression of the order
g1 (see Sec. 2).

6. THE OKUBO BLOCK-DIAGONALIZATION METHOD

Here, following [7] we regard the UT H → HU ≡ U †HU that makes the
Hamiltonian H (generally speaking, an Hermitian operator) block-diagonal (cf.
our brief discussion in Introduction). After the transformation the primary H
eigenvalue problem is reduced to the diagonalization of separate neardiagonal
blocks of HU .

It is well known that the transformation H → HU can be interpreted either
as the connection between the two matrices of one and the same operator H with
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respect to the different orthonormal bases, or as the relationship between the two
operators H and HU unitarily connected via the operator U. We shall start from
the ˇrst point of view.

6.1. UT as Change of Basis. Let Hn′n ≡ 〈n′|H |n〉 (∀n′, n) be the H
matrix with respect to a complete set of orthonormal vectors |n〉 and Hν′ν ≡
(ν′|H |ν) (∀ν′, ν) represents H in another orthonormal basis |ν). The indices
n(ν) can take on discrete or/and continuous values. One has (see, e.g., [45],
Ch.I)

Hν′ν ≡ (ν′|H |ν) = Sn′Sn (ν′|n′〉〈n′|H |n〉〈n|ν) , (6.1)

where Sn denotes a sum or/and an integral over n.
The r.h.s. of Eq. (6.1) can be written as the matrix product

Sn′Sn (U †)ν′n′Hn′nUnν ≡ (U †HU)ν′ν , (6.2)

where we have introduced the notation Unν ≡ 〈n|ν). Then

(U †)ν′n′ ≡ U∗
n′ν′ = 〈n′|ν′)∗ = (ν′|n′〉.

The transition matrix U is unitary in the following sense:

(U †U)ν′ν ≡ Sn (ν′|n〉〈n|ν) = δν′ν (6.3a)

and
(UU †)n′n ≡ Sν 〈n′|ν)(ν|n〉 = 〈n′|n〉 = δn′n . (6.3b)

Recall that all these basis vectors are orthonormal.
Whenever U is given one can express |ν) in terms of |n〉,

|ν) = Sn |n〉Unν . (6.4)

One should point out that the spectrum of indices n enumerating the vectors
|n〉 needs not to be identical to the spectrum of indices ν enumerating |ν).
For example, let us consider the Hamiltonian Hos of one-dimensional quantum
oscillator, whose matrix in the coordinate representation can be made diagonal by
using the Hermite functions ψν(x) (ν = 0, 1, 2, . . . ):

(ν′|Hos|ν) =

∞∫
−∞

dx′
∞∫

−∞

dxψ∗
ν′(x′) 〈x′|Hos|x〉ψν(x) ∼ δν′ν (6.5)

(cf. Eqs. (6.1)Ä(6.2)). In this case the transition matrix 〈x|ν) = ψν(x) is not
®square¯ because its columns (rows) are enumerated by the integer (continu-
ous) numbers. Such a matrix can be called rectangular. Note that in a ˇnite-
dimensional space the transition matrix always is square. This exempliˇes that
one cannot, in general, diagonalize H by means of a square matrix.
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In this connection, one should note that the diagonalization scheme considered
by Okubo and exposed below is not aimed at a perfect solution of H-eigenvalue
problem. Rather, it sets a more humble task, viz., to ˇnd (approximately) some
of its eigenvalues and eigenvectors. Okubo [7] suggested a realization of the
scheme via a square matrix U .

6.2. Block-Diagonalization in Matrix Form. In accordance with [7] we
require that the H matrix in the new basis

Hν′ν = (U † H U)ν′ν (6.6)

should have the block-diagonal form,

U †HU ≡ K =
(

K11 0
0 K22

)
(6.7)

with the two blocks K11 and K22 the meaning of which will be clariˇed a little
later. This requirement must determine the matrix U that in its turn enables one
to construct the new basis vectors |ν) (see Eq. (6.4)).

Now, following Okubo, we shall conˇne ourselves to ˇnding such a square
matrix U that |ν) = U |n〉. In other words, it is assumed that one can set an
one-to-one correspondence between the indices n and ν.

First of all, let us turn to the deˇnition of K11. It is a block of the matrix
K with elements that are enumerated by indices ν1 (or n1) which belong to a
subset of all ν (or n) values. The K22 elements are enumerated by the remaining
ν values denoted through ν2. Let us give examples of the ν1 choice.

One may take one value of ν as ν1, viz., the index of the vacuum state.
Hence, K11 has one element. If we are able to ˇnd U which leads to Eq. (6.7)
then we can construct a normalized H eigenstate, namely the physical vacuum
|0) = Sn |n〉Un0. After this step we consider the block K22 as a starting matrix
for the subsequent block-diagonalization, viz., to introduce a new set of ν′

1 (e.g.,
let ν′

1 be indices of the one-particle HF eigenstates), to ˇnd a new U ′. At the
next stage one can enumerate elements of the recurrent block 11 by indices of
two-particle states, e.g., the states ®two nucleons, no mesons¯ (this is Okubo's
example, see Sec. 2 in [7]). One more choice of K11 will be discussed in
Subsec. 6.5.

The option of ν1 or n1 allows one to divide H into the four blocks: H11

with elements 〈n′
1|H |n1〉, H22 (elements 〈n′

2|H |n2〉), H12 (elements 〈n1|H |n2〉),
and H21 = H12

†. The matrix U can be represented analogously. Keeping this in
mind the l.h.s. of Eq. (6.7) can be rewritten as the product of matrices composed
of the blocks described above (see, e.g., Ch. 0.7 in [47] and Ch. 1.6 in [48]),(

U11
† U21

†

U12
† U22

†

) (
H11 H12

H21 H22

) (
U11 U12

U21 U22

)
=

(
K11 0
0 K22

)
. (6.7′)
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One can consider Eq. (6.7′) as the equation for U . Okubo suggested to seek
its solution in the class of unitary matrices of the kind (see Note underneath)

U =
(

U11 U12

U21 U22

)
=

(
(I1 + A†A)−

1
2 −A†(I2 + AA†)−

1
2

A(I1 + A†A)−
1
2 (I2 + AA†)−

1
2

)
, (6.8)

where I1(I2) is the unit matrix for the subset of indices n1(n2), and A is an
rectangular matrix with elements An2n1 of the U21 kind, which should be deter-
mined. Under this convention the unit matrix for the full set of indices has the
block structure

1 =
(

I1 0
0 I2

)
, (6.9)

and we have the properties

AI1 = I2A = A , (6.10a)

[A†A, I1] = 0 . (6.10b)

The matrices A†A (of the U11 kind) and AA† (of the U22 kind) are square,

hermitian and positively deˇnite, so that the square roots
√

I1 + A†A and√
I2 + AA† can be deˇned (see, e.g., Ch. 5.8 in [45]). It is readily veriˇed

that the r.h.s. of (6.8) meets left unitarity U † U = 1. Other unitarity condition
UU † = 1 can be proved by means of equality Af(A†A) = f(AA†)A that is valid
if f(x) is a polynomial or a series of x.

The requirement for block-diagonalization, K21 = 0 (or K12 = 0), gives the
equation

H21 + H22A − AH11 − AH12A = 0 (6.11)

for A determination. This equation is equivalent to the condition (13) from [7].
Equation (6.11) is nonlinear and it can be solved exactly only in a few simple

cases (see Sec. 6 in [7] and Appendix C). For realistic ˇeld models one has to
develop a perturbative method in order to ˇnd A (see Subsec. 6.5).

Note. Generally speaking, the left unitarity for a matrix U with the non-
singular block U11 enables to express blocks Uij(i, j = 1, 2) through the matrix
A such that U21 = AU11 and blocks S11 = S1 and S22 = S2 of an arbitrary
matrix S,

S =
(

S1 0
0 S2

)

with S1
†S1 = I1 and S2

†S2 = I2 (cf. Eqs. (10) in [7]). The corresponding matrix
UOkubo (i.e., its representation after Okubo) can be written as the product US =
UOkubo where U is given by (6.8). However, since the UT via S conserves the
block-diagonal structure of K it is sufˇcient to consider only the form (6.8). Of
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course, Okubo's representation is not the most general form for unitary matrices.
The simplest exception is the 2 × 2 matrix(

0 1
1 0

)
.

6.3. Block-Diagonalization with Projection Operators. Here the UT H ′ =
U † H U is interpreted as a relation between the different operators H and H ′∗,
where U is a unitary operator. By deˇnition, the operator is a linear one-to-one
mapping of a Hilbert space H onto itself, i.e., an isomorphism of H. In particular,
it transforms the orthonormal basis vectors |n〉 ∈ H into the vectors |n) = U |n〉
of other orthonormal basis ∈ H. Therefore, we can write

〈n′|H ′|n〉 = 〈n′|U †HU |n〉 = (n′|H |n) , (6.12)

Eq. (6.12) sets up close links of H ′ = U †HU with the UT considered in
Subsecs. 6.1 and 6.2.

One can deal with H ′ = U †HU in the same manner as in Subsec. 6.2
introducing matrices of H , U , H† with respect to a basis |n〉 and representing
them in a block form, Eq. (6.7′). But one can realize the Hamiltonian block-
diagonalization without reference to any basis on H. We shall introduce (cf. [7])
the projection operators η1 and η2 = 1 − η1 onto a subspace H1 ⊂ H and its
complement H2 such that H = H1

⊕
H2

∗ . Mathematically strict deˇnitions of
projection operators and their properties in a Hilbert space can be found in [46]
(Ch.2). Of great importance for us is the property

ηiηk = ηkηi = δikηi. (6.13)

(i, k = 1, 2).

Then, for any operator O in H one can write

O = (η1 + η2)O (η1 + η2) =
∑

i,j=1,2

Oij , (6.14)

where
Oij = ηi O ηj (6.15)

with
ηi Okj = δikOij , Okj ηl = Oklδjl . (6.16)

∗Unlike the UT K = W H W † in Subsec. 2.3 that represents the same operator H.
∗Of course, the particular option of H1 depends on the nature of the problem (see Appendix C

and Subsec. 6.5).
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In terms of such decompositions the product of the two operators A =∑
ij Aij and B =

∑
ij Bij can be written as

AB =
∑
ijk

AijBjk , (6.17)

so that
(AB)ik =

∑
j

AijBjk . (6.18)

By using the rule we ˇnd

H ′ = U †HU =
∑
imjk

(U †)miHijU jk (6.19a)

or
H ′ =

∑
imjk

(U im)†HijU jk . (6.19b)

Remind that the projectors ηi are hermitian , i.e., ηi
† = ηi.

One can set an one-to-one correspondence between the operators Hij and
the matrix blocks Hij introduced in Subsec. 6.2. Actually, each operator Hij

(i, j = 1, 2) acts in the full Hilbert space H but its matrix with respect to the
basis {|n〉} has merely one nonzero block Hij with the three remaining blocks
being zero. Analogous relation takes place between U ij and Uij .

Further, the operators U ij in Eqs. (6.19) can be expressed through an arbitrary
operator A of the kind 21, i.e., A = η2Aη1. For instance, one can write (cf.
Eq. (6.8))

U21 = AU11 = A(1 + A†A)−
1
2 η1 = A(1 + A†A)−

1
2 . (6.20)

Okubo's requirement for decoupling the two subspaces H1 and H2 means
that it must be H ′21 = 0 or according to Eq. (6.19a)∑

ij

(U †)2iHijU j1 = 0. (6.21)

It leads to the nonlinear equation for A

η2{H + [H,A] −AHA}η1 = 0. (6.22)

As a matter of fact, it is the same equation as Eq. (6.11), viz., one may consider the
latter as the record of Eq. (6.22) for the only nonzero block A of the operator A.

The solution of Eq. (6.22), if it exists (cf. the discussion in [21] ), yields the
Hermitian operator

H ′11 = η1(1 + A†A)−
1
2 (1 + A†)H(1 + A)(1 + A†A)−

1
2 η1. (6.23)
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The resultant operator H ′ given by Eqs. (6.19) (see also Eq. (6.23)) has
a block diagonal structure that simpliˇes determination of its eigenvalues and
eigenvectors. However, H ′ 
= H and therefore H ′ eigenvectors are not H eigen-
vectors. Recall that our UT is aimed at solving the H eigenvector problem (at
least, its partial solution). But if we have succeeded in ˇnding H ′11 eigenvec-
tors one can easily get the corresponding H eigenvectors. Actually, if we have
H ′11Ψ1 = EΨ1 (Ψ1 ∈ H1), then Ψ1 is also H ′ eigenvector,

H ′Ψ1 = (H ′11 + H ′22)Ψ1 = EΨ1. (6.24)

It follows from U † H UΨ1 = EΨ1 that UΨ1 is H eigenvector,

H UΨ1 = E UΨ1. (6.25)

The obtained relation between H ′ and H eigenvectors can be represented in
another form. Let us expand the H ′ eigenvector in the basis vectors |n〉,

|Ψ1〉 = Sn|n〉cn.

The corresponding H eigenvector UΨ1 has the same expansion coefˇcients cn

with respect to the other basis |n) = U |n〉,

UΨ1 = SnU |n〉cn = Sn|n)cn. (6.26)

Exact solutions of the decoupling equation (6.22) can be derived for a few
simple cases (see, e.g., Sec. 6 in [7]). One of them is the so-called scalar ˇeld
model (see Ch. 12 in [15]). The respective solution is very instructive having
many attributes of more realistic ˇeld models. It is given in Appendix C.

6.4. New CreationÄDestruction Operators within the UT Method. Com-
parison with the Clothing Procedure. As before (see Sec. 2) we consider that
the original ˇeld Hamiltonian H is a function (functional) of the bare creationÄ
destruction operators. We denote their set by the same symbol a, ap being one of
them. Moreover, one may assume that the unitary operator U also is a function
of a. Then, H ′ = U †HU may be written as

H ′(a) = U †(a)H(a)U(a). (6.27)

In order to compare the Okubo approach and the clothing procedure devel-
oped in Sec. 2 let us introduce the set ã of new creationÄdestruction operators
(with the denotation ãp for one of them) deˇned as

ãp = V (a)apV
†(a) ∀p , (6.28)

or
ap = V †(ã)ãpV (ã) , (6.29)
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where V (a) = V (ã) 
= 1 is an arbitrary unitary operator (not necessarily coinci-
dent with U(a)).

Applying the UT V to both the sides of Eq. (6.27), we have

V (a)H ′(a)V †(a) = H ′(ã) = U †(ã)H(ã)U(ã). (6.30)

Further, by means of (6.29) the total Hamiltonian can be expressed (cf. the
derivation of Eq. (2.17)) in terms of the new operators ã,

H(a) = H(V †(ã) ã V (ã)) = V †(ã)H(ã)V (ã). (6.31)

One should stress that the operators H ′(ã) and H(ã) are different from H ′(a)
and H(a), respectively, if V 
= 1. However, if V = U , then H ′(ã) turns out
to be equal to the starting Hamiltonian H(a). Actually, in this case the r.h.s of
Eq. (6.31) gets to be equal to H ′(ã) in accordance with Eq. (6.30), so that

H(a) = H ′(ã) = U †(ã)H(ã)U(ã). (6.31′)

The option V = U = W † gives rise to the clothed operators ã = α = W †aW
(see Subsec. 2.3), and then H ′(α) = K(α) = WH(α)W †.

Thus, our consideration shows how the UT H → H ′ = U †HU can be
reduced to a transformation of clothing type. Of course, there are distinctions
between the Okubo approach and the procedure shown in Sec. 2. They are
due to those purposes which are inherent to each of them. We shall return to
this point in Subsec. 6.6. However, let us note here that although the operator
UOkubo(a) determined by solving the decoupling equation (6.22) and the operator
Uclothing(a) = W †(a) are different functions of a one cannot �a priori exclude a
resemblance or even the perfect coincidence of some approximations to them.

Note one more deˇnition of ã by the relations

(n′|ãp|n) = 〈n′| ap|n〉 ∀n′, n, p , (6.32)

where |n) = U |n〉 (cf. the beginning of Subsec. 6.3). In particular, Eq.(6.32)
means that the matrix elements of the new meson destruction operator ã(k) with
respect to the new vectors |n) are equal to the corresponding matrix elements of
the bare meson destruction operator a(k) with respect to the old vectors |n〉. It
is clear that this deˇnition with U = U (a) is equivalent to (6.28).

6.5. Perturbative Construction of Okubo's Unitary Transformation. Elim-
ination of Mesonic Degrees of Freedom. Here we present the approximate so-
lution of Okubo's equation and determination of the block H ′11 that have been
given in [25]. Just as in that paper let us consider the system of fermions (nucle-
ons) and mesons (pions) with Yukawa-type interaction linear in the meson ˇeld
(see Sec. 2). In this model the basis states |n〉 are enumerated by the two indices
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|n〉 = |mf〉, viz., m(f) enumerates the meson (fermion) states, |0mf〉 being the
state without mesons (the NN̄ contents may be arbitrary). In accordance with
the Okubo idea we decompose the full space H of meson-nucleon states into two
subspaces (sectors), namely, the fermion (nucleon) sector H0 which is composed
of no-meson states, being spanned onto the subset | 0mf〉, and its orthogonal
complement Hcomp that consists of the states with nonzero meson number. The
projection operator η1 into H0

∗ can be constructed as

η1 = Sf | 0mf〉〈0mf | . (6.33)

By deˇnition,
a(k) | 0mf〉 = 0 ∀f,k , (6.34)

and therefore
a(k)η1 = η1a

†(k) = 0. (6.35)

The operator of interest H ′11 has the following matrix structure (cf. the note
after Eqs. (6.19)):

H ′11 =
(

H ′
11 0
0 0

)
, (6.36)

where the block H ′
11 consists of the elements 〈0mf ′ | H ′ | 0mf〉, ∀f ′, f . At the

same time the matrix
H ′22 =

(
0 0
0 H ′

22

)
(6.37)

contains the elements 〈m′f ′ | H ′ | mf〉, ∀m′ 
= 0m 
= m , ∀f ′, f . For brevity,
henceforth the index 0m of the no-meson state will be replaced by 0.

In order to simplify the subsequent equations let us separate the matrix of
any operator O that acts in H = H0⊕Hcomp into the subblocks [Om′m] such that

[Om′m]f ′f = 〈m′f ′ | O | mf〉. (6.38)

So, the elements of these subblocks are marked by the fermionic indices f . The
subblocks can be called fermionic. The block H11 coincides with [H00], etc. The
rectangular matrix A, which determines U in Eq. (6.8), consists of the subblocks
[Am′0] with m′ 
= 0, i.e., the submatrices [Ak0] with m′ = k for one-meson states
marked by the momentum k, the submatrices [Ak1k2;0] with m′ = (k1k2) for
two-meson states, and so on.

Now, the key equation H ′ = U †HU can be rewritten as the set of equations
for the subblocks [Um′m],

[H ′
µ′µ] = Sm′Sm[U †

µ′m′ ][Hm′m][Umµ] , ∀µ′, µ , (6.39)

where µ runs the same values as m does.

∗In [25] the letter P has been used instead of η1.



UNITARY TRANSFORMATIONS IN QUANTUM FIELD THEORY 69

In their turn the subblocks in question may be considered as the matrices
of operators which act onto fermionic degrees of freedom. Such operators have
been represented in [25] as functions of the bare creationÄdestruction operators
but fermion ones only. Let us denote the set of them by the symbol f̂ . Then,
one can write, e.g.,

[Um′m(f̂)]f ′f = 〈m′f ′ | U | mf〉. (6.40)

Similarly we introduce the operators H ′
m′m(f̂) (Hm′m(f̂)) which correspond to

[H ′
m′m]([Hm′m]).

Under such convention the relation H ′ = U †HU can be reduced to a hybrid
form being expressed in terms of the functions of f̂ and the matrix elements with
respect to the meson states,

H ′
µ′µ(f̂) = Sm′SmU †

µ′m′(f̂)Hm′m(f̂)Umµ(f̂). (6.41)

Such representation of the operators turns out to be convenient when ˇnding
approximate solutions of Eq. (6.22) which can be rewritten as

η2{HI + [HF ,A] + [HI ,A] −AHIA}η1 = 0 (6.42)

since η2HF η1 = 0.
We consider its approximate solution assuming

A = A(0) + A(1),A(0) ∼ g0,A(1) ∼ g1. (6.43)

The contribution A(0) is absent since with interaction switched off (g → 0) the
Hamiltonian H = HF is already block-diagonal. In this connection, remind
that HI = V + Mren, where the mass counterterms Mren = Mferm + Mmes are
determined by Eq. (2.7).

Such A = A(1) turns into zero only those terms of Eq. (6.42) which are of
the g1Äorder, i.e.,

η2 ([HF ,A] + V ) η1 = 0 . (6.44)

One can consider Eq. (6.44) as a relaxed form of Okubo's constraint H ′21 = 0
(or Eq. (6.42)), which may be imposed instead of the latter.

Using the commutativity of HF and η1 let us rewrite Eq. (6.44) as

[HF ,A] + η2V η1 = 0 . (6.45)

This equation is of the same type as Eq. (2.21) for the operator R, viz., [HF , R]−
V = 0, whose solution is given in App. A. Therefore, taking into account formula
(A.4) we ˇnd,

A = ı lim
ε→0+

∞∫
0

V 21(t) exp (−εt)dt . (6.46)
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For interaction V linear in the meson ˇeld we have Am0(f̂) = 0 if the index
m corresponds to two-, three-, . . . meson states. Let us consider the nonzero
subblock Ak0, i.e., the subblock with elements 〈kf ′ | A | 0f〉. With the help of
the representation (A.9) for the interaction V and relation

〈a†(k)Ω | a†(k′, t) | Ω〉 = δ(k − k′) exp ıωkt

we obtain

Ak0(f̂) = ı lim
ε→0+

∞∫
0

Vk0(f̂(t)) exp [ı(ωk + ıε)t] dt , (6.47)

with
Vk0(f̂(t)) = F †(t)V −kF (t) , (6.48)

where f̂(t) = exp
[
ıHF ferm(f̂)t

]
f̂ exp

[
−ıHF ferm(f̂)t

]
is the subset of the fermion

operators in the interaction picture. We imply the division HF = HFmes(m̂) +
HF ferm(f̂) into the mesonic and nucleonic parts (see Eq. (2.8)), m̂ being the
subset of the meson operators a(k) and a†(k)∀k. For notations F and V −k see
App. A.

At the same time the (k0) subblock of the operator R = R−R† determined
by Eqs. (A.4) and (A.9) is

Rk0(f̂) = −ı lim
ε→0+

∞∫
0

Vk0(f̂(t)) exp [ı(ωk + ıε)t]dt. (6.49)

Comparing Eqs. (6.47) and (6.49), we get the solution for Ak0,

Ak0 = −Rk0 = R†
k0 = F †Rk†F (6.50)

in a compact form.
Here, we do not intend to write down explicit expressions for these subblocks

in terms of the fermion creation (destruction) operators. The respective result for

A
(1)
k0 (f̂) with some extension to other Yukawa-type mesonÄnucleon couplings can

be found in [25] (see Eqs. (17)Ä(18) therein).
After all, in order to derive an approximation to the operator H ′11, let us

employ the expansion of (1 + A†A)−
1
2 in the powers of A†A ∼ g2,

(1 + A†A)−
1
2 ≈ 1 − 1

2
A†A. (6.51)

Then, we obtain from Eq. (6.23) the expression

H ′11 = η1{H +A†H + HA+
1
2
A†[H,A]− 1

2
[H,A†]A}η1 + O(g4) , (6.52)
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from which and condition (6.22) for A it follows that

H ′11 = HF ferm(f̂)η1 + M
(2)
ferm(f̂)η1 +

1
2
η1{A†H + HA}η1 + O(g4) , (6.53)

or neglecting the terms of order g4,

H ′11 = HF ferm(f̂)η1 + M
(2)
ferm(f̂)η1 +

1
2
η1{A(1)†V + V A(1)}η1 (6.54)

(cf. Eq. (15) of [25]). When deriving Eq. (6.53) we have used the equation

η1Hη1 = HF ferm(f̂)η1 + M
(2)
ferm(f̂)η1 + O(g4) ,

whereas the change from (6.53) to (6.54) is based upon the properties

η2Hη1 = η2M
(2)
mes(m̂)η1 + η2V η1 + O(g4),

η1Hη2 = η1M
(2)
mes(m̂)η2 + η1V η2 + O(g4),

and the fact that
η1M

(2)
mes(m̂)Aη1 = O(g4) ,

η1V Aη1 = η1V A(1)η1 + O(g4) ,

for V linear in the meson ˇeld.
The corresponding subblock H ′

11 can be expressed through the subblocks
Ak0 and Vk0,

H ′
11 = HF ferm(f̂) + M

(2)
ferm(f̂) +

1
2

∫
{A†

0k(f̂)Vk0(f̂) + H.c.}dk =

HF ferm(f̂) + M
(2)
ferm(f̂) +

1
2

∫
{F †RkF · F †V −kF + H.c.}dk, (6.55)

where we have employed Eq. (6.50) and Eq. (6.48) at t = 0 and their H.c.
6.6. Clothing Procedure vs. Okubo Approach. Let us discuss in detail com-

mon and distinctive features of the two kinds of UT. Partly, we have concerned
this subject in Subsec. 6.4 (see also App. C ).

The Okubo and clothing approaches differ in their goals. The UT by Okubo
is aimed at to nullify the nondiagonal blocks H ′

21 and H ′
12 of the transformed

Hamiltonian. The clothing and akin approaches (see Sec. 5) require that some
undesirable operator terms (®bad¯ or ®virtual¯) must be absent in the transformed
Hamiltonian.

In the context it is worthwile to mention Nishijima's modiˇcation [9]
of the Okubo idea. Instead of Eq. (6.8) he used the representation



72 SHEBEKO A.V., SHIROKOV M.I.

U = . . . exp (ıS2) exp (ıS1), similar to that employed within the clothing ap-
proach. But Hermitian operators Sn (n = 1, 2, 3, . . . ) are to implement Okubo's
requirement, viz., the operator Sn must remove K21 matrix elements of the
gn-order (instead of removing some bad terms ∼ gn).

No wonder different approaches give, in general, different resulting trans-
formed Hamiltonians. Nevertheless, we want to show that both the approaches
can give some coincident results (even for the realistic ˇeld model), being realized
approximately (in a perturbative way). In particular, effective quasipotentials of
the g2-order for nucleon-nucleon interaction turn out to be the same.

Before comparing the resulting Hamiltonians we must remind that Okubo's
H ′ (see Subsec. 6.5) does not coincide with the starting Hamiltonian H whereas
the operator K of the clothing approach does. H ′ can be considered as a function
of bare operators a while K depends on clothed ones α. However, we have shown
in Subsec. 6.4 that H coincides with the operator H ′(ã) which depends upon new
destructionÄcreation operators ã = UaU † in the same manner as H ′ depends on a.
So, H ′(ã) and K represent the same operator and can be compared to each other.
Let us recall, however, that ã may not coincide with clothed operators α, and
H ′ and K may not be the same function of their arguments. In what follows we
imply that H ′ means H ′(ã) and H ′

11 is a function of fermion destruction-creation
operators f̃ = UfU †.

Now, we can prove the statement: H ′
11 given by Eq. (6.55) coincides with

the fermionic part of KF + M
(2)
ren + 1

2 [R, V ] (see Eq. (2.23)), i.e., with

Kferm = KF ferm + M
(2)
ferm + (fermionic part of

1
2
[R, V ]) . (6.56)

More exactly, H ′
11 and Kferm are the same function of their arguments

(fermionic operators f̃ and fc, respectively). Indeed, the last term in Eq. (6.56)
is that part of 1

2 [R, V ] ∼ g2 which depends only on fermionic operators. We
calculate 1

2 [R, V ] in App.A. Its fermionic part (denoted below as FP ) is contained
in 1

2 [R,V†] + H.c., for [R,V†] see the last term in the r.h.s. of Eq. (A.14). We
have

FP ≡ 1
2

∫
[F †RkF · F †V −kF + H.c.]dk . (6.57)

Comparing this expression with the r.h.s. of Eq. (6.55), we arrive to the above
statement.

The fermion mass counterterm M
(2)
ferm in Eqs. (6.55) or (6.56) must cancel

two-operator fermionic contributions which arise after normal ordering of FP
(see Subsec. 2.5). One should note that there are no other such terms in 1

2 [R, V ].
So, we may omit M

(2)
ferm from (6.55) or (6.56) provided FP is replaced by the

normally ordered counterpart : FP : of (6.57).
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Let us mention that similar evaluation of M
(2)
mes (cf. Subsec. (2.5)) would

take additional efforts within Okubo's approach (see Note at the end of this
subsection).

Of course, we may explicitly express FP given by Eq. (6.57) through b, d, b†,
and d† opening the abbreviations accepted for F †V kF and F †RkR in App. A
(we omit here the symbol tilde or the subscript c when handling with the fermion
operators). Such representation shows that : FP : contains ®bad¯ terms of the
kind b†d†b†d†, b†d†b†b and b†d†d†d. As stressed in Subsec. 2.4, they should be
eliminated from K via the clothing transformation W4. Such terms are also
unpleasant within Okubo's approach, viz., they prevent the no-fermion state Ωf

and one-fermion ones b†Ωf and d†Ωf to be H ′
11 eigenvectors along with two-

fermion states of the kind (4.14).
In other words, the problem of ˇnding H ′

11 eigenvectors is not essentially
easier than that for the starting Hamiltonian. In the spirit of Okubo's approach the
elimination of ®bad¯ terms can be implemented by performing UT of H ′

11 such
that the transformed sub-Hamiltonian (H ′

11)
′ = U ′ †H ′

11U
′ would not contain

matrix elements corresponding to the processes Ωf → two pairs, N → N +
pair, etc. The relevant projector η′

1 may project on states without pairs.
As argued in Sec. 4, these additional transformations W4 or U ′ do not alter

the remaining ®good¯ four-fermionic pieces of : FP : which are of the g2-order
(see, e.g., Eq. (4.18)).

So we obtain from H ′
11 or Kferm the same expression HF ferm + G : FP :,

where G : FP : is a ®good¯ part of : FP :. Using the notations of Sec. 4 (see
Eqs. (4.1)Ä(4.3)), it may be written as (KZA)ferm or

K2ferm + K(NN → NN) + K(N̄N̄ → N̄N̄) + K(NN̄ → NN̄) . (6.58)

The no-fermion, one-fermion and two-fermion deuteron-like eigenvectors of this
operator give some approximations to the corresponding H eigenvectors.

Note. The zeroth approximation operator KZA considered in Sec. 4 enables
us to ˇnd also approximations to H eigenvectors which describe one-meson states
and mesonÄnucleon bound and scattering states. In the OkuboÄKorchinÄShebeko
approach exposed in Subsec. 6.5 one should use for this purpose the submatrix
H ′

22. However, the latter embodies, in general, undesirable matrix elements which
correspond to the processes one-meson → other states (e.g., two meson + pair),
etc. In order to simplify the ˇnding of H eigenvectors under discussion one
needs additional Okubo's transformation of the kind (H ′

22)
′ = Ũ †H ′

22Ũ such that
(H ′

22)′ would have no undesirable matrix elements.

7. CONCLUSIONS

A considerable part of this work is devoted to development of the UT method
using the so-called clothing procedure in RQFT. This procedure has two aspects.
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On the one hand, we express with its aid a total Hamiltonian H for interacting
ˇelds in terms of the new operators which correspond to the creation (destruction)
of clothed particles. The latter possess, by deˇnition, the properties of observed
(physical) particles and are as a matter of fact ®quasiparticles¯ within our ap-
proach, if one draws a parallel with the method of canonical transformations in
quantum theory (see, e.g., [55], §§52, 84 ). On the other hand, such representa-
tion for H , being implemented partially or perfectly, enables us to formulate an
approach to solution of the H eigenvalue problem.

We have discussed in detail various UT of H in Sec. 6. In this connection,
we distinguish two kinds of UT's destined for approximate determination of H
eigenstates. Both may be deduced from the relation between the Hamiltonian H
matrices with respect to two different sets of basis vectors.

The ˇrst kind may be written as H ′ = U
†
HU , where H is the input Hamil-

tonian which is subject to UT, the transformed operator H ′ being not equal to
the input one. However, H eigenstates can be obtained from those of H ′ using
U (see Subsec. 6.3).

The second kind is determined as H = U
†
H̃U (U = W

†
). Now, the

transformed Hamiltonian is the input one, but differently represented, while the
operator H̃ 
= H is related to H in a simple way. These kinds of UT's are used
in literature but authors sometimes overlook that H ′ eigenstates do not coincide
with those of H .

Applying either of such UT's one may impose different constraints on the
form of the transformed Hamiltonian that leads to the deˇnite recipes for con-
structing the corresponding unitary operators. We have shown the resemblances
and distinctions of some known applications of the UT method: the clothing
procedure, the approach by Heitler and Sato, and Okubo's block-diagonalization
(Secs. 5 and 6). One should note that in all applications the unitary operator U is
determined approximately (with the exception of simple models).

Our consideration of the problem of bound and scattering states differs from
akin approaches (cf., [9,35]) with the following distinctive feature. Our inter-
actions between clothed particles (as an illustration, the πN and NN quasipo-
tentials) are parts of a single operator KZA which can be regarded as a zeroth
approximation to the total Hamiltonian. If the NN system is considered, then
KZA generates the NN Hamiltonian, whereas for the πN system KZA gives rise
to the πN Hamiltonian. This makes clear the relation of the eigenstates of such
Hamiltonian to the eigenstates of the original ˇeld Hamiltonian: the former are
some approximations to the latter.

One should point out that nonlocal properties of these quasipotentials have
a relativistic origin. In this context, we would like to note a growing interest
in similar relativistic effects in the modern theories of nuclear forces (see, e.g.,
[56,57] and refs. therein). We show how the mass renormalization program is
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realized within the approach developed here. The transformed Hamiltonian when
expressed in terms of clothed operators turns out to be dependent on renormalized
(physical) masses and not bare ones. Some tricks shown in App. A can be useful
in future calculations of the radiative corrections (renormalizations) to bare (trial)
masses for ˇeld models with a cutoff in the momentum representation.

We prove that clothing UT's remove the undesired (®bad¯) terms simultane-
ously from the Hamiltonian and the generators of Lorentz boosts. Our proof is
valid for any RQFT model (see Sec. 3).

Our three-dimensional formalism is covariant in that sense that we give
deˇnite prescriptions for the transformation properties of the clothed states with
respect to the Lorentz boosts.

With the help of a simple example, we demonstrate in App. B that the clothing
transformation W of Sec. 2 may happen to be implemented not by a unitary
operator in its usual mathematical sense. We argue that W ought to be understood
as an element of some algebra (lacking any operator representation), being unitary
in an algebraic sense.

At last, we show in App. C original tricks and results concerning a nonper-
turbative solution of Okubo's decoupling equation.

We believe that the concept of clothed particles and the approach exposed
here can be applied to different areas of the nuclear physics: from the theory of
nuclear structure to description of nuclear reactions including the processes with
meson production.
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APPENDIX A

Three-Operator Clothing Transformation for the Yukawa Model. Four-
Operator Interactions between Clothed Particles and Their Normal Ordering.
The deˇning equations for the Yukawa model are given in Sec. 2. We use through-
out this article notations of [38] assuming, in particular, γ†

µ = γ0γµγ0 (µ =
0, 1, 2, 3), q̂ = qµγµ, γ5 = iγ0γ1γ2γ3 = γ†

5 and γ2
5 = 1.

A1. Three-operator clothing transformation W = expR, see Sec. 2.4, can
be found by solving the equation [R, HF] + V = 0. The antihermitian operator
R is assumed to be of the form R = R−R† with R given by Eq. (2.22). The
commutator [R, HF] can be directly evaluated by using the commutation relations
(2.5). Then we obtain the equations for the coefˇcients Rij involved in R, see
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Eq. (2.22). Their solutions are

Rk
11(p

′r′;pr) = V k
11(p

′r′;pr)/(Ep′ − Ep − ωk) ,

Rk
12(p

′r′;pr) = V k
12(p

′r′;pr)/(Ep′ + Ep − ωk) ,

Rk
21(p

′r′;pr) = V k
21(p

′r′;pr)/(−Ep′ − Ep − ωk) ,

Rk
22(p′r′;pr) = V k

22(p′r′;pr)/(−Ep′ + Ep − ωk) .

(A.1)

Here we have used the notations[
V k

11(p′r′;pr) V k
12(p′r′; pr)

V k
21(p

′r′;pr) V k
22(p

′r′;pr)

]
= i

g

(2π)3/2

m√
2ωkEp′Ep

δ(p + k − p′)×

×
[

ū(p′, r′)γ5u(p, r) ū(p′, r′)γ5v(−p, r)
v̄(p′, r′)γ5u(p, r) v̄(p′, r′)γ5v(−p, r)

]
≡ V k(p′r′;pr) . (A.2)

Eqs. (A.1) have meaning if the denominators in their r.h.s. are not zero (note
that p+k−p′ = 0 according to (A.2)). One can show that this is the case under
the condition

µ < 2m . (A.3)

The physical sense of this condition is discussed in Subsec. 2.4.
Alternatively, the solution R of Eq. (2.21) can be represented as

R = −i lim
ε→0+

∫ ∞

0

V (t)e−εtdt , (A.4)

where V (t) = exp (iHFt)V exp (−iHFt) is the interaction operator in the Dirac
picture. Obviously, V (t) is determined by Eq. (2.16) where the operators ac(k),
bc(p, r) and dc(p, r) are replaced by ac(k)exp (−iωkt), bc(p, r)exp (−iEpt) and
dc(p, r)exp (−iEpt), respectively. Therefore, the evaluation of R is reduced to
integrals of the kind ∫ ∞

0

ei(x+iε)t dt =
i

x + iε
, (A.5)

where x is any of the denominators in (A.1) and ε > 0 ∗. The limit ε → 0+ in
Eq. (A.4) exists, and it is ˇnite if the inequality (A.3) takes place, i.e., if x 
= 0.
This evaluation of R shows readily that the solution given by Eq. (A.4) coincides
with that determined by Eqs. (A.1). Also, one can directly verify that (A.4) meets
Eq. (2.21). In fact, we have

[R, HF] = −i lim
ε→0+

∫ ∞

0

e−εt[V (t), HF] dt =

∗According to the prescription given by Eq. (A.4) the positive parameter ε should be put equal
to zero at the end of the calculations.
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= lim
ε→0+

∫ ∞

0

e−εt ∂

∂t
V (t) dt = −V . (A.6)

The last equality follows (under the condition µ < 2m) if one calculates ∂
∂tV (t)

and then integrates with the help of (A.5). We use the form (A.4) in Sec. 3 when
constructing the Lorentz boosts in terms of the clothed operators.

A2. Evaluation of [R, V ] is a tedious exercise that can be simpliˇed with
the aid of a more compact notation. Indeed, expressions (2.16) and (2.22) for V
and R contain the identical operator structure, viz.,

b†c(p
′, r′)Xk

11(p
′r′;pr)bc(p, r) + b†c(p

′, r′)Xk
12(p

′r′;pr)d†c(−p, r)+

+ dc(−p′, r′)Xk
21(p

′r′;pr)bc(p, r) + dc(−p′, r′)Xk
22(p

′r′;pr)d†c(−p, r)
(A.7)

with deˇnite c-number coefˇcients Xk
ij (i, j = 1, 2).

Now, let us rewrite (A.7) as a matrix product

(b†c(p
′, r′), dc(−p′, r′))

[
Xk

11(p
′r′;pr) Xk

12(p
′r′;pr)

Xk
21(p

′r′;pr) Xk
22(p

′r′;pr)

] (
bc(p, r)

d†c(−p, r)

)
≡

≡ F †(p′, r′)Xk(p′r′;pr)F (p, r) , (A.8)

where along with the 2 × 2 matrix Xk composed of the coefˇcients Xk
ij (cf.

Eq. (A.2)) we have introduced the operator column F and row F †,

F (p, r) =
(

bc(p, r)
d†c(−p, r)

)
, F †(p′, r′) = (b†c(p

′, r′), dc(−p′, r′)) .

The subsequent operations become even more concise after adopting the
convention∫

dp′
∫

dp
∑
r′r

F †(p′, r′)Xk(p′r′;pr)F (p, r) ≡ F †XkF . (A.8′)

Under these notations, Eqs. (2.16) and (2.22) look as

V =
∫

dk F †V kF [ac(k) + a†
c(−k)] =

=
∫

dk F †V kFac(k) + H.c. ≡ V + V† , (A.9)

R =
∫

dk F †RkFac(k) − H.c. = R−R† ,

where H.c. means taking the Hermitian conjugate of the ˇrst terms. Note that
(V k)† = V k.
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A.3. After these preliminaries, we have

[R, V ] = [R−R†, V ] = [R, V ] + [V †,R†] = [R, V ] + H.c. (A.10)

Keeping this in mind, it is sufˇcient to evaluate

[R, V ] = [R,V ] + [R,V†] . (A.11)

By using the deˇnitions from (A.9) and carrying out straightforward operator
algebra, we obtain step by step

[R,V ] =
∫

dk1

∫
dk2 [F †Rk1F, F †V k2F ] ac(k1)ac(k2) =

=
∫

dk1

∫
dk2 F †[Rk1 , V k2 ]Fac(k1)ac(k2) , (A.12)

where in accordance with Eq. (A.8′)

F †[Rk1 , V k2 ]F =
∫

dp′
∫

dp
∑
r′r

F †(p′, r′)[Rk1 , V k2 ](p′r′;pr) F (p, r) ,

and it is implied that
[Rk1 , V k2 ](p′r′;pr) =

=
∫

dq
∑

s

[Rk1(p′r′; qs)V k2(qs;pr) − V k2(p′r′; qs)Rk1(qs;pr)] . (A.13)

In the above calculations it has been convenient to employ the identity

[AB, CD] = A{B, C}D − {A, C}BD − C{D, A}B + CA{D, B}

for four operators A, B, C, and D.
Further, after applying another useful relation

[AB, CD] = A[B, C]D + [A, C]DB + AC[B, D] + C[A, D]B ,

a similar derivation for [R,V†] results in

[R,V†] =
∫

dk1

∫
dk2 {F †[Rk1 , V −k2 ]Fa†

c(k2)ac(k1)+

+δ(k1 − k2)F †Rk1F · F †V −k2F} . (A.14)

Now, we see that the g2-order commutator [R, V ] brings in the total Hamil-
tonian K , see Eq. (2.23), the interaction terms which describe the following real
physical processes:
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a) the ππ → f f̄ creation and the f f̄ → ππ annihilation from [R,V ] (see Eq.
(A.12)) and its H.c.;

b) the πf → πf , πf̄ → πf̄ , ff → ff , f f̄ → f f̄ and f̄ f̄ → f̄ f̄ scatterings
from [R,V†] and its H.c. (see (A.14)).

In addition to these contributions, [R, V ] contains interactions, which have
nonvanishing matrix elements between the vacuum Ω and two-particle states
(e.g., those responsible for the virtual process Ω → ππ), and between Ω and
four-particle states (e.g., for transitions Ω → ππff̄ ). There are also interactions
responsible for the transitions: one particle → three particles and one particle →
one particle. Except the latter, all these terms are ®bad¯, i.e., they hinder Ω and
one-particle states to be K eigenstates.

For example, let us consider the term dcd
†
cacac which enters in [R,V ]. It has

nonzero matrix element 〈Ω | dcd
†
cacac | ππ〉 that becomes evident after normal

ordering,
dc(−p′, r′)d†c(−p, r)ac(k1)ac(k2) =

= −d†c(−p, r)dc(−p′, r′)ac(k1)ac(k2) + δr′rδ(p′ − p) ac(k1)ac(k2) .

This illustration shows that normal ordering is a constructive tool in the framework
of our clothing procedure. As in many applications of the method of second
quantization (e.g., in ˇeld theories of the evolution operator or the S-matrix),
this operation enables us to classify the separate contributions to the original
Hamiltonian at every stage of the clothing procedure.

A4. Now, we shall discuss in detail the origin of two-operator meson terms
which stem from the commutator [R, V ]. They are essential elements in our
treatment of the particle mass renormalization (see Sec. 2.5). These terms appear
after reshuf	ing the operators of the expressions F †[Rk1 , V k2 ]Fac(k1)ac(k2)
(see Eq. (A.12)) and F †[Rk1 , V −k2 ]Fa†

c(k2)ac(k1) (see Eq. (A.14)) into normal
order.

In the ˇrst case, it touches upon the terms of the dd†-kind and leads to

F †[Rk1 , V k2 ]F =: F †[Rk1 , V k2 ]F : +Tr[Rk1 , V k2 ]22 , (A.15)

where

Tr[Rk1 , V k2 ]22 ≡
∫

dp
∑

r

[Rk1 , V k2 ]22(pr;pr) , (A.16)

[Rk1 , V k2 ]22(p′r′; pr) ≡

≡
∫

dq
∑

j

∑
s

[Rk1
2j (p′r′; qs)V k2

j2 (qs;pr) − V k2
2j (p′r′; qs)Rk1

j2 (qs;pr) ] .

(A.17)
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The trace Tr is evaluated using the properties of the γ-matrices and Dirac spinors.
We ˇnd with the solutions (A.1)

Tr[Rk1 , V k2 ]22 = 2
tk1

ωk1

δ(k1 + k2) , (A.18)

tk =
g2

4(2π)3

∫
dp

m2

EpEp−k
×

×
{

Sp [Λ−(−p)Λ−(p − k)]
Ep + ωk + Ep−k

+
Sp [Λ−(−p)Λ+(p + k)]

Ep + ωk − Ep−k
+

+
Sp [Λ−(−p)Λ−(p − k)]

Ep − ωk + Ep−k
+

Sp [Λ−(−p)Λ+(−p + k)]
Ep − ωk − Ep−k

}
(A.19)

with the notations Λ+(Λ−) for the projection operators onto the nucleon positive
(negative)-energy states:

Λ±(q) =
±q + m

2m
.

While deriving Eq. (A.19), we have taken into account that∑
s

v̄(ps)Ov(ps) = −Sp{Λ−(p)O} ,

where O is a combination of γ-matrices.
Of course, one can collect the similar terms with the same numerators in the

r.h.s. of Eq. (A.19) ( e.g., the ˇrst term with the third one inside the curly brack-
ets). However, we prefer other continuation that enables us to get immediately
an explicitly covariant form of tk.

First of all, we ˇnd

Sp [Λ−(−p)Λ−(p− k)] =
EpEp−k + p · (p − k) + m2

m2
,

Sp [Λ−(−p)Λ+(−p + k)] =
EpEp−k − p · (p − k) − m2

m2
.

Substituting these expressions into (A.19) and uniting therein the ˇrst term
with the second one and the third term with the fourth one it can be shown that

tk =
g2

2(2π)3

∫
dp
Ep

{
p−k

µ2 + 2p−k
+

pk

µ2 − 2pk

}
, (A.20a)

or

tk =
g2

2(2π)3

∫
dp
Ep

{
1 +

µ4

4(pk)2 − µ4

}
(A.20b)
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with p− = (Ep,−p) , p = (Ep,p) and k = (ωk,k).
Since this integral is a LorentzÄscalar, one can write

tk = tk=0 =
g2

2(2π)3

∫
dp
Ep

{
1 +

µ2

4E2
p − µ2

}
(A.21)

or

tk =
g2

4π2

{
I1 +

µ2

4

[
I2 −

√
4m2 − µ2

µ
arctan

µ√
4m2 − µ2

]}
, (A.22)

where the integrals

I1 =

∞∫
0

x2

√
x2 + m2

dx

and

I2 =

∞∫
0

dx√
x2 + m2

are, respectively, quadratically and logarithmically divergent.
Now, the resulting contribution to [R,V ] which is of the acac-kind can be

written as

2
∫

dk1

∫
dk2 δ(k1 + k2)

tk1

ωk1

ac(k1)ac(k2) = 2
∫

dk
tk
ωk

ac(k)ac(−k) .

(A.23)
The commutator [R, V ] includes also the Hermitian conjugate of [R,V ]. There-
fore, we obtain from [R,V ] + H.c. the following ©badª two-operator meson
contribution:

2
∫

dk
tk
ωk

{ac(k)ac(−k) + a†
c(k)a†

c(−k)} . (A.24)

In the case of F †[Rk1 , V −k2 ]Fa†
c(k2)ac(k1) (see the beginning of this subsection)

after normal ordering of the dd†-kind terms one has to deal with
Tr[Rk1 , V −k2 ]22 that differs from Eq. (A.16) only by the replacement k2 → −k2.
Therefore, we obtain from [R,V†] the following expression bilinear in the meson
operators:

2
∫

dk
tk
ωk

a†
c(k)ac(k) . (A.25)

The same expression stems from the H.c. of [R,V†].
Finally, uniting all these results one can write the entire contribution from

1
2 [R, V ] to K(α), which is bilinear in the meson operators,∫

dk
tk
ωk

{2a†
c(k)ac(k) + ac(k)ac(−k) + a†

c(k)a†
c(−k)} . (A.26)
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APPENDIX B

Mathematical Aspects of the Clothing UT. By way of a simple example
we shall show that W used in the framework of ®clothing¯ approach (see Sec. 2)
may happen to be not a unitary operator in the usual sense: unitary operator
transforms vectors of a Hilbert space into vectors of the same space, the scalar
products being conserved. We argue that W need not be such an operator, viz.,
the clothing program can be described using an algebraic language as if W is
an element of some algebra, being unitary in an algebraic sense. Our example
shows that such W can have a representation by an operator that transforms
vectors of a Hilbert space H0 into vectors of another Hilbert space H which
is orthogonal to H0. In general, the operator representation of W turns out to
be unnecessary because W is not used in calculations of probability amplitudes,
expectation values and other quantities which have physical interpretation. We
note that ®clothing¯ allows us to choose a proper Hilbert space for ˇeld model
with the total Hamiltonian H = H0 + HI . This space usually is different from
the space spanned on H0 eigenvectors.

B1. The clothing program can explicitly be carried out in the following
model. The scalar (meson) ˇeld φ(x) interacts with a ˇxed (external) source, the
Hamiltonian being H = Hmes

0 + g
∫

φ(x)f(x)dx, where Hmes
0 is the free meson

Hamiltonian (see Eq.(2.1)). The Hamiltonian can be represented as

H =
∫

ω0
ka†(k)a(k)dk +

∫
ω0

k[v(k) a(k) + v∗(k) a†(k)]dk (B.1)

with

v(k) =
g√

2(2πω0
k)3

f̃(k),

where ω0
k =

√
k2 + µ2

0. The Fourier transform f̃(k) of the source function f(x)
is a constant if the source is point-like: f(x) ∼ δ(x).

In accordance with the recipe (A.4) we ˇnd the corresponding clothing trans-
formation W = exp R ≡ W (ac) = W (a) with its generator

R =
∫

v(k)[a†(k) − a(k)]dk. (B.2)

When deriving this expression, it is convenient to exploit the relation

eıHmes
0 ta(k)e−ıHmes

0 t = e−ıω0
kta(k).

For brevity, we suppose that the form factor v(k) is real (v∗(k) = v(k)).
Further, one can verify that

a(k) = Wac(k)W † = ac(k) − v(k) (B.3)
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and

H = K(ac) =
∫

ω0
ka†

c(k)ac(k) − L , (B.4)

where L =
∫

v(k)2dk is the c-number that shifts the H spectrum.
Thus, this transformation W not only removes from H the ®bad¯ terms

(linear in a and a†) but it reduces the primary eigenvalue problem to a very
simple one. In our model K(ac) does not contain interaction terms: clothed
particles (mesons) turn out to be free.

Now, we are interested in the clothed no-particle state, i.e., the vector Ω such
that

ac(k)Ω = 0, ∀k (B.5)

with
〈Ω | Ω〉 = 1.

One can show that the vector W †(a)Ω0 obeys the condition (B.5). In fact,

ac(k)W †(a)Ω0 = W †a(k)Ω0 = 0. (B.6)

So, one can put Ω = W †(a)Ω0, i.e.,

Ω = exp {−
∫

v(k) [a†(k) − a(k)]dk}Ω0 =

= exp (−L/2) exp{−
∫

v(k)a†(k)dk}Ω0. (B.7)

Here, we have used the HausdorffÄWeyl formula,

eA+B = eAeBe−1/2[A,B] (B.8)

for the two operators A and B such that [A, B] commutes with A and B.
Equation (B.7) represents the ®clothed¯ vacuum Ω as the superposition of

®bare¯ states
Ω0, a†(k1)Ω0, a†(k1) a†(k2)Ω0, . . . (B.9)

Expansions similar to (B.7) can be written for ®clothed¯ one-particle state a†
c(k)Ω

as well as for all vectors of the kind

W †a†(k1) . . . a†(kn)Ω0 = a†
c(k1) . . . a†

c(kn)W †Ω0 , (B.10)

each of them being the H eigenvector.
The states (B.9) are the H0 eigenvectors and they form the basis of the Fock

(Hilbert) space H0. The set

Ω, a†
c(k1)Ω, a†

c(k1) a†
c(k2)Ω, . . . (B.11)
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of the H eigenvectors is the basis of the Hilbert space which we shall call H.
We see that in our model with the cutoff function v(k) which decreases rapidly
enough to yield a ˇnite normalization factor exp(−L/2), the space H can be
spanned onto the vectors (B.9).

It is not the case in the model with a ®soft¯ form factor v(k). Indeed, if
L = ∞ (this occurs, e.g., for the point-like source), then we obtain the zero values
for all W †Ω0 projections on the vectors (B.9). Moreover, all vectors (B.10) are
orthogonal to H0 if L = ∞. We may conclude that all vectors (B.11) are zero if
H0 is assumed to be the complete space of states. The operator W † transforms all
H0 vectors into the zero one and therefore cannot be called the unitary operator
because the latter, by deˇnition, must transform vectors from H0 into vectors
from H0 and conserve the scalar product in the space.

Note that in the case with L → ∞ there are different ways for calculating
the scalar product 〈Ω | Ω〉 = 〈W †Ω0 | W †Ω0〉. On the one hand, putting
L = ∞ in Eq. (B.7), we obtain W †Ω0 = 0 once H0 is complete. Therefore,
〈W †Ω0 | W †Ω0〉 = 0. On the other hand, calculating at ˇrst 〈Ω | Ω〉 at ˇnite
L, we obtain unity for any L, i.e., such limit of 〈W †Ω0 | W †Ω0〉 as L → ∞ is
unity∗.

B2. So, in the case L = ∞ the standard approach that is relied upon the
initial Hilbert space H0 does not allow one to ˇnd H eigenstates (B.11). The
situation was clariˇed by Van Hove [49]. He considered H as an operator in the
space constructed as the inˇnite product of the Hilbert spaces for the oscillators
ωka†(k) a(k) (Van Hove assumes that k runs discrete values). This extended
space is not a Hilbertian one, but it can be decomposed into a direct sum of
mutually orthogonal Hilbert spaces, H0 being one of them (e.g., see [50Ä52]).

By using this space Van Hove has proved that the H eigenvector which
belongs to the least H eigenvalue (it coincides with the no-particle state Ω because
of Eq. (B.4)) has unit norm and is orthogonal to H0. Moreover, all H eigenvectors
(B.11) are orthogonal to H0. The vectors (B.11) form the basis of another Hilbert
space which is orthogonal to H0. We have called it H above.

Of course, the model under discussion is too simpliˇed and the resulting
theory is equivalent to the free one, viz., H contains no interaction terms after
®clothing¯ (see Eq. (B.4)). But it enables us to suspect that in nontrivial cases
the total Hamiltonian eigenvectors may happen to be orthogonal to the initial
Hilbert space H0, i.e., ®bare¯ states space or space of the eigenvectors of the
free part H0 of the total Hamiltonian. On this ground one may cast doubt about
validity of the usual quantum postulate that H as well as other observables can be

∗In the context, we ˇnd in [15] (Ch. XII) that 〈Ω | Ω〉 = ∞ at L = ∞. It follows from the
supposition made therein that the projection Φ(0) = 〈Ω0 | Ω〉 is not zero at L = ∞. However, this
supposition is wrong (see Eq. (B.7) and Van Hove paper [49]).
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deˇned initially as operators in H0. One can also anticipate that the ®clothing¯
transformation may not be unitary operator in H0.

B3. In order to avoid the troubles described above we suggest the following
algebraic approach to the quantum ˇeld theory. We consider all the operators
occurred in quantum ˇeld theory as elements of an algebra, devoid of operator
representation. This means that ab initio we do not introduce the notion of
vectors, describing states of the physical system. In this algebra besides the
addition and multiplication of elements an operation of involution † is deˇned,
which corresponds to the Hermitian conjugation in the operator language (see,
e.g., [53] (§1.5) and [54] (Ch. III)). The algebra contains A† along with the
element A. All elements of the algebra (in particular, the Hamiltonian) can be
expressed in terms of some basic algebraic elements. In the case of Yukawa
model the latter are

a(k), a†(k), b(p, r), b†(p, r), d(p, r), d†(p, r) ∀k,p, r. (B.12)

The multiplication operation is noncommutative: AB may not be equal to BA.
The commutators [A, B] for basic elements are assumed to be known (see, e.g.,
Eq. (2.3)), then the commutators of any two elements can be calculated.

The ®clothing¯ program can be formulated and realized using this algebraic
language. For example, the requirements i) and ii) from Sec. 2 can be replaced
by equivalent ones: the Hamiltonian H when expressed in terms of new basic
elements αp (instead of the starting elements denoted as ap in Sec. 2) must not
contain ®bad¯ terms (see Subsec. 2.4). The elements αp and ap are connected
by the isomorphic transformation αp = W †apW , W being a unitary element of
the algebra, i.e., such that W †W = W W † = 1. Let us stress that W † ap W
is calculated using purely algebraic means, namely commutation relations and
Eq. (2.15).

Of course, our theory must provide numbers, which can be compared with
experimental data (cross sections, expectation values, etc.). In quantum mechanics
this is accomplished by means of the realization of the above algebraic elements
as operators in a vector space. We deˇne the space as follows.

After ®clothing¯ we introduce the additional notion of a state Ω (cyclic state)
such that

ac(k)Ω = bc(p, r)Ω = dc(p, r)Ω = 0 ∀k,p, r.

This state coincides with the H eigenstate corresponding to the least H eigenvalue.
We assume that the observable no-particle state is described by Ω. By assumption
observable one-particle states are described by the states

a†
c(k)Ω, b†c(p, r)Ω, d†c(p, r)Ω.

The vectors

a†
c(k1) . . . a†

c(kn)Ω, b†c(p1, r1) . . . b†c(pn, rn)Ω, . . . (n ≥ 2)
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can be chosen as the remaining basic vectors of our Hilbert space H. Using the
vectors one can calculate quantities of physical interest in the usual manner.

One may say that one of the goals of the ®clothing¯ is to select a Hilbert space
which would be suitable for the given ˇeld Hamiltonian H . The ˇrst-quantized
quantum mechanics uses only one universal Hilbert space for different Hamilto-
nians, the second-quantized theory needs distinct spaces for different interactions
(e.g., for different values of the coupling constant g).

The approach described above needs not initial space H0. We need not to
consider W as an operator in a space. Algebraically W is deˇned as a unitary
element of the described algebra. Besides W the algebra has other elements
which need not operator realization, the free part H0 of the total Hamiltonian
being the example.

APPENDIX C

The UT Method in Scalar Field Model. In order to illustrate the key points
of clothing and Okubo's approaches let us consider another exactly solvable model
[4, 15] in which a neutral scalar ˇeld is coupled with spinless fermions whose
energy is independent of momentum. The model Hamiltonian is H = H0 + V ,

H0 = m0 B(0) +
∫

ωka†(k)a(k)dk, ωk =
√

k2 + µ2 , (C.1)

V = g

∫
ωk [B(k) a(k) + H.c.] h(k2)dk, h(k2) =

f(k2)√
2(2πωk)3

(C.2)

with

B(k) ≡
∫

b†(p + k) b(p)dp = B†(−k) ,

where a(k) and b(p) are the destruction operators for bosons and fermions,
respectively, which meet the usual commutation rules (cf. Eqs. (2.5)):

[a(k), a†(k′)] = δ(k − k′) , (C.3a)

{b(p), b†(p′)} = δ(p − p′) . (C.3b)

The translational invariance of the Hamiltonian provides the momentum conser-
vation. The cut-off factor f(x) is assumed to fall off rapidly enough for large x
to make ˇnite all the integrals that occur in the theory.

C1. Again the clothing transformation of this Hamiltonian can be found in
a closed form (cf. App. B). Indeed, calculating the respective integral (A.4) and
noticing that

[B(k), B(k′)] = 0 ∀ k , k′ , (C.4)
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we get

R = −g

∫
[B(k)a(k) − H.c.] h(k2) dk ≡ g(X† − X) (C.5)

with

X =
∫

h(k2)B(k)a(k)dk .

Further, it is useful to keep in mind the following formulae

[X, X†] =
∫

h2(k2)B(k)B†(k)dk (C.6)

and
[X, [X, X†]] = 0 , (C.7)

whence due to Eq. (B.8) the transformation of interest can be written as

W = exp [g(X† − X)] = exp (gX†) exp (−gX) exp (−g2

2
[X, X†]) . (C.8)

Now, by using the relation (cf. Eq. (B.3))

a(k) = Wac(k)W † = ac(k) − gh(k2)B†
c(k) , (C.9)

where the boson-type operator

Bc(k) =
∫

b†c(p + k) bc(p)dp (C.10)

commutes with W ≡ W (a, b) = W (ac, bc) (see Eq. (C.4)), one can show that

H ≡ H(a, b) = K(ac, bc) = WH(ac, bc)W † =

= m0Bc(0) +
∫

ωka†
c(k)ac(k)dk − g2

∫
ωkh2(k2)B†

c(k)Bc(k)dk . (C.11)

Reshuf	ing the fermion operators in normal order in the r.h.s. of Eq. (C.11) we
obtain ∫

ωkh2(k2)B†
c(k)Bc(k)dk = Bc(0)

∫
ωkh2(k2)dk−

−
∫

ωkh2(k2)dk
∫

dp
∫

dp′ b†c(p + k) b†c(p′) bc(p) bc(p′ + k) .

The ˇrst term in the r.h.s. of this equation has the same structure as m0Bc(0)
in Eq. (C.11) and gives the radiative correction (renormalization) to the bare
fermion mass m0,

m = m0 − g2

∫
ωkh2(k2)dk . (C.12)
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So,
H = K(ac, bc) = KF + KI , (C.13)

KF = mBc(0) +
∫

ωka†
c(k)ac(k)dk ≡ Kferm + Kboson , (C.14)

KI =
∫

dx
∫

dx′ψ†
c(x) ψ†

c(x′) Vff(| x − x′ |) ψc(x) ψc(x′) , (C.15)

Vff(| x |) = −g2

∫
ωkh2(k2)eıkxdk , (C.16)

where in agreement with the secondary quantization prescriptions we have intro-
duced the ψc-ˇeld for clothed fermions in the Schréodinger picture assuming

ψc(x) =
1√

(2π)3

∫
bc(p)eıpxdp, {ψc(x), ψ†

c(x′)} = δ(x − x′).

Therefore, Vff (| x |) can be considered as a two-fermion interaction potential.
One should point out that the new interaction Hamiltonian KI expressed

through clothed operators no longer contains any self-interaction and leads merely
to an interaction between pairs of fermions.

The KF eigenvectors

Ω, a†
c(k1)Ω, b†c(p1)Ω, a†

c(k1)a†
c(k2)Ω, b†c(p1)b†c(p2)Ω, a†

c(k1)b†c(p2)Ω, . . .
(C.17)

with the running element

Ωc(k1 . . .kr ;p1 . . .ps)=a†
c(k1) . . . a†

c(kr)b†c(p1) . . . b†c(ps)Ω (r, s=1, 2, . . . )
(C.18)

form a basis (see App. B).
Another basis can be composed of bare vacuum Ω0 and vectors

Ω0(k1 . . .kr;p1 . . .ps)=a†(k1) . . . a†(kr)b†(p1) . . . b†(ps)Ω0 (r, s=1, 2, . . . ),
(C.19)

i.e., of the H0 eigenstates.
Note also that in the given model, due to the absence of f f̄-processes, the vacuum
Ω for the coupled ˇelds coincides (to an accuracy of a phase factor) with the
vacuum Ω0 for the free ˇelds. In the context, with the help of Eq. (C.9) we ˇnd,

a†
c(k)Ω = a†

c(k)Ω0 = a†(k)Ω0 , (C.20)

i.e., the bare and clothed one-boson states are the same.
As to the clothed one-fermion states b†c(p)Ω, they are complex superpositions

of vectors (C.19) with one fermion and a complicated boson conˇgurations (a
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boson cloud surrounding the fermion). This follows directly from the explicit
expression for

b†c(p) = W †b†(p)W =
∫

F(p− p′)b†(p′)dp′ , (C.21)

F(q) =
1

(2π)3

∫
e−ıqx exp {−g

∫
exp [−ıkx]

(
a†(k) − a†(−k)

)
h(k2)dk}dx .

The factor F(q) characterizes a boson distribution in the cloud. In the free case
(with g = 0) F(q) = δ(q).

C2. It follows from Eqs. (C.13)Ä(C.15) that clothed mesons do not interact
with nucleons, they are free. In particular, no-meson states cannot pass in states
with one, two, etc., mesons. This means that K(ac, bc) possesses the property
of the operator H ′ = U †HU obtained from H via Okubo's transformation con-
sidered in Subsec. 6.5, viz., H ′

12 = H ′
21 = 0. In other words, H ′ has vanishing

matrix elements between the no-meson states and one-, two-, . . . meson states.
This property of K(ac, bc) is speciˇc for the given simple model. In general, the
clothing UT permits K to contain such nondiagonal terms that are responsible for
the process NN → NNπ.

Since the model clothing UT W fulˇlls Okubo's requirement it is interesting
to compare the block structure of W † with that described in Subsecs. 6.2 and 6.3
for Okubo's UT. To do it in a compact form one may calculate separate blocks
of W † decomposition of the type determined by Eq. (6.14). In the context,
recall that Okubo's UT can be represented by a function U(a, b) of bare creation
(destruction) operators. W † can also be given by a function W †(a, b) of the bare
operators since W (ac, bc) = W (a, b) (cf. Eq. (2.13)). Therefore, for Okubo-like
decomposition of W † one may use the projector η1 onto bare no-meson states.

In order to carry out the comparison with a solution of the corresponding
decoupling equation (6.22) (see C.3 below) we shall ˇnd the operator A21 de-
ˇned by

W †21 = A21W †11. (C.22)

It determines the basic element A21 of Okubo's UT (see, for instance, Eqs. (6.8)
and (6.20)).

We have

W †11 = η1W
†η1 = η1 exp

(
−gX†) exp

(
−g2

2
[
X, X†]) exp (gX) η1 =

= exp
(
−g2

2
[
X, X†]) η1 , (C.23)

W †21 = η2W
†η1 = η2 exp

(
−gX†) exp

(
−g2

2
[
X, X†]) η1 =
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= η2 exp
(
−gX†) η1W

†11. (C.24)

While deriving these formulae we have used the property

ac(k)η1 = η1a
†
c(k) = 0, ∀k (C.25)

and its consequence

exp (g X)η1 = η1 = η1 exp (−g X†). (C.26)

We also have taken into account the relation[
X, X†] η1 = η1

[
X, X†] . (C.27)

It follows from (C.23) and (C.24) that

A21 = η2 exp
(
−gX†) η1 =

(
exp

(
−gX†) − 1

)
η1. (C.28)

Note that we have managed to ˇnd the operator A21 in an explicit form without
solving Eq. (C.22).

Unitarity relations for the Okubo-type blocks U ij ≡ (W †)ij(i, j = 1, 2) with
U21 = A21U11,

U11†(1 + A21†A21)U11 = U11† (
1 + A21†) (

1 + A21
)
U11 = η1 , (C.29)

U12 = −A21†U22 , (C.30)

and
U22†(1 + A21A21†)U22 = η2 (C.31)

can directly be veriˇed. For instance, we get step by step,

−A21†U22 = η1 (1 − exp (−gX)) exp
[
g(X − X†)

]
η2 =

= η1 exp
[
g(X − X†)

]
η2− η1 exp (−gX) exp

[
g(X − X†)

]
η2 = W †12 ≡ U12 ,

(C.32)
since in accordance with Eq. (C.27)

η1 exp (−gX) exp
[
g(X − X†)

]
η2 = η1 exp

(
−gX†) exp

(
g2

2
[
X, X†]) η2 =

= η1 exp
(

g2

2
[
X, X†]) η2 = 0 ,

and
U22†(1 + A21A21†)U22 = U22†U22 + U12†U12 =
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= η2 exp
[
g(X† − X)

]
η2 exp

[
g(X − X†)

]
η2+

+η2 exp
[
g(X† − X)

]
η1 exp

[
g(X − X†)

]
η2 = η2WW †η2 = η2 (C.33)

Q.E.D.
C3. Let us try to solve Okubo equation (6.22) for this model Hamiltonian.

It is of great interest to attain some experience in handling with similar nonlinear
equations. We prefer to start with the equation equivalent to Eq. (6.22) :

η2{[H0, J1] + V J1 − J1V J1}η1 = 0 (C.34)

for the operator J1 = (1 + A21)η1 (cf. Eq. (29) in [7]).
One should point out the properties

η1J1 = η1, (C.35a)

J1(1 − η1) = 0 (C.35b)

and the condition
[H0, η1] = 0. (C.36)

Further, introducing the interaction picture operators O,

O(t) = exp (ıH0t)O exp (−ıH0t) ,

and noticing that η1(t) = η1 one can get the RiccatiÄtype differential equation for
J1(t) (cf. Eq. (31) in [7] ),

ıη2
d

dt
J1(t)η1 = η2{V (t)J1(t) − J1(t)V (t)J1(t)}η1. (C.37)

In the scalar model we have

V (t) = g

∫
ωk

[
B†(k) a†(k, t) + H.c.

]
h(k2)dk (C.38)

with
a(k, t) = a(k) exp (−ıωkt) ,

so that
[a(k, t), a†(k′, t′)] = δ(k − k′) exp [−ıωk(t − t′)]. (C.39)

Trying to solve Eq. (C.37), one should note the relation

V (t) = −ıg
d

dt

[
X†(t) − X(t)

]
, (C.40)

where

X(t) =
∫

h(k2)B(k)a(k, t)dk .
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Now, applying the Lagrange method well known in the theory of ordinary
differential equations (see, e.g., [58], §1.6) let us search a solution of Eq. (C.37)
in the form

J1(t) = exp
[
−g X†(t)

]
G(t) , (C.41)

where in accordance with Eqs. (C.35)Ä(C.36) we have

η1G(t) = η1 , (C.42a)

G(t)(1 − η1) = 0. (C.42b)

Differentiating (C.41) and taking into account that[
d

dt
X†(t), X†(t)

]
= 0 ,

we ˇnd

d

dt
J1(t) = −g

(
d

dt
X†(t)

)
exp

[
−g X†(t)

]
G(t) + exp

[
−g X†(t)

] d

dt
G(t) .

Substitution of this expression into Eq. (C.37) enables us to remove in the
r.h.s. of this equation not the linear term V (t)J1(t) as a whole but its part
−ıg d

dtX
†(t)J1(t) (see Eq. (C.40)). So, we get the following equation for the

operator function G(t) ,

η2 exp
[
−g X†(t)

] d

dt
G(t)η1 =

= gη2 exp
[
−g X†(t)

]
{ d

dt
X(t) + g

[
X†(t),

d

dt
X(t)

]
}G(t)η1−

−gη2 exp
[
−g X†(t)

]
G(t)η1

{
d

dt
X(t) + g

[
X†(t),

d

dt
X(t)

]}
G(t)η1 . (C.43)

At the point we have used the properties η1 exp
[
−g X†(t)

]
=η1 and η1

d
dtX

†(t)=0
and the relation

exp
[
g X†(t)

] d

dt
X(t) exp

[
−g X†(t)

]
=

d

dt
X(t) + g

[
X†(t),

d

dt
X(t)

]
,

that follows from Eqs. (2.15) and (C.4).
Further, we have[

X†(t),
d

dt
X(t)

]
= ı

∫
ωkh2(k2)B†(k)B(k)dk ≡ C.
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In other words, this time independent commutator acts merely on the fermionic
degrees of freedom. Note that C commutes with the projector η1.

Equation (C.43) can be satisˇed if we put

d

dt
G(t) = g{ d

dt
X(t) + gC}G(t) − gG(t){ d

dt
X(t) + gC}G(t) . (C.44)

It may be shown that one of its possible solutions is

G1(t) = η1. (C.45)

It is evident that G1(t) meets necessary requirements (C.42).
The corresponding operator J1(t) = exp

[
−g X†(t)

]
η1 yields

A21(t) = {exp
[
−g X†(t)

]
− 1}η1 , (C.46)

that is equivalent at t = 0 to the result (C.28).
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