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THE CHAOTIC MOTION IN NUCLEI

V. P. Berezovoj, Yu. L. Bolotin, V. Yu. Gonchar, M. Ya. Granovsky∗
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A complete description of classical dynamics, generated by the Hamiltonian of quadrupole
nuclear oscillations, is presented. Those peculiarities of quantum dynamics which can be interpreted
as quantum manifestations of classical stochasticity are identiˇed. Semiclassical approximation to
an energy spectrum is developed through quantization of the BirkhoffÄGustavson normal form. We
show that the type of classical motion is correlated with the structure of the stationary wave functions.
Correlations were found both in the coordinate space (the lattice of nodal curves and the distribution of
the probability density) and in the Hilbert space associated with the integrable part of the Hamiltonian.
Quadrupole oscillations of nuclei were used to investigate the shell structure destruction induced by
the increase of nonintegrable perturbation which models residual nucleonÄnucleon interaction. The
process of wave packet tunneling through potential barrier is considered for the case of ˇnite motion.
We demonstrate that the stringent correlation between the level quasi-crossing and the wave function
delocalization, which leads to the resonant tunneling, takes place.
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±¢ §¨¶¥·¥¸¥Î¥´¨¥³ Ê·µ¢´¥° ¨ ¤¥²µ± ²¨§ Í¨¥° ¢µ²´µ¢µ° ËÊ´±Í¨¨ ¶·¨¢µ¤ÖÉ ± ·¥§µ´ ´¸´µ³Ê ÉÊ´-
´¥²¨·µ¢ ´¨Õ.

1. INTRODUCTION. FORMULATION OF THE PROBLEM

Quite often in different areas of physics statistical properties are introduced
by means of postulates or hypotheses that are self-justiˇed only within some
limiting case. Such an approach a priori suggests an existence of a mechanism
of randomness, the nature of which is rooted usually outside the theory under
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discussion. Results obtained in the thermodynamic limit for systems with a small
number of degrees of freedom look at least questionable. Currently, however,
one can consider as a rigorously established fact an existence of such dynamical
systems with a small number of degrees of freedom for which under certain
conditions classical motion could not be distinguished from random motion [1Ä
9]. Typical features of these systems are nonlinearity and absence of an external
source of randomness. Thus, using such synonyms for the term ®random¯ as
®chaotic¯, ®stochastic¯, ®irregular¯, one can state that there are systems with ˇnite
number of degrees of freedom, for which these notions express adequately internal
fundamental properties that comprise an important and interesting subject for
investigation. For the last 30Ä40 years we excruciatingly came to understanding
that the random motion for the systems with more than one degree of freedom is
almost so much customary as regular motion is. Instances of a chaotic motion,
number of which permanently continues to grow, have been detected practically
in every ˇeld of [1Ä9].

The current rebirth of interest to the nuclear dynamics resulted from the
recent progress in understanding of the chaotic aspects of nonlinear dynamics
systems. By reason of the richness of experimental data and sufˇcient precision
of the theory, the nuclear dynamics provides useful realistic model for studying
classical chaos and quantum manifestations of the classical stochasticity.

Conception of chaos has been introduced in the nuclear theory within the
last twenty years [7Ä22]. This conception brought birth to the new notion in the
nuclear structure [10, 13, 14, 16, 23], nuclear reactions [11, 15, 22], it could
resolve a sequence of the very old contradictions in the nuclear theory [16, 24].
A radically new universal approach to the problem of statistical properties of
the energy spectra was developed on the basis of the general nonlinear theory
of dynamical systems [25]. Considerable advances have been made in the area
of concrete nuclear effects: single particle in a deformed potential [13], nu-
clear ˇssion [12], Ericson's �uctuations [26], dynamics of the 3α-linear chain
[27], transition order-chaos-order in the roto-vibrational nuclear model [28, 29],
chaotic scattering of α-clustering nuclei [30], concept of nuclear friction [31].
Finally, straightforward observations of the chaotic regimes in the course of
simulations of the heavy-ion reactions [11] verify in favor of the general consid-
erations.

According to Baranger [18], there are two possible chaotic philosophies in
nuclear physics:

Philosophy 1. Nuclei are complicated, and chaos comes out of this com-
plication. We expect to ˇnd chaos almost everywhere in nuclear physics. The
interesting information is contained in those few places in which chaos is absent.
We must look for nonchaos.

Philosophy 2. Chaos is a property of simple systems; otherwise it's no fun
at all. The interesting new information is to be found in those simple areas of
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nuclear physics which we used to think we could understand, but which turn out
to be chaotic. We must look for chaos.

The basis of the present report is the simple chaos philosophy Å Philoso-
phy 2. Within the limits of this philosophy a general investigation of nonlinear
dynamical system involves the following steps.

1. Investigation of classical phase space in order to detect chaotic regimes;
numerical investigation of the classical equation of motion.

2. Analytical estimation of the critical energy for the onset of global stocha-
sticity.

3. Test for quantum manifestations of classical stochasticity (QMCS) in the
energy spectra, eigenfunctions and wave packet dynamics.

4. Consideration of interrelationship between stochastic dynamics and con-
crete physical effects.

The basic subject matter of the current report is to realize at least partially the
outlined program for the large-amplitude quadrupole oscillation of nuclei (QON).
Classical (regular and chaotic) dynamics of QON was investigated in detail in
our previous review [17]. In our present work, not to burden the reader unduly,
we will touch on this subject very shortly. We will pay our attention strictly
to identiˇcation of only those peculiarities of quantum dynamics, which can be
interpreted as the QMCS. For this purpose following problems will be discussed
further:

1) the Birkhoff'sÄGustavson's quantum normal forms;
2) the change of the statistical properties of the energy spectra in regularity-

chaos-regularity (R-C-R) transition;
3) the change of the structure of wave functions in R-C-R transition;
4) the destruction and the reconstruction of the shell structure in R-C-R

transition;
5) the dynamics of wave packets.
Finally some words in concern to the categories of readers whom this report

is counted on. First, we would like to concentrate the attention of experts in all
areas of chaos to stretch out perspective ˇeld of application of general theory of
nonlinear dynamical systems. Second, we would like to persuade nuclear experts
that philosophy of simple chaos could be as much useful as traditional statistical
approaches are.

2. REGULAR AND CHAOTIC CLASSICAL DYNAMICS OF QON

2.1. Hamiltonian-Scaling Properties and Geometry of Potential Energy
Surface. It can be shown [32] that using only the transformation properties of
the interaction, the deformational potential of surface quadrupole oscillations of
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nuclei takes on the form

U(a0, a2) =
∑
m,n

Cmn(a2
0 + 2a

2
2)
man0 (6a

2
2 − a2

0)
n, (2.1)

where a0 and a2 are internal coordinates of nuclear surface during the quadrupole
oscillations

R(θ, ϕ) = R0{1 + a0Y2,0(θ, ϕ) + a2[Y2,2(θ, ϕ) + Y2,−2(θ, ϕ)]}. (2.2)

Constants Cmn can be considered as phenomenological parameters, which within
the limits of the particular models or approximations (for instance, ATDHF the-
ory) can be directly related to the effective interaction of the nucleons in nucleus
[33]. While in the construction of (2.1) only transformation properties of interac-
tion are used, this expression describes potential energy of quadrupole oscillations
of a liquid drop of any nature.

Restricting ourselves with the members of the fourth degree in the deforma-
tion, and assuming the equality of mass parameters for two independent directions,
we get the following C3v-symmetric Hamiltonian

H =
p2
x + p2

y

2m
+ U (x, y; a, b, c) , (2.3)

where

U (x, y; a, b, c) =
a

2
(
x2 + y2

)
+ b

(
x2y − 1

3
y3

)
+ c(x2 + y2)2,

x =
√
2a2, y = a0,

a

2
= C10, b = 3C01, c = C20.

(2.3a)

C3v symmetry of potential surface becomes obvious in polar coordinates

x = β sin γ, y = β cos γ, (2.4)

where β is the so-called parameter of deformation of axial symmetric nucleus,
and γ is the parameter of nonaxiality. In these coordinates

U (β, γ; a, b, c) =
1
2
aβ2 − 1

3
bβ3 cos 3γ + cβ4. (2.5)

There are three possibilities of introduction of the typical unit of length
l0i (i = 1, 2, 3) for the Hamiltonian (2.3):

1) as the distance l01, where the contributions from harmonic and cubic terms
become comparable;

2) as the distance l02, where the contributions from harmonic and biquadratic
terms become comparable;
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3) as the distance l03, where the contributions from cubic and biquadratic
terms become comparable.

Scaling of the principal physical values

(x, y) = l0i (x̄, ȳ) , (px, py) = p0i (p̄x, p̄y) , E = ε0iĒ (2.6)

for these three cases is determined by the following parameters

l01 =
a

b
, p01 =

√
m

a3

b2
, ε01 =

a3

b2
, l02 =

√
a

c
, p02 =

√
m

a2

c
,

ε02 =
a2

c
, l03 =

b

c
, p03 =

√
m

b4

c3
, ε03 =

b4

c3
.

(2.7)

The reduced Hamiltonian for these three variants of scaling is the following

H̄i

(
p̄x, p̄y, x̄, ȳ;W ≡ b2

ac

)
=

p̄2
x + p̄2

y

2
+ Ūi (x̄, ȳ,W ) , (2.8)

where

Ū1(x̄, ȳ;W ) =
1
2
(
x̄2 + ȳ2

)
+
(
x̄2ȳ − 1

3
ȳ3

)
+
1
W
(x̄2 + ȳ2)2,

Ū2(x̄, ȳ;W ) =
1
2
(
x̄2 + ȳ2

)
+
√
W

(
x̄2ȳ − 1

3
ȳ3

)
+ (x̄2 + ȳ2)2,

Ū3(x̄, ȳ;W ) =
1
2W

(
x̄2 + ȳ2

)
+
(
x̄2ȳ − 1

3
ȳ3

)
+ (x̄2 + ȳ2)2.

(2.9)

The transition i → k between the different variants of scaling is realized with the
help of the substitution

(x̄, ȳ)→ (x̄, ȳ)
l0k
l0i

, (p̄x, p̄y)→ (p̄x, p̄y)
p0k

p0i
, Ē =

ε0k

ε0i
Ē. (2.10)

At any variant of scaling, the reduced Hamiltonian depends only on parameter
W . This is the unique dimensionless parameter, which can be constructed from
the dimensional values a, b, c. It means that for each trajectory of ®physical¯
Hamiltonian (2.3) with energy E, there corresponds the unique trajectory of one-
parameter Hamiltonian (2.8) with energy Ē = E/ε0i. While for each trajectory
of the reduced Hamiltonian H̄i(W ) with energy Ē, there corresponds the whole
set of ®physical¯ trajectories with energy E = ε0iĒ, which are generated by
Hamiltonians H(a, b, c) with parameters that must satisfy the following condition
b2/ac =W .

Now, let's investigate the geometry of two-dimensional set of potential func-
tions U(x, y;W ). The set of solutions of the system of equations

U ′
x = 0, U ′

y = 0, det Ŝ = 0, (2.11)
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where Ŝ is the matrix of stability

Ŝ =
(

U ′′
xx U ′′

xy

U ′′
xy U ′′

yy

)
, (2.12)

serves as the separatrix in the space of the parameters and divides it into the
regions, where the potential function is structurally stable. The number and the
nature of critical points change at the transition through separatrix W = 16 and
under the change of sign W (i. e., under the change of sign a; c is always
positive). The critical points of PES for each structurally stable regions are given
in Table 1.

Table 1. Number of critical points for different W

Range Critical points Saddles Minima Maxima

I 0 < W < 16 1 0 1 0
II W > 16 7 3 4 0
III W < 0 7 3 3 1

Fig. 1. The level lines of the PES for different structurally stable regions

Corresponding potential level lines are represented in Fig. 1. Coordinates of
critical points are determined by

x̄1 = 0, y1 = 0; x̄2,3 = 0, y2,3 =
αi
8

(
1±

√
1− 16

W

)
,

x4−7 = ±
√
3y4−7, y4−7 = −αi

16

(
1±

√
1− 16

W

)
,

(2.13)

where α1 =W,α2 =
√
W,α3 = 1.
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The region of the space of parameters 0 < W < 16 includes potentials
possessing the unique extremum Å the minimum in the origin of coordinates,
that corresponds to the spherically symmetric equilibrium shape of nucleus. The
region W > 16 includes potential surfaces with four minima. The central min-
imum, with x = y = 0, corresponds to the spherically symmetric equilibrium
shape of nucleus, whereas three peripheral minima correspond to the deformed
shape. Finally in the region W < 0 (a < 0), we run into the potentials, describ-
ing the nuclei, which are deformed in the ground state and even don't have the
quasistable spherically symmetric excited state.

2.2. Critical Energy of Transition to Chaos. If we used the term stochastiza-
tion in reference to the process of appearance in the system of statistical properties
in consequence of local instability, we obtain an attractive offer of identifying
the values of parameters, that lead to the local instability in the system, with the
boundary of transition to chaos. Unfortunately, the criteria of the stochasticity
of the similar type posses the innate lack: the lost of stability of the regular
motion does not obligatory leads to chaos. Whereas the transition to more com-
plicated type of regular motion is possible. Nevertheless, the statement, that the
local instabilities deˇne the global dynamics of the system, is disputed. Separate
details of the derivation of the concrete criteria of the stochasticity provoke sev-
eral objections. In spite of these serious lacks, the available experience allows
us to state, that the criteria of the similar type in the aggregate with numerical
experiment essentially facilitate the analysis of the many-dimensional nonlinear
motion.

2.2.1. Negative Curvature Criterion. A large variety of criteria of the sto-
chasticity is based on the direct evaluation of the rate of divergence of the initially
close trajectories {q1(t),p1(t)} and {q2(t),p2(t)}. Linearized equation of mo-
tion for a divergence

ξ(t) = q1(t)− q2(t), η(t) = p1(t)− p2(t) (2.14)

assumes the following form

ξ̇(t) = η, η̇(t) = Ŝ(t)ξ, (2.15)

where Ŝ(t) is a matrix of stability (2.12) calculated along the support trajectory
q1(t).

The stability of motion of the dynamic system, described by the Hamiltonian

H(p,q) =
p2

2
+ U(q), (2.16)

is determined in N -dimensional case by 2N × 2N matrix

Γ̂ =
∣∣∣∣ Ô Î

−Ŝ (t) Ô

∣∣∣∣ , (2.17)
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where Ô and Î are a zero and a unit N × N matrices. If even one of the
eigenvalues λi of the matrix Γ̂ is real, then the divergence of the trajectory
increases exponentially and the motion is unstable. The imaginary eigenvalues
correspond to the stable motion. The eigenvalues and the character of motion
change with time.

The problem of the investigation of the stable motion can be simpliˇed [34] if
we assume the possibility of the replacement q(t) by time-independent coordinate
q. It reduces the equations for variations (2.15) to a system of autonomous linear
differential equations

ξ̇ = η, η̇ = Ŝ(q)ξ. (2.18)

An equation for Lyapunov exponents λi, which determine the character of motion∣∣∣det Γ̂− λ Î
∣∣∣ = 0 (2.19)

for the system with two degrees of freedom (the system of our interest) has the
following solution

λ1,2,3,4 = ±
[
−β ±

√
β2 − 4γ

]
, (2.20)

where

β = Sp Ŝ = Uxx + Uyy, γ = det Ŝ = Uxx Uyy − U2
xy. (2.21)

We will assume that β > 0. Provided that γ > 0, Lyapunov exponents are purely
imaginary and the motion is stable. With γ < 0, the pair of roots becomes real
and it leads to exponential divergence of the trajectories, i. e., to the instability of
motion.

Now let's remind several known facts from the theory of surfaces [35].
Gaussian curvature of a surface is equal to the ratio of the determinants of the
second b̂ and the ˇrst ĝ quadratic forms

K =
b11b22 − b212
g11g22 − g2

12

=
det b̂
det ĝ

. (2.22)

In particular, if the surface is given in the form of the graph z = U(x, y), then

det b̂ =
U ′′
xxU

′′
yy − (U ′′

xy)
2

1 + (U ′
x)2 + (U ′

y)2
, det ĝ = 1 + (U ′

x)
2 + (U ′

y)
2 (2.23)

and therefore

K(x, y) =
(U ′′

xx)(U
′′
yy)− (U ′′

xy)
2

(1 + (U ′
x)2 + (U ′

y)2)2
. (2.24)
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Recently, in different sections of physics, a deˇnite interest has grown to the
surfaces which everywhere possess a negative curvature [36]. Such surfaces in
the neighbourhood of any point behave as in the neighbourhood of the hyperbolic
singular point. Now let's return to the expression of Lyapunov exponents in
the case of two-dimensional potential surfaces. Comparing the (2.21) and (2.24)
expressions we notice that the sign of γ coincides with the sign of Gaussian
curvature of the PES. This association suggests [37, 38] the possibility of the ex-
istence of the following scenario of the transition from regular to chaotic motion,
based on the investigation of Gaussian curvature of the PES.

At low energies the motion near the minimum of the potential energy, where
the curvature is obviously positive, is periodic or quasiperiodic in character and
is separated from the instability region by the zero curvature line. As the energy
grows, the ®particle¯ will stay for some time in the negative curvature region of
the PES where initially close trajectories exponentially diverge. At large time,
these results in the motion, which imitates a random one and is usually called
stochastic. According to this stochastization scenario, the critical energy of the
transition to chaos, Ecr, coincides with the lowest energy on the zero curvature
line

Ecr = Umin(K = 0). (2.25)

In the subsequent discussion we will refer to this statement, as to the negative
curvature criterion (NCC).

2.2.2. Overlap Resonance's Criterion. Now we shall concentrate our atten-
tion on one of the ˇrst, widely used criterion of transition to chaos, the so-called
overlap resonance's criterion (ORC) [39]. The essence of this criterion is eas-
ier to explain by the example of one-dimensional Hamiltonian system, which is
subjected to periodic perturbation. This one is the simplest Hamiltonian system,
which assumes the chaotic behaviour

H = H0(p, x) + Fx cos Ωt. (2.26)

For unperturbed system we can always introduce the variables action-angle (I, θ)
in which

H = H0 (I) +
∞∑

k=−∞
xk(I) cos (kθ − Ω t), (2.27)

where

xk(I) =
1
2π

2π∫
0

dθ eikθx(I, θ). (2.28)
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In new variables, the scenario of stochasticity, on which ORC is based, is the
following. An external periodic in time ˇeld induces a dense set of resonances in
the phase space of a nonlinear conservative Hamiltonian system. The positions
of these resonances, Ik are determined by the resonance condition between the

eigenfrequency ω(I) =
∂H0

∂I
and frequency of the external perturbation, Ω. For

very weak external ˇelds, the principle resonance zones remain isolated. As the
amplitude F of external ˇeld is raised, the widths Wk of the resonance zones
increase

Wk = 4
(

Fxk
ω′ (I)

)1/2
∣∣∣∣∣
I=Ik

(2.29)

and at F > Fcr resonances overlap. When this overlap occurs, i. e., under the
condition

1
2
(Wk +Wk+1) = |Ik − Ik+1| (2.30)

it is said that there is a transition to a global stochastic behaviour in the corre-
sponding region of the phase space. The averaged motion of the system in the
neighbourhood of the nonlinear isolated resonance on the plane of the variables
action-angle is similar to the particle behavior in the potential well. Isolated
resonances correspond to isolated potential wells. The overlap of the resonances
means, that there is such an approach of the potential wells, wherein the random
walk of a particle between these wells is possible.

The outlined scenario can easily be ®corrected¯ for the description of the
transition to chaos in the conservative system with several degrees of freedom.
The condition of the resonance between the eigenfrequency and the frequency
of external ˇeld must be replaced by the condition of the resonance between the
frequencies, which correspond to different degrees of freedom

∑
mi

∂H0

∂Ii
= 0. (2.31)

The role of the amplitude of external ˇeld in this case plays the intensity of the
interaction between different degrees of freedom, i. e., the measure of nonlinearity
of the original Hamiltonian.

This method must be slightly modiˇed for the systems with the unique res-
onance. In this case the origin of the large-scale stochasticity is connected [40]
with the destruction of the stochastic layer near the separatrix of this unique res-
onance. The essence of the modiˇcation consists in the approximate reduction of
the original Hamiltonian in the neighbourhood of resonance to the Hamiltonian
of nonlinear pendulum, which interacts with periodic perturbation.
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2.2.3. Numerical Results versus Analytical Estimations. Now let us turn
to the analysis of the solutions of the equations of motion, which are generated
by the Hamiltonian (2.3). As mentioned above in Sec. 2.1, the geometry of the
PES for the regions I) 0 < W < 16; II) W > 16; III) W < 0 (a > 0)
is essentially different. Undoubtedly the speciˇc character of the PES must be
manifested in behaviour of the solutions of the equations of motion. Therefore we

Fig. 2. Isolines of the PES for W = 13
and zero curvature line K(x, y) = 0 (dashed
line); the range K(x, y) < 0 is shaded

shall analyse each of the mentioned
regions separately. Notice, that para-
meters of the Hamiltonian a, b, c were
estimated in different phenomenologi-
cal models [41]. They change in such
wide limits that for real nuclei para-
meter W = b2/ac can belong to each
of the regions I, II, III.

Region 0 < W < 16: Potentials
with Unique Extremum. It is the sim-
plest region for the analysis in which
agreement between the boundary of
the transition to chaos, observed in
numerical experiments and analytical
evaluations, can be obtained with the
help of the simplest of the criterion
of the transition to chaos-NCC. Let's
remind, that according to this crite-
rion, critical energy of the transition
to chaos coincides with the minimum

value of the energy on the zero Gaussian curvature line. The equation of the
last one in rescale coordinates (further, we shall use the third variant of scaling
(2.9)) is

1
48W 2

− W − 4
12W

(x̄2 + ȳ2)−
(
x̄2y − 1

3
ȳ3

)
= 0, (2.32)

and potential energy on the zero curvature line is

UK=0(x̄, ȳ) =
1

48W 2
− W − 10

12W
(x̄2 + ȳ2) + 2(x̄2 + ȳ2)2. (2.33)

As is seen, the zero curvature line conserves the symmetry of the PES (see
Fig. 2). Therefore, the minimum of the energy on the zero curvature line must
lie either on the straight line x = 0 or on the straight lines, obtained from it with
the help of the transformations of the symmetry of the discrete group C3ν .

At 0 < W < 4, Gaussian curvature of the PES is positive everywhere. At
4 < W < 12, the subregion of the negative curvature is localized on the straight
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line (in the plane) x = 0 in the interval

−1
4

(
1 +

√
1− 4

W

)
< ȳ < −1

4

(
1−

√
1− 4

W

)
, (2.34)

and in the subregion 12 < W < 16 the negative curvature appears at ȳ > 0 in
the interval

1
12

(
1−

√
1− 12

W

)
< ȳ <

1
12

(
1 +

√
1− 12

W

)
. (2.35)

In Fig. 3, the proˇles U(x̄ = 0, ȳ) of the PES are shown for the three considered
subregions, and the intervals of the negative curvature are shaded.

Thus, according to the considered scenario of the stochastization in the sub-
region 0 < W < 4, the motion must remain regular for all energies. According
to the (2.27) in the neighbourhood of the energy

Ecr = Umin(K = 0) = U

(
x = 0, ycr1 = −1

4

(
1−

√
1− 4

W

))
, (2.36)

the transition to the global stochasticity should be expected in the subregion
4 < W < 12. Finally, in the subregion 12 < W < 16, this transition must be
observed in the neighbourhood of the energy

Ecr = Umin(K = 0) = U

(
x = 0, ycr2 =

1
12

(
1−

√
1− 12

W

))
. (2.37)

In this case we have used that for all 12 < W < 16 U(x = 0, ycr1) > U(x =
0, ycr2).

These predictions must be compared with the numerical solutions of the
equations of motion generated by the Hamiltonian (2.8).

The simplest numerical method of the detection of stochasticity is the analysis
of the Poincare surfaces of section (PSS). The analysis of PSS, obtained by the
numerical integration of Hamiltonian equations of motion, leads to the following
results:

1) At low energies (E 
 Ecr) in the neighbourhood of minimum for all
considered values W , the motion remains regular. The regularity of the motion
with low energies is a straight consequence of the KAM theorem [42, 43], which
states that the majority of the regular trajectories of the unperturbed systems
remain regular under sufˇciently small perturbation. It is clear that this is in
accordance with the positiveness of the Gaussian curvature in the neighbourhood
of any minimum.
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Fig. 3. The proˇles U(x = 0, y) of the PES for 0 < W < 4 (a), 4 < W < 12 (b) and
12 < W < 16 (c). The regions of the negative curvature are shaded. In the top part, the
PSS for the energy values indicated by arrows, are represented

2) In the interval 0 < W < 4 for all energies the motion remains regular (see
Fig. 3, a). This can be explained by the positiveness of the Gaussian curvature of
the PES in this region.

3) In the interval 4 < W < 16 as the energy increases, the gradual transition
from the regular motion to chaotic one (see Fig. 3, b) is observed. Moreover in
the subregion 4 < W < 12, the critical energy, observed in the PSS, is close
to (2.38); whereas in the subregion 12 < W < 16 the transition to the global
stochasticity is observed in the neighbourhood of the energy, calculated according
to (2.39). This effect at 12 < W < 16 is connected with the beginning of the
region of negative curvature at y > 0 located below in the energy (see Fig. 3, c).

It is necessary to make one important remark. Analysis of the PSS allows
one to introduce the critical energy of the transition to chaos, determined as
the energy such that part of phase space with chaotic motion exceeds certain
arbitrary chosen value. Similar indetermination is connected with the absence of
the sharp transition to chaos for any critical value of the perturbation. Therefore
a certain caution is required for comparison of the ®approximate¯ critical energy,
obtained by numerical simulation, with the ®exact¯ value, obtained with the help
of analytical estimations, i. e., on the base of different criteria of stochasticity.

In connection with this remark we can say, that in the case of one-well poten-
tials, the NCC allows one to make reliable predictions relative to the possibility
of the existence of chaotic regimes in the considered region of the parameters; as
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well as to evaluate the region of energies at which the transition regularity-chaos
(R-C) is performed.

Region W > 16: Potentials with a Few Local Minima. Consider next nu-
merical solutions of the equations of motion in region W > 16. The more
complicated geometry of the PES assumes the existence of several energies of
the transition to chaos even for the ˇxed set of parameters of the potential. It
means, that for such potentials the so-called mixed states [44] must be observed:
at one and the same energy in different minima the various dynamic regimes are

Fig. 4. The PSS for the motion in the potential with W = 18 at different energies: a)
E � Ecr; b) E > Ecr; c) E = ES ; d) E > ES . The proˇle U(x = 0, y) of potential is
presented below. The range of K < 0 is shaded

realized. The PSS at different energies for Hamiltonian (2.8) with W = 18 are
presented in Fig. 4. This value W provides equality of depths for the central
and peripheral minima. Taking into account C3ν symmetry of the PES, only one
peripheral minimum is presented.

The motion represented in Fig. 4, a has clearly deˇned quasiperiodic character
both for the central (left minimum) and for the peripheral (right) minima. Special
attention must be given to the distinction in the structure of the PSS for different
minima: the complicated structure with several ˇxed points in left minimum and
simple structure with the unique ˇxed elliptic point in right one. The gradual
transition to chaos is observed with the increasing of energy, however the change
of the character of motion of the trajectories, localized in certain minimum, is
essentially different. Whereas there is the gradual transition to chaos for the left
well even at the energy approximately equal to one-half of the saddle energy
(Fig. 4, b), and at the saddle energy (Fig. 4, c), practically all initial conditions
correspond to the chaotic trajectories, the motion remains quasiperiodic in the
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right minimum at the same energies. In this minimum, the transition to global
stochasticity takes place only at the neighbourhood of the saddle energy. In the
right well, the signiˇcant part of phase space corresponding to quasiperiodic mo-

Fig. 5. The critical energy of the transition to
chaos: the negative curvature criterion (rigid
line) and with the help of the analysis of the
Poincare section

tion conserves even at the energy
essentially exceeding the saddle one
(Fig. 4, d). Figure 5 shows a com-
parison of the critical energies of the
transition to chaos obtained according
to the NCC and with the help of the
analysis of the PSS. On the base of
this comparison we can do the follow-
ing conclusions.

1) The mixed state is observed for
considered potential for the region of
energies 1/2ES < E < ES (ES Å
saddle energy).

2) The critical energy, deˇned ac-
cording to the NCC for the left well, is
in good agreement with one obtained

by means of numerical integration of the equations of motion while contradicts
the situation for the right well, where the numerical simulation detects large-scale
chaos only at attainment of the saddle energy.

The mixed state, which is shown above for the potential of quadrupole
oscillations, is the representative state for the wide class of two-dimensional
potentials with a few local minima. We investigated this problem [45] by the
example of the polynomial potentials of the degree not higher than six, which
are symmetric relatively to the plane x = 0. But even with such restrictions,
the possible set of the potential forms, depending (generally speaking) on 12
parameters, is too great. Remaining generality, we shall use the methods of
the theory of catastrophe [44] in order to reduce the amount of calculations.
According to the last one, a rather wide class of polynomial potentials with the
several local minima is covered by the germs of the lowest umbilical catastrophes,
of type D5, D

−
4 , D7, subjected to the deˇnite perturbations. Let us notice, that

the potential of type HenonÄHeiles coincides with the elliptic ombilic D−
4 [46].

The mixed state is observed for all considered potentials of umbilical catastro-
phes in the interval of energies Ecr < E < ES (Ecr Å the critical energy of
the transition to chaos determined by NCC). Transition to chaos (contrary to the
NCC) is observed only at the reach of the saddle energy for the minima possess-
ing unique ˇxed elliptic point in the PSS, as in the case of the potential of QON.
This contradiction can be solved by the use of the ORC described in Sec. 2.2.2
(see [17]).
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2.3. Regularity-Chaos-Regularity Transition. Transition R-C for nonin-
tegrable low-dimensional Hamiltonian, which is going on as the energy or the

Fig. 6. The phase diagram for the
R-C-R transition

amplitude of external ˇeld increases, is a
well-investigated process. The critical en-
ergy of this transition, calculated within
the framework of different scenarios of sto-
chastization, at least for potentials with the
simple geometry, is in agreement with the
results of numerical simulation. For the
systems with localized region of instability
(region of negative Gaussian curvature or
region of overlap of nonlinear resonances)
at further increasing of energy, one would
expect the return to the regular motion. The
critical energy of this new transition chaos-
regularity (C-R) Ecr2 will be determined
by the top boundary of the region of insta-
bility. For the Hamiltonian of quadrupole
oscillations (2.8)

Ecr2 = U(x = 0, ycr2), ycr2 = −1
4

(
1 +

√
1− 4

W

)
. (2.38)

Recall that for the PES with 0 < W < 4 at all energies the motion remains regular.
Figure 6 represents the phase diagram that allows one to determine energetic
intervals of regular and chaotic motions for the ˇxed value of W . In Fig. 7, PSS
calculated for three different values of energy E < Ecr1, Ecr1 < E < Ecr2,
E � Ecr2 illustrate double transition (R-C-R) observable on the phase diagram
(Fig. 6).

Now we would like to note the similarity in structure of phase space of
considered two-dimensional autonomous Hamiltonian system with the compact
region of negative Gaussian curvature and one-dimensional system with periodic
perturbation.

The behavior of the width of the resonances, W̄k ≡ 1/2(Wk+1 +Wk), and
the distances between them, ∆Ik ≡ |Ik+1 − Ik|, as a function of the resonance
number is the simplest when the satisfaction of the resonance overlap condition
(2.33) for number k1 (at a ˇxed level of the external perturbation) guarantees
that this condition holds for arbitrary k > k1. This is precisely the situation, that
prevails in the extensively studied systems of a 1D Coulomb potential [47] and
a square well [48] subjected in each case to a monochromatic perturbation. In
the former case we have W̄k ≈ k1/6 and ∆Ik ≈ k−2/3, while in the latter we
have W̄k ≈ k−1 and ∆Ik ≈ [k(k + 1)]−1. As can be seen from Fig. 8 there
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is R-C transition (we will call this transition a ®normal¯ transition) for both 1D
Coulomb problem (a) and a square well (b), since there exists a unique point
k1 such that at k > k1 the condition W̄k > ∆Ik always holds. The motion is
therefore chaotic. However, as the behaviour of the widths of the resonances and
of the distances between them as a function of the resonance number becomes
more complex, we can allow the appearance of an additional intersection point
and thus a new transition: C-R transition, which we will call ®anomalous¯. This
is also the exotic possibility of the intermittent occurrence of the regular and
chaotic regions in the phase space.

Fig. 7. PSS for three different values of energy E < Ecr1, Ecr1 < E < Ecr2, E >> Ecr2

illustrate the R-C-R transition observable on the phase diagram (Fig. 6)

Fig. 8. The resonant spacings ∆Ik and the mean widths W̄k, as functions of the resonance
number k: a) for one-dimensional Coulomb; b) for square-well potential. The critical
point k1 separates the regular range (R) from the chaotic one (C)
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We demonstrate that an anomalous C-R transition occurs in a simple Hamil-
tonian system: an anharmonic oscillator, subjected to a monochromatic perturba-
tion [49, 50]. The dynamics of such system is generated by the Hamiltonian

H(p, x, t) = H0(p, x) + Fx cos Ωt, (2.39)

where H0 the unperturbed Hamiltonian is

H0(p, x) = p2/(2m) +Axn = E (n = 2l, l > 1). (2.40)

Considered system ˇlls a gap between two extremely important physical models:
the harmonic oscillator (n = 2) and the square well (n =∞).

In terms of action-angle variables (I, q), the Hamiltonian H0(p, x) becomes
[51]

H0(I) =
(

2π
αG(n)

I

)α
, G(n) =

2
√
2πmΓ(1 + 1/n)

A1/nΓ(1/2 + 1/n)
, α =

2n
n+ 2

. (2.41)

The resonant values of the action Ik , that can be found from the condition

kω(Ik) = Ω, ω(I) =
dH0

dI
are

Ik = α

(
G(n)
2π

)2nβ (Ω
k

)2nα/β

, β =
1

n− 2 . (2.42)

Fig. 9. a) The phase diagram of the R-C-R transition for Hamiltonian (2.40): the resonance
energy Ek versus the critical values of the external perturbation F (n = 8). b) The snap-
shot of E(x) conˇrms that the anomalous C-R transition occurs
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A classical analysis, based on the ORC, leads to the following expression for the
critical amplitude of the external perturbation [50],

F cr
k = 2

(2−3n)β 1
4n

α2

β

1
xk

(
G(n)
π

)2nβ

×

× Ω2nβk4β
[
k(n+2)β − (k + 1)(n+2)β

]2
, (2.43)

where xk is a Fourier component of the coordinate x(I, θ). Expression (2.43)
solves the problem of reconstructing the structure of the phase space for arbitrary
values of the parameters.

Fig. 10. The resonant spacings ∆Ik

and the mean widths W̄k as func-
tions of the resonance numbers k
(n = 8). One can see two critical
points k1 and k2. The second criti-
cal point corresponds to the anom-
alous C-R transition

The phase diagram in Fig. 9, a can be used
to determine, at the ˇxed level of the external
perturbation, the energy intervals of regular and
chaotic motion. The snap-shot of E(x) at the
right in Fig. 9, b conˇrms that an anomalous
C-R transition occurs. We can clearly see
isolated nonlinear resonances which persist at
large values of k, and near which the motion
remains regular. The reason for this anomaly
is explained by Fig. 10. The plots of the res-
onance widths and the distances between reso-
nances in this ˇgure demonstrate that there are
two rather than one intersection points: k = k1

and k = k2. Consequently, there is an anom-
alous C-R transition.

Thus, for 1D system with periodic pertur-
bation R-C-R transition can be observed just
as in the case of 2D autonomous Hamiltonian
system. The reason of the additional transition
in both cases is common: a localized region of

instability. In the ˇrst case this reason is a localized domain of overlap reso-
nances, while in the second one this reason is a localized domain of the negative
Gaussian curvature.

3. QUANTUM MANIFESTATIONS OF THE CLASSICAL
STOCHASTICITY

3.1. The Quantum Chaos Problem. Essential progress in the understand-
ing of the nonlinear dynamics of classical systems stimulated numerous attempts
to include the conception of the stochasticity in quantum mechanics [1Ä4, 7Ä9,
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52Ä55]. The essence of the problem is that the energy spectrum of any quantum
system, performing the ˇnite motion, is discrete and therefore its evolution is qua-
siperiodic. At the same time, the correspondence principle requires the possibility
of limit transition to classical mechanics, containing not only regular solutions
but also chaotic ones. The total solving of this problem is too complicated, there-
fore its restricted variant is of considerable interest. Our prime interest is the
peculiarities of behaviour of quantum systems the classical analogies of which
reveal chaotic behaviour. Such peculiarities are usually called the quantum man-
ifestations of the classical stochasticity (QMCS). A priori the manifestations of
the QMCS can be expected both in the form of some peculiarities of concrete
stationary state and in the whole group of close states in energy. The following
objects can be used as the objects of search of the QMCS for an autonomous
systems: 1) the energy spectra; 2) the stationary wave functions; 3) the wave
packets. This part of the review is dedicated to the results relating to the QMCS
in the dynamics of QON.

3.2. Numerical Procedure. The quantum scaled Hamiltonian describing the
quadrupole surface oscillations has the following form

H =
�̄

2
i

2
(∆x +∆y) + Ui(x, y,W ), (3.1)

where the scaled Planck's constant is �̄ = �/�0i, �
2
0i = mε0il

2
0i, and the scaling

parameters �0i, l0i and the deformation potential Ui(x, y,W ) are determined by
the expressions (2.7) and (2.9).

We are going to study the peculiarities of the structure of energy spectra and
wave functions in each of the following intervals:

the ˇrst regular region R1 : 0 < E < Rcr1,
the chaotic region C : Ecr1 < E < Ecr2,
the second regular region R2: E > Ecr2.

The critical energies Ecr1 and Ecr2 were determined above. The main nu-
merical calculations were performed for one-well potentials (0 < W < 16). In
this case the critical energies are determined by the relations (2.36), (2.37).

At ˇxed topology of PES (W = const), the scaled Planck's constant �̄i is
the unique free parameter in the quantum Hamiltonian (3.1). In the study of the
concrete region of energies, corresponding to the certain type of classical motion
(R1, C or R2), the choice of �̄i is dictated by the possibility of attainment of
the required degree of validity of semiclassical approximation (large quantum
numbers) at conservation of the computational precision of spectrum and wave
functions (the limitation of the possibility of diagonalization of large dimension
matrices). For the original nonreduced Hamiltonian (2.3) the variation of �̄i is
equivalent to the variation of the critical energies Ecr1 and Ecr2 (i. e., parameters
a, b, c) or to the adequate choice of Planck's constant �.
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The procedure of diagonalization was used for the determination of an energy
spectrum and eigenfunctions [56]. As the basis we chose the simple combina-
tions of the eigenfunctions of the two-dimensional harmonic oscillator with equal
frequencies [57]

|NLj〉 = PL,j√
2
(|NL〉+ j |N,−L〉), j = ±1,

N = 0, 1, 2 . . . ; L = N,N − 2 . . . 1 or 0; PL,j = jMod(L,3)

(3.2)

normalized according to the condition

〈NLj |N ′L′j′〉 = 1√
2
2δL,0δjj′δNN ′δLL′ . (3.3)

The symmetry of the considered Hamiltonian C3ν leads to the block structure
of matrix 〈N ′L′j′|H |NLj〉, which consists of four independent submatrices. It
allows one to carry out diagonalization of each submatrix separately, obtaining
in this case four independent sets of states, which according to the classiˇcation
used in the theory of groups are the following states: A1-type [mode (L, 3) = 0,
j = 1, including L = 0], A2-type [mode (L, 3) = 0, j = 1, L �= 0] and twice
degenerated states E-type [mode (L, 3) �= 0, j = ±1].

The possibility of separate diagonalization of submatrices of deˇnite type al-
lows to essentially increase available dimension of basis in numerical calculations
(later for brief, we shall call the dimension of basis as the dimension n of separate
submatrix). Table 2 shows the maximal oscillator numbers N0 of the basis and
the dimension m of the total matrix 〈N ′L′j′|H |NLj〉 for the enumerated types
of submatrices with the dimension n = 408.

Table 2. Maximal oscillator number N0 of the basis and the dimensional m of subma-
trices 〈N ′L′j′|H |NLj〉 A1, A2 and E1,2-types

A1 A2 E1,2

N0 67 70 48
m 2346 2556 1225

Expansion of wave eigenfunctions in the basis (3.2) in polar coordinates
r, ϕ is

〈r, ϕ| Ek〉 =
∑
NL

C
(k)
NLj 〈r, ϕ| NLj〉, (3.4)

where

〈r, ϕ| NL〉 = iN
e−iLϕ√
2π

1
L!

[
2((N + L)/2)!
((N − L)/2)!

]1/2
×
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× (√ω0r)
L e−ω0r

2/2M

{
−N − L

2
, L+ 1, ω0r

2

}
. (3.5)

Here M(...) is a degenerated hypergeometric function and ω0 is the frequency of
the oscillator basis.

The ˇnite dimension of the basis used in calculations leads to the dependence
of the position of the level on the oscillator frequency ω0. Such dependence
for the dimensions of basis n = 198 and n = 408 (W = 13) is represented
in Fig. 11.

The important moment of numerical calculations is the choice of the optimal
frequency ωopt

0 , determined from the condition that the energies of levels, situated
in the interval of our interest, have minimum value. Such optimization is essen-
tially important for the regions C and R2 where the positions of the levels depend
more on the frequency of the basis. The optimal frequency depends both on the
dimension of the basis and on the length of the investigated energy interval. As
shown in Fig. 11 it is possible to choose the unique frequency ωopt

0 for intervals
including decades or more levels just at the dimension of the basis n = 408.
These levels are selected in Fig. 11 by dotted lines. The large value of ωopt

0 for
the region R2 (ωopt

0 ∼ 8) is caused by the fact that at energies E > Ecr2, the
deformation potential essentially differs from the harmonic oscillator potential.

Fig. 11. Energy spectra of Hamiltonian (3.1) as a function of the frequency ω0 of the
oscillator basis (W = 13). The parts of this ˇgure show this dependence for the basis
dimensions n = 198 (a, b, c) and n = 408 (d, e, f), respectively
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The dimension of the basis used in our calculations was determined for the
reason of acceptability of the calculation time and the calculation precision of
the position of levels in the considered region. The results of investigation of
saturation in the basis are represented in Fig. 12. As is clear from the graph
for the regions R1 (c) and R2 (a) acceptable precision of calculations of levels
with ordinal numbers 100 ∼ 200 is reached at the dimension of the basis n ∼ 400,

Fig. 12. Energy levels as a function
of the basis dimension n. The num-
bers on the curves are the level num-
bers k

while for the chaotic region C (b) the dimen-
sion of the basis requires considerably larger
number (n ∼ 700) to attain the same preci-
sion. It is a well-known result [4, 12]: the
value of saturation in the basis is sensitive to
the type of classical motion.

Matrix diagonalization is attractive for
treating Hamiltonians that do not differ greatly
from Hamiltonians with known eigenfunctions.
However this numerical procedure becomes
less attractive (or even not effective at all)
at the transition to the PES of a compli-
cated topology, when required Hamiltonian
matrix is of high order. In this case the al-
ternative to the diagonalization may become
the so-called spectral method [58], which uti-
lizes numerical solutions to the time-dependent
Schréodinger equation. The spectral method
was developed earlier for determining the
eigenvalues and eigenfunctions for the modes
of optical waveguides from numerical solu-
tions of the paraxial wave equation [59]. Feit,
Fleck, and Steiger [58] successfully imple-
mented the previously developed methodology
to quantum mechanical problems with a little
change, as the latter equation is identical to the
Schréodinger equation.

The spectral method requires the compu-
tation of the correlation function

P1(t) = 〈ψ(r, 0)| ψ(r, t)〉 , (3.6)

where ψ(r, t) represents a numerical solution
of the time-dependent Schréodinger equation,
and ψ(r, 0) is the wave function at t ≡ 0. The

solution ψ(r, t) can be accurately generated with the help of the split operator
FFT (Fast Fourier Transformation) method [60]. The numerical FFT of P1(t), or
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P1(E), displays a set of sharp local maxima for E = En, where En are the desired
energy eigenvalues. With the aid of lineshape ˇtting techniques, both the positions
and the heights of these resonances can be determined with high accuracy. The
former yield the eigenvalues; and the latter, the weights of the stationary states
that compose the wave packet once the eigenvalues are known, the corresponding
eigenfunctions can be computed by numerically evaluating the integrals

ψ(r, En) =

T∫
0

ψ(r, t)W (t) exp (iEn t)dt, (3.7)

where T is the time encompassed by the calculation, and W (t) is a window
function,

W (t) =

{
1− cos (2πt)/T, 0 < t < T,

0, t > T.
(3.8)

Since the spectral method is fundamentally based on numerical solutions of a time-
dependent differential equation, its implementation is always straightforward. No
special ad hoc selection of the basis function is required, nor is it necessary for
the potential to have a special analytic form. In principle, the spectral method is
applicable to problems involving any number of dimensions.

3.3. Quantization by the BirkhoffÄGustavson Normal Form. In this section
we calculate a semiclassical approximation for an energy spectrum of the Hamil-
tonian of QON (3.1) [17, 61, 62] (here it will be more suitable for us to use the
nonscale version of the Hamiltonian (2.3) with m = 1) by quantization of the
BirkhoffÄGustavson [63, 64] normal form (NF) and then compare the obtained
results with exact quantum mechanical calculations. By the exact spectrum we
mean the spectrum obtained by the direct numerical calculations, for example, by
the diagonalization of the Hamiltonian on the reasonable chosen basis.

Transformation of the given Hamiltonian to a more simple form, called NF,
is one of the universal methods of analyzing a classical equation of motion. This
method of treating nonseparable classical systems was originally developed by
Birkhoff [63] and later was extended by Gustavson [64]. The result, obtained
by Birkhoff, is the following: if the given Hamiltonian H , which can be written
as a formal power series without constant or linear terms, and such that the
quadratic terms can be written as a sum of uncoupled harmonic oscillator terms
with incommensurable frequencies, then there is a canonical transformation that
transforms original Hamiltonian into NF. Last is a power series in the one-
dimensional uncoupled harmonic oscillator Hamiltonian. Birkhoff's method was
applied by Gustavson in order to obtain power series expressions for isolating
integrals, and to predict analytically the PSS for the HenonÄHelies system. Since
the treated potential had commensurable frequencies, Gustavson was compelled
to modify a little Birkhoff's method.
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Every two-dimensional Hamiltonian near to equilibrium points can be repre-
sented in polynomial form as follows:

H(p,q) = H(2)(p,q) + V (q), (3.9)

H(2)(p,q) =
∑
ν

1
2
ω2
ν(p

2
ν + q2

ν), V (q) =
∑
|j|≥3

Vj1j2q
j1
1 qj22 ,

q = (q1, q2), p = (p1, p2).
(3.10)

The procedure of reducing to NF depends on whether the frequencies ων of the
Hamiltonian (3.9) are commensurable or not. If they are incommensurable then
there exists a canonical transformation (q,p) → (ξ, η) such that in variables
(ξ, η) Hamiltonian Γ(ξ, η) will be a function of only two combinations Iν =
1
2
(ξ2
ν + η2

ν), ν = 1, 2.±. In other words, the Birkhoff NF is an expansion of the

original Hamiltonian over two one-dimensional harmonic oscillators,

H(p,q)→ Γ(ξ, η) = ω1I1 + ω2I2 +
∑

αµνIµIν + . . . (3.11)

If the frequencies ων are commensurable, i. e., if there exist resonance re-
lations of the type mω1 + nω2 = 0 (m,n ∈ �\{0}), the Hamiltonian (3.9)
cannot be reduced to the Birkhoff NF due to the appearence of zero denominators
mω1+nω2 = 0. Therefore, one should not cancel some terms in the Hamiltonian
(3.9), i. e., NF becomes more complicated and will contain apart from Iν other
combinations of variables ξν and ην as well. Such an extended NF is called the
BirkhoffÄGustavson NF.

The reduction of Hamiltonian to the NF solves the question about the con-
struction of a full set of approximate integrals of motion. The latter can be found
by transformation of the variables of action to initial variables. The solution of
the equations

H (px, py, x, y) = E, I (px, py, x, y) = I0, x = const (3.12)

allows one to ˇnd the set of intersections of a phase trajectory with the selected
plane (x = const) and by doing so to reconstruct the structure of the PSS.

The PSS for the quadrupole oscillations of nuclei 74Kr, which are constructed
in such a way, are shown in Fig. 13. The Hamiltonian, describing these oscillations,
up to the terms of the sixth degree with respect to deformation is the following

H =
1
2
(p2
x + p2

y) + U(x, y),

U(x, y) =
a

2
(x2 + y2) + b

(
x2y − 1

3
y3

)
+ c(x2 + y2)2 +

+ d

(
x2y − 1

3
y3

)
(x2 + y2) + e

(
x2y − 1

3
y3

)2

+ f(x2 + y2)3.

(3.13)
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Fig. 13. The PSS for the central min-
imum of 74Kr at different energy val-
ues: a) obtained by the numerical in-
tegration; b) obtained with the help
of a normal form

The parameters determining the dynam-
ics of the particular nucleus, are calculated for
the isotopes of Krypton in [29]. The quali-
tative coincidence of topology of PSS calcu-
lated with the help of NF and the numerical
integration of the equations of motion is note-
worthy.

Let's address now directly to the proce-
dure of quantization. Quantization for the in-
commensurable case is straightforward. Since
NF can be expressed entirely in terms of
action variables, we merely have to replace
those action variables by an appropriate mul-
tiple of �, Iν → �(nν + 1/2), and the result
is a power series of the quantum numbers,

En1n2 = Γ(n1 + 1/2, n2 + 1/2). (3.14)

The commensurable case is less straight-
forward. Commensurability of frequencies
leads to the appearance of angle variables in
the normal form

Γ = Γ(I1, I2, ϕ2). (3.15)

As before, we can replace the action
I1 by �(n1 + 1/2). In this case the ini-
tial two-dimensional problem is reduced to
the one-dimensional problem, the quantiza-
tion of which can be performed with the help
of WKB method.

The procedure of quantization by NF will begin with the canonical transfor-
mation

q1 =
i

2
(−Q1 +Q2 + P1 − P2), q2 =

1
2
(Q1 +Q2 + P1 + P2),

p1 =
1
2
(Q1 −Q2 + P1 − P2), p2 =

i

2
(Q1 −Q2 − P1 − P2),

(3.16)

where variables (p,q) provide the reduction of the harmonic part of the initial
Hamiltonian (2.3) to NF,

H(2)(p,q) =
∑
k=1,2

1
2
ωk(p2

k + q2
k). (3.17)
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In the new variables Q(Q1, Q2), P(P1, P2) the Hamiltonian of quadrupole
oscillations is the following

K(Q,P) = K(2)(Q,P) +
∑
j>2

K(j)(Q,P), (3.18)

K(2)(Q,P) = i(Q1P1 +Q2P2) (3.19)

and K(j) are homogeneous polynomials in variables Q and P of degree j. Each
memberK(j) of the Hamiltonian (3.18) is reduced to NF according to the standard
procedure [64, 17]. However this procedure is sufˇciently simpliˇed due to the
diagonal form of the operator D in the variables (P,Q). The classical NF is the
sum of the polynomials of a special form in Q and P. For obtaining its quantum
analog we can use the Weyl's heuristic rule of correspondence

PnQm = QmPn → 1
2n

n∑
l=0

n!
l!(n− l)!

Q̂mP̂n−l. (3.20)

The operators P̂ and Q̂ are determined by formulae (3.16), in which by p
and q we should mean operators of impulse and coordinate with usual rules of
commutation, from which it follows that[

P̂kQ̂l

]
= δkl (k, l = 1, 2). (3.21)

The operators P̂, Q̂ allow one to introduce the full orthonormalized basis

|NL〉 =
[(

N + L

2

)
!
(
N − L

2

)
!
]−1/2

Q̂
(N−L)/2
2 Q̂

(N+L)/2
1 |0〉, (3.22)

where the vacuum state |0〉 is determined by

P̂1|0〉 = P̂2|0〉 = 0. (3.23)

The principal quantum number N = 0, 1, . . . and the angular momentum number
L at given N is equal to ±N , ±(N − 2), . . . , 0 or 1. The action of the operators
Q̂ and P̂ on the basis |NL〉 is

Q̂1|NL〉 =
√
(N + L+ 2)/2|N + 1, L+ 1〉,

P̂1|NL〉 =
√
(N + L)/2|N − 1, L− 1〉,

Q̂2|NL〉 =
√
(N − L+ 2)/2|N + 1, L− 1〉,

P̂2|NL〉 =
√
(N − L)/2|N − 1, L+ 1〉.

(3.24)
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Note that the constructed basis is oscillator one

K̂(2) |NL〉 =
(
Q̂1P̂1 + Q̂2P̂2 ± 1

)
|NL〉 = (N + 1) |NL〉. (3.25)

The classical NF for considered Hamiltonian is (through the fourth degree)

Γ = Γ(2)+Γ(4) = i

[
(Q1P1 +Q2P2) +

b2

6
(P 2

1 Q
2
1 +P 2

2 Q
2
2 − 12Q1Q2P1P2) +

+ c(P 2
1 Q

2
1 + P 2

2 Q
2
2 + 4Q1Q2P1P2)

]
. (3.26)

The quantum NF Γ̂ reconstructs from the classical one with the help of Weyl's

rule (3.20) and Dirac's rule of correspondence Γ̂→ 1
i
Γ

Γ̂ =
(
Q̂1P̂1 + Q̂2P̂2 + 1

)
+

b2

6

[(
Q̂1P̂1

)2

+
(
Q̂2P̂2

)2

−

− 5
(
Q̂1P̂1 + Q̂2P̂2

)
− 12Q̂1P̂1Q̂2P̂2 − 2

]
+

+ c

[(
Q̂1P̂1

)2

+
(
Q̂2P̂2

)2

+ 3
(
Q̂1P̂1 + Q̂2P̂2

)
+ 4Q̂1P̂1Q̂2P̂2 + 2

]
. (3.27)

It is easy to see, that basis vectors |NL〉 are eigenvectors for quantum NF (3.27).
Therefore we get the simple analytical formula for the energy spectrum in the
fourth approximation

E (N,L) = N + 1 +
b2

12

[
7L2 − 5 (N + 1)2 + 1

]
+

+
c

2

[
3 (N + 1)2 − L2 + 1

]
. (3.28)

Assuming c = 0 in the formula (3.28) we get an approximate spectrum of the
HenonÄHeiles Hamiltonian, which up to the constant shift coincides with the
spectra obtained by other methods. The last property, apparently, is connected
with the ambiguity of quantization method of the Hamiltonian. Each level in
the energy spectrum (3.22) is double degenerated with respect to sign of an
angular momentum number L, whereas for the levels of the exact Hamiltonian
with L = 3k (k = 1, 2, . . . ) the degeneration must be taken off. Inclusion into
the NF of the members of higher degree leads to the taking off the degeneration.
Really

Γ(6) =
(
11
54

b4 +
10
9
b2c+ 2c2

)(
P 3

1 Q
3
1 + P 3

2 Q
3
2

)
+

+
(
5
12

b4 − 61
3
b2c+ 15c2

)
P1P2Q1Q2 (P1Q1 + P2Q2) +
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+
2
9
b2
(
7b2 − 26c

) (
P 3

1 Q
3
2 + P 3

2 Q
3
1

)
. (3.29)

The last term in this relation connects the states with equal N and the states
with L′ − L = ±6. However in this approximation the basis vectors |NL〉
(3.22) will be no longer the eigenvectors of the NF. Therefore for the calculation
of the energy spectrum it is required either additional diagonalization of the
engaging states or the calculations by the theory of perturbation. How well does
the energy spectrum (3.28), obtained by quantization of a classical NF in the
fourth approximation, reproduce an exact quantum spectrum of the Hamiltonian
of quadrupole oscillations? In Table 3, an approximate spectrum E(NL) is
compared with the spectrum Eex, obtained by diagonalization on oscillator basis.

Table 3. Energy levels of Hamiltonian (2.3) (b = 0.04416, c = 0.00015, Ecr = 90)

N L Eapprox Eexact Type Error ∆E/E, %

1 0 0 0.9996 1.0001 A1 0.043
2 1 1 1.9989 1.9994 E 0.022
3 2 0 2.9949 2.9954 A1 0.015
4 2 2 2.9992 2.9996 E 0.014
5 3 1 3.9919 3.9924 E 0.012
6 3 3 4.0004 4.0008 A1 0.010

4.0008 A2 0.010
7 4 0 4.9855 4.9861 A1 0.010
8 4 2 4.9898 4.9903 E 0.010
9 4 4 5.0025 5.0059 E 0.007
10 5 1 5.9801 5.9807 E 0.010
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
145 23 1 23.662 23.670 E 0.032
146 23 3 23.671 23.673 A1 0.009

23.688 A2 0.071
147 23 5 23.688 23.699 E 0.045
148 23 7 23.713 23.722 E 0.037
149 23 9 23.747 23.754 A1 0.028

23.754 A2 0.028
150 23 11 23.790 23.794 E 0.019
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
246 30 10 30.541 30.558 E 0.055
247 30 12 30.588 30.601 A2 0.043

30.601 A1 0.043
248 30 14 30.643 30.653 E 0.031
249 30 16 30.707 30.712 E 0.017
250 30 18 30.779 30.780 A1 0.003

30.780 A2 0.003
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The dimensions of submatrices of type A1, A2, E are respectively equal to
560, 560, and 415 and provide sufˇcient precision of calculations for the ˇrst
250−300 levels. The parameters of the Hamiltonian (2.3) are chosen so that
Ecr1 = 90. As can be seen from Table 3 in region, where classical motion
is regular, the quantum NF reproduces the energy spectrum with the relative

error
∆E

E
∼ 0.01%. It seems natural to expect that in the neighbourhood of

critical energy of the transition to chaos, where the destruction of the approximate
integrals of motion takes place and with the help of which the semiclassical
spectrum is built, the agreement of the last one with the exact spectrum must
essentially be getting worse. We have analysed this effect by the example of a
spectrum of �uctuations QON. We calculated the difference ∆E = E(BHNF)−
E(numerical) as the function of the energy for the case W = 13. The analysis
shows that in the region of energies, where the classical motion is regular, the
approximate spectrum (3.28) reproduces the exact one rather well. Whereas at
the transition to the chaotic region the difference increases sharply. The similar
situation takes place and for the HenonÄHeiles Hamiltonian, too [17].

3.4. R-C-R Transition and Statistical Properties of Energy Spectrum of the
QON. Important correlations between peculiarities of a classical dynamics and the
structure of the quantum energy spectrum can be obtained in studies of statistical
properties of level sequences. We shall be interested in local properties of the
spectrum, i. e., in deviation of the distribution of levels from mean values. Why
should we address to local characteristics of a spectrum? The matter is, that the
global characteristics such as the numbers of states N(E) or the smoothed density
of levels ρ(E) are too rough. At the same time, such local characteristics, as the
function of the nearest-neighbour spacing distribution between levels (FNNSDL)
is very sensitive to the properties of the potential and to the shape of the boundary.

Relying on rather simple reasons [65], let's try to construct one of the local
characteristics of a quantum spectrum Å the FNNSDL P (S). For a random
sequence the probability that a level will be in the small interval (E + S,E +
S + dS), proportional, of course, to dS, will be independent of whether or not
there is a level at E. This probability will be modiˇed if we introduce a level
interaction. Given a level at E, let the probability that the next level S �= 0 be in
(E + S,E + S + dS) be P (S)dS. Then for P (S) we have

P (S)dS = P (1 ∈ dS |0 ∈ S )P (0 ∈ S), (3.30)

where P (n ∈ S) is the probability that the interval of length S contains n levels
and P (n ∈ dS |m ∈ S ) is the conditional probability that the interval of length
dS contains n levels, when that one of length S contains m levels. The second

factor in (3.30) is

∞∫
S

P (x)dx, the probability that the spacing is larger than S,
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while the ˇrst one will be dS times a function of S, r10(S), depending explicitly
on the choice, 1 and 0, of the discrete variables n,m. Then

P (S) = r10(S)

∞∫
S

P (x)dx (3.31)

which we can solve easily to ˇnd

P (S) = c r10 exp


−

S∫
0

r10 (x) dx


 . (3.32)

The Poisson law follows if we take r10(S) = 1/D (the absence of correlations
between level positions), where D is the mean local spacing so that 1/D is the
density of levels. Wigner's law follows from the assumption of a linear repulsion,
deˇned by r10(S) = αS. The arbitrary constants are determined by conditions∫

P (x)dx = 1 ,
∫

xP (x)dx = D. (3.33)

Finally, we ˇnd for the Poisson and Wigner cases, respectively

P (S) = 1/D exp (−S/D), S ≥ 0, (3.34)

P (S) =
πS

2D2
exp

(
−πS2

4D2

)
, S ≥ 0. (3.35)

The second distribution displays the repulsion explicitly since P (0) = 0, in
contrast to the Poisson form, which has a maximum at S = 0 (level clusterization).

To get a ˇrst idea about the origin of the level repulsion let us consider [65]
the Hamiltonian as deˇned with respect to some ˇxed basis by its matrix elements.
The repulsion may be regarded as arising from the fact that, the subspace for
which the corresponding spectrum has a degeneracy, is of a dimensionality less
by two than that of the general matrix-element space, so that in some sense a
degeneracy is ®unlikely¯. Alternatively [66], if we think of the matrix elements
as functions of a parameter α, we cannot, in general, force a crossing by varying
α but we must instead take the matrix elements as functions of at least two
parameters, which are independently varied. In the one-parameter case one will
ˇnd that, if two levels approach each other as α is varied, then instead of crossing
they will turn away as if repelled.

There is a principal difˇculty with the derivation of (3.35). Why should we
assume a linear repulsion? Although there are some plausibility arguments for
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this form, the result cannot be correct for every system. Furthermore, only the
probability arguments cannot explain the nature of a level repulsion. However the
situation changes if we intend that statistical properties of the sequence of levels
of a real physical system are equivalent to the sequences of eigenvalues of the
ensemble of random matrices of a deˇnite symmetry. The theory, based on this
hypothesis, was completed in the sixties [67]. The ˇnal result for the FNNSDL is

P (S) ≈ Sα exp (−β S2). (3.36)

The critical index α determining the behaviour of the distribution function at
S → 0 depends on the symmetry of the ensemble of matrices. This symmetry
is determined by the properties of the system, the spectrum statistics of which
we want to reproduce. If the system is invariant relative to a time reversion,
then the corresponding ensemble is a Gaussian orthogonal ensemble (GOA). For
the system assuming the violation of the invariance relative to a time reversion,
the Gaussian unitary ensemble is associated. Finally, the symplectic ensemble of
random matrices corresponds to the Hamiltonian of more complicated structure
H = H0 + hτ , where H∗

0 = HT
0 , hK = h∗

K = −hTK (k = 1, 2, 3, σk Å Pauli
matrices). The critical index α in formula (3.36) is equal to: α = 1 for the GOA,
α = 2 for the unitary ensembles and α = 4 for the symplectic ensembles.

The predictions of the statistical theory of levels (especially for the GOA)
were compared in detail with all available sets of nuclear data [65, 67]. No
essential deviations between the theory and data base have been revealed. Similar
comparisons have been realized for atomic spectra. And here, a good agree-
ment has been revealed with the predictions of the GOA, though the number of
processed data was essentially less than in the nuclear spectroscopy.

If for the complicated systems (atomic nucleus, many-electron atom) we
can give serious arguments in favour of the hypothesis of the equivalence of the
statistical properties of the spectrum and the sequence eigenvalues of the ensemble
of the random matrices, so its generalization does not seem natural in the case of
the systems with a small number of degrees of freedom.

A radically new and universal approach to the problem of the statistical prop-
erties of energy spectra may be developed on the basis of a nonlinear theory of
dynamic systems. The numerical calculations [25, 68Ä71], supported by consid-
erations [1, 3, 7, 25, 52Ä55, 72Ä74], show that the important universal peculiarity
of the energy spectra of the systems, that are chaotic in the classical limit, is
the phenomenon of the level repulsion; while the systems, which dynamics is
regular in the classical limit, are characterized by the level clusterization. This
statement is sometimes called [68] as the hypothesis of the universal character of
the �uctuations of energy spectra.

Among the systems, which spectra were subjected to detailed numerical
analysis, the central place is occupied by two-dimensional billiards (free particle
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moving on the plane inside of some region and subjecting to the elastic re�ection
on the boundary). One of two extremal situations can be realized for the billiards
with the deˇnite shape of the boundaries: integrable or nonintegrable. The angular
momentum is the second integral (except energy) in the circular billiard and such
a system is integrable. The billiard like ®stadium¯ is one of the simplest stochastic
systems.

The FNNSDL for the integrable system (the circular billiard) is well ap-
proximated by Poisson distribution and the variance is the linear function of the
considered energy interval, that is in complete correspondence with the hypothesis
of the universal character of the �uctuations of energy spectra. In the noninte-
grable case (®stadium¯), the effect repulsion of levels and the slow growth of the
variance, caused by the rigidity of the corresponding spectrum, are observed.

Measure of the rigidity is the statistic ∆3 of Dyson and Mehta [75]

∆3(L;x) =
1
L
MinA,B

x+L∫
x

[n(ε)−Aε−B]2 dx (3.37)

which determines the least-square deviation of the staircase representing the cumu-
lative density n (ε) from the best straight line ˇtting it in any interval [x, x+ L].
The most perfectly rigid spectrum is the picket fence with all spacing equal
(for instance, the one-dimensional harmonic oscillator spectrum), therefore maxi-
mally correlated, for which ∆3(L) = 1/12, whereas, at the opposite, the Poisson
spectrum has a very large average value of ∆3 (∆̄3 = L/15), re�ecting strong
�uctuations around the mean level density.

In contrast to billiards, where the character of motion does not depend on the
energy, the Hamiltonian systems are the systems with the separable phase space,
which contains both the regions, where the motion is stochastic, along with the
islands of stability. How is this circumstance re�ected in statistical properties of
the spectrum? Berry and Robnik [73] and independently Bogomolny [76], basing
on the semiclassical arguments, showed that FNNSDL for such system represents
the independent superposition of the Poisson distribution with the relative weight
µ, determined by the part of the phase space with regular motion, and the Wigner
distribution with the relative weight µ̄(µ+ µ̄ = 1), determined by the part of the
phase space with a chaotic motion

P (x) = µ2 exp (−µx) erfc
(√

π

2
µ̄ x

)
+
(
2µµ̄+

π

2
µ̄3x

)
exp

(
−µx− π

4
µ̄2x2

)
.

(3.38)

The expression (3.38) represents the interpolated formula between the Poisson
(3.34) and Wigner (3.35) distributions.
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Now let us go to the statistical properties of the spectrum of the Hamiltonian
of the quadrupole oscillations (3.1). We intend to study the evolution of these
properties in the process of R-C-R transition, i. e., in each of energetic intervals
R1, C,R2. We shall restrict our consideration to the case of one-well potentials
(W < 16). At the ˇxed topology of the potential surface (W = const) the
unique free parameter of Hamiltonian (3.1) is the scaled Planck's constant �̄i. In
the study of the concrete energetic interval (R1, C or R2), corresponding to a
deˇnite type of classical motion, the choice of �̄i is dictated by the possibility of
attainment of the necessary statistical assurance (the required number of levels in
investigated interval) with conservation of precision of the spectrum calculation
(restrictions to possibility of diagonalization of matrices of large dimension). Let
us notice, that for the initial nonreduced Hamiltonian (2.3) the variation of �̄i is
equivalent to the variation of the parameters a, b, c (i. e., variation of the critical
energies Ecr1 and Ecr2) or to the adequate choice of the initial Planck's constant
�̄i ≡ �̄. The values of the scaled Planck's constant �̄3 ≡ �̄, represented in Table
4, allow us to obtain in the corresponding energy intervals some hundreds of
levels with the precision better than 1%.

Table 4. Scaled Planck's constant � for R1, C, R2 scaled energy intervals ∆Ē (W = 13)

R1 C R2

∆Ē Ē < 8 · 10−5 8 · 10−5 < Ē < 8.4 · 10−2 Ē < 8.4 · 10−2

�̄ �̄ = 3.2 · 10−6 � �̄ = 1.6 · 10−4
�̄ = 1.1 · 10−1

Two additional comments are necessary before proceeding to results. First,
we recall that, to get rid of spurious effects of the local properties due to the
variation of the density, one has to work at a constant density on the average. For
this purpose one can ®unfold¯ the original spectrum [65], i. e., map the spectrum
of eigenvalues {Ei} onto the spectrum {εi} through

εi = N̄ (Ei) . (3.39)

Here the smoothed cumulative density N̄(E),

N̄(E) =

E∫
0

ρ̄(E′)dE′ (3.40)

and ρ̄(E) is the smoothed level density. In what follows we will take as an
energy unit the average spacing x̄ between two adjacent levels of the unfolded
spectrum

x̄ = s̄i = 〈(εi+1 − εi)〉 . (3.41)
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Meaning of unfolding is understood by the following example [77]. There
are a few spacings between states of the same (Jπ, T ) in the ground state region
known for many nuclei. Together they constitute a large sample of experimental
data. The only trouble is that the underlying scaling parameter D varies from
nucleus to nucleus. As a result, we cannot make statistical studies unless we have
a model for the variation of D as a function of nucleon number A.

Fig. 14. Fluctuation properties of QON spectrum for the R-C-R transition. Logarithm of
p(x) (a, c, e) and average value of ∆3 (b, d, f); rigid lines are Poisson's prediction; dashed
lines are GOA prediction
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Second, it should be remarked that our discussion above relative to Poisson
of Wigner level statistics applies only for a pure sequence. A pure sequence
represents a set of levels relating to one and the same nonreducible representation
of the group of symmetry of considered Hamiltonian. In the case of mixed
sequences [65] the level repulsion is moderated by the vanishing of Hamiltonian
matrix elements connecting two different symmetry states, the spectra have moved
towards random, and FNNSDL towards Poisson.

The results of investigation of correlations between statistical properties of
energy spectrum of the Hamiltonian QON and the character of classical motion
are represented in Fig. 14 [78]. Both the FNNSDL p(x)and the average value of
∆3 well correspond to the predictions of GOE for the chaotic (C) region. The
logarithmic scale for FNNSDL p(x) is suitable to trace this correspondence at
large x. For regular regions (R1 and R2) the distribution function, in the same
scale, according to the hypothesis of the universal character of �uctuations of
energy spectra, must be represented by the straight line (the logarithm of Poisson's
distribution). The results demonstrate the agreement with this hypothesis, though
small-sized deviations are observed for small distances between levels. Such a
tendency to the rise of some repulsion in regular region, apparently, is connected
with a small admixture of chaotic component. At the construction of statistical
characteristics, a purity of sequence is provided by using only those levels, which
are relative to deˇnite nonreducible representation of C3ν group (the levels of
E-type were used for results represented in Fig. 14; the statistical characteristics
of levels of A1- and A2-types have similar form).

In this connection brings up the natural question about the role of numerical
errors and, in particular, about the special expression ®the induced nonregularity¯
[79]. The investigation of statistical properties of a spectrum in the three-levels
model of LipkinÄMeshkovÄGlick [80, 81] sheds a certain light on this problem.

3.5. R-C-R Transition and the Structure of QON Wave Function. As we
have seen in the previous section, the statistical properties of the spectrum of the
Hamiltonian QON have been rigidly correlated with the type of classical motion.
It is naturally to try to discover the analogous correlations in the structure of wave
functions, i. e., to assume, that the form of the wave function for a semiclassical
quantum state, associated with classical regular motion in the regions R1 or
R2, is different from that one for chaotic region C. Furthermore, it should
be pointed out that in analysis of QMCS at the level of energy spectra the
principal role was given to statistical characteristics, i. e., the quantum chaos
was treated as a property of the group states. The choice of a stationary wave
function of the quantum system, which is chaotic in the classical limit, as a basic
object of investigation relates the phenomenon of quantum chaos to an individual
state.

In contrast to the spectrum, the form of wave functions depends on the basis.
In QMCS studying, the three following representations are used more often:
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1. The so-called H0 representation is: the representation of eigenfunctions
{ϕn} of integrable part H0 of total Hamiltonian H = H0 + V . The main objects
of investigation in this case are the coefˇcients of expansion Cmn of stationary
functions ψm on basis {ϕn}. H0 representation is natural in the process of
numerical calculations, and H diagonalization is realized more often just in this
representation.

2. Coordinate representation in which the behaviour of wave functions simply
allows visual comparison with the picture of classical trajectories in coordinate
space.

3. Representation with the help of Wigner's functions [82] that has a set of
properties, common with a classical function of the distribution in phase space.

As early as in 1977, Berry [83] assumed that the form of the wave function
ψ for a semiclassical regular quantum state (associated with classical motion on
an N -dimensional torus in the 2N -dimensional phase space) was signiˇcantly
different from the form of ψ for an irregular state, associated with a stochastic
classical motion on all or part of the (2N − 1)-dimensional energy surface in
phase space. For the regular wave functions the average probability density in
the conˇguration space was seen to be determined by the projection of the cor-
responding quantized invariant torus onto the conˇguration space, which implies
the global order. The local structure is implied by the fact that the wave function
is locally a superposition of a ˇnite number of plane waves with the same wave
number as determined by the classical momentum. In the opposite case for the
chaotic wave functions the averaged (over small intervals of energy and coor-
dinates) square of the eigenfunctions in the semiclassical limit � → 0 coincides
with the projection of the classical microcanonical distribution to the coordinate
space. Its local structure is spanned by the superposition of inˇnitely many plane
waves with random phases and equal wave numbers. The random phases might
be justiˇed by the classical ergodicity. This assumption immediately predicts lo-
cally the Gaussian randomness for the probability of amplitude distribution. Such
structure of the wave function is in good agreement with the picture of chaotic
phase space: the classical trajectories homogeneously ˇll isoenergetic surface.
By contrast, from the consideration of a regular quantum state as an analog of a
classical motion on torus, a conclusion should be done about the singularity (in
limit � → 0) of the wave function near caustics (boundaries of region of classical
motion in coordinate space).

Berry's hypothesis was subjected to the most complete test for billiards of
different types and, in particular, for billiard stadium type [84]. The amplitude
of a typical wave function of integrable circular billiard is negligible in classical
prohibited region (conservation of the angular moment in circular billiard leads
to that the arbitrary trajectory is enclosed between an external and certain internal
circle, the radius of which is determined by the angular momentum), whereas
near the caustics it is maximal. Distribution |ψ|2 for the case stadium (classical
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dynamics is stochastic) is strongly distinguished from the integrable case. How-
ever, this distribution is not so homogeneous, as we could expect based on the
ergodicity of classical motion.

Let us return to the object of our investigation: C3ν symmetric Hamiltonian
QON [85, 86]. We start out from the topography of level curves of the stationary
wave functions and, in particular, of nodal curves on which ψk(x, y) = 0. One of
a nonrigorous criterion of stochasticity [87] states that the system of nodal curves
of the regular wave function is a lattice of quasiorthogonal curves or is similar to
such a lattice. At the same time, the wave functions of chaotic states do not have
such a representation. Figure 15 conˇrms that the structure of the lattice of nodal
curves of separable wave functions undergoes a change in the R-C-R transition.
The spatial structure of nodal curves for states from regions R1 (g, h, i) and R2

Fig. 15. Nodal curves of the wave functions ψ (x, y). The numbers k of the corresponding
levels are shown over the ˇgures: a, d, g) k = 111; b, e, h) k = 160; c, f, i) k = 210



426 BEREZOVOJ V. P. ET AL.

(a, b, c) of regular classical motion is considerably simpler than this structure for
states from the chaotic region C (d, e, f).

Correlations between the structure of wave function and the type of clas-
sical motion are also demonstrated in Fig. 16, in which the probability density

Fig. 16. Isolines of the probability density
|ψk(x, y)|2. The numbers k of the correspond-
ing levels are shown over the ˇgures: a, d, g)
k = 111; b, e, h) k = 160; c, f, i) k = 210

|ψ(x, y)|2 for states with num-
bers 111, 160, and 210 is repre-
sented. The squared module of the
wave functions reproduces rather
well a transition from functions
with clear internal structure (re-
gion R1 (g, h, i)) to an irregu-
lar distribution (region C (d, e, f))
and the restoration of the struc-
ture in the second regular region
(R2 (a, b, c)). For the chosen
technique, where the transition is
traced for the wave function with
ˇxed number (scaled Planck con-
stant), a change in the wave func-
tion is associated only with R-C-R
transition.

Evolution of the wave func-
tions in the process of R-C-R tran-
sition can be studied also in H0-
representation or more appropri-
ately in the representation of linear
combinations of wave functions of
two-dimensional harmonic oscil-
lator with equal frequencies (see
Sec. 3.2)

ψk =
∑
N,L

Ck
NLj |NLj〉. (3.42)

The introducing of the notion of distributivity of the wave function on basis
leads to the criterion of stochasticity formulated by Nordholm and Rise [88]. It
states that the degree of distributivity of wave functions arises in the average along
with the degree of stochastization. It is clear that this criterion is a direct analog of
the Berry's hypothesis for H0-representation, if the number of basis state i{NLj}
is to be interpreted as a discrete coordinate. Figure 17 qualitatively conˇrms this
criterion. It can be seen from this ˇgure that the states corresponding to regular
motion are distributed in a relatively small number of basis states. At the same
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time, the states corresponding to chaotic motion (region C) are distributed in a
considerably larger number of basis states. In the latter case, the contributions
from a large number of basis states in expansion (3.42) interfere. This re�ects in
a complex spatial structure of the wave function ψk(x, y).

Fig. 17. Distribution of the coefˇcient Ck
i in the number i = (N,L, j) of the basis state.

The numbers k of the corresponding levels are shown over the ˇgures: a, d, g) k = 111;
b, e, h) k = 160; c, f, i) k = 210

3.6. Evolution of Shell Structure in the Process of R-C-R Transition.
Introduction of the stochasticity concept in the nuclear theory made possible
taking a fresh look [16] at the old paradox [24]: how one could reconcile the
liquid drop Å short mean free path-model of the nucleus with the independent
particles Å gas-like shell model. To solve this paradox within the limits of
philosophy of simple chaos (see Sec. 1.1) it is sufˇcient to assume [18]:

1) When the nucleonic motion inside the nucleus is integrable, one expects to
see strong shell effects in nuclear structure, quite well reproducible, for example,
by the model of independent particles in the potential well.

2) If a chaotic component dominates in the nuclear dynamics, it is necessary
to expect that the droplet model or ThomasÄFermi approximation will appear
more useful.

At such approach, the elucidation of the mechanism of destruction of shell
effects in the process of the R-C transition plays the key role. More appropriately
the problem can be formulated in the following way [16]: how do shell dissolve
with deviations from integrability or, conversely, how do incipient shell effects
emerge as the system ˇrst begins to feel its proximity to an integrable situation?
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As has been mentioned above, the ˇnite motion of the integrable Hamiltonian
system with N degrees of freedom is, in general, conditionally periodic, and the
phase trajectories lie on N -dimensional tori. In the variables action-angle (I, θ)
the Hamiltonian is cyclic with respect to angle variables, H = H0(I). Poincare
called the main problem of dynamics the problem about the perturbation of
conditionally periodic motion in the system deˇned by the Hamiltonian

H = H0(I) + εV (I, θ), (3.43)

where ε is a small parameter. The essential step in the solution of this problem
was the KAM theorem, asserting that at switching on nonintegrable perturbation,
the majority of nonresonance tori, i. e., the tori for which

N∑
i=1

ni
∂H0

∂Ii
�= 0, (3.44)

is conserved, distinguishing from the nonperturbed cases only by a small (to
the extent of smallness of ε) deformation. As is known, at deˇnite conditions
the KAM formalism allows one to remove the members depending on angle out
of Hamiltonian, using the convergent sequence of canonical transformations [4].
When it is succeeded, we ˇnd that perturbed motion lies on rather deformed tori
so that trajectories, generated by perturbed Hamiltonian, remain quasiperiodic.
In other words, the KAM theorem re�ects an important peculiarity of classical
integrable systems to conserve regular behaviour even at rather strong noninte-
grable perturbation. In the problem of our interest, concerning the destruction of
a shell structure of the quantum spectrum, the KAM theorem also will be able to
play an important role. Considering the residual nucleonÄnucleon interaction as
nonintegrable addition to selfconsistent ˇeld, obtained, for example, in HartreeÄ
Fock approximation [33], one can try to connect the destruction of shell with
the deviation from integrability. The existence of shell structure at rather strong
residual interaction (or at large deformation) can be obligated to rigidity of KAM
tori, contributing to survival of regular behaviour. Such assumption seems rather
natural, especially if one takes into account, that the procedure of quasiclassical
quantization [89, 90] itself as well as KAM theorem is based on convergence of
the same sequence of canonical transformations.

The aim of this section is to trace the evolution of the structure of QON
Hamiltonian. In numerical calculations of this section it will be more convenient
to use nonscale version of the Hamiltonian (2.3). By nonperturbed Hamiltonian
H0 we will mean the Hamiltonian of two-dimensional harmonic oscillator with
equal frequencies: H0 ≡ H(a = 1, b = 0, c = 0). Its degenerate equidistant spec-
trum is well known. At switching on perturbation, the degeneration disappears
and the shell structure forms. The number of states, for example, the states of
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E-type (the numerical results, represented below, are relative to the states of this
type, while analogous results take place for the states belonging to another nonre-
ducible representations of C3ν-group) for the given quantum number N is equal
to 1/2(N1+Mod (N, 2)), where N1 = 1/3(2N+Mod (N, 3)), and Mod (N,M)
is a remainder from division of N by M .

It is obvious, that eigenfunctions of exact Hamiltonian QON are no longer
the eigenfunctions of operators N̂ and L̂. Nevertheless, as numerical calculations
show, one can use the quantum numbers N and L for the classiˇcation of wave
functions even at rather large nonlinearity. The measure of nonlinearity, at which
such classiˇcation (i. e., the existence of shell structure) remains reasonable, is
connected with quasicrossing of neighbouring levels. Under the quasicrossing we
shall understand the approach of levels up to the distances of degree of precision
of numerical calculations.

Fig. 18. a) Energy spectra of Hamiltonian (2.3) depending on parameter b (W = 13).
Points mark quasicrossings. Continuous line-dependence Ecr from b. Dashed line shows
the beginning of the region of quasicrossings. The arrow shows the point of quasicrossing
of the levels with k = 40 and 41. b) The same for W = 3.9

The dependence of the energy spectra of Hamiltonian QON on the parameter
b for the values W = 3.9 and 13 are represented in Fig. 18, a, b. As is seen from
Fig. 18, a, for the PES with W = 13 at the approaching to the line of the critical
energy of the transition to chaos, deˇned according to the NCC, the destruction
of shell structure, by which we understand multiple beginning of quasicrossing,
takes place. At the same time, for the PES with W = 3.9 in Fig. 18, b (for which
as we have shown in Sec. 2.2, the local instability is absent and the motion is
regular at all energies) the quasicrossings are absent even at larger nonlinearity
than for W = 13.
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The destruction of shell structure can be traced for the wave functions, using
the analog of thermodynamic entropy Sk [91, 92],

Sk = −
∑∣∣Ck

NLj

∣∣2 ln ∣∣Ck
NLj

∣∣2. (3.45)

The character of changes of entropy in regions R1 and R2, corresponding to
the regular classical motion, correlates with the transition from shell to shell (see

Fig. 19. Entropy S as a function of state
number k

Fig. 19, c, a). Two effects are ob-
served in the region C (Fig. 19, b), cor-
responding to chaotic classical motion.
Firstly, quasiperiodical dependence of
entropy from energy is violated, that
testiˇes to destruction of shell struc-
ture. Secondly, the monotone growth
of entropy is observed on average with
going out on plateau corresponding to
the entropy of random sequence at the
energies essentially exceeding the crit-
ical energy.

Average values of operator N̂ ,
given in Fig. 20, and calculated on
stationary wave functions of an ex-
act Hamiltonian, describe the dynam-
ics of change of the shell struc-
ture. We can see that the mini-
mum deviation of 〈N〉 from N is
observed in regions R1 (c) and R2

(a), while this deviation is consid-
erably greater in the stochastic re-
gion C (b); moreover in the aver-
age it monotonically increases with
the increase of energy. It is ob-
vious, that at energies, for which
N − 〈N〉 ≥ 1, the destruction of
quantum analogues of classical inte-
grals leads to the fact that the clas-

siˇcation of levels with the help of quantum numbers N and L loses its
sense.

Notice, that we could observe restoration of shell structure at high energies
in the process of R-C transition only due to the optimization of basis frequency
(see Sec. 3.2), that is equivalent to the possibility of diagonalization of matrices
of considerably higher dimension.
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Fig. 20. N (lines) and 〈N〉 (points) as a function of the number k

Now let us return to the analysis of quasicrossings of levels arising near
the critical energy of the transition to chaos. As is known [93], for the set
of Hamiltonians depending on two parameters λ = (b, c), which are invariant
with respect to inversion of time in the neighbourhood of the degeneration point
λ∗ = (b∗, c∗), the difference of two terms ∆E = E1 − E2 is determined by the
expression

∆E(b, c) = [A(b − b∗)2 +B(b− b∗)(c− c∗) + C(c− c∗)2]1/2, (3.46)

where coefˇcients A,B,C are the functions of components ∇λH in the point λ∗.
The characteristics of nuclear shape [94] in the problems of nuclear spectroscopy
more often play the role of parameters. The wave functions of intersecting levels
near a degeneration point can be represented in the following form

|E1(λ)〉 = cos χ1 |E1(λ∗)〉+ sin χ1|E2(λ∗)〉,
|E2(λ)〉 = cos χ2 |E1(λ∗)〉+ sin χ2|E2(λ∗)〉,

(3.47)
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where angles of mixing χ1,2 are determined by the relation

e2iχ1,2 = ± (Tλ) + i(Sλ)

[(Tλ)2 + (Sλ)2]1/2
,

(Tλ) ≈ H11(λ) −H22(λ), (Sλ) ≈ 2H21(λ).
(3.48)

It is easy to see, that changing λ → −λ, the ®exchange¯ of wave functions of
approaching levels takes place |E1(λ∗)〉 ↔ |E2(λ∗)〉. Such test can be used
effectively for the analysis of nature of quasicrossing points.

In particular, we trace the variations of functions with k = 40 and k = 41,
which undergo quasicrossing in the neighbourhood b∗ ≈ 9.8 · 10−2, c∗ ≈ 7.4 ·
10−4 (recall, that under this term we understand the approaching of levels up
to distances of an order of precision of numerical calculations). The sections of
ψ(x = 0, y) and coefˇcients of expansions Ck

NLj of wave functions of considered
states before and after a quasicrossing point are represented in Figs. 21, 22. For
comparision, the similar characteristics of the states with k = 39 and k = 42
which do not undergo quasicrossing at this values of parameters are represented
for comparison at the same ˇgure. As is seen, the wave functions are not

Fig. 21. Wave functions ψ(x = 0, y) for the states with k = 39 (a, b), 40 (c, d), 41 (e, f),
42 (g, h) in the neighbourhood of quasicrossing of the states with k = 40 and 41: a, c, e,
g) b < b∗; b, d, f, h) b > b∗ (point of quasicrossing: b∗ = 0.098, c∗ = 0.00074)
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Fig. 22. Same as Fig. 21, but for the coefˇcients of the expansion of wave functions

|x(i)|2 = |C(k)
NLj |, i Å number of basis state

practically changed for the states 39 and 42, at the same time the exchange of
wave functions is observed for the states 40 and 41 in correspondence with the
test described above. An analogous situation takes place for other quasicrossings
as well.

3.7. Wave Packet Dynamics. The investigation of the time evolution of non-
stationary states, i. e., of packets in quantum systems which classical analogues
admit chaotic behaviour, gives an important information about QMCS. The local-
ized quantum wave packet (QWP) is the closest analogue of the point in phase
space, which describes the state of a classical system. However, such correspon-
dence between localized QWP and a classical point particle in the chaotic region
is broken down for a very short time interval. Let us explain this fact by using
Takahashi arguments [95]. We take two localized QWP Ψ1(x) and Ψ2(x) which
are put in the chaotic region at initial time to be slightly different from each
other so that the difference between 〈Ψ1|x̂|Ψ1〉 and 〈Ψ2|x̂|Ψ2〉 (or 〈Ψ1|p̂|Ψ1〉
and 〈Ψ2|p̂|Ψ2〉) is very small. We assume that in the chaotic region the localized
QWP does not either extend in a certain time interval of the order 1/

√
� like

that in the regular region. Thence, following the Ehrenfest theorem, the packets
Ψ1 and Ψ2 move as classical particles and the distance between 〈Ψ1|x̂|Ψ1〉 and
〈Ψ2|x̂|Ψ2〉 (or 〈Ψ1|p̂|Ψ1〉 and 〈Ψ2|p̂|Ψ2〉) is increasing exponentially in time.
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Let us consider the superposition Ψ = Ψ1 + Ψ2, which also becomes a local-
ized QWP in initial state. From the assumption, we can expect that QWP does
not extend in a certain time interval of the order 1/

√
�. However, considering

the exponential increment of the distance between 〈Ψ1|x̂|Ψ1〉 and 〈Ψ2|x̂|Ψ2〉, Ψ
extends exponentially in the chaotic region and does not behave as a classical
particle. This result is inconsistent with the initial assumption and implies that
in the chaotic region the localized QWPs (i. e., Ψ1(x), Ψ2(x), and Ψ(x)) extend
exponentially as does classical probability distribution in the ˇrst stage of time
development.

In order to describe such unusual behaviour of QWP one should address to the
concept of a quantum-mechanical phase space. There are a few well-established
schemes to introduce phase-space variables in quantum mechanics [82, 96, 97].
In the present study we shall follow the procedure proposed by Weissman and
Jortner [98]. Let us consider an initially localized QWP Ψ characterized by the
coordinates q and the momenta p,

q = 〈Ψ| q̂|Ψ〉, p = 〈Ψ| p̂|Ψ〉. (3.49)

Now we introduce the coherent states |p,q〉 [97], which in the coordinate x
representation, are given by Gaussian wave packets

〈x|p,q〉 =
N∏
j=1

(
πσ2

j

)−1/4
exp

[
− (xj − qj)

2

2σ2
j

+
ipjxj

�
− ipjqj

2�

]
. (3.50)

In the study of a system of N coupled harmonic oscillators, it is convenient
to choose for constants σj the rms zero-point displacements

σj = (�/mjωj)1/2, (3.51)

where mj are masses and ωj are frequencies of the uncoupled oscillators. With
this choice of the σj , the coherent states |α〉 ≡ |p,q〉 become the eigenstates of
the harmonic oscillator annihilation operators aj

aj |α〉 = αj |α〉, (3.52)

where a complex variable αj

αj =
1√
2

(
qj
σj
+ i

σj
�
pj

)
. (3.53)

Using these coherent states, it is possible to introduce the following quantum-
mechanical phase-space density

ρΨ(q,p) = |〈α |Ψ〉|2, (3.54)
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where Ψ is any general wave packet. This quantum-mechanical, coherent-state,
phase-space density may be regarded as a quantum analogue of the classical
phase-space density, since it satisˇes an equation of motion where the leading term
(when expanded in powers of �) corresponds to the classical Liuville equation
[99]. The stationary phase space densities ρE(p,q) are the

ρE(p,q) = |〈α|E〉|2, (3.55)

where |α〉 is given in terms of Gaussian wave packets (3.50) while the eigenstate
|E〉 is given by squares of the projections of the eigenstates on the coherent state,
Eq. (3.4). Using the well-known expressions for scalar products 〈α|NL〉 [97] we
ˇnally obtain

ρE(p,q) =
1
2
exp

[
−1
2

(
|α+|2 + |α−|2

)]
×

×
∑
N,L

CNL
(n+!n−!)1/2

(
α
∗n+
+ α

∗n−
− + jα

∗n−
+ α

∗n+
−
)
, (3.56)

where α± = 1/
√
2(α2 ∓ iα1) with α1,2 = 1/

√
2(q1,2 + ip1,2), n+ =

N + L

2
,

n− =
N − L

2
, j = ±1. The phase-space density ρE(p,q) is a function of the

four real variables p1, q1 and p2, q2.
We can get the contour maps of ρE (p1, q1; p2, q2) in the (q2, p2) plane, taking

q1 = 0 and calculating p1 from the relation

H(q1 = 0, p1, q2, p2) = E. (3.57)

Such obtained quantum Poincare maps (QPM) [98], constitute the quantum
analogues of the classical Poincare maps and can be used for the search of QMCS
both in the structure of wave functions of stationary states and in the dynamics
of wave packets.

Next, let us consider the time evolution of a wave packet, which is initially
in a coherent state

|Ψ(t = 0)〉 = |α〉. (3.58)

The time evolution of such initiality coherent wave packet is given by

|Ψ(t)〉 =
∑
k

|Ek〉〈Ek|α〉 e−iEkt. (3.59)

The survival probability p(t) of ˇnding the system in its initial state is

p(t) = |gα(t)|2, (3.60)
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where gα(t) is the overlap of Ψ(t) with the initial state

gα(t) = 〈α|Ψ(t)〉 =
∑
k

|〈Ek|α〉|2 e−iEkt. (3.61)

Utilizing the deˇnition of the stationary phase-space density (3.55), we can write

gα(t) =
∑
k

ρEk
e−iEkt. (3.62)

Equation (3.62) implies that dynamics is determinated by the spectrum of the
initial coherent state |α〉.

Weissman and Jortner [98] have observed for HenonÄHeiles Hamiltonian
(QON Hamiltonian with m = 1, a = 1, c = 0) two limiting types of QWP
dynamics of initially coherent Gaussian wave packets, which correspond to a
quasiperiodic time evolution and to rapid decay of the initial state population
probability. A quasiperiodic time evolution is exhibited by wave packets initially
located in regular region, while a rapid decay of the initial state population
probability is revealed by those ones that are initially placed in irregular regions.

Ben-Tal and Moiseyev [100] calculated the survival probability p(t) for the
initial complex Gaussian wave packets by the Lanczos recursion method. This
method has a practical value since it requires nN2 numerical operations (n is
the number of Lanczos recursion, N is the dimension of the Hamiltonian matrix)
rather than N3 required to calculate the eigenvectors H . For bounded time
calculations n is much smaller than N .

Let us turn to the consideration of the dynamics of QWP in the PES with a few
local minima (W > 16) [101]. Transitions between different local minima can
be divided into induced (the excitation energy exceeds the value of the potential
barrier) and tunnel transitions. The latter ones are subdivided into transitions
from a discrete spectrum into a continuous spectrum (for example, α-decay,
spontaneous division) and from a discrete spectrum into a discrete spectrum (for
example, transitions between isomeric states). Up to now the process of tunneling
across a multidimensional potential barrier, when initial and ˇnal states are in a
discrete spectrum, is the most complicated and almost noninvestigated problem.

More often the time evolution of a wave packet is studied by two methods
[102]: either by direct numerical integration of the Schréodinger time-dependent
equation with corresponding initial condition Ψ(r, t = 0), or by expansion of
the packet Ψ(r, t) in the eigenfunctions of the stationary problem. The ˇrst one
has some lacks, e. g., the complication relative to interpretation of the obtained
results and the necessity of separating the contributions from subbarrier and tunnel
transitions for the packet of an arbitrary shape. These difˇculties can be avoided
by providing the subbarrier part of the spectrum En(En < U0, U0− the height of
barrier) and the corresponding stationary wave functions ψn(r) to be known. A
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pure tunnel dynamics will take place for the packets representable in the form

Ψ(r, t) =
∑
n

Cn exp
(
− i

�
Ent

)
ψn(r), En < U0, (3.63)

Cn =
∫
Ψ(r, t = 0)ψn(r) dr. (3.64)

The probability pR(t) of ˇnding the particle at the moment of time t in certain
local minimum R is

pR(t) =
∫
R

|Ψ(r, t)|2 dr =
∑
m,n

C∗
mCn exp

(
i(Em − En)

�

)∫
ψ∗
m(r)ψn(r) dr

(3.65)

or in the two-level approximation

pR(t) = pR(0)− 4C1C2 sin2

(
1/2(E1 − E2)t

�

)∫
ψ∗

1(r)ψ2(r) dr. (3.66)

Let us introduce [103] the value

¯̄pR = max
∀t

pR(t) (3.67)

which is the maximum probability of ˇnding the particle in the certain local
minimum R if initially it was localized in the arbitrary minimum. If the number
of local minima is more than two, then of independent interest is

¯̄pR0 = min
∀t

pR0(t), (3.68)

i. e., minimum probability to ˇnd the wave packet in the minimum R0 corre-
sponding to its initial localization.

Intuitively, we may suggest that p̄R ≈ 1 if the initial minimum is local, and
the ˇnal one is absolute. However, the results [103] obtained for the simplest
one-dimensional models (asymmetric double wells of different shapes) are incon-
sistent with the intuitive expectations. The probability of tunneling from the local
minimum to the absolute one depends resonantly on the potential parameters.
Figure 23, b gives the dependence of p̄R on the well depth displacement d. It is
seen that at an arbitrary asymmetry p̄R 
 1.

The resonant behaviour of p̄R becomes more clear if one considers the spatial
structure of the subbarrier wave functions. For a sufˇciently wide barrier in the
case of an arbitrary asymmetry, the subbarrier wave functions are largely localized
in separate minima. The delocalization takes place only in the vicinity of the level
quasicrossing. The degree of this delocalization directly depends on the distance
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Fig. 23. Subbarier energy levels
Ei for a double asymmetric one-
dimensional rectangular well with
inˇnite external walls (a) and p̄R

(b) as a function d. Width of the
well is equal to 3; width of barrier,
to 1; height of barrier, to 2

Fig. 24. Dependence of the energy spectrum of E
type (a) at b=0.173798 and A1 type (b) at b=0.17
from the dimension of submatrices N forW=17.8

between the interacting levels. Obviously, the QWP, in which the components
localized in the certain minimum are dominating, cannot tunnel effectively to the
neighbouring minimum. It is precisely this, that explains the stringent correlation
between the p̄R minima and the level quasicrossing (see Fig. 23).

Now the question arises if a similar correlation between the level quasicross-
ings, the delocalization of wave functions and the resonant tunneling persists in
the two-dimensional case. To give an answer to this question let us turn to
Hamiltonian QON in the region W > 16. Recall that three (C3ν -symmetry) iden-
tical additional minima appear at W > 16 apart from the central minimum. The
central minimum exceeds the lateral ones in depth in the region 16 < W < 18.
At W > 18, the central minimum becomes the local one. In this region of pa-
rameters, the procedure of diagonalization of Hamiltonian QON in an oscillator
basis becomes essentially complicated. It is connected with the fact, that the
basis of Hamiltonian, the potential of which has the unique minimum, is used
for the diagonalization of Hamiltonian possessing complex topology of the PES.
In addition to the large dimension of the basis it is necessary for the basis wave
functions to have a sufˇcient value in the region of the lateral minima. It has
been achieved by the optimization of oscillator frequency of basis ω0. For the
values of parameters used in the calculations (W = 17.8, b = 0.17) the value of
oscillator frequency ω0 = 0.2. Figure 24 gives low eigenvalues of E and A1

types depending on the basis dimension. We can see, that it is possible to get
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the saturation in the basis at the dimension of submatrices N ∼ 103 even for low
states localized in the lateral minima (dashed lines).

Fig. 25. Dependence of Sk from a number of
eigenstate k (A1 type) for the dimension of sub-
matrices 408 (dark point) and 690 (crosses) at
W = 17.8 and b = 0.17; ES corresponds to
saddle energy; and Ecr, the classical critical en-
ergy of the transition from regular type of mo-
tion to chaotic one

Fig. 26. Distribution of coefˇcients |Ci| by
number of basis state i = (NLj) (E type)
for the localized states with k = 3 (a) and
k = 4 (b) at b = 0.17379 (W = 17.8) and
for the delocalized states with k = 3 (c)
and k = 4 (d) in the point of quasicrossing
b = 0.1737924 (W = 17.8)

We can also use the above-intro-
duced analog of thermodynamic entropy
Sk for estimation of degree of saturation
in the basis. Figure 25 gives the Sk
values for the states of A1 type for the
dimension of submatrices 408 and 690.
Increasing of the basis does not lead to
sufˇcient changes of values Sk for the
states with the energy up to the saddle
energy ES .

The states, localized in the central
or in the lateral minima, have an essen-
tially different distributivity of coefˇ-
cients Ck

i C
k
i {i ≡ NLj} (see Fig. 26, a,

b) and thus different entropies: states,
localized in the central minimum, have
less entropy). In the neighbourhood
of the points of level quasicrossings,
the delocalization of wave functions,
corresponding to these levels, takes
place; these wave functions possess
close distributivity of coefˇcients Ck

i

(see Fig. 26, c, d).
Figure 27 shows the subbarrier part

of the energy spectrum obtained by the
diagonalization. As is easy to see, the
tunneling of the wave packet, composed
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of the subbarrier wave functions, can be described in the two-level approxima-
tion. Indeed, there are approximately 10 level quasicrossings of A1 and E types,

Fig. 27. Dependence of energy levels
Ei of Hamiltonian (2.3) on the para-
meter b for W = 17.8: a) spectrum
of E type; b) spectrum of A1 type

Fig. 28. a) Quasicrossing of energy
levels of E type with K = 3, 4 for
Hamiltonian (2.3); b) localization
of wave functions of states with
k = 3, 4 in the central well at dif-
ferent b; c) dependence p̄R from b

where the nonlinearity parameter changes are of
the order of 10−2. The effective half-width of
the overlap integral in (3.66) is about 10−5 (see
Fig. 28). Hence, all nondiagonal elements will
be close to zero with the overwhelming prob-

ability in the matrix αmn =
∫
R

ψ∗
m(r)ψn(r)dr

for an arbitrary nonlinearity parameter (e. g., b).
Two appreciable different from zero nondiago-
nal matrix elements (two-level approximation)
appear only in the vicinity of quasicrossings.
The probability of double quasicrossings at a
ˇxed nonlinearity parameter is almost excluded.
This probability is by two or three orders lower
than that of rather rare (∼ 10−3) single quasi-
crossings.

So, now we can give the answer to the
question we have posed above. The most
stringy correlations between level quasicross-
ings, delocalization of wave functions and res-
onant tunneling across the potential barrier take
place in the two-dimensional case (and, most
likely, in the multidimensional one, too).

The existence of the mixed state for the
many-well potentials must be well self mani-
fested in dynamics of the QWP. Preexponential
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factor of the tunnel amplitude depends on the type of classical motion and conse-
quently we expect to observe the asymmetry of the effective barrier penetration
in the mixed. This purely classical effect may be observed only if the uncertainty
in the level energy is comparable with the average distance between levels and
the system does not yet ®feels¯ that the spectrum is discrete. This determines the
time scale for which the observation of the effect is possible. It is the same time
scale on which the transition from the classical linear diffusive increasing of the
energy to quasiperiodical quantum evolution is observed [104].

3.8. Chaotic Regimes in Reactions with Heavy Ions. Outlined in the previous
sections, the common conception of QON stochastization is conˇrmed by the di-
rect observations of chaotic regimes during the process of simulation of heavy-ion
reactions. The time-dependent HartreeÄFock calculations for head-on collisions
4He+ 14C, 12C+ 12C(0+), 4He+ 20Ne have been performed by Umar et al. [11]
at bombarding energies near the Coulomb barrier. The results are interpreted in
the term of their classical behavior. After the initial contact, a compound nuclear
system relaxes into a conˇguration undergoing quasiperiodic or chaotic motion.

The analysis of nuclear density multipole moments
{
MLI(t), ṀLI(t)

}
has been

applied for classifying those motions by Poincare sections. The deˇnitions of the
moments are as follows,

MLI(t) =
∫

d3r rLYLM (r̂)ρI(r), MLI(ω) =
∫

dt exp (−iωt)MLI(t), (3.69)

where isoscalar (I = 0) and isovector (I = 1) densities,

ρI(r, t) =
{

ρp(r, t) + ρn(r, t), I = 0,
ρp(r, t)− ρn(r, t), I = 1. (3.70)

As is shown in [11], Poincare section of the isoscalar quadrupole mode
{M20(t), Ṁ20(t)} for the 24Mg nuclear system seems to be ˇlling most of the
available phase space, and the corresponding autocorrelation function

C20(t) =

∞∫
−∞

dω

2π
exp (iωt) |M20(ω)|2 (3.71)

damps fast. These ˇndings are evidence in favour of assumption that considered
motion is closer to be stochastic rather than quasiperiodic.

4. CONCLUDING REMARKS

The current review presents a complete description of classical dynamics
generated by the Hamiltonian of quadrupole oscillations along with identiˇcations
of those peculiarities of quantum dynamics which can be interpreted as QMCS.
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We have pointed up an intimate connection between dynamics features and
geometry of the PES. Interpretation of negative curvature of the PES as the source
of the local instability allows one to correctly predict the critical energy of the
transition to chaos for one-well potentials.

Particular attention has been given to the investigation of classical dynamics
in the parameter region according to the PES with a few local minima. As shown,
one of the main peculiarities of the many-well Hamiltonians is the existence of
the mixed state: realization of diverse dynamical regimes (regular or chaotic)
at one and the same energy in a different local minima. Up to now the vast
majority of theoretical and numerical works have been focused on the behaviour
of the so-called billiards or Hamiltonian systems with the simplest topology of the
PES. However it is not enough for understanding of the real many-body systems
with the complicated PES for which the mixed state is a situation of general
position. That is the reason why the present review should be treated as one of
the indispensable steps on the way to transition from the description of the model
systems to the direct consideration of much more realistic systems.

We have numerically demonstrated that for potential with a localized unstable
region (in particular, the localized region of negative Gaussian curvature) regular
motion restores at a high energy, i. e., for these potentials R-C-R transition takes
place.

QMCS in dynamics of QON were a major focus of our interest. We calculated
a semiclassical approximation to an energy spectrum of the Hamiltonian of QON
by quantization of the BirkhoffÄGustavson normal form. The variations of statisti-
cal properties of an energy spectrum in the process of R-C-R transition were stud-
ied. For the chaotic region all the analyzed statistical characteristics are seen to be
in good agreement with the GOE predictions. The obtained results for regular re-
gions are consistent with the hypothesis of the universal character of energy spec-
trum �uctuations. Nevertheless, for small level spacings we observed some devi-
ations, which were probably due to a small admixture of the chaotic component.

We proved that the type of classical motion is correlated with the structure
of the stationary wave functions of highly excited states in the R-C-R transition.
Correlations were found both in the coordinate space (the lattice of nodal curves
and the distribution of the probability density) and in the Hilbert space associated
with the integrable part of Hamiltonian (the distribution of the wave functions in
the oscillator basis and the entropy of individual eigenstates). Calculations with
the scaled Planck constant, that make it possible to obtain wave functions with
equal quantum numbers and energies corresponding to different types of classical
motion, enabled us to separate unambiguously correlation effects in the structure
of wave functions.

The Hamiltonian of QON was used as an example to study the shell structure
destruction induced by the increase of nonintegrable perturbation which models
residual nucleon-nucleon interaction. In the vicinity of the classical critical energy
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it was observed multiple quasicrossings of the energy levels, a violation of the
quasiperiodical energy dependence of the entropy, and an increase of the average
value �uctuations of the operators used to classify the eigenstates of the integrable
problem.

The optimization of the basis frequency and, as a consequence, the possibility
of diagonalization matrices of higher dimension made it possible to trace the
restoration of the shell structure in the transition C−R2 from chaos to regularity.

The process of the wave packet tunnelling through the potential barrier is
considered for the case of a ˇnite motion. We have shown that the stringent cor-
relation between level quasicrossings and a wave function delocalization leading
to the resonant tunnelling takes place.

Let us now dwell on open problems. The issue of studying of QMCS in
Hamiltonian systems with a few local minima represents almost a noninvestigated
region. Account must be taken that, in addition to conceptual difˇculties, con-
struction of a spectrum and eigenfunctions in this case is a very difˇcult computa-
tional problem. However overcoming this technical problem promises an essential
progress in our understanding of QMCS. In particular, the research of the structure
of the same wave function in the mixed state for various regions of conˇguration
space will allow us to ˇnd out more reliably QMCS, we are interesting in.

Calculation of the energy splitting ∆E due to tunneling is one of the oldest
problems of quantum mechanics. By present one-dimensional case for the most
part has gained already its sufˇcient understanding. Complications, which might
not have been expected until recently, arise in the case of a multidimensional
problem. The reason is that the semiclassical wave functions, which determine
energy splitting, are sensitive to the nature of the classical motion. Wilkinson
[105] calculated the energy splitting due to tunneling between a pair of quantum
states, which corresponds to classical motion on tori in phase space. The case
where both wave functions correspond to classical chaotic motion were discussed
by Wilkinson and Hannay [106]. While the problem of the wave function structure
for the mixed state remains to be solved. The conˇguration space in this situation
breaks up naturally into different regions (separate local minima), in each by itself
different dynamical regimes are realized. Thus, there is a need of a calculating
scheme, that will enable us to use the partial information about each isolated
region with the aim to obtain a solution of the full problem. We believe that
the path decomposition expansion of Auerbach and Kivelson [107] will prove to
be useful for solving 2D tunneling problem in the mixed state. This formalism
allows one to express the full time evolution operator as a time convolution
and surface integrations of products of restricted Green functions, each of which
involves the sum over paths that are limited to different regions of conˇguration
space. Even for complicated nonseparable potential the qualitative behaviour is
readily inferred and quantitative solutions can be obtained from knowledge of the
classical dynamics.
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Recently Zaslavsky and Edelman [108, 109] considered a model of a billiard-
type system, which consists of two chambers connected through a hole. One
chamber has a circle-shaped scatterer inside, and the other one has a Cassini oval
with a concave border. As was shown, the corresponding distribution function
does not reach equilibrium even during the anomalous large time. We want to
note, that the mixed state, at the energy a little exceeding saddle, can serve more
realistic model for the study of anomalous kinetics.

In conclusion, it should be pointed out that an important problem concerning
the role of a periodic orbit in the structure of wave functions was not considered
in this study. In the semiclassical limit, a quantum state must be determined
by the invariant sets formed by classical trajectories. These sets cover the total
energy surface for systems that are chaotic in the classical limit. The approach
in which the energy surface, as a whole, plays a dominant role is conˇrmed
by the chaotic structure of nodal curves and by the random distribution of the
probability density of the wave functions of highly excited states. However,
the ˇnding of Heller [107], who showed that wave functions can have the so-
called scars corresponding to a high concentration of a probability density near
unstable periodic orbits, demonstrates that such an approach is not complete. The
reason for this is that, although the measure of periodic trajectories is zero, their
contribution is essentially singular, in contrast to the smooth contribution from
the energy surface. All these problems require a special analysis.

This work has strongly beneˇted from the help of M. L. Bolotina, M. I. Kon-
chatnij, V.N. Tarasov, and V.V.Yanovsky. The work was partly supported by
National Fund for Fundamental Research Grant F7/336-2001.
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