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The review is devoted to a relativistic formulation of the ˇrst Dirac quantization of QED
(1927) and its generalization to the non-Abelian theories (YangÄMills and QCD) with the topological
degeneration of initial data. Using the Dirac variables we give a systematic description of relativistic
nonlocal bound states in QED with a choice of the time axis of quantization along the eigenvectors
of their total momentum operator. We show that the Dirac variables of the non-Abelian ˇelds
are topologically degenerated, and there is a pure gauge Higgs effect in the sector of the zero
winding number that leads to a nonperturbative physical vacuum in the form of the WuÄYang
monopole. Phases of the topological degeneration in the new perturbation theory are determined
by an equation of the Gribov ambiguity of the constraint-shell gauge deˇned as an integral of the
Gauss equation with zero initial data. The constraint-shell non-Abelian dynamics includes zero mode
of the Gauss-law differential operator, and a rising potential of the instantaneous interaction, that
rearranges the perturbation series and changes the asymptotic freedom formula. The Dirac variables
with the topological degeneration of initial data describe color conˇnement in the form of quark-
hadron duality as a consequence of summing over the Gribov copies. A solution of U(1) problem
is given by mixing the zero mode with η0 meson. We discuss reasons why all these physical effects
disappear for arbitrary gauges of physical sources in the standard FaddeevÄPopov integral.
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INTRODUCTION

The ˇrst papers by Dirac [1], Heisenberg, Pauli [2], and Fermi [3] on the
quantization of electrodynamics ran into difˇculties of the determination of physi-
cal variables. The interpretation of all gauge components as independent variables
contradicts the quantum principles, whereas exclusion of nonphysical variables
contradicts the relativistic principles.

The consistent quantum description of gauge constrained systems was con-
sidered by Dirac, Schwinger, Feynman, Faddeev, Gribov, and other physicists [1,
4Ä7] as one of the most fundamental problems of theoretical physics in the 20th
century.

The ˇrst quantization of electrodynamics belongs to Dirac [1] who disre-
garded the relativistic principles and excluded nonphysical components by the
reduction of the initial action to the solution of the Gauss law constraint, i. e., the
equation for the time-like component of the gauge vector ˇeld. The Gauss law
connects initial data of the time-like component with the data of all other ˇelds.
But this constraint-shell method had a set of defects, including nonlocality, ex-
plicit noncovariance as the dependence on the external time axis of quantization,
and complexity. FeynmanÄSchwingerÄTomonaga formulation of QED admitted
a simpler method based on the extended dynamics where all components were
considered on equal footing with ˇxing a relativistic gauge.

At the beginning of the 1960s, Feynman found that the naive generalization
of his method of construction of QED did not work for the non-Abelian theory.
The unitary S matrix in the non-Abelian theory was obtained in the form of the
FaddeevÄPopov (FP) path integral [8] by the brilliant application of the theory
of connections in vector bundle. There is an opinion that the FP path integral is
the highest level of quantum description of gauge relativistic constrained systems.
In any case, just this FP integral was the basis to prove renormalizability of
the uniˇed theory of electroweak interactions in papers by 't Hooft and Veltman
awarded the Nobel prize in 1999.

Nevertheless, in the context of the ˇrst Dirac quantization and its Hamiltonian
generalizations [9, 10], the intuitive status of the FP integral was so evident that
two years after the paper [8], Faddeev gave the foundation of the FP integral
by the construction of the unitary S matrix [6] for an ®equivalent non-Abelian
unconstrained system¯ derived by resolving constraints in terms of the radiation
variables of the Hamiltonian description.

Faddeev showed that on the one hand, the constraint-shell dynamics is com-
patible with the simplest quantization by the standard Feynman path integral,
on the other hand, this Feynman integral is equivalent to the FP integral in an
arbitrary gauge. This equivalence was proved by the change of variables in
the Feynman path integral that removed the time-like vector of the canonical
quantization into the phase factors of physical source terms. These phase fac-
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tors disappear for S-matrix elements on the mass shell of elementary particles.
In other words, Faddeev proved the equivalence of the constraint-shell approach
with quantization of gauge theories by the gauge-ˇxing method only for scattering
amplitudes [6] where all color particle-like excitations of the ˇelds are on their
mass-shell. But the scattering amplitudes for color particles are nonobservable
in QCD. The observables are hadrons as colorless bound states where elemen-
tary particles are off the mass-shell. Just for this case, the Faddeev theorem of
equivalence of different gauges becomes problematic even for QED in the sec-
tor of instantaneous bound states, as the FP integral in a relativistic gauge loses
all propagators with analytic properties that lead to instantaneous bound states
identiˇed with observable atoms.

The Faddeev equivalence theorem [6] was proved before the revelation of
nontrivial topological properties [11Ä13] and the Gribov ambiguities [7]. These
new facts were studied mainly on the level of the FP integral. The topological
degeneration of classical vacuum was incorporated into the FP integral in the
form of the instanton solutions [11].

It seems more natural, ˇrst, to study the topological degeneration of all
non-Abelian physical states at the more fundamental level of the constraint-shell
dynamics compatible with the Feynman path integral and, then, to obtain the
corresponding non-Abelian FP path integral analyzing possible Gribov copies.

The ˇrst quantization of electrodynamics was fulˇlled just at the level of
the constraint-shell dynamics by Dirac [1]. The Dirac reduction is based on
the honest resolution of the Gauss law constraint and introduction of the Dirac
nonlocal gauge-invariant physical variables [1, 14, 15], instead of gauge-ˇxing.
The Dirac method is the way to distinguish the unique (radiation) gauge of
physical sources.

The present review is devoted to the generalization of the Dirac variables [1,
14, 15] to the non-Abelian theories with the topological degeneration of the ini-
tial data in QCD in the class of functions of nontrivial topological transforma-
tions [16Ä20].

We present here a set of arguments in favor of that the constructed equivalent
unconstrained system contains the most interesting physical effects of hadroniza-
tion and conˇnement in QCD that can be hidden in explicit solutions of constraints
and equations of motion [18, 19, 21, 22]. We show also that the FP integral in
an arbitrary relativistic gauge loses all these effects. The relativistic covariant
properties of the Dirac variables [23] allow us to use the MarkovÄYukawa [24]
prescription of construction of the multilocal irreducible representations of the
Poincare group and to formulate the generalized S-matrix formalism where the
time axis of the Hamiltonian description is proportional to eigenvectors of the
total momenta operator of any physical state [25Ä31].
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1. DIRAC VARIABLES IN QED

1.1. Gauge-Fixing Method of 1967. We formulate the statement of the
problem using QED. It is given by the action

W [A, ψ, ψ̄] =
∫

dx

[
−1

4
(Fµν)2 + ψ̄(i /∇(A) − m0)ψ

]
, (1)

∇µ(A) = ∂µ − ieAµ, /∇ = ∇µγµ, Fµν = ∂µAν − ∂νAµ. (2)

This action contains gauge ˇelds more than independent degrees of freedom.
First of all it is invariant with respect to gauge transformations

AΛ
µ = Aµ + ∂µΛ, ψΛ = exp [ieΛ]ψ. (3)

One supposes that this invariance allows us to remove one ˇeld degree of freedom
with the help of arbitrary gauges

F (Aµ) = 0, F (Au
µ) = MF u �= 0, (4)

where the second equation means that the gauge ˇxes ˇeld unambiguously.
The standard quantization of the gauge ˇeld system in the gauge F (Aµ) = 0

is based on the FP path integral [8]

ZFP[sF , s̄F , JF ] =

=
∫ ∏

µ

DAF
µ DψF Dψ̄F ∆F

FPδ(F (AF )) exp (iW [AF , ψF ψ̄F ] + iSF ), (5)

where ∆F
FP = det MF is FP determinant and

SF =
∫

d4x
(
s̄F ψF + ψ̄F sF + AF

µ Jµ
)

(6)

are the sources. The foundation of the intuitive FP integral by the canonical
quantization was made in Faddeev's paper [6].

After the Faddeev papers of 1967Ä1969, there dominates very popular opinion
that all physical results do not depend on a gauge F (Aµ) = 0. A gauge is deˇned
for reasons of simplicity and convenience, including the condition det MF �= 0;
the opposite case det MF = 0 is called the Gribov ambiguity [7]. All applications
of quantum gauges theory after 1967Ä1969, including investigation of the Gribov
ambiguity [32], topological degeneration of initial data [11], hadronization [33],
parton models [34], etc., were fulˇlled at the level of the FP integral (5).

While, in Faddeev's paper [6] there was established the range of validity of
the FP integral and its gauge independence. Faddeev managed to prove the FP
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integral by the canonical quantization only in the sector of scattering amplitudes
for elementary particles on their mass-shell. This proof becomes doubtful for
bound states where elementary particles are off mass-shell, the latter is crucial for
QCD where only bound states are observable.

The present review is devoted to consideration of the problems of bound
states, Gribov copies, and topological degenerations of initial data at the more
fundamental level of the Dirac canonical quantization of 1927 [1].

1.2. Dirac Reduction and Dirac Variables. The situation with canonical
quantization of gauge theories before the FP revolution of 1967 was presented
in the review by I. V. Polubarinov [14]. Igor Vasil'evich intended to send his
manuscript to ®Usp. Fiz. Nauk¯. It is a pity that this nice review was not
published. After 1967, Polubarinov tried to include the FP integral in his review,
but he was not satisˇed by the level of the physical foundation of the FP scheme
of quantization in the context of the ˇrst (constraint-shell) formulation of QED
that belongs to Dirac [1]. We reproduce here this formulation.

The Dirac quantization was based on a deˇnite frame of reference distin-
guished by the time axis ηµ = (1, 0, 0, 0), which allows us to establish boundary
conditions and initial data. In special relativity, Einstein identiˇed a frame of
reference with a set of the watches, rulers, and other physical instruments for
measurement of physical quantities (that include in our case a spectrum of the
ˇeld excitations). The classical equations are split on the Gauss law constraint

δW

δA0
= 0 ⇒ ∆A0 = ∂i∂0Ai + j0 (∆ = ∂i∂i, jµ = eψ̄γµψ), (7)

and equations of motion

δW

δAk
= 0 ⇒ ∂2

0Ak − ∂k∂0A0 − (δki∆ − ∂k∂i)Ai = jk, (8)

δW

δψ
= 0 ⇒ ψ̄(i /∇(A) + m0) = 0,

δW

δψ̄
= 0 ⇒ (i /∇(A) − m0)ψ = 0. (9)

The problem of canonical quantization meets with the nondynamic status of the
time component A0 = Aµηµ. The nondynamic status of A0 is not compatible
with quantization of this component as the ˇxation of A0 (by the Gauss law), and
its zero momentum E0 = ∂L/∂(∂0A0) = 0 contradicts the commutation relation
and uncertainty principle. To keep quantum principle, Dirac excluded the time
component using the Gauss law constraint (7): an explicit solution of this Gauss
law

A0(t, x) = a0[A] +
1
∆

j0(t, x), (10)
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where

a0[A] =
1
∆

∂i∂0Ai(t, x), (11)

connects initial data of A0(t0, x) with a set of the initial data of the longitudinal
component ∂i∂0Ai(t, y), and current j0(t, y) in the whole space, here

1
∆

f(x) = − 1
4π

∫
d3y

f(y)
|x − y| (12)

is the Coulomb kernel of the nonlocal distribution. One can substitute the solution
(10) into equation for spatial component (8)

δW

δAi

∣∣∣∣∣
δW/δA0=0

⇒
[
δik − ∂i

1
∆

∂k

]
(∂2

0 − ∆)Ak = ji − ∂i
1
∆

∂0j0. (13)

We can see that the constraint-shell equations (13) contain only two transverse
physical variables as the gauge-invariant functionals

A∗
i (t,x) =

[
δik − ∂i

1
∆

∂k

]
Ak. (14)

Dirac generalized these gauge-invariant variables onto all ˇelds by gauge trans-
formations ∑

a=1,2

ea
kAD

a = AD
k [A] = v[A]

(
Ak + i

1
e
∂k

)
(v[A])−1,

ψD[A, ψ] = v[A]ψ,

(15)

where the gauge factor [1] is deˇned by

v[A] = exp
{

ie

∫ t

t0

dt′a0(t′)
}

. (16)

Using the gauge transformations (3)

aΛ
0 = a0 + ∂0Λ ⇒ v[AΛ] = exp [ieΛ(t0,x)]v[A] exp [ieΛ(t,x)], (17)

we can ˇnd that initial data of the gauge-invariant Dirac variables (15) are de-
generated with respect to stationary gauge transformations

AD
i [AΛ] = AD

i [A] + ∂iΛ(t0,x),

ψD[AΛ, ψΛ] = exp [ieΛ(t0,x)]ψD[A, ψ].
(18)
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The Dirac variables (15) as the functionals of initial ˇelds satisfy the Gauss law
constraint

∂0

(
∂iA

D
i (t,x)

)
≡ 0. (19)

Thus, explicit resolving of the Gauss law allows us to remove two degrees of
freedom and to reduce the gauge group into the subgroup of the stationary gauge
transformations (18).

We can ˇx a stationary phase Λ(t0,x) = Φ0(x) by an additional constraint
in the form of the time integral of the Gauss law constraint (19) with zero initial
data

∂iA
D
i = 0. (20)

We call this equation the constraint-shell ®gauge¯. This ®gauge¯ restricts initial
data to a phase distinguished by the equations ∆Φ0(x) = 0. Nontrivial solutions
of this equation we call the degeneration of initial data and the Gribov copies
of the constraint-shell ®gauge¯. The degeneration of initial data is determined
by topological properties of the manifold of stationary gauge transformations in
the class of functions with a ˇnite density of energy. In the case of the three-
dimensional QED there is only a trivial solution Φ0(x) = 0. In this case

ψD = ψ∗, AD = A∗
i .

In the one-dimensional QED and non-Abelian theory the degeneration of initial
data is the evidence of a zero mode of the Gauss law constraint that describes the
topological excitation of gauge ˇeld with the Coleman spectrum of the electric
tension [17, 19, 35, 36]. We consider this zero mode in the Section devoted to
YangÄMills theory.

Dirac constructed an equivalent unconstrained system, the equations of which
reproduce the equations of the initial theory (1).

W ∗ = W |δW/δA0=0 =

=
∫

d4x
1
2

[ ∑
a=1,2

(∂µA∗
a∂µA∗

a) +
1
2
j∗0

1
∆

j∗0 − j∗i A∗
i + ψ̄∗(i∂/ − m)ψ∗

]
. (21)

To derive this equivalent unconstrained system that contains only physical vari-
ables, Dirac [1,14] proposed to change the order of constraining and varying. He
substituted the solution of the Gauss law constraint (10) into the initial action (1)
in the rest frame ηµ = (1, 0, 0, 0) and introduced the Dirac variables (15).

To combine the nonlocal physical variables A∗
i and variational principle

formulated for local ˇelds, we can introduce three independent variables. In this
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case, the Dirac action should be added by the Lagrange multiplier [14]

Weff = W ∗ +
∫

d4xλL(x)∂iA
∗
i . (22)

The local equations of the equivalent unconstrained system (22)

δWeff

δA∗
i

= 0,
δWeff

δλL
= 0,

δW ∗

δψ∗ = 0,
δW ∗

δψ̄∗ = 0 (23)

completely coincide with the equations of the initial constrained action (7)Ä(9).
Equations (23) reproduce the constraint (20) and lead to the equation for the
Lagrange multiplier

∆λL(t,x) = 0. (24)

The latter coincides with the equation for the stationary phase. In three-dimensio-
nal QED both λ and Φ0 are equal to zero in the class of functions where the
physical ˇelds are deˇned.

In three-dimensional QED there are only three subtle differences of the equiv-
alent unconstrained system (22) from the initial gauge theory (1). First of them
is the origin of the current conservation law. In the initial constrained system (1),
the current conservation law ∂0j0 = ∂iji follows from the equations for the gauge
ˇelds; whereas the similar law ∂0j

∗
0 = ∂ij

∗
i in the equivalent unconstrained sys-

tem (21) follows only from the classical equations for the fermion ˇelds. This
difference becomes essential in quantum theory. In the second case, we cannot
use the current conservation law, if the quantum fermions are off mass-shell, in
particular, in an atom. What we observe in an atom? The bare fermions, or
dressed ones (15)? Dirac supposed [1] that we can observe only gauge invariant
quantities of the type of the dressed ˇelds. Really, we can convince that dressed
ˇelds (15) as nonlocal functionals from initial gauge ˇelds are invariant with
respect to the time-dependent gauge transformations of these initial ˇelds (3).

The gauge invariance with respect to the time-dependent gauge transforma-
tions is the second difference of the nonlocal Dirac variables (15) from the initial
ˇelds of the constrained system (1) with usual transformational properties with
respect to the gauge and Lorentz transformations.

The gauge constraint ∂iAi = 0, in the gauge-ˇxing method, is associated with
the relativistic noncovariance. Whereas, the observable nonlocal variables (15)
depend on the time axis by the relativistic covariant manner. Polubarinov's
review [14] was mainly devoted to the relativistic covariant formulation of the
Dirac quantization [1].

The gauge-ˇxing method and its terminology ®the Coulomb gauge¯ do not
re	ect these three properties of the Dirac observables in the constraint-shell
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QED (21): the off-mass-shell nonconservation of the current, gauge invari-
ance (3), and relativistic covariance.

In fact, the term gauge (20) means a choice of nonlocal variables, or more
exactly, a gauge of physical sources associated with these variables.

This Dirac construction of a relativistic covariant equivalent unconstrained
system can be generalized also on massive vector theories [37]. The generalization
of the ˇrst Dirac quantization on the non-Abelian theory, including QCD [16Ä18,
20,22], is the topic of the present review.

1.3. Relativistic Covariance. Relativistic transformations of the Dirac vari-
ables are discussed in detail in the Polubarinov review [14] (see also [38Ä40]). If
we make usual relativistic transformations of the initial ˇelds Ai, A0, ψ with the
parameter εi

δ0
LAk = εi(x′

i∂0′ − x′
0∂i′ )Ak(x′) + εkA0,

(25)

δ0
Lψ = εi(x′

i∂0′ − x′
0∂i′)ψ(x′) +

1
4
εk[γi, γj ]ψ(x′),

then the physical variables (15) suffer the HeisenbergÄPauli transformations [2]

A∗
k[Ai + δ0

LA] − A∗
k[A] = δ0

LA∗
k + ∂kΛ, (26)

ψ∗[A + δ0
LA, ψ + δ0

Lψ] − ψ∗[A, ψ] = δ0
Lψ∗ + ieΛ(x′)ψ∗, (27)

were

Λ[A∗, j∗0 ] = εk
1
∂2

(
∂0A

∗
k + ∂k

1
∆

j∗0

)
. (28)

These transformations were interpreted by Heisenberg and Pauli [2] (with ref-
erence to the unpublished note by von Neumann) as the transition from the
Coulomb gauge with respect to the time axis in the rest frame η0

µ = (1, 0, 0, 0)
to the Coulomb gauge with respect to the time axis in the moving frame (see
the Figure).
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These transformations correspond to the ®change of variables¯

ψ∗(η), A∗(η) → ψ∗(η′), A∗(η′), (29)

so that they became transverse with respect to the new time axis η′ (or, from
the point of view of the ®gauge-ˇxing¯ method of reduction, the transforma-
tions (25), (26)) correspond to the ®change of gauge¯.

In result we got the relativistic covariant separation of the interaction on the
Coulomb potential (instantaneous with respect to the time axis ηµ) and on the
retardation.

The Coulomb interaction has the covariant form

WC =
∫

d4xd4y
1
2
j∗η(x)VC (z⊥)j∗η (y)δ(η · z). (30)

Here

j∗η = eψ̄∗η/ψ∗, z⊥µ = zµ − ηµ(z · η), zµ = (x − y)µ, (31)

VC(r) = − 1
4πr

, r = |z|. (32)

Finite Lorentz transformations from the time axis η(1) to the time axis η(2) were
constructed in paper [14] using the gauge transformations

ieA(2) = U(2,1)[ieA(1) + ∂]U−1
(2,1), ψ(2) = U(2,1)ψ

(1), (33)

where U2,1 = v(2)v
−1
(1) , and v(2), v(1) are the Dirac gauge factors (16) for the time

axes η(2) and η(1), respectively.
1.4. Quantization and Feynman Path Integral. The initial action (1) is not

compatible with quantum principles. The Dirac formulation of the equivalent
unconstrained system keeps the quantum principles by the value of excluding the
nonphysical components. We quantize the equivalent unconstrained system with
gauge-invariant physical variables (15). The corresponding commutation relations

i
[
∂0A

∗
i (x, t), A∗

j (y, t)
]

=
(

δij − ∂i
1
∆

∂j

)
δ3(x − y),{

ψ̂∗+(x, t), ψ̂∗(y, t)
}

= δ3(x − y)

lead to the generating functional for Green's function of the obtained uncon-
strained system in the form of the Feynman path integral

Z∗
η [s, s̄∗, J∗] =

∫ ∏
j

DA∗
jDψ∗Dψ̄∗eiW∗[A∗,ψ∗,ψ̄∗]+iS∗

, (34)
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with external source terms

S∗ =
∫

d4x
(
s̄∗ψ∗ + ψ̄∗s∗ + J∗

i A∗
i

)
. (35)

By the construction of the unconstrained system this generating functional is
gauge-invariant and relativistic covariant. Relativistic transformation properties
of the quantum ˇelds should repeat the ones of the Dirac variables (15) as
nonlocal functionals of the initial ˇelds. As was shown in papers [4,14,23,38Ä40],
quantum theory with the gauge-invariant Belinfante energy-momentum tensor on
the constraint

Tµν = FµλFλ
ν + ψ̄γµ[i∂ν + eAν ]ψ − gµνL +

i

4
∂λ[ψ̄Γλ

µνψ],

(36)

Γλ
µν =

1
2
[γλγµ]γν − gµνγλ − δλ

ν γµ

completely reproduced the symmetry properties of the ®classical¯ theory (25)
(26), (28)

iεk[M0k, ψ∗] = δ0
Lψ∗ + ieΛ[A∗, j∗0 ]ψ∗, M0k =

∫
d3x[xkT00 − tT0k]. (37)

This Lorentz transformation of the operator quantization means the change of the
time axis on the level of the Feynman path integral

Z∗
Lη[s∗, s̄∗, J∗] = Z∗

η [Ls∗, Ls̄∗, LJ∗]. (38)

This scheme of quantization depends on a choice of the time axis. If one chooses
a deˇnite frame of reference with the initial time axis, any Lorentz transformation
turns this time axis by the relativistic covariant manner. In this meaning, the
constraint dynamics is relativistic covariant. Another problem is to ˇnd conditions
when measurable physical quantities and results of theoretical calculations do not
depend on the time axis (identiˇed with a physical device). This independence
exists only for scattering amplitudes of particles onto their mass-shell [6]. In this
case, one can say about the relativistic invariance of the scattering amplitudes of
the local degrees of freedom. But, it is well known that the Green functions (in
particular, one-particle Green function) and instantaneous bound states depend on
the time axis. In general case, measurable quantities in electrodynamics depend
on the time axis and other parameters of a physical device including its size and
energy resolution [17].

If a nonlocal process depends on the time axis, one should establish a principle
of the choice of this time axis.

We shall use the generalization of the MarkovÄYukawa principle [24] sup-
posed in [18, 25, 41, 42]: in concrete calculations the time axis is chosen to be
parallel to a total momentum of any state.



DIRAC VARIABLES IN GAUGE THEORIES 689

In particular, this choice and the nonlocal relativistic transformations (37) re-
move all infrared divergences from the one-particle Green function in the radiation
variables [18,41,42]

i(2π)4δ4(p − q)G(p − q) =
∫

d4d4y exp (ipx − iqy)〈0|T ψ̄∗(x)ψ∗(y)|0〉,

G(p) = G0(p) + G0(p)Σ(p)G0(p) + O(α4), G0(p) = [� p − m]−1,
(39)

Σ(p) =
α

8π3i

∫
d4q

q2 + iε

[(
δij − qi

1
q2

qj

)
γiG0(p + q)γj +

+ γ0G0(p + q)γ0
1
q2

]
=

α

4π
Π(p),

where Π(p) is

m(3D + 4) − D(� p − m) +
1
2
(� p − m)2

[
(� p + m)

p2

(
ln

m2 − p2

m2

)
×

×
(

1 +
� p(� p − m)

2p2

)
− � p

2p2

]
,

and D is an ultra-violet divergence. The transition to another Lorentz frame p′µ =
(p′0,p

′ �= 0) is accompanied by the additional diagrams 〈0|T ψ̄∗(x)δLψ∗(y)|0〉
induced by the transformation (37). As a result, in another frame we get the same
relativistic covariant expression depending on the new momentum p′ (see details
in [41,42]).

1.5. Gauge Equivalence Theorem and FP Integral. Thus, the constraint-
shell generational functional (34) is relativistic-covariant (38) and gauge-invariant
by the construction. The main difference of this functional from the intuitive
FP integral (5) is the information contained in the solution of the constraint,
i. e., the electrostatic phenomena of the instantaneous interaction, including the
Coulomb-like bound states.

The FaddeevÄPopov integral for the generating functional of Green functions
in the gauge (F (A) = 0 can be obtained from the Feynman integral [6] by two
steps: a) a change of variables, and b) a change of sources.

a) The change of variables is fulˇlled by the Dirac factors (15), (16)

A∗
k[AF ] = v[AF ]

(
AF

k + i
1
e
∂k

)
(v[AF ])−1, (40)

ψ∗[AF ] = v[AF ]ψ,

v[AF ] = exp
{

ie
1
∆

∂jAF
j

}
. (41)
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This change introduces additional degrees of freedom and the FP determinant
∆F

FP of the transition to new variables of integration. These degrees are removed
by additional constraints F (A) = 0. Finally, the constraint-shell functional Z∗

(34) takes the equivalent form of the FP path integral

Z∗[s∗, s̄∗, J∗] =
∫ ∏

µ

DAF
µ DψF Dψ̄F ∆F

FPδ(F (AF )) eiW [AF ,ψF ψ̄F ]+iS∗
, (42)

all electrostatic monopole physical phenomena that depend on the time axis are
concentrated in the Dirac gauge factor v(A) that accompanies the physical sources
s̄∗, s∗, J∗,

S∗ =
∫

d4x
(
(v[AF ])−1s̄∗ψF + ψ̄F (v[AF ])−1s∗ + J∗

i A∗
i [A

F ]
)
. (43)

Thus, this change of variables corresponds to the rearrangement of the Feynman
diagrams. In particular, after the change of variables, the sum of the Coulomb
kernel and transverse photon propagator

KR(J) = J
(1)
0

1
q2

J
(2)
0 + J

(1)
i

(
δij − qi

1
q2

qj

)
1

q2
0 − q2

J
(2)
j

converts into the identically equivalent sum of the Feynman gauge propagator
KF and the longitudinal term KL:

KR(J) ≡ KF (J) + KL(J), (44)

where

KF (J) = −
[
J

(1)
0 J

(2)
0 − J

(1)
i J

(2)
i

] 1
q2
0 − q2

,

KL(J) =
[
(q0J

(1)
0 )(q0J

(2)
0 ) − (qiJ

(1)
i )(qjJ

(2)
j )
] 1
q2(q2

0 − q2)
.

b) The next step is the change of sources

S∗ ⇒ SF =
∫

d4x
(
s̄F ψF + ψ̄F sF + AF

µ Jµ
)
. (45)

In the result, we get the original FP integral (5)

ZFP[sF , s̄F , JF ] =

=
∫ ∏

µ

DAF
µ DψF Dψ̄F ∆F

FPδ(F (AF )) eiW [AF ,ψF ψ̄F ]+iSF

(46)
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without the Dirac factors. Changing the sources we lose the Dirac factor together
with the class of the spurious diagrams that remembered the electrostatic phe-
nomena and instantaneous bound states. One of these spurious diagrams is the
longitudinal term KL in equation (44). This longitudinal term disappears only on

the mass-shell (because of the current conservation law J
(1,2)
0 q0 = J

(1,2)
i qi). As

we have seen before, the Dirac nonlocal gauge-invariant observable currents do
not satisfy the conservation law for particles off the mass-shell, in particular, in
bound states.

Really, the FP perturbation theory in the relativistic gauge (46) contains only
photon propagators with the light-cone singularities forming the WickÄCutkosky
bound states with the spectrum differing from the observed one which corresponds
to the instantaneous Coulomb interaction [43]. The WickÄCutkosky bound states
have the problem of a tachyon and the probability interpretation. These prob-
lems were solved by the quasipotential method [44] that introduces instantaneous
bound states, and the corresponding time axis as the MarkovÄYukawa prescrip-
tion [24].

Thus, in QED, the fundamental constraint-shell functional (34) coincides
with the FP integral (42) in the sector of scattering amplitudes for elementary
particles on their mass-shell [6] that is not actual for solution of the problem
of hadronization in QCD. For description of the bound state sector in gauge
theories, including QCD, we have three alternatives: 1) the FP integral (42), 2) its
quasipotential approach to bound states at the level of the FP integral [44], and
3) the constraint-shell functional (34) added by the MarkovÄYukawa prescription
of the choice of the time axis.

After the Faddeev papers of 1967Ä1969 solutions of all problems of gauge
theories, including the description of bound states, the Gribov ambiguity [7],
topological degeneration [11, 12], were considered only at the level of the FP
integral (42).

The task of the present paper is to consider these problems at the most
fundamental level of the Hamiltonian approach to quantization of gauge theories.
It is based on a deˇnite frame of reference, that includes a choice of the time
axis, initial data, boundary conditions, normalization of wave functions, bound
states, etc. It is useful to recall the following words by Max Born about quantum
theory ([45, p. 108]): ®The clue is the point ..., that quantum mechanics does not
describe a situation in an objective external world, but a deˇnite experimental
arrangement for observing a section of the external word. Without this idea even
the formulation of a dynamical problem in quantum theory is impossible. But if it
is acceptable, the fundamental indeterminacy in the physical predictions becomes
natural as no experimental arrangement can ever be absolute precise¯. Following
to Max Born one can say that the Hamiltonian description of any quantum system
is determined by ®a deˇnite experimental arrangement for observing a section of
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the external word¯. If it is acceptable, the dependence of the quantum description
of nonlocal processes on a frame of reference becomes natural as any experimental
arrangement is included in this frame. The Hamiltonian method determines the
energy spectrum of physical states. Therefore, a direction of the total momentum
of any physical state is distinguished. In the case of bound states, the time axis
is chosen along the total momentum of any bound state in the context of the
MarkovÄYukawa solution [24,25,46] of the problem of the relativistic covariance
in QED.

2. QED OF BOUND STATES: SPECTRUM AND S MATRIX

2.1. MarkovÄYukawa Prescription. One of the ˇrst deˇnitions of the phys-
ical bound states in QED belongs to Lord Eddington: ®A proton yesterday and
electron today do not make an atom¯ [46]. It is clear that we can observe
experimentally two particles as a bound state M(x, y) at one and the same time

M(x, y) = eiMX0ψ(zi)δ(z0), (47)

where Xµ and zµ are the total and relative coordinates

Xµ =
(x + y)µ

2
, zµ = (x − y)µ. (48)

This principle of the simultaneity has more deep mathematical meaning [25,
47] as the constraint of irreducible nonlocal representations of the Poincare group
for arbitrary bilocal ˇeld M(x, y) = M(z|X)

zµ
∂

∂Xµ
M(z|X) = 0, M(z|X) ≡ M(x, y). (49)

This constraint is not connected with the dynamics of interaction and realized the
Eddington simultaneity.

The general solution of the irreducibility constraint (49) can be written in the
form of the expansion of the bilocal ˇeld M(z|X) with respect to ®in¯ and ®out¯
plane waves

M(z|X) =
∑
A

∫
d3PA√
(2π)3ωA

×

×
[
eiPAXΦPA(z⊥A )a(+)

PA
+ e−iPAXΦ̄PA(z⊥A )a(−)

PA

]
δ

(
PAz√
P2

)
, (50)
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where a
(±)
PA

are coefˇcients of the expansion. ΦPA(z⊥A), Φ̄PA(z⊥A ) are the nor-
malized amplitudes in the space of relative coordinates orthogonal to the total
momentum of an atom PA

(z⊥A)µ = zµ − PAµ

(
PA · z
P2

)
. (51)

It is clear, that at the point of the existence of the bound state with the deˇnite
total momentum PAµ any instantaneous interaction (30) with the time axis ηµ

parallel to this momentum ηµ ∼ PAµ

ηµM(z|X) ∼ PAµM(z|X) =
1
i

∂

∂Xµ
M(X |z) (52)

is much greater than any ®retardation¯ interaction [48]. It is just our principle of
the choice of the time axis of the Dirac quantization of a gauge theory. A time axis
is chosen to be parallel to the total momentum of a considered state. In particular,
for bound states this choice means that the coordinate of the potential coincides
with the space of the relative coordinates of the bound state wave function in
accordance with the MarkovÄYukawa prescription [24] and the Eddington concept
of simultaneity [46]. In this case, we get the relativistic covariant dispersion
law and invariant mass spectrum. The relativistic generalization of the Coulomb
potential is not only the change of the form of the potential, but also the change of
a direction of its motion in four-dimensional space to lie along the total momentum
of the bound state. The relativistic covariant unitary perturbation theory in terms
of such relativistic instantaneous bound states has been constructed in [25]. In
this perturbation theory, each instantaneous bound state in QED has a proper
equivalent unconstrained system of the Dirac quantization. The manifold of
frames corresponds to the manifold of ®equivalent unconstrained systems¯. In this
case, the bilocal ˇelds (60) automatically belong to the irreducible representation
of the Poincare group [47].

By analogy, we introduce for the N -local ˇeld the total and relative coordi-
nates

Xµ =
1
N

N∑
i=1

xiµ, z(i)
µ = xiµ − Xµ (53)

which are connected by the identity

N∑
i=1

z(i)
µ = 0.

Then, the generalization of the MarkovÄYukawa condition takes the form

z(i)
µ

∂

∂Xµ
Φ(z(1)

µ , z(2)
µ , . . . , z(N)

µ ) = 0 (i = 1, 2, . . . , N). (54)
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Let Pµ be the eigenvalue of the operator for the total 4-momentum, and ηµ be
the unit vector in the direction P(ηµ ∼ Pµ). Owing to the condition (54) the
N -local function

Φ(p⊥(1)
µ , p⊥(2)

µ , . . . , p⊥(N)
µ |P),

being the Fourier transform of Φ(z(1)
µ , Xµ) with respect to all coordinates, depends

only on the transverse relative momenta

p(i)⊥
µ = p(i)

µ − ηµ(p(i) · η),
N∑

i=1

p(i)⊥
µ = 0. (55)

See also the generalization of the MarkovÄYukawa condition for three-
local [49] and N -local [50] cases.

2.2. Effective Lagrangian of Bilocal Fields. The constraint-shell QED allows
us to construct the ®bound state¯ relativistic covariant perturbation theory with
respect to ®retardation¯ [25, 48]. Our solution of the problem of relativistic
invariance of the nonlocal objects is the choice of the time axis as a vector operator
with eigenvalues proportional to total momenta of bound states (52) [25]. In this
case, the relativistic covariant unitary S matrix can be deˇned as the Feynman
path integral

Z∗
η̂ [s, s̄∗, J∗] = 〈∗|

∫
Dψ∗Dψ̄∗ eiW∗

C [ψ∗,ψ̄∗]+iS∗ |∗〉, (56)

where

〈∗|F |∗〉 =
∫ ∏

j

DA∗
j eiW∗

0 [A∗]F (57)

is the averaging over transverse photons

WC [ψ, ψ̄] =
∫

d4x

[
ψ̄(x)(i/∂ − ie/A∗ − m0)ψ(x) +

+
1
2

∫
d4y(ψ(y)ψ̄(x))K(η)(z⊥ | X)(ψ(x)ψ̄(y))

]
. (58)

Here /∂ = ∂µγµ, K(η) is the kernel

K(η)(z⊥ | X) = /ηV (z⊥)δ(z · η)/η,
(59)

(/η = ηµγµ = γ · η, z⊥µ = zµ − ηµ(z · η)),
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and z and X are the relative and total coordinates deˇned in equation (48), and
V (z⊥) is the potential depending on the transverse component of the relative
coordinate with respect to the time axis η

ηµ ∼ i
∂

∂Xµ
. (60)

In the context of this perturbation theory the bound state total momentum
operators (23) can form the ®new quantum numbers¯ of the type the IsgurÄWise
ones [51,52].

It seems that the most straightforward way for constructing a theory of bound
states is the redeˇnition of action (58) in terms of bilocal ˇelds by means of the
Legendre transformation [53,54]

1
2

∫
d4xd4y(ψ(y)ψ̄(x))K(x, y)(ψ(x)ψ̄(y)) =

= −1
2

∫
d4xd4yM(x, y)K−1(x, y)M(x, y) +

+
∫

d4xd4y(ψ(x)ψ̄(y))M(x, y), (61)

where K−1 is the inverse of the kernel (59). Following Ref. 54, we introduce the
short-hand notation∫

d4xd4yψ(y)ψ̄(x)(i/∂ − ie/A∗ − m0)δ(4)(x − y) = (ψψ̄,−G−1
A ), (62)∫

d4xd4y(ψ(x)ψ̄(y))M(x, y) = (ψψ̄,M). (63)

After quantization (or integration) over Nc fermion ˇelds and normal order-
ing, the functional (56) takes the form

Z∗
η̂ [s, s̄∗, J∗] = 〈165 ∗ |

∫ ∏
DMeiWeff [M]+iSeff [M]|∗〉, (64)

where

Weff [M] = (ψψ̄, (−G−1
A + M)) − 1

2
(M,K−1M) (65)

is the effective action, and

Seff [M] = (s∗s̄∗, (G−1
A −M)−1) (66)
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is the source term. The effective action can be decomposed in the form

Weff [M] = −1
2
Nc(M,K−1M) + iNc

∞∑
n=1

1
n

Φn. (67)

Here Φ ≡ GAM, Φ2, Φ3, etc., mean the following expressions

Φ(x, y) ≡ GAM =
∫

d4zGA(x, z)M(z, y),

Φ2 =
∫

d4xd4yΦ(x, y)Φ(y, x), (68)

Φ3 =
∫

d4xd4yd4zΦ(x, y)Φ(y, z)Φ(z, x), etc.

As a result of such quantization, only the contributions with inner fermionic
lines (but no scattering and dissociation channel contribution) are included in the
effective action since we are interested only in the bound states.

The requirement for the choice of the time axis (60) in bilocal dynamics is
equivalent to MarkovÄYukawa condition [24] (69)

zµi
∂M(z|X)

∂Xµ
= 0, M(z|X) ≡ M(x, y), (69)

where zµ = (x− y)µ and Xµ = (1/2)(x + y)µ are relative and total coordinates.
2.3. Quantization of Bilocal Fields. The ˇrst step to the quantization of the

effective action is the determination of its minimum

N−1
c

δWeff(M)
δM = −K−1M + i

∞∑
n=1

GA(MGA)n ≡

≡ −K−1M +
i

G−1
A −M

= 0. (70)

We denote the corresponding classical solution for the bilocal ˇeld by Σ(x−y). It
depends only on the difference x− y because of translation invariance of vacuum
solutions.

The next step is the expansion of the effective action around the point of
minimum M = Σ + M′,

Weff(Σ + M′) = W
(2)
eff + Wint,

W
(2)
eff (M′) = WQ(Σ) + Nc

[
−1

2
M′K−1M′ +

i

2
(GΣM′)2

]
, (71)

Wint =
∞∑

n=3

W (n) = iNc

∞∑
n=3

1
n

(GΣM′)n, (GΣ = (G−1
A − Σ)−1),
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and the representation of the small 	uctuations M′ as a sum over the complete
set of orthonormalized solutions Γ, of the classical equation

δ2Weff(Σ + M′)
δM2

∣∣∣∣
M′=0

Γ = 0 (72)

with a set of quantum numbers (H) including masses MH =
√
P2

µ and energies

ωH =
√

P2 + M2
H

M′(z|X) =
∑
H

∫
d3P

(2π)3/2
√

2ωH

∫
d4q

(2π)4
×

× {eiPXΓH(q⊥|P)a+
H(P) + e−iPXΓ̄H(q⊥| − P)a−

H(P)}. (73)

The bound state creation and annihilation operators obey the commutation rela-
tions [

a−
H′ (P ′), a+

H(P)
]

= δH′Hδ3(P ′ − P), (74)[
a±

H(P), a±
H′ (P ′)

]
= 0. (75)

The corresponding Green function takes the form

G(q⊥, p⊥|P) =

=
∑
H

{
ΓH(q⊥|P)Γ̄H(p⊥| − P)

(P0 − ωH − iε)2ωH
− ΓH(p⊥|P)

(P0 − ωH − iε)2ωH

}
. (76)

To normalize vertex functions, we can use the ®free¯ part of effective action
(71) for the quantum bilocal meson M with the commutation relations (74). The
substitution of the off-shell

√
P2 �= MH decomposition (73) into the ®free¯ part

of effective action deˇnes the reverse Green function of the bilocal ˇeld G(P0)

W
(0)
eff [M] = 2πδ(P0 − P ′

0)
∑
H

∫
dP√
2ω

a+
H(P)a−

H(−P)G−1
H (P0), (77)

where G−1
H (P0) is the reverse Green function which can be represented as the

difference of two terms

P−1
H (P0) = I(

√
P2) − I(Mab

H (ω)), (78)



698 PERVUSHIN V. N.

where Mab
H (ω) is the eigenvalue of the equation for small 	uctuations (72) and

I(
√
P2) = Nc

∫
d3q⊥

(2π)3

{
i

2π

∫
dq0×

× tr
[
GΣb

(
q − P

2

)
Γ̄H

ba(q⊥| − P)GΣa

(
q +

P
2

)
ΓH

ab(q
⊥|P)

]}
. (79)

According to quantum ˇeld theory, the normalization condition is deˇned by
formula

2ω =
∂G−1(P0)

∂P0

∣∣∣∣
P0=ω(P1)

=
dM(P0)

dP0

dI(M)
dM

∣∣∣∣
P0=ω

. (80)

Finally, we get that solutions of equation (72) satisfy the normalization condi-
tion [55]

iNc
d

dP0

∫
d4q

(2π)4
tr
[
GΣ

(
q − P

2

)
Γ̄H(q⊥| − P)×

×GΣ

(
q +

P
2

)
ΓH(q⊥|P)

]
= 2ωH , (81)

and

GΣ(q) =
1

� q − Σ(q⊥)
, Σ(q) =

∫
d4xΣ(x) eiqx (82)

is the fermion Green function.
2.4. SchwingerÄDyson Equation: the Fermion Spectrum. The equation of

stationarity (70) can be rewritten form of SchwingerÄDyson (SD) equation

Σ(x − y) = m0δ(4)(x − y) + iK(x, y)GΣ(x − y). (83)

It describes the spectrum of Dirac particles in bound states. In the momentum
space with

Σ(k) =
∫

d4xΣ(x) eikx

for the Coulomb type kernel we obtain the following equation for the mass
operator (Σ)

Σ(k) = m0 + i

∫
d4q

(2π)4
V (k⊥ − q⊥)η/GΣ(q)η/, (84)
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where GΣ(q) = (q/−Σ(q))−1, V (k⊥) means the Fourier transform of the potential;
k⊥

µ = kµ − ηµ(k · η) is the transverse with respect to ηµ relative momentum. The
quantity Σ depends only on the transverse momentum

Σ(k) = Σ(k⊥),

because of the instantaneous form of the potential V (k⊥) in any frame. The
fermion spectrum can be obtained by solving the SchwingerÄDyson equation
(83). We may integrate it over the longitudinal momentum q0 = (q · η) using the
representation

Σa(q) = q/⊥ + Ea(q⊥)S−2
a (q⊥) (85)

for the self-energy with

S−2
a (q⊥) = exp {−q̂/

⊥
2υa(q⊥)}, q̂⊥µ = q⊥µ /|q⊥|, (86)

where Sa is the FoldyÄWouthuysen type transformation matrix with the parame-
ter υa.

Then, one has

GΣa
= [q0η/ − Ea(q⊥)S−2

a (q⊥)]−1 =

=

 Λ(η)
(+)a(q⊥)

q0 − Ea(q⊥) + iε
+

Λ(η)
(−)a(q⊥)

q0 + Ea(q⊥) + iε

 η/, (87)

where

Λ(η)
(±)a(q⊥) = Sa(q⊥)Λ(η)

(±)(0)S−1
a (q⊥), Λ(η)

(±)(0) = (1 ± η/)/2 (88)

are the operators separating the states with positive (+Ea) and negative (−Ea)
energies. As a result, we obtain the following equations for the one-particle
energy E and the angle υ:

Ea(k⊥) cos 2υ(k⊥) = m0
a +

1
2

∫
d3q⊥

(2π)3
V (k⊥ − q⊥) cos 2υ(q⊥), (89)

Ea(k⊥) sin 2υ(k⊥) = |k⊥| + 1
2

∫
d3q⊥

(2π)3
V (k⊥ − q⊥)|k⊥ · q⊥| sin 2υ(q⊥). (90)

2.5. BetheÄSalpeter Equation: Bound-State Spectrum. Equations for the
spectrum of the bound states (72) can be rewritten in the form of the BetheÄ
Salpeter (BS) one [56]

Γ = iK(x, y)
∫

d4z1d
4z2GΣ(x − z1)Γ(z1, z2)GΣ(z2 − y). (91)
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This equation in the momentum space

Γ(q|P) =
∫

d4xd4y ei(x+y)/2 ei(x−y)qΓ(x, y)

for the Coulomb type kernel takes the form

Γ(k,P) = i

∫
d4q

(2π)4
V (k⊥ − q⊥)η/

[
GΣ

(
q +

P
2

)
Γ(q|P)GΣ

(
q − P

2

)]
η/, (92)

where V (k⊥) means the Fourier transform of the potential; k⊥
µ = kµ−ηµ(k ·η) is

the relative momentum transversal with respect to ηµ; Pµ is the total momentum.
The quantity Γ depends only on the transversal momentum

Γ(k|P) = Γ(k⊥|P),

because of the instantaneous form of the potential V (k⊥) in any frame.
We consider the BetheÄSalpeter equation (91) after integration over the lon-

gitudinal momentum q0. The vertex function takes the form

Γab(k⊥|P) =
∫

d3q⊥

(2π)3
V (k⊥ − q⊥)η/ψab(q⊥)η/, (93)

where the bound state wave function ψab is given by

ψab(q⊥) = η/

[
Λ̄(+)a(q⊥)Γab(q⊥|P)Λ(−)b(q⊥)

ET −
√
P2 + iε

+

+
Λ̄(−)a(q⊥)Γab(q⊥|P)Λ(+)b(q⊥)

ET +
√
P2 − iε

]
η/, (94)

ET = Ea + Eb means the sum of one particle energies of the two particles (a)
and (b) deˇned by (89), (90), and the notation (88)

Λ̄(±)(q⊥) = S−1(q⊥)Λ(±)(0)S(q⊥) = Λ(±)(−q⊥) (95)

has been introduced.
Acting with the operators (88) and (95) on equation (93), one gets the equa-

tions for the wave function ψ in an arbitrary moving reference frame

(ET (k⊥) ∓
√
P2)Λ(η)

(±)a(k⊥)ψab(k⊥)Λ(η)
(∓)b(−k⊥) =

= Λ(η)
(±)a(k⊥)

[∫
d3q⊥

(2π)3
V (k⊥ − q⊥)ψab(q⊥)

]
Λ(η)

(∓)b(−k⊥). (96)
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All these equations (93) and (96) have been derived without any assumption
about the smallness of the relative momentum |k⊥| and for an arbitrary total
momentum

Pµ =
(√

M2
A + P2, P �= 0

)
.

We expand the function Ψ on the projection operators

Ψ = Ψ+ + Ψ−, Ψ± = Λ(η)
± ΨΛ(η)

∓ . (97)

According to Eq. (94), Ψ satisˇes the identities

Λ(η)
+ ΨΛ(η)

+ = Λ(η)
− ΨΛ(η)

− ≡ 0, (98)

which permit the determination of an unambiguous expansion of Ψ in terms of
the Lorentz structures:

Ψ±(a,b) = S−1
(a)

{
γ5L±(a,b)(q⊥) + (γµ − ηµ � η)Nµ

±(a,b)

}
Λ(η)
∓ (0)S−1

(b) , (99)

where L± = L1 ±L2, N± = N1 ±N2. In the rest frame ηµ = (1, 0, 0, 0) we get

Nµ = (0, N i), N i(q) =
∑

a=1,2

Nα(q)ei
α(q) + Σ(q)q̂i.

The wave functions L, Nα, Σ satisfy the equations
1. Pseudoscalar particles

M
0

L2 = E
0

L1 +
∫

dq
(2π)3

V (p− q)(c−p c
−
q + ξs−p s

−
q )

0

L1,

M
0

L1 = E
0

L2 +
∫

dq
(2π)3

V (p− q)(c+
p c

+
q + ξs+

p s
+
q )

0

L2,

(100)

ξ = p̂i · q̂i.

2. Vector particles

M
0

Nα
2 = E

0

Nα
1 +
∫

dq
(2π)3

V (p − q){(c−p c−q δαβ +

+ s−p s
−
q (δαβξ − ηαηβ))

0

Nβ
1 + (ηαc−p c

+
q )

0

Σ1},

M
0

Nα
1 = E

0

Nα
2 +
∫

dq
(2π)3

V (p − q){(c+
p c

+
q δαβ +

+ s+
p s

+
q (δαβξ − ηαηβ))

0

Nβ
2 + (ηαc+

p c
−
q )

0

Σ2},

(101)

ηα = q̂iê
α
i (p), ηα = p̂iê

α
i (q), δαβ = êα

i (q)êβ
i (p).
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3. Scalar particles

M
0

Σ2 = E
0

Σ1 +
∫

dq
(2π)3

V (p− q){(ξc+
p c

+
q + s+

p s
+
q )

0

Σ1 + (ηβc−p c
+
q )

0

Nβ
1},

(102)

M
0

Σ1 = E
0

Σ2 +
∫

dq
(2π)3

V (p− q){(ξc−p c−q + s−p s
−
q )

0

Σ2 + (ηβc+
p c

−
q )

0

Nβ
2}.

Here, in all equations,

c±(p) = cos [va(p) ± vb(p)], s±(p) = sin [va(p) ± vb(p)] (103)

va, vb are the FoldyÄWouthuysen matrices of particles (a, b); and E = Ea + Eb

is the sum of one-particle energies.
The normalization of these solutions is uniquely determined by equation (81)

2Nc

ML

∑ d3q

(2π)3
{
L1(q)L+

2 (q) + L2(q)L+
1 (q)

}
= 1, (104)

2Nc

MN

∑ d3q

(2π)3
{
Nµ

1 (q)Nµ+
2 (q) + Nµ

2 (q)Nµ+
1 (q)

}
= 1, (105)

2Nc

MΣ

∑ d3q

(2π)3
{
Σ1(q)Σ+

2 (q) + Σ2(q)Σ+
1 (q)

}
= 1. (106)

The description of instantaneous relativistic bound states in a hot and dense
medium can be found in [57,58].

2.6. Schréodinger Equation. If the atom is at rest (Pµ = (MA, 0, 0, 0))
equation (96) coincides with the Salpeter equation [56]. If one assumes that
the current mass m0 is much larger than the relative momentum |q⊥|, then the
coupled equations (93) and (96) turn into the Schréodinger equation. In the rest
frame (P0 = MA) equations (89) and (90) for a large mass (m0/|q⊥| → ∞)
describe a nonrelativistic particle

Ea(k) =
√

(m0
a)2 + k2 
 m0

a +
1
2

k2

m0
a

,

tan 2υ =
k

m0
→ 0, S(k) 
 1, Λ(±) 


1 ± γ0

2
.

Then, in equation (96) only the state with positive energy remains

ψ 
 ψ(+) = Λ(+)γ5

√
4µψSch, Λ(−)ψΛ(+) 
 0,
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where µ = mamb/(ma + mb). And ˇnally the Schréodinger equation results in[
1
2µ

k−2 + (m0
a + m0

b − MA)
]

ψSch(k) =
∫

dq
(2π)3

V (k − q)ψSch(q), (107)

with the normalization
∫

d3q|ψSch|2/(2π)3 = 1.
For an arbitrary total momentum Pµ, equation (107) takes the form[
− 1

2µ
(k⊥

ν )−2 + (m0
a + m0

b −
√
P2)

]
ψSch(k⊥) =

=
∫

d3q⊥

(2π)3
V (k⊥ − q⊥)ψSch(q⊥), (108)

and describes a relativistic atom with nonrelativistic relative momentum |k⊥| �
m0

a,b. In the framework of such a derivation of the Schréodinger equation, it is
sufˇcient to deˇne the total coordinate as X = (x + y)/2, independently of the
magnitude of the masses of the two particles forming an atom.

In particular, the Coulomb interaction leads to a positronium at rest with the
bilocal wave function

Φαβ
P (t|z) = ηP (t)

(
1 + γ0

2
γ5

)αβ

ψ
Sch

(z)
√

me

2
,

ψ
Sch

(z) =
∫

d3p

(2π)3
e(ipz)ψSch(p),

(109)

where ψ
Sch

(z) is the Schréodinger normalizable wave function of the relative
motion(

− 1
me

d2

dz2
− α

|z|

)
ψ

Sch
(z) = εψ

Sch
(z),

(∫
d3z‖ ψ

Sch
(z) ‖2 = 1

)
, (110)

MP = (2me − ε) is the mass of a positronium; (1 + γ0)/2 is the projection
operator on the state with positive energies of an electron and positron. We have
chosen the total-motion variable ηP (t) in (109) so that the effective action for
the total motion of the positronium with anomaly term have the form similar to
the η0-meson ones [59]

Weff =
∫

dt

{
1
2
(
η̇2

P − M2
P ηP

2
)
V(3) + CP ηP Ẋ [A]

}
, (111)

where

CP =
√

2
me

8π2

(
ψ

Sch
(0)

m
3/2
e

)
, (112)
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and

d

dt
X [A] =

∫
d3xF ∗

µνFµν , X [A] =
e2

16π

∫
d3x(εijkAi∂jAk) (113)

is the ®winding number¯ functional (i. e., anomalous term) that describes the two
γ decay of a positronium.

2.7. Spontaneous Chiral Symmetry Breaking. The solution of the set of
SD and Salpeter equations (89), (90), (96) was considered in the numerous pa-
pers [60Ä62] (see also review [58]) for different potentials. One of the main
results of these paper was the pure quantum effect of spontaneous chiral sym-
metry breaking for non-Coulomb potentials. The instantaneous interaction, in
this case, leads to rearrangement of the perturbation series and strongly changes
the spectrum of elementary excitations and bound states in contrast to the naive
perturbation theory.

To demonstrate this effect and estimate possibility of the considered relativis-
tic equations, we consider the opposite case of massless particles, m0

a = m0
b → 0

for an arbitrary potential. Suppose that in this case equations (89), (90)

2Ea(k⊥) cos 2υ(k⊥) =
∫

d3q⊥

(2π)3
V (k⊥ − q⊥) cos 2υ(q⊥), (114)

2Ea(k⊥) sin 2υ(k⊥) = |k⊥| +
∫

d3q⊥

(2π)3
V (k⊥ − q⊥)|k̂⊥ · q̂⊥| sin 2υ(q⊥) (115)

have a nontrivial solution υ(k⊥) �= 0. This solution describes the spontaneous
breakdown of chiral symmetry [25,31,58,60Ä62].

It can easily be seen that equations (114) and (115) are identical with (96)
for the bound state wave function with zero eigenvalue, P2

µ = 0 and

Λ(+)ψΛ̄(−) = Λ(−)ψΛ̄(+) ≡ ψ,
(116)

2Ea(k⊥)ψ(k⊥) =
∫

d3q⊥

(2π)3
V (k⊥ − q⊥)ψ(q⊥).

Therefore,

ψ = cos 2υ(k⊥)/F, (117)

where F is a proportionality constant determined by the normalization (104) [25]

F =
4Nc

MH

∫
d3q

(2π)3
L2 cos (2v(q)). (118)
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In this way, the coupled equations (89), (90), and (96) contain the Goldstone
mode that accompanies spontaneous breakdown of chiral symmetry. Thus, in the
framework of instantaneous action we get the proof of the Goldstone theorem in
the bilocal variant.

Just this example represents a model for the construction of a low-energy
theory of light mesons, in which the pion is considered in two different ways, as
a quarkÄantiquark bound state and as a Goldstone particle. So, it turns out that
our relativistic instantaneous model for bound states can, in the lowest order of
radiative corrections, also describe mesons. It was shown that the spontaneous
symmetry breaking is absent for the pure Coulomb potential in QED [61]. The
spontaneous symmetry breaking and the Goldstone meson in QCD are realized
for the potential of hadronization. What is an origin of this potential in QCD?

Recall that in QED the Coulomb potential is the consequence of the resolv-
ing the Gauss law constraint. This Coulomb potential is lost in any relativistic
invariant gauge of sources in FP representation of the path integral. The defect
of the pure relativistic artiˇcial gauges is the problem of a tachion and other
nonphysical states in the bound state spectrum [55]. The incorporation of the si-
multaneity for these gauges by the quasipotential approach [44] could not describe
both the spontaneous chiral symmetry breaking with the Goldstone meson and
the S-matrix elements of interactions of some instantaneous bound states (papers
on this topic are absent in literature).

2.8. The Relativistic Equation for Multiparticle Systems. To derive the
relativistic covariant equations for many-particle systems, we use the operator
approach [30,60,61] with the Hamiltonian given by

H =
∫

dxψ̄(i∂iγi + m0)ψ +

+
1
2

∫
dxdy(ψ+

i (x)ψj(x))V (x − y)(ψ+
k (y)ψl(y)). (119)

The ˇrst step for constructing the physical states consists in the deˇnition of the
one-quasi-particle creation (a+, b+) and annihilation (a, b) operators with the help
of the Bogoliubov fermion expansion [63]

ψα(x) =
∑

s

∫
dq

(2π)3/2
eiqx[as(q)µα(q, s) + b+

s (−q)να(−q, s)]. (120)

Here µα(q, s) and να(−q, s) are the coefˇcients determined from the Schréodinger
equation for the one-particle energy

〈as(q)|Ĥ |a+
s (q′)〉 = E(q)〈0|as(q)a+

s (q′)|0〉. (121)

They can be represented via the FoldyÄWouthuysen matrix (86) as

µα(q, s) = S(q)αβµβ(0, s), να(−q, s) = S(−q)αβνβ(0, s)
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with

Sαα′(q)

[∑
s

µα′(0, s)µ+
β′(0, s)

]
S−1

β′β(q) =

=
(

S
1 + γ0

2
S−1

)
αβ

≡ (Λ0
+(q))

αβ
,

Sαα′(−q)

[∑
s

να′(0, s)ν+
β′(0, s)

]
S−1

β′β(−q) =

=
(

S
1 − γ0

2
S−1

)
αβ

≡ (Λ0
−(−q))

αβ
.

Λ0
+ and Λ0

− are projection operators on states with positive, resp., negative energy.
Then, equation (121) takes the form of the SchwingerÄDyson equation (89), (90)
which can compactly be written as

E(p)S−2(p) = m0 + piγi +
1
2

∫
dq

(2π)3
V (p − q)S−2(q). (122)

After inserting (120) into (119) the Hamiltonian can be given in the following
manner:

H = E0 + H1+ : H4 :, E0 = 〈0|H|0〉, H1 =
∑
(1)

E(p1)(a+
1 a1 + b+

1 b1),

(123)

: H4 :=
2
3

∑
1,2,3,4,

δ(4)(p1 − p2 + p3 − p4)V (p1 − p3) ×

×{a+
1 b+

2̂
a+
3 b+

4̂
µ∗

1ν
∗
2̂
µ∗

3ν
∗
4̂

+ a+
1 b+

2̂
b3̂a1µ

∗
1ν2̂ν

∗
3̂
µ4 +

+b1̂a2a
+
3 b+

4̂
ν∗
1̂
µ2µ

∗
3ν4̂ + b1̂a2b3̂a4ν

∗
1̂
µ2ν

∗
3̂
µ4 + . . . } + . . .

The following abbreviations have been used in (123):∑
I

=
∑
sI

∫
dpI

(2π)3/2
, {I} = {pI , sI}, {Î} = {−pI ,−sI}, I = 1, 2, 3, 4.

For diagonalizing the Hamiltonian (123) with respect to pair correlations
(a+

1 b+

2̂
), (b3̂a4) one deˇnes a new vacuum as the coherent state

|0〉〉α = exp

{ ∑
1,2,3,4

α(1, 2̂, 3̂, 4)[(a+i1
1 b+i1

2̂
)(b+j1

3̂
a+j1
4 )]

}
|0〉 (124)
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and the creation operator for the bound state (of pair correlation)

B+(n) =
∑
1,2

δ(p1 − p2)[X+(1, 2̂)a+i(1)b+i(2̂) − X−(1̂, 2)bj(1̂)aj(1)]. (125)

The coefˇcients X+ and X− are determined from the Schréodinger equation for
the two-particle energy MB ,

α〈〈0|B(n)(H1 + H4)B+(n)|0〉〉α = MB α〈〈0|B(n)B+(n)|0〉〉α, (126)

and the parameter α in (126) is given with the help of the deˇnition of the
annihilation operator B(n) for the pair correlation

B(n)|0〉〉α = 0. (127)

Equation (126) coincides with equation (96) in the rest frame (the Salpeter equa-
tion) for the meson spectrum

(E1(p) + E2(p) ∓ MB)ψ±±(p) =

= Λ±(p)[Îpq × (ψ++(q) + ψ−−(q))]Λ±(−p) (128)

up to the notation

ψ = ψ++ + ψ−−, ψ±± = Λ±ψΛ∓,

ψ++(p)αβ =
∑
s1,s2

X+(p,p, s1, s2)µ+
α (p, s1)νβ(p, s2),

(129)

ψ−−(p)αβ =
∑
s1,s2

X−(p,p, s1, s2)ν+
α (p, s1)µβ(p, s2),

Îpq × ψ(q) =
∫

d3q

(2π)3
V (p − q)ψ(q).

The one-particle energies E1(p), E2(p) in (129) are deˇned via the SchwingerÄ
Dyson equation (122).

Notice that equations of the type (122), (129) are well known from the
nonrelativistic many-body theory (Landau's theory of fermi liquids [64], Ran-
dom Phase Approximation [65]) and play an essential role in the description
of elementary excitation in atomic nuclei [66]. Their relativistic analogies de-
scribing the Goldstone pion and the constituent masses of the light quarks are
equations (89), (90), (96).

Thus the Green function method discussed in Secs. 2.2.Ä2.5, and the operator
approach lead to one and the same equations and complement each other. The ˇrst
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allows one to make easily the relativistic generalization and to construct the ef-
fective bound state interaction Lagrangian, whereas the second yields an adequate
interpretation of quantum states and enables one to describe more complicated
system (in QCD, baryons and other many-quark states [30]).

Let us construct by means of the quasiparticle operator method the relativistic
equation for a three-particle system. In the ®coherent¯ vacuum (125) the creation
operator of a three-particle system consists not only of creation operators for
particles (a+) but also of annihilation operators for antiparticles (b) with the same
quantum numbers

B+ =
∑
1,2,3

δ(p1 + p2 + p3)[X+++(1, 2, 3)ai(+)(1)aj(+)(2)al(+)(3) +

+ X−−+(1, 2, 3)bi(+)(1)bi(+)(2)bi(+)(3) + interchange of (1, 2, 3)]εijk. (130)

The ®baryon¯ functions are as follows:

ψ+++(1, 2, 3)αβγ =
∑

s1s2s3

µ+
α (1)µ+

β (2)µ+
γ (3)X+++(1, 2, 3),

ψ−−+(1, 2, 3)αβγ =
∑

s1s2s3

ν+
α (1)ν+

β (2)ν+
γ (3)X−−+(1, 2, 3),

etc. Then, the eigenvalue equation for the Hamiltonian operator

α〈〈0|BHB+|0〉〉α (131)

is equivalent to the following system for the ®baryons¯ wave functions ψ+++,
ψ−−+, ψ−+−, ψ+−−.


+
+
+
−

E(1)


+
+
−
+

E(2)


+
−
+
+

E(3)


−
+
+
+

MB

ψ


+ + +
− − +
− + −
+ − −




(1, 2, 3) =

=
2
3
Λ


+
−
−
+




(1)Λ


+
−
+
−




(2)Λ


+
+
−
−




(3) ×

×


Î1,2

ψ


+ + +
− − +
− + −
+ − −




(1, 2, 3) + ψ

− − +
+ + +
+ − −
− + −




(1, 2, 3)

 +
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+ Î2,3

ψ


+ + +
− − +
− + −
+ − −




(1, 2, 3) + ψ


+ − −
− + −
− − +
+ + +




(1, 2, 3)

+

+Î1,3

ψ


+ + +
− − +
− + −
+ − −




(1, 2, 3) + ψ

− + −
+ − −
+ + +
− − +




(1, 2, 3)




, (132)

where

I1,2ψ(1, 2, 3) =
∫

dq
(2π)3

V (q)ψ(p1 − q,p2 + q,p3),

(133)
p1 + p2 + p3 = 0.

Equation (133) is the analogue of the Salpeter equation (128) for a bound state
consisting of three particles. In the same notations Eq. (129) has the form

[(
+
+

)
E1(1)

(
+
+

)
E2(2̂)

(
−
+

)
MB

]
ψ̄±±(1, 2̂) =

=
4
3
Λ±(1){Î1,2̂[ψ++(1, 2̂) + ψ−−(1, 2̂)]}Λ±(2̂)

with the condition p1 = p2 = p and with the taking into account the identities∫
dqV (p − q)ψ(q) =

∫
dqV (q)ψ(q + p) =

=
∫

dqV (q)ψ(p1 + q,−p2 − q)|p1=p2=p, ψ(p1,−p2) = ψ(1, 2̂).

The nonrelativistic reduction [56] from the Salpeter Eq. (96) to the Schréodinger
equation,

Ea(p) 

√

m2
a + p2 
 ma +

1
2

p2

ma
,

Sa(p) 
 1, ψ+++ ≡ ψ � ψ


+ − −
− + −
− − +




,
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leads in our case to the well-known nonrelativistic equation for the wave function
of three-particle bound states[

p2
1

2m1
+

p2
2

2m2
+

p2
3

2m3
− (MB − m1 − m2 − m3)

]
ψ(p1,p2,p3) =

=
2
3
[Î1,2ψ(p

1
,p

2
,p3) + Î2,3ψ(p1,p2

,p
3
) + Î1,3ψ(p

1
,p2,p3

)]. (134)

Here, the condition (134), which means the choice of the rest frame Pµ =
(MB, 0, 0, 0), has to be fulˇlled.

Notice that the Jacobi coordinates, which allow one to write the Hamiltonian
in the term of two relative momenta, have sense only in the nonrelativistic limit.

To describe the three-particle bound system in an arbitrary reference frame it
is sufˇcient to substitute in (132) all relative momenta pi by the transversal ones,

p
⊥(i)
µ , and the projection operators Λ±(p) by the operators

Λ±(p⊥) = S(p⊥)
MB ± P/

2MB
S(p⊥)−1.

In the same way one can generalize the equation (132) and its relativization for
an arbitrary N -particle state.

The method for constructing relativistic wave functions of many-quark system
explained above unambiguously enables one to build from the nonrelativistic
bound state wave function

χα1,α2,...,αN eiMX0Φα1,α2,...,αN (p1,p2, ...,pN ),
∑

i

p(i) = 0

relativistic wave functions for the same bound states with the total momentum
Pµ = (ω =

√
P2 + M2,P),

χα1,α2,...,αN eiPXΛ+α1α′
1
(p(1)⊥)Λ+α2α′

2
(p(2)⊥) · · ·Λ+αN α′

N
(p(N)⊥) ×

× Φα′
1,α′

2,...,α′
N

(p(1)⊥, p(2)⊥, ..., p(N)⊥),
∑

i

p(i)⊥
µ = 0.

Here χα1,α2,...,αN is the matrix selecting one or another representation of the
Lorentz group with a deˇnite spin. (A representation of the Poincare group that
preserves the one-time dependence of wave functions, see in Ref. 67).

2.9. Relativistic Covariant Unitary S Matrix for Bound States. The achie-
vement of the relativistic covariant constraint-shell quantization of gauge theories
is the description of both the spectrum of bound states and their S-matrix elements.
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It is convenient to write the matrix elements for the action (65), (71) in terms
of the ˇeld operator

Φ′(x, y) =
∫

d4x1GΣ(x − x1)M′(x1, y) = Φ′(z|X).

Using the decomposition over the bound state quantum numbers (H)

Φ′(z|X) =
∑
H

∫
d3P

(2π)3/2
√

2ωH

∫
d4q

(2π)4
×

× {eiPXΦH(q⊥|P)a+
H(P) + e−iPXΦ̄H(q⊥| − P)a−

H(P)}, (135)

where

ΦH(ab)(q⊥|P) = GΣa(q + P/2)ΓH(ab)(q⊥|P), (136)

we can write the matrix elements for the interaction W (n) (71) between the
vacuum and the n-bound state

〈H1P1, ..., HnPn|iW (n)|0〉 =

= −i(2π)4δ4

(
n∑

i=1

Pi

)
n∏

j=1

[
1

(2π)32ωj

]1/2

M (n)(P1, ...,Pn),

(137)

M (n) =
∫

id4q

(2π)4n

∑
{ik}

Φa1,a2
Hi1

(q|Pi1)Φ
a2,a3
Hi2

(
q − Pi1 + Pi2

2
|Pi2

)
×

×Φa3,a4
Hi3

(
q − 2Pi2 + Pi1 + Pi3

2
|Pi3

)
· · ·

· · ·Φan,a1
Hin

(
q −

2(Pi2 + . . . + Pin−1) + Pi1 + Pin

2
|Pin

)
,

({ik} denotes permutations over ik).
Expressions (73), (76), (135), (137) represent Feynman rules for the con-

struction of a quantum ˇeld theory with the action (71) in terms of bilocal ˇelds.
It was shown [27] that the separable approximation of the constraint-shell

gauge theory of bound states leads to the well-known NambuÄJona-Lasinio
model [33, 68] and the phenomenological chiral Lagrangians [69, 70] used for
the description of the low-energy meson physics. Thus, the constraint-shell gauge
theory of bound states is sufˇcient for describing the spectrum and interaction of
hadrons as extended objects (without introducing the ideology of bags and string).
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In the context of the constraint-shell gauge theory, to solve the problem of
hadronization in QCD, one needs to answer the questions:

i) What is the origin of the potential of hadronization in the non-Abelian
theory?

ii) How to combine the Schréodinger equation for heavy quarkonia (that is
derived by the residuum of poles of the quark Green functions) with the quark
conˇnement [71]?

iii) What is the origin of the additional mass of the ninth pseudoscalar me-
son [72]?

3. DIRAC VARIABLES IN YANGÄMILLS THEORY WITH THE
TOPOLOGICAL DEGENERATION OF PHYSICAL STATES

3.1. Constraint-Shell Radiation Variables in Perturbation Theory. We
consider the YangÄMills theory with the local SU(2) group in four-dimensional
Minkowskian space-time

W [Aµ] = −1
4

∫
d4xF a

µνFµν
a =

1
2

∫
d4x

(
F a

0i
2 − Ba

i
2
)

, (138)

where the standard deˇnitions of non-Abelian electric tension F a
0i

F0i = ∂0A
a
i − D(A)ab

i Ab
0, Dab

i =
(
δab∂i + gεacbAc

i

)
and magnetic one Ba

i

Ba
i = εijk

(
∂jA

a
k +

g

2
εabc Ab

j Ac
k

)
are used. The action (138) is invariant with respect to gauge transformations
u(t,x)

Âu
i := u(t,x)

(
Âi + ∂i

)
u−1(t,x), ψu := u(t,x)ψ, (139)

where Âµ = g(τa/2i)Aa
µ .

Solutions of the non-Abelian equations

δW

δAa
0

= 0 =⇒
[
D2(A)

]ac
Ac

0 = Dac
i (A)∂0A

c
i , (140)

δW

δAa
i

= 0 =⇒
[
δijD

2
k(A) − Dj(A)Di(A)

]ac
Ac

j =

= Dac
0 (A)

[
∂0A

c
i − D(A)cb

i Ab
0

]
(141)

are determined by boundary conditions and initial data.
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The ˇrst Gauss equation (140) is the constraint. It connects initial data of Aa
0

with the ones of the spatial components Aa
i . To remove nonphysical variables,

we can honestly solve this constraint in the form of the naive perturbation series

Ac
0 = ac

0[Ai] =
1
∆

∂0∂iA
c
i + . . . (142)

The resolving of the constraint and the substitution of this solution into the equa-
tions of motion distinguishes the gauge-invariant nonlocal (radiation) variables.
After the substitution of this solution into (141), the lowest order of the equa-
tion (141) in the coupling constant contains only transverse ˇelds

(∂2
0 − ∆)AcT

k + . . . = 0, AcT
i =

[
δik − ∂i

1
∆

∂k

]
Ac

k + . . . (143)

This perturbation theory is well known as the radiation [4] (or Coulomb [6])
®gauge¯ with the generational functional of the Green functions in the form of
the Feynman integral

ZF [l(0), JaT ] =
∫ ∫ c=3∏

c=1

[d2AcT d2EcT ] ×

× exp

iWT
l(0) [A

T , ET ] − i

∫
d4x[JcT

k AcT
k ]

 (144)

with the constraint-shell action (138)

WT
l(0) [A

T , ET ] = W I
∣∣∣
δW I/δA0=0

(145)

given in the ˇrst-order formalism

W I =
∫

dt

∫
d3x

{
F c

0iE
c
i − 1

2
[Ec

i E
c
i + Bc

i B
c
i ]
}

. (146)

The constraint

δW I

δA0
= 0 ⇒ Dcd

i (A)Ed
i = 0 (147)

is solved in terms of the radiation variables

Ec
i = ETc

i + ∂iσ, ∂iE
Tc
i = 0, (148)
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where the functions σa take the form [6]

σa[AT , ET ] =
(

1
Di(A)∂i

)ac

εcbdATb
k ETd

k . (149)

The operator quantization of the YangÄMills theory in terms of the radiation
variables belongs to Schwinger [4] who proved the relativistic covariance of the
radiation variables (143). This means that the radiation ˇelds are transformed as
the nonlocal functional

ÂT
k [A] = vT [A](Âk + ∂k)(vT [A])−1,

(150)

ÂT
k = e

ATa
k τa

2i
,

where the matrix vT [A] is found from the condition of transversality ∂kÂT
k = 0.

At the level of the Feynman integral, as we have seen in QED, the relativistic
covariance means the relativistic transformation of sources [41].

The deˇnition (150) can be treated as the transition to the new variables that
allows us to rewrite the Feynman integral in the form of the FP integral [6,73,74]

ZF [l(0), JaT ] =
∫ ∫ c=3∏

c=1

[d4Ac]δ(∂iA
c
i )Det [Di(A)∂i] ×

× exp
{

iW [A] − i

∫
d4x(JcT

k AcT
k [A])

}
. (151)

It was proved [6, 73, 74] that on the mass-shell of the radiation ˇelds the scat-
tering amplitudes do not depend on the factor vT [A]. It remained only to reply
the question: Why does nobody observe these scattering amplitudes of mass-shell
non-Abelian radiation ˇelds? There are some possible answers to this question:
the infrared unstability of the naive perturbation theory [75, 76], the Gribov am-
biguity, or zero of the FP determinant [7], the topological degeneration of the
physical states [17, 19, 71]. In any case, in the non-Abelian theory there are not
observable physical processes for which the gauge-equivalence theorem is valid.

3.2. Topological Degeneration of Initial Data. One can ˇnd a lot of solutions
of equations of classical electrodynamics. The nature chooses two types of func-
tions: the monopole that determines nonlocal electrostatic phenomena (including
instantaneous bound states), and multipoles that determine the spatial components
of gauge ˇelds with a nonzero magnetic tension.

Spatial components of the non-Abelian ˇelds considered above as radiation
variables (143) in the naive perturbation theory are also deˇned as multipoles. In
the non-Abelian theory, there is the reason to count that the spatial components
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of the non-Abelian ˇelds belong to the monopole class of functions like the time
component of the Abelian ˇelds.

This fact was revealed by the authors of instantons [11]. Instantons satisfy
the duality equation in the Euclidean space, so that the instanton action coincides
with the ChernÄSimons functional (Pontryagin index)

ν[A] =
g2

16π2

tout∫
tin

dt

∫
d3xF a

µν F̃ aµν =

= X [Aout] − X [Ain] = n(tout) − n(tin), (152)

where

X [A] = − 1
8π2

∫
V

d3xεijk Tr
[
Âi∂jÂk − 2

3
ÂiÂjÂk

]
,

(153)
Ain,out = A(tin,out, x)

is the topological winding number functional of the gauge ˇelds and n is a value
of this functional for a classical vacuum

Âi = Ln
i = v(n)(x)∂iv

(n)(x)
−1

. (154)

The manifold of all classical vacua (154) in the non-Abelian theory represents
the group of three-dimensional paths lying on the three-dimensional space of the
SUc(2) manifold with the homotopy group π(3)(SUc(2)) = Z. The whole group
of stationary matrices is split into topological classes marked by integer numbers
(the degree of the map) deˇned by the expression

N [n] = − 1
24π2

∫
d3xεijk Tr [Ln

i Ln
j Ln

k ] = n (155)

which counts how many times a three-dimensional path v(x) turns around the
SU(2) manifold when the coordinate xi runs over the space where it is deˇned.

In 1976, Gribov V. N. suggested to treat instantons as Euclidean solutions
interpolating between classical vacua with different degrees of map.

The degree of a map (155) can be considered as the condition for normaliza-
tion that determines a class of functions where the classical vacua Ln

i (154) are
given. In particular, to obtain Eq. (155) we should choose a classical vacuum in
the form

v(n)(x) = exp (nΦ̂0(x)), Φ̂0 = −iπ
τaxa

r
f0(r) (r = |x|), (156)
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where the function f0(r) satisˇes the boundary conditions

f0(0) = 0, f0(∞) = 1. (157)

The normalization (155) points out that the vacuum values Ln
i of spatial compo-

nents Ai belong to monopole-type class of functions. To show that these classical
values are not sufˇcient to describe a physical vacuum in the non-Abelian theory,
we consider a quantum instanton, i. e., the corresponding zero vacuum solution
of the Schréodinger equation

ĤΨ0[A] = 0
(

Ĥ =
∫

d3x[Ê2 + B2], Ê =
δ

iδA

)
. (158)

It can be constructed using the winding number functional (153) and its derivative

δ

δAc
i

X [A] =
g2

8π2
Bc

i (A). (159)

The vacuum wave functional in terms of the winding number (153) takes the
form of a plane wave [16]

Ψ0[A] = exp (iPNX [A]) (160)

for nonphysical values of the topological momentum PN = ±i8π2/g2 [16, 20].
We would like to drew attention of a reader to that in QED this type of the wave
functional belongs to nonphysical part of a spectrum like the wave function of an
oscillator (p̂2 + q2)ψ0 = 0. The value of this nonphysical plane wave functional
for classical vacuum (154) coincides with quasiclassical instanton wave function

exp (iW [Ainstanton]) = Ψ0[A = Lout] × Ψ∗
0[A = Lin] =

= exp
(
−8π2

g2
[nout − nin]

)
. (161)

This exact relation between a classical instanton and its quantum version (158)
points out that classical instantons are also nonphysical solutions, they are perma-
nently tunneling in Euclidean space-time between classical vacua with the zero
energy that does not belong to physical spectrum∗.

∗The author is grateful to V. N. Gribov for the discussion of the problem of instantons during a
visit to Budapest, May 1996.
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3.3. Physical Vacuum and the Gauge Higgs Effect. The next step is the as-
sertion [77] about the topological degeneration of initial data of not only classical
vacuum but all physical ˇelds with respect to stationary gauge transformations

Â
(n)
i (t0,x) = v(n)(x)Â(0)

i (t0,x)v(n)(x)
−1

+ Ln
i ,

(162)
Ln

i = v(n)(x)∂iv
(n)(x)

−1
.

The stationary transformations vn(x) with n = 0 are called the small ones; and
those with n �= 0, the large ones [77].

The group of transformations (162) means that the spatial components of
the non-Abelian ˇelds with a nonzero magnetic tension B(A) �= 0 belong to the
monopole class of functions like the time component of the Abelian ˇelds. In this
case, non-Abelian ˇelds with a nonzero magnetic tension contain a nonperturba-
tive monopole-type term, and spatial components can be decomposed in a form

of a sum of the monopole Φ(0)
i (x) and multipoles Āi

Â
(0)
i (t0,x) = Φ̂(0)

i (x) + ˆ̄A
(0)

i (t0,x). (163)

The multipole is considered as a weak perturbative part with asymptotics at the
spatial inˇnity

Āi(t0,x)|asymp = O

(
1

r1+l

)
(l > 1). (164)

Nielsen and Olesen [75], and Matinyan and Savidy [76] introduced a vacuum
magnetic tension, using the fact that all asymptotically free theories are unstable,
and the perturbation vacuum is not the lowest stable state.

The extension of the topological classiˇcation of classical vacua to all initial
data of spatial components helps us to choose a vacuum monopole with a zero
value of the winding number functional (153)

X [A = Φc(0)
i ] = 0,

δX [A]
δAc

i

∣∣∣∣
A=Φ(0)

�= 0. (165)

The zero value of the winding number, transversality, and spherical symmetry ˇx
a class of initial data for spatial components

Φ̂i = −i
τa

2
εiak

xk

r2
f(r). (166)

They contain only one function f(r). The classical equation for this function
takes the form

Dab
k (Φi)F b

kj(Φi) = 0 ⇒ d2f

dr2
+

f(f2 − 1)
r2

= 0. (167)
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We can see three solutions of this equation

fPT
1 = 0, fWY

1 = ±1 (r �= 0). (168)

The ˇrst solution corresponds to the naive unstable perturbation theory with the
asymptotic freedom formula.

Two nontrivial solutions are well known. They are the WuÄYang monopoles
applied for the construction of physical variables in the current literature [78]. As
it was shown in paper [22] the WuÄYang monopole leads to rising potentials of the
instantaneous interaction of the quasiparticle current. This interaction rearranges
the perturbation series, leads to the gluon constituent mass, and removes the
asymptotic freedom formula [29,31] as the origin of unstability.

The WuÄYang monopole is a solution of classical equations everywhere
besides the origin of coordinates r = 0. The corresponding magnetic ˇeld is

Ba
i (Φk) =

xaxi

gr4
. (169)

Following Wu and Yang [21], we consider the whole ˇnite space volume, exclud-
ing an ε-region around the singular point. To remove a singularity at the origin
of coordinates and regularize its energy, the WuÄYang monopole is considered
as the limit of zero size ε → 0 for the Bogomol'nyiÄPrasadÄSommerfeld (BPS)
monopole [79]

fWY
1 ⇒ fBPS

1 =
[
1 − r

ε sinh (r/ε)

]
(170)

with the ˇnite energy∫
d3x[Ba

i (Φk)]2 ≡ V 〈B2〉 =
4π

g2ε
≡ 1

αsε
. (171)

In this case, the BPS regularization of the WuÄYang monopole is the analogue
of the infrared regularization in QED by the introduction of the photon mass that
also violates the initial equations of motion. The size of the BPS monopole is
chosen so that the parameter ε disappears in the inˇnite volume limit

ε =
1

αs〈B2〉V , (172)

and the vacuum energy-density of the monopole solution 〈B2〉 is removed by a
ˇnite counter-term in the Lagrangian

L̄ = L − 〈B2〉
2

.
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This vacuum magnetic tension is the crucial difference of the topological degener-
ation of ˇelds in Minkowski space from the topological degeneration of classical
vacua of the instantons in the Euclidean one.

The problem is to formulate the Dirac quantization of weak perturbations of
the non-Abelian ˇelds in the presence of the nonperturbative monopole taking
into account the topological degeneration of all initial data.

3.4. Dirac Method and Gribov Copies. Instead of artiˇcial equations (4),
(5) of the gauge-ˇxing method [8]

F (Aµ) = 0, F (Au
µ) = MF u �= 0 ⇒

⇒ ZFP =
∫ ∏

µ

DAµ det MF δ(F (A)) eiW (173)

we repeat the Dirac constraint-shell formulation resolving the constraint (140)

δW

δAa
0

= 0 ⇒
[
D2(A)

]ac
Ac

0 = Dac
i (A)∂0A

c
i (174)

with nonzero initial data

∂0A
c
i = 0 ⇒ Ac

i (t,x) = Φc(0)
i (x). (175)

The vacuum magnetostatic ˇeld Φc(0)
i has a zero value of the winding number

(153) X [Φc(0)
i ] = 0 and satisˇes the classical equations everywhere besides the

small region near the origin of coordinates of the size of

ε ∼ 1∫
d3xB2(Φ)

≡ 1
〈B2〉V , (176)

that disappears in the inˇnite volume limit.
The second step is the consideration of the perturbation theory (163) where

the constraint (174) takes the form[
D2(Φ(0))

]ac

A
c(0)
0 = ∂0[Dac

i (Φ(0))Ac(0)
i ]. (177)

Dirac proposed [1] that the time component A0 (the quantization of which con-
tradicts to quantum principles) can be removed by gauge transformation, so that
the constraint (177) takes the form

∂0[Dac
i (Φ(0))Ac(0)

i ] = 0. (178)

We deˇned the constraint-shell gauge

[Dac
i (Φ(0))Ac(0)

i ] = 0 (179)

as the zero initial data of this constraint (178).
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The topological degeneration of initial data means that not only classical

vacua but also all ˇelds A
(0)
i = Φ(0)

i + Ā
(0)
i in the gauge (179) are degenerated

Â
(n)
i = v(n)(x)(Â(0)

i + ∂i)v(n)(x)
−1

, v(n)(x) = exp [nΦ0(x)]. (180)

The winding number functional (153) after the transformation (162) takes the
form

X [A(n)
i ] = X [A(0)

i ] + N (n) +
1

8π2

∫
d3xεijk Tr [∂i(Â

(0)
j Ln

k)], (181)

where N (n) = n is given by Eq. (155).
The constraint-shell gauge (179) keeps its form in each topological class

Dab
i (Φ(n)

k )Ā(n)b
i = 0, (182)

if the phase Φ0(x) satisˇes the equation of the Gribov ambiguity

[D2
i (Φ

(0)
k )]abΦb

0 = 0. (183)

In this case, the topological degeneration means the existence of the manifold of
the Gribov copies of the constraint-shell gauge (179). One can show [22] that
the Gribov equation (183) together with

X [Φ(n)] = n (184)

are compatible with the unique solution of classical equations. It is just the WuÄ
Yang monopole considered before. The nontrivial solution of the equation for
the Gribov phase (183) in this case is well known:

Φ̂0 = −iπ
τaxa

r
fBPS
0 (r), fBPS

0 (r) =
[

1
tanh (r/ε)

− ε

r

]
, (185)

it is the Bogomol'nyiÄPrasadÄSommerfeld (BPS) monopole [79].
Thus, instead of the topological degenerated classical vacuum for the in-

stanton calculation (that is in the physically unattainable region), we have the
topological degenerated WuÄYang monopole (180)

Φ̂(n)
i := v(n)(x)[Φ̂(0)

i + ∂i]v(n)(x)−1, v(n)(x) = exp [nΦ0(x)], (186)

and the topological degenerated multipoles

ˆ̄A
(n)

i := v(n)(x) ˆ̄A
(0)

i v(n)(x)
−1

. (187)
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The Gribov copies are evidence of a zero mode in the left-hand side of both the
constraints (177) and (174). [

D2
i (Φ(0))

]ac

Ac
0 = 0. (188)

A nontrivial solution of this equation

Ac
0(t,x) = Ṅ(t)Φc

0(x) (189)

can be removed from the local equations of motion by the gauge transformation
(a la Dirac of 1927) to convert the ˇelds into the Dirac variables

Â
(N)
i = exp [N(t)Φ̂0(x)][Â(0)

i + ∂i] exp [−N(t)Φ̂0(x)]. (190)

But this solution (189) cannot be removed from the constraint-shell action W ∗ =∫
dtṄ2I/2+ . . . and from the winding number X [A(N)] = N +X [A(0)]. Finally

we obtained the Feynman path integral

ZF =
∫

DN
∏
i,c

[DE
c(0)
i DA

c(0)
i ] eiW∗

(191)

that does not coincide with any artiˇcial gauge (173).
We consider the derivation of this integral (191) in detail further.
3.5. Topological Dynamics. The repetition of the Dirac deˇnition of the

observable variables in QED allowed us to determine the vacuum ˇelds and the
phase of their topological degeneration in the form of the Gribov copies of the
constraint-shell gauge.

The degeneration of initial data is the evidence of the zero mode of the
Gauss law constraint. In the lowest order of the considered perturbation theory,
this constraint (188) has the solution (189) with the nontrivial vacuum electric
ˇeld

F b
i0 = Ṅ(t)Dbc

i (Φ(0)
k )Φc

0(x). (192)

We call the new variable N(t) the winding number variable, as the vacuum
ChernÄSimons functional is equal to the difference of the in and out values of
this variable

ν[A0, Φ(0)] =
g2

16π2

tout∫
tin

dt

∫
d3xF a

µν F̃ aµν =

=
αs

2π

∫
d3xF b

i0B
b
i (Φ

(0))[N(tout) − N(tin)] = N(tout) − N(tin). (193)
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The winding number functional admits its generalization to noninteger degrees of
a map [22]

X [Φ(N)] = N, N �= n, (194)

where (
Φ̂(N)

i = eNΦ̂0 [Φ̂(0)
i + ∂i] e−NΦ̂0

)
.

Thus, we can identify the global variable N(t) with the winding number degree
of freedom in the Minkowskian space described by the action

WN =
∫

d4x
1
2
(F c

0i)
2 =

∫
dt

Ṅ2I

2
, (195)

where the functional

I =
∫
V

d3x(Dac
i (Φk)Φc

0)
2 =

4π2

α2
s

1
V 〈B2〉 (196)

does not contribute in local equations of motion. The topological degeneration of
all ˇelds converts into the degeneration of only one global topological variable
N(t) with respect to a shift of this variable on integers: (N ⇒ N + n, n =
±1,±2, . . . ). Thus, the topological variable is a free rotator with the instanton-
type wave function (160) in the Minkowskian space-time

ΨN = exp {iPNN} , PN = ṄI = 2πk + θ, (197)

where k is a number of the Brilloin zone, and θ is the θ angle. In contrast with
the instanton wave function (160), the spectrum of the topological momentum is
real and belongs to physical values. Finally, equations (195) and (197) determine
the ˇnite spectrum of the global electric tension (192)

F b
i0 = Ṅ [Di(Φ(0))A0]b = αs

(
θ

2π
+ k

)
Bb

i (Φ
(0)). (198)

It is the analogue of the Coleman spectrum of the electric tension in the
QED(1+1) [35]. The application of the Dirac quantization to the 1-dimensional
electrodynamics QED(1+1) in paper [36] demonstrates the universality of the
Dirac variables and their adequacy to the description of topological dynamics
with a nontrivial homotopy group.
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3.6. Zero Mode of Gauss Law and Dirac Variables. The constraint-shell
theory is obtained by the explicit resolution of the Gauss law constraint

δW

δAa
0

= 0 ⇒
[
D2(A)

]ac
Ac

0 = Dac
i (A)∂0A

c
i (199)

and next in dealing with the initial action on surface of these solutions

W ∗ = W [Aµ]
∣∣
δW/δAa

0=0
. (200)

The result of similar solution in QED was the electrostatics and the Coulomb-like
atoms. In the non-Abelian case, the topological degeneration in the form of the
Gribov copies means that a general solution of the Gauss law constraint (199) con-
tains the zero mode Z . A general solution of the inhomogeneous equation (199)
is a sum of the zero-mode solution Za of the homogeneous equation

(D2(A))abZb = 0, (201)

and a particular solution Ãa
0 of the inhomogeneous one

Aa
0 = Za + Ãa

0 . (202)

The zero-mode Za at the spatial inˇnity has been represented in the form of
a sum of the product of a new topological variable Ṅ(t) and the Gribov phase
Φ0(x) and weak multipole corrections

Ẑ(t,x)|asymp = Ṅ(t)Φ̂0(x) + O

(
1

r1+l

)
, (l > 0). (203)

In this case, the single one-parametric variable N(t) reproduces the topolog-
ical degeneration of all ˇeld variables, if the Dirac variables are deˇned by the
gauge transformations

0 = UZ(Ẑ + ∂0)U−1
Z ,

(204)
Â∗

i = UZ(Â(0)
i + ∂i)U−1

Z , A
(0)
i = Φ(0)

i + Ā
(0)
i

where the spatial asymptotic of UZ is

UZ = T exp

 t∫
dt′Ẑ(t′,x)


∣∣∣∣∣∣
asymp

= exp [N(t)Φ̂0(x)]. (205)

The topological degeneration of all ˇelds converts into the degeneration of only
one global topological variable N(t) with respect to a shift of this variable on
integers: (N ⇒ N + n, n = ±1,±2, . . . ).
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3.7. Constraining with the Zero Mode. Let us formulate an equivalent
unconstrained system for the YM theory in the monopole class of functions in
the presence of the zero mode Zb of the Gauss law constraint

Aa
0 = Za + Ãa

0 , F a
0k = −Dab

k (A)Zb + F̃ a
0k ((D2(A))abZb = 0). (206)

To obtain the constraint-shell action

WYM(constraint) = WYM[Z] + W̃YM[F̃ ], (207)

we use the evident decomposition

F 2 = (−DZ + F̃ )2 = (DZ)2 − 2F̃DZ + (F̃ )2 =

= ∂(Z(DZ)) − 2∂(ZF̃ ) + (F̃ )2 (208)

and the Gauss Eqs. DF̃ = 0 and D2Z = 0 which show that the zero mode part
WYM of the constraint-shell action (207) is the sum of two surface integrals

WYM[Z] =

=
∫

dt

∫
d3x

[
1
2
∂i(ZaDab

i (A)Zb) − ∂i(F̃ a
0iZa)

]
= W0 + W ′, (209)

where the ˇrst one W0 is the kinetic term and the second one W ′ describes
the coupling of the zero-mode to the local excitations. These surface terms are
determined by the asymptotics of the ˇelds (Za, Aa

i ) at spatial inˇnity (203),
(164) which we denoted by (Ṅ(t)Φa

0(x), Φa
i (x)). The 	uctuations F̃ a

0i belong
to the class of multipoles. Since the surface integral over monopole-multipole
couplings vanishes, the 	uctuation part of the second term obviously drops out.
The substitution of the solution with the asymptotic (203) into the ˇrst surface
term of Eq. (209) leads to the zero-mode action (195).

The action for the equivalent unconstrained system of the local excitations,

W̃YM[F̃ ] =

=
∫

d4x

{
Ea

k Ȧ
a(0)
k − 1

2

{
E2

k + B2
k(A(0)) + [Dab

k (Φ(0))σ̃b]2
}}

, (210)

is obtained in terms of variables with zero degree of map

ˆ̃F 0k = UZ F̂
(0)
0k U−1

Z , Âi = UZ(Â(0)
i + ∂i)U−1

Z ,
(211)

Â
(0)
i (t,x) = Φ̂(0)

i (x) + ˆ̃A
(0)

i (t,x)
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by decomposing the electrical components of the ˇeld strength tensor F
(0)
0i into

transverse Ea
i and longitudinal F a

0i
L = −Dab

i (Φ(0))σ̃b parts, so that

F
a(0)
0i = Ea

i − Dab
i (Φ(0))σ̃b, Dab

k (Φ(0))Eb
k = 0. (212)

Here the function σ̃b is determined from the Gauss equation(
(D2(Φ(0)))ab + gεadcÃ

d(0)
i Dcb

i (Φ(0))
)

σ̃b = −gεabcÃ
a(0)
i Ec

i . (213)

Due to gauge-invariance, the dependence of the action for local ecxitations on
the zero mode disappears, and we got the ordinary generalization of the Coulomb
gauge [4,6] in the presence of the WuÄYang monopole.

3.8. Feynman Path Integral. The Feynman path integral over the independent
variables includes the integration over the topological variable N(t)

ZF [J ] =
∫ ∏

t

dN(t)Z̃[JU ], (214)

where

Z̃[JU ] =
∫ ∏

t,x

{
3∏

a=1

[d2A
(0)
a d2E

(0)
a ]

2π

}
×

× exp i
{
WYM(Z) + W̃YM(A(0)

a ) + S[JU ]
}

. (215)

As we have seen above, the functionals W̃ , S are given in terms of the variables
which contain the nonperturbative phase factors U = UZ (205) of the topological
degeneration of initial data. These factors disappear in the action W̃ , but not in
the source

S[JU ] =
∫

d4xJa
i Āa

i , ˆ̄Ai = U(Â(0)
a )U−1 (216)

what re	ects the fact of the topological degeneration of the physical ˇelds.
The constraint-shell formulation distinguishes a bare ®gluon¯ as a weak de-

viation of the monopole with the index (n = 0), and an observable (physical)
®gluon¯ averaged over the topological degeneration (i. e., Gribov's copies) [17]

ĀPhys = lim
L→∞

1
2L

n=+L∑
n=−L

Ā(n)(x) ∼ δr,0, (217)

whereas in QED the constraint-shell ˇeld is a transversal photon.
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3.9. Rising Potential Induced by Monopole. We can calculate the instanta-
neous Green function

(D2(Φ(0)))ab(x)Gbc(x,y) = δacδ3(x − y). (218)

In the presence of the WuÄYang monopole we have

(D2)ab(x) = δab∆ − nanb + δab

r2
+ 2

(na

r
∂b −

nb

r
∂a

)
,

and na(x) = xa/r; r = |x|. Let us decompose Gab into a complete set of
orthogonal vectors in color space

Gab(x,y) =

[
na(x)nb(y)V0(z) +

∑
α=1,2

ea
α(x)eb

α(y)V1(z)

]
, (z = |x − y|).

Substituting the latter into the ˇrst equation, we get

d2

dz2
Vn +

2
z

d

dz
Vn − n

z2
Vn = 0, n = 0, 1.

The general solution for the last equation is

Vn(|x − y|) = dn|x − y|l
n
1 + cn|x − y|l

n
2 , n = 0, 1, (219)

where dn, cn are constants, and ln1 , ln2 can be found as roots of the equation
(ln)2 + ln = n , i. e.,

ln1 = −1 +
√

1 + 4n

2
, ln2 =

−1 +
√

1 + 4n

2
. (220)

It is easy to see that for n = 0 we get the Coulomb-type potential d0 = −1/4π,

l01 = −1 +
√

1
2

= −1, l02 =
−1 +

√
1

2
= 0, (221)

and for n = 1 the ®golden section¯ potential with

l11 = −1 +
√

5
2

≈ −1.618, l12 =
−1 +

√
5

2
≈ 0.618. (222)

The last potential (in the contrast with the Coulomb-type one) can lead to re-
arrangement of the naive perturbation series of the type of the spontaneous chi-
ral symmetry breaking. This potential can be considered as the origin of the
®hadronization¯ of quarks and gluons in QCD [31].
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3.10. FP Path Integral. Thus, we can say that the Dirac variables with the
topological degeneration of initial states in a non-Abelian theory determine the
physical origin of hadronization and conˇnement as nonlocal monopole effects.
The Dirac variables distinguish a unque gauge. In QED, it is the Coulomb gauge;
whereas, in YM theory, it is covariant generalization of the Coulomb gauge in
the presence of a monopole.

If we pass to another gauges of physical sources on the level of the FP
integral in relativistic gauges, all the monopole effects of the degeneration and
rising potential can be lost (as the Coulomb potential is lost in QED in relativistic
invariant gauges). Recall that to prove the equivalence of the Feynman integral
to the FaddeevÄPopov integral in an arbitrary gauge, we change variables and
concentrate all monopole effects in the phase factors before the physical sources.
The change of the sources removes all these effects.

The change of the sources was possible in the Abelian theory only for the
scattering amplitudes [6] when all particle-like excitations of the ˇelds are on their
mass-shell. However, for the cases of nonlocal bound states and other phenomena
where these ˇelds are off their mass-shell the Faddeev theorem of equivalence of
different ®gauges¯ is not valid.

For the non-Abelian theory all states become nonlocal, and the range of
validity of the equivalence theorem is equal to zero.

3.11. A Free Rotator: Topological Conˇnement. We have seen in Section 3,
that the topology can be the origin of color conˇnement as complete destructive
interference of the phase factors of the topological degeneration of initial data.

The mechanical analogue of the topological degeneration of initial data is the
free rotator N(t) with the action of free particle

W (Nout, Nin|t1) =

t1∫
0

dt
Ṅ2

2
I, p = ṄI, H0 =

p2

2I
(223)

given on a ring where the points N(t)+n (n is integer) are physically equivalent.
Instead of an initial data N(t = 0) = Nin in the mechanics in the space with
the trivial topology, the observer of the rotator has the manifold of initial data
N (n)(t = 0) = Nin + n; n = 0,±1,±2, . . .

An observer does not know where is the rotator. It can be at points Nin, Nin±
1, Nin ± 2, Nin ± 3, . . . Therefore, he should average a wave function

Ψ(N) = eipN

over all values of the topological degeneration with the θ-angle measure exp (iθn).
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In the result, we obtain the wave function

Ψ(N)observ = lim
L→∞

1
2L

n=+L∑
n=−L

eiθnΨ(N + n) = exp {i(2πk + θ)N}, (224)

where k is integer. In the opposite case p �= 2πk + θ, the corresponding wave
function (i. e., the probability amplitude) disappears Ψ(N)observ = 0 due to the
complete destructive interference.

The consequence of this topological degeneration is that a part of values of
the momentum spectrum becomes unobservable in the comparison with the trivial
topology.

This fact can be treated as conˇnement of those values which do not coincide
with the discreet ones

pk = 2πk + θ, 0 ≤ θ ≤ π. (225)

The observable spectrum follows also from the constraint of the equivalence of
the point N and N + 1

Ψ(N) = eiθΨ(N + 1), Ψ(N) = eipN . (226)

In the result we obtain the spectral decomposition of the Green function of the
free rotator (223) (as the probability amplitude of transition from the point Nin

to Nout) over the observable values of spectrum (225)

G(Nout, Nin|t1) ≡ 〈Nout| exp (−iĤt1)|Nin〉 =

=
1
2π

k=+∞∑
k=−∞

exp
[
−i

p2
k

2I
t1 + ipk(Nout − Nin)

]
. (227)

Using the connection with the Jacobian theta-functions [81]

Θ3(Z|τ) =
k=+∞∑
k=−∞

exp [iπk2τ + 2ikZ] = (−iτ)−1/2 exp
[

Z2

iπτ

]
Θ3

(
Z

τ

∣∣∣∣−1
τ

)
,

we can represent expression (227) in the form of the sum over all paths

G(Nout, Nin|t1) =

√
I

(i4πt1)
×

×
n=+∞∑
n=−∞

exp [iθn] exp [+iW (Nout, Nin + n|t1)] , (228)

where

W (Nout + n, Nin|t1) =
(Nout + n − Nin)2I

2t1
is the rotator action (223).
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3.12. Conˇnement as Destructive Interference. The similar topological con-
ˇnement as a complete destructive interference of phase factor of the topological
degeneration (i. e., a pure quantum effect) can be in the ®classical non-Abelian
ˇeld theory¯. Recall that at the time of the ˇrst paper of Dirac [1] (1927),
the so-called ®classical relativistic ˇeld theory¯ was revealed in the papers of
Schréodinger, Fock, Klein, Weyl [82, 83] as a type of relativistic quantum me-
chanics, i. e., the result of the primary quantization. The phase of the gauge
transformations was introduced by Weyl [83] as a pure quantum quantity.

The free rotator shows us that the topological degeneracy can be removed,
if all Green functions are averaged over values of the topological variable and
all possible angles of orientation of the monopole unit vector (n = x/r) (164) in
the group space (instead of the instanton averaging over interpolations between
different vacua).

Averaging over all parameters of the degenerations can lead to a complete
destructive interference of all color amplitudes [17, 19, 71]. In this case, only
colorless (®hadron¯) states have to form a complete set of physical states. Using
the example of a free rotator, we have seen that the disappearance of a part of
physical states due to the topological degeneration (conˇnement) does not violate
the composition law for Green functions

Gij(t1, t3) =
∑

h

Gih(t1, t2)Ghj(t2, t3), (229)

deˇned as the amplitude of the probability to ˇnd a system with the Hamiltonian
H in a state j at the time t3, if at the time t1 this system was in a state i, where
(i, j) belongs to a complete set of all states {h}:

Gij(t1, t3) = 〈i| exp
(
−i

t3∫
t1

dtH

)
|j〉.

The particular case of this composition law (229) is the unitarity of S matrix

SS+ = I ⇒
∑

h

〈i|S|h〉〈h|S+|j〉 = 〈i|j〉

known as the law of probability conservation for S-matrix elements (S = I + iT )∑
h

〈i|T |h〉〈h|T ∗|j〉 = 2 Im 〈i|T |j〉. (230)

The left side of this law is the analogue of the spectral series of the free ro-
tator (227). The destructive interference keeps only colorless ®hadron¯ states.
Whereas, the right side of this law far from resonances can be presented in
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the form of the perturbation series over the Feynman diagrams that follow from
the Hamiltonian. Due to gauge invariance H [A(n), q(n)] = H [A(0), q(0)], this
Hamiltonian does not depend on the Gribov phase factors and it contains the per-
turbation series in terms of only the zero-map ˇelds (i. e., in terms of constituent
color particles) that can be identiˇed with the Feynman partons. The Feynman
path integral as the generation functional of this perturbation series is the analogue
of the sum over all path of the free rotator (228).

Therefore, conˇnement in the spirit of the complete destructive interference of
color amplitudes [16,17,71] and the law of probability conservation for S-matrix
elements (230) leads to Feynman quark-hadron duality, that is foundation of all
the parton model [84] and QCD application [34]. The quark-parton duality gives
the method of direct experimental measurement of the quark and gluon quantum
numbers from the deep inelastic scattering cross section [84]. For example,
according to Particle Data Group, the ratio of the sum of the probabilities of
τ -decay hadron modes to the probability of τ -decay muon mode is∑

h

wτ→h

wτ→µ
= 3.3 ± 0.3.

This is the left-hand side of Eq. (230) normalized to the value of the lepton mode
probability of τ decay. On the right-hand side of Eq. (230), we have the ratio of
the imaginary part of the sum of quark-gluon diagrams (in terms of constituent
ˇelds free from the Gribov phase factors) to the one of the lepton diagram. In
the lowest order of QCD perturbation on the right-hand side, we get the number
of colors Nc and, therefore,

3.3 ± 0.3 = Nc.

Thus in the constraint-shell QCD we can understand not only ®why we do not see
quarks¯, but also ®why we can measure their quantum numbers¯. This mechanism
of conˇnement due to the quantum interference of phase factors (revealed by the
explicit resolving the Gauss law constraint [17,19,71]) disappears after the change
of ®physical¯ sources A∗J∗ ⇒ AJ that is called the transition to another gauge
in the gauge-ˇxing method.

3.13. U(1)-Problem. We have seen that the bilocal linearization of the four
fermion interaction leads to an effective bilocal ˇeld ηM action [33, 54] in both
QED (111) and QCD.

This meson action includes Abelian anomalies in the pseudoscalar isosinglet
channel [59, 89Ä91] (positronium ηM = ηP , in QED; and ηM = η0 meson,
in QCD).

We have chosen the total-motion variable ηM (t) so that the effective action
for the total motion of the pseudoscalar bound state with anomaly term has the
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universal form for all gauge theories (QED(3+1), QED(1+1), QCD(3+1)) in terms
of physical variables similar to (111)

Weff =
∫

dt

{
1
2
(
η̇2

M − M2
P ηM

2
)
V + CMηP Ẋ[A(N)]

}
, (231)

where in 3-dimensional QED(3+1) the constant CM is given by Eq. (112),

CM = CP =
√

2
me

8π2

(
ψ

Sch
(0)

m
3/2
e

)
;

in 1-dimensional QED(1+1) [36], CM = 2
√

π; and in 3-dimensional QCD(3+1),

CM = Cη =
Nf

Fπ

√
2
π

, (Nf = 3).

X [A] is the ®winding number¯ functional. In QED(3+1) the ®winding number¯
functional deˇned by Eq. (113) describes two γ decays of a positronium. In
QED(1+1) and QCD(3+1) these winding number functionals

ẊQED(A(N)) =
e

4π

V/2∫
−V/2

dxFµνεµν = Ṅ(t) ⇒ F01 =
2πṄ

eV
,

(232)

ẊQCD[A(N)] =
g2

16π2

∫
d3xGa

µν
∗Ga

µν = Ṅ(t) + Ẋ[A(0)]

contain the independent topological variable. Recall that in QCD with the WuÄ
Yang monopole, we obtained the normalizable zero mode

Ga
0i = ṄDab

i (Φ)Φb
0 = ṄBa

i (Φ)
2π

αsV 〈B2〉 ,

so that
g2

8π2

∫
d3Dab

i (Φ)Φb
0B

a
i (Φ) = 1.

In QED(1+1) and QCD(3+1) the effective action should be added by the topo-
logical dynamics of the zero mode with the actions

WQED =
1
2

∫
dt

V/2∫
−V/2

dxF 2
01 =

∫
dt

Ṅ2IQED

2
,

WQCD =
1
2

∫
dt

∫
V

d3xG2
0i =

∫
dt

Ṅ2IQCD

2
,
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where

IQED =
(

2π

e

)2 1
V

,

IQCD =
(

2π

αs

)2 1
V 〈B2〉 .

It is easy to show that the diagonalization of the total Lagrangian of the type of

L =

[
Ṅ2I

2
+ CMηM Ṅ

]
=

[
(Ṅ + CMηM/I)2I

2
− C2

M

2IV
η2

MV

]

leads to additional mass of the pseudoscalar bound state in both QED(1+1) and
QCD(3+1)

�M2 =
C2

M

IV
.

In QED(1+1) this formula describes the well-known Schwinger mass

�M2 =
C2

M

IQEDV
=

e2

π
,

whereas in QCD(3+1) we obtain the additional mass of η0 meson

Leff =
1
2
[η̇2

0 − η2
0(t)(m

2
0 + �m2

η)]V, (233)

�mη
2 =

C2
η

IQCDV
=

N2
f

F 2
π

α2
s〈B2〉
2π2

. (234)

This result allows us to estimate the value of the vacuum chromomagnetic ˇeld
in QCD

〈B2〉 =
2π3F 2

π�mη
2

N2
f α2

s

=
0.06 GeV4

α2
s

.

After calculation we can remove infrared regularization V → ∞.
Thus, the Dirac constraint-shell formulation of gauge theories [1] allows us to

describe on equal footing the set of well-known results on anomalous interactions
of pseudoscalar bound states in gauge theories including the anomalous decay
of a positronium in QED(D=1+3), the Schwinger mass in QED(D=1+1), and
U(1)-problem in QCD(D=1+3). These results include also the zero probability of
two gluon decays of a pseudoscalar meson due to conˇnement as the destructive
interference of the Gribov copies for gauge theories with the homotopy group
π(D−1)(G) = Z.
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CONCLUSION

Why does the non-Abelian gauge theory lead to the spontaneous chiral sym-
metry breaking, quark-hadron duality, rising potential, and color conˇnement?

The formulation of the theory of strong interactions is completed if the theory
can explain and unify all working phenomenological schemes (chiral Lagrangians
with the Goldstone mesons, the parton model based of quark-parton duality, the
Schréodinger equation with rising potentials for heavy quarkonia, etc.) from the
ˇrst principles (dynamic, quantum, and symmetric).

The pure water of the theory of strong interactions can clean the muddy
swamp of phenomenology if there are constructive explanations of the paradoxes:

i) How to combine the observation of nonlocal gauge-invariant variables with
the variational principles formulated for local ˇelds?

ii) How to combine the dependence of the Hamiltonian approach to quanti-
zation on the time axis with the relativistic covariance of S-matrix elements?

iii) How to reconcile the presence of poles of color particle Green functions
(that needs to ground the parton model and to obtain the Shréodinger equation)
with nonobservability of physical states corresponding to these poles?

The ˇrst two questions belong also to the consistent scheme of the description
of the nonlocal bound-state sector (spectrum and interactions) in QED. Never-
theless, these questions become essentially actual in QCD where observables are
only colorless bound states. In this case, the theorem of equivalence of different
gauges [6,73,74] on the mass-shell of elementary particles is not adequate to the
physical situation of the description of observable nonlocal objects where local
elementary particles are off mass-shell. For nonlocal bound states, even in QED,
the dependence on the time-axis and gauge exists. All peculiarities of bound
states (including time initial data, spatial boundary conditions, normalization of
wave functions, time evolution) re	ect the choice of their rest frame of reference
distinguished by the axis of time chosen to lie along the total momentum of
any bound state in order to obtain the relativistic-covariant dispersion law and
invariant mass spectrum.

Thus, the answers to the ˇrst two questions (i, ii) are the equivalent uncon-
strained system obtained by resolving the Gauss law constraint and the MarkovÄ
Yukawa prescription of the choice of the time axis parallel to the eigenvec-
tor of the bound-state total momentum operator. In this case, we can com-
bine the relativistic and quantum principles of the dynamic description of gauge
ˇelds.

The last question iii) belongs only to QCD. The answer is the topological
degeneration of initial data in the non-Abelian theory that leads to the pure gauge
Higgs effect of appearance of a physical vacuum in the form of the WuÄYang
monopole. This vacuum determines the effects of hadronization and conˇnement
in QCD omitted by the conventional gauge-ˇxing method.
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We brought out that the physical vacuum leads to rising potentials, chiral
Lagrangians, and an additional mass of the η0 meson (as a consequence of the
rearrangement of the perturbation series). The averaging over the Gribov copies
of the topological degeneration leads to the color conˇnement and quark-hadron
duality as a consequence of the destructive interference of the Gribov phase
factors. This conˇnement is one of the consequences of the Dirac deˇnition of
measurable variables that keeps quantum principles. This conˇnement (omitted
by all other methods of quantization) appears as pure quantum effect that gives
the theoretical basis of the quark-hadron duality as the experimental method of
measurement of the quark-gluon quantum numbers.

Here we can recall the words by J. C. Maxwell in the Introduction of his
A Treatise on Electricity and Magnetism (Oxfrord, 1873): ®The most important
aspect of any phenomenon from mathematical point of view is that of a measurable
quantity. I shall therefore consider electrical phenomena chie	y with a view to
their measurement, describing the methods of measurement, and deˇning the
standards on which they depend¯.
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remov, G. A. Gogilidze, N. Ilieva, W. Kallies, A. M. Khvedelidze, E. A. Kuraev,
M. Lavelle, D. McMullan, J. Polonyi, G. Réoepke, and W. Thirring for interesting
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