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A brief review of the recent developments in the physics from extra dimensions is given with a
focus on the effects of KaluzaÄKlein excitations in the Standard Model sector. It is shown that the
current accurate data on the Fermi constant and on other electro-weak parameters puts a lower bound
on the scale of extra dimensions of ∼ 3 TeV, and thus the observation of such dimensions lies beyond
the reach of accelerators in the near future. The correction to the anomalous magnetic moment of the
muon from extra dimensions is discussed and one ˇnds that, with the current limit on the scale of extra
dimensions from the Fermi constant, the correction to gµ−2 does not compete with the potentially large
contributions from the supersymmetric electro-weak correction. The possibility of generating KaluzaÄ
Klein excitations associated with large-radius compactiˇcations at the LHC is discussed. It is shown that
if such excitations are indeed produced their resonance structure will encode information on the number
of compactiˇed dimensions as well as on the nature of the speciˇc orbifold compactiˇcation. A brief
discussion of difˇculties, such as rapid proton decay, that one encounters in theories with large-radius
compactiˇcations is given.

„ ¥É¸Ö ±· É±¨° µ¡§µ· ¸µ¢·¥³¥´´µ£µ ¸µ¸ÉµÖ´¨Ö ¢ µ¡² ¸É¨ Ë¨§¨±¨ ¤µ¶µ²´¨É¥²Ó´ÒÌ · §³¥·´µ-
¸É¥°, µ¸µ¡µ¥ ¢´¨³ ´¨¥ ¶·¨ ÔÉµ³ Ê¤¥²Ö¥É¸Ö ¢µ§³µ¦´Ò³ ¶·µÖ¢²¥´¨Ö³ ¢µ§¡Ê¦¤¥´¨° Š ²ÊÍÒÄŠ²Ö°´ 
¢ ¸¥±Éµ·¥ ¸É ´¤ ·É´µ° ³µ¤¥²¨. �µ± § ´µ, ÎÉµ ¸µ¢·¥³¥´´Ò¥ ¶·¥Í¨§¨µ´´Ò¥ ¨§³¥·¥´¨Ö Ë¥·³¨¥¢¸±µ°
±µ´¸É ´ÉÒ ¨ ¤·Ê£¨Ì Ô²¥±É·µ¸² ¡ÒÌ ¶ · ³¥É·µ¢ ¤ ÕÉ ´¨¦´ÕÕ £· ´¨ÍÊ ¤²Ö ³ ¸ÏÉ ¡  ¤µ¶µ²´¨É¥²Ó-
´ÒÌ · §³¥·´µ¸É¥° ´  Ê·µ¢´¥ 3 ’Ô‚ ¨, É ±¨³ µ¡· §µ³, ´ ¡²Õ¤¥´¨¥ É ±µ£µ ¸µ·É  ¤µ¶µ²´¨É¥²Ó´ÒÌ
· §³¥·´µ¸É¥° ²¥¦¨É §  ¶·¥¤¥² ³¨ ¢µ§³µ¦´µ¸É¥° Ê¸±µ·¨É¥²¥° ¡²¨¦ °Ï¥£µ ¡Ê¤ÊÐ¥£µ. �¡¸Ê¦¤ ¥É¸Ö
¶µ¶· ¢±  ±  ´µ³ ²Ó´µ³Ê ³ £´¨É´µ³Ê ³µ³¥´ÉÊ ³Õµ´ , µ¡Ê¸²µ¢²¥´´ Ö ¤µ¶µ²´¨É¥²Ó´Ò³¨ · §³¥·´µ-
¸ÉÖ³¨, ¨ ¶µ± § ´µ, ÎÉµ ´  µ¸´µ¢¥ ¶µ²ÊÎ¥´´µ£µ ¨§ ¨§³¥·¥´¨Ö Ë¥·³¨¥¢¸±µ° ±µ´¸É ´ÉÒ µ£· ´¨Î¥´¨Ö
´  ³ ¸ÏÉ ¡ ¤µ¶µ²´¨É¥²Ó´ÒÌ · §³¥·´µ¸É¥° ÔÉ  ¶µ¶· ¢±  ± gµ − 2 §´ Î¨É¥²Ó´µ Ê¸ÉÊ¶ ¥É ¶µÉ¥´-
Í¨ ²Ó´µ ¡µ²ÓÏ¥° Ô²¥±É·µ¸² ¡µ° ¸Ê¶¥·¸¨³³¥É·¨Î´µ° ¶µ¶· ¢±¥. �¡¸Ê¦¤ ¥É¸Ö ¢µ§³µ¦´µ¸ÉÓ Ëµ·³¨-
·µ¢ ´¨Ö ´  LHC ¢µ§¡Ê¦¤¥´¨° Š ²ÊÍÒÄŠ²Ö°´ ,  ¸¸µÍ¨¨·µ¢ ´´ÒÌ ¸ ¡µ²ÓÏ¨³ · ¤¨Ê¸µ³ ±µ³¶ ±-
É¨Ë¨± Í¨¨. �µ± § ´µ, ÎÉµ ¥¸²¨ É ±¨¥ ¢µ§¡Ê¦¤¥´¨Ö ¤¥°¸É¢¨É¥²Ó´µ ¢µ§´¨± ÕÉ, Éµ ¨Ì ·¥§µ´ ´¸´ Ö
¸É·Ê±ÉÊ·  ¸µ¤¥·¦¨É ¨´Ëµ·³ Í¨Õ µ Î¨¸²¥ ±µ³¶ ±É¨Ë¨Í¨·Ê¥³ÒÌ · §³¥·´µ¸É¥° ¨ Ì · ±É¥·¥ ±µ³-
¶ ±É¨Ë¨Í¨·Ê¥³µ£µ ³´µ£µµ¡· §¨Ö. Š· É±o µ¡¸Ê¦¤ ÕÉ¸Ö ¨ É¥ É·Ê¤´µ¸É¨ (´ ¶·¨³¥·, ¡Ò¸É·Ò° · ¸¶ ¤
¶·µÉµ´ ), ±µÉµ·Ò¥ ¢µ§´¨± ÕÉ ¢ É¥µ·¨ÖÌ ¸ ¡µ²ÓÏ¨³ · ¤¨Ê¸µ³ ±µ³¶ ±É¨Ë¨± Í¨¨.

INTRODUCTION

The physics of extra dimensions has a long and interesting history [1Ä3] beginning with
the work of Kaluza and Klein in the nineteen twenties [1,2]. Recent interest in KaluzaÄKlein
theories arises because such theories may occur in TeV scale strings [4Ä6]. Activity in these
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models is taking place along three directions: (a) effects of large extra dimensions in the
Standard Model [3, 7, 8], (b) effects in the gravitational sector [9], and (c) non-factorizable
geometries [10, 11]. The focus of this paper is on the constraints on extra dimensions from
precision electro-weak data. Speciˇcally we will discuss in detail the constraints arising from
two of the most precisely determined quantities in all of particle physics, i.e., the Fermi
constant and the anomalous magnetic moment of the muon. We will also discuss the possible
signatures for extra dimensions in pp collisions at the Large Hadron Collider (LHC). Although
the focus of this paper is on extra dimensions in the context of the Standard Model, we will
make a brief detour to assess also the status of work on extra dimensions in low-scale quantum
gravity. Finally, we will discuss some of the difˇculties that surface in theories with extra
dimensions. In section 1 we give a brief discussion of the conventional string phenomenology
based on heterotic strings. In section 2 we discuss the more recent developments which lead
to the possibility of a string scale in the TeV region. In section 3 we discuss compactiˇcations
of extra dimensions which lead to KaluzaÄKlein excitations in the Standard Model. In section
4 we discuss the contributions from the KaluzaÄKlein excitations on the Fermi constant and
give an analysis of the constraints that the accurate determination of the Fermi constant places
on the compactiˇcation scale MR. In section 5 an analysis of the effects of KaluzaÄKlein
excitations on the anomalous magnetic moment of the muon is given. In section 6 we discuss
the probe of extra dimensions at colliders. A brief discussion of low-scale quantum gravity
is given in section 7. In Section 8 we discuss the difˇculties encountered in models with
large-radius compactiˇcations.

1. CONVENTIONAL STRING PHENOMENOLOGY

Extra space-time dimensions are an integral part of string theory. However, in conventional
string phenomenology compactiˇcations of extra dimensions occur at a high scale close to
the 4-dimensional Planck scale MPl = 1.2 · 1019 GeV. The effects of extra dimensions in this
case are at the level of threshold effects of heavy states with masses of order 1017 GeV. Such
models, based on compactiˇcations on CalabiÄYau manifolds, orbifolds, and free fermionic
constructions possess many desirable features [12]. Thus they contain the Standard Model
gauge group, N = 1 supersymmetry and can accomodate the spectrum of the Minimal
Supersymmetric Standard Model (MSSM). In these models there is an automatic uniˇcation
of the gauge coupling constants at the scale Mstr. Unfortunately, compatibility with the LEP
data is not guaranteed. In fact, one has to invoke the presence of additional phenomena
in the form of either an additional set of states over and above the MSSM spectrum with
intermediate scale masses or large threshold corrections to get agreement with the LEP data.
Further, in some models there is the problem of extra light Higgs doublets and the problem of
proton stability in some others. Nonetheless it is quite remarkable that several string models
come close to becoming realistic. Since supersymmetric grand uniˇcation is very successful
in accomodating the uniˇcation of gauge couplings given by the LEP data, recent efforts have
focussed on deducing grand uniˇcation from higher-level Kac Moody levels [13]. However,
some phenomenological problems still remain to be resolved in these constructions.
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2. RECENT STRING MODEL BUILDING

Recent developments in string model building has proceeded along two main directions:
(i) M theory compactiˇcation, and (ii) Type I [Type IIB] string compactiˇcations. The generic
feature of such models is that there is no longer a rigid relation between Mstr and MPl [4].
In fact in the context of Type I [Type IIB] compactiˇcations, the scale Mstr can be as low as
a TeV scale. We shall discuss models where the string scale and the compactiˇcation scale
are indeed quite low, i.e., in the TeV range. In addition to Mstr being low the fundamental
scale of gravity in higher dimensions may be low [9]. This is possible because the observed
Planck scale MPl in four dimensions and the fundamental gravity scale in higher dimensions
are related by extra dimensions [9]. We shall discuss the implications of a low-scale quantum
gravity in further detail in section 7.

3. TEV SCALE STRINGS AND KALUZAÄKLEIN MODES

In this section we discuss the effects of KaluzaÄKlein modes in the Standard Model
sector in models with large-radius compactiˇcation. The simplest phenomenologically viable
example of a higher dimensional theory is the case with one extra dimension which we assume
is compactiˇed on S1/Z2 with a compactiˇcation radius of R = M−1

R . After compactiˇcation
the resulting spectrum contains massless modes with N = 1 supersymmetry in four dimensions
(4D), which precisely form the spectrum of MSSM in 4D. The massive KaluzaÄKlein modes
form N = 2 multiplets in 4D with masses (m2

i + n2M2
R), n = 1, 2, 3, ...,∞, where m2

i is
the electro-weak mass and n2M2

R is the compactiˇcation mass. For simplicity we consider a
direct 5-dimensional extension of the MSSM with the matter ˇelds (quarks, leptons and Higgs)
conˇned to the orbifold points which constitutes the 4-dimensional wall of the physical space-
time, while the SU(3)C×SU(2)L×U(1) gauge bosons propagate in the bulk. In this model
after compactiˇcation of the ˇfth dimension we will have only zero modes for the matter
ˇelds, while the gauge bosons will contain both the zero modes and the KaluzaÄKlein modes.
In the effective theory in 4D a rescaling of the ˇve-dimensional gauge coupling constant is

necessary so that g
(5)
i /

√
πR = gi. After rescaling the low-energy effective lagrangian in four

dimensions is of the form

Lint = gij
µ(Aµi +

√
2

∞∑
n=1

An
µi), (1)

where Aµi are the gauge ˇelds and are massless, An
µi are their massive KaluzaÄKlein excita-

tions, and jµ are the matter sources which contain the massless quark, lepton and Higgs ˇelds.
It is interesting to note that the coupling of the vector KaluzaÄKlein modes to matter is by a
factor of

√
2 larger than the coupling of the zero mode to matter. The above compactiˇcation

scheme can be generalized to the case with more than one extra dimension. However, as
the number of extra dimensions becomes larger the number of possible compactiˇcations also
grows. Thus, for example, for the case of two extra dimensions one may compactify on
Z2 × Z2, Z3 and Z6 orbifolds. In general, different compactiˇcations will lead to different
low-energy effective 4D theories and to different signatures in low-energy physics.
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4. KALUZAÄKLEIN EFFECTS ON THE FERMI CONSTANT

The Fermi constant is very accurately known from the muon lifetime. From the complete
two-loop corrections one has [14]

GF = 1.16639(1) · 10−5 GeV−2. (2)

A comparison of the Standard Model value with the experimental value of (2) shows an
excellent agreement between theory and experiment. However, the error in the theoretical
determination of GSM

F is much larger, by a factor of around two orders of magnitude, than the
error in the experimental determination given by (2). It is this theoretical error that allows for
the possibility of a correction from the KaluzaÄKlein states. Speciˇcally, the KaluzaÄKlein
correction to the Fermi constant must lie in the error corridor of the experimental value and the
Standard Model prediction, i.e., ∆GKK

F /GSM
F = GF/GSM

F − 1. Thus for d extra dimensions
the effective Fermi constant including the KaluzaÄKlein corrections is given by [8]

Geff
F = GSM

F

∫ ∞

0

dt e−t

[
θ3

(
itM2

R

M2
W π

)]d

, (3)

where θ3(z) is the Jacobi function deˇned by θ3(z) =
∑∞

k=−∞ e(iπk2z). For the case of one
extra dimension one ˇnds to leading order in MW /MR the result [8]

Geff
F � GSM

F

(
1 +

π2

3
M2

W

M2
R

)
. (4)

Thus in the case of one extra dimension ∆GKK
F /GSM

F = π2

3
M2

W

M2
R

and a direct determination

of MR is possible from the error corridor between GF and GSM
F . However, the error corridor

which is essentially determined by the error in GSM
F is very sensitively dependent on the

scheme in which radiative corrections are computed as well as on the process used to extract
it. We illustrate this with two parametrizations of GSM

F . First in the on-shell scheme one has

GSM
F =

πα√
2M2

W sin2 θW (1 − ∆r)
, (5)

where sin2 θW = (1−M2
W/M2

Z) and ∆r is the radiative correction in this scheme. Alternately
one may parametrize GSM

F by

GSM
F =

πα√
2M2

Z ŝ2ĉ2(1 − ∆r̂)
, (6)

where ∆̂r is the radiative correction and ŝ = sin θW (MS) and ĉ = cos θW (MS). Several
other determinations of GSM

F exist as well, e.g., from the leptonic partial decay widths of the
Z boson (see, e.g., Marciano in [8]). With these parametrizations and the current errors in
the electro-weak parameters one ˇnds MR � 3 TeV with a ±1 TeV �uctuation depending on
the parametrization used. With the above limit on MR none of the KaluzaÄKlein excitations
of γ, W or Z boson will become visible at the Tevatron. However, the current limit on MR

still allows for the possibility that these excitations may become visible at the LHC.
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5. FERMIONIC MOMENTS

The extra dimensions will also have an effect on the fermionic moments, and specially on
the muon anomalous magnetic moment. This moment is one of the most accurately determined
quantities in physics. The most recent measurement of aµ = (gµ −2)/2 from the Brookhaven
experiment E821 combined with the previous CERN measurement [15] gives [16,17]

aexp
µ = 11659235.7(46) · 10−10. (7)

The result of the Standard Model for this quantity computed to α5 QED corrections [18] and
up to α2 hadronic [19] and two-loop electro-weak corrections gives the value [17]

aSM
µ = 11659159.7(6.7) · 10−10. (8)

The two-loop electro-weak correction by itself is aEW
µ (2-loop) = 15.2(0.4) · 10−10 [20]. It

is expected that in the next round of analysis the BNL experiment will reach a sensitivity of
about ±15 · 10−10 and eventually it will measure aµ to a sensitivity of ±4 · 10−10. The term
aµ is generally regarded as a sensitive probe of new physics and we wish to determine if this
is also the case for extra dimensions. Thus it is already known that aµ is a sensitive probe
of supersymmetry [21] speciˇcally for the case of large tanβ since in SUSY ∆aµ ∼ tanβ
and for large tan β the BNL experiment in fact can favorably compete with the Tevatron in
discovering new physics [21].

Next we discuss the effects on aµ due to corrections from the KaluzaÄKlein excitations
of the photon and of the W and Z bosons [22]. In the analysis we have to take into account
the effects of the KaluzaÄKlein W states on GF, which we have already discussed. Including
these effects we ˇnd that for the case d = 1 the correction to aµ due to the KaluzaÄKlein
excitations of γ, W , and Z is given by [22]

(∆a)γ-W -Z,KK
µ =

GFm2
µ

π22
√

2

(
− 5

12
+

4
3

(
sin2 θW − 1

4

)2
)(

M2
Z − M2

W

M2
R

)
+ α

π

9
m2

µ

M2
R

. (9)

From (9) one ˇnds that there is a partial cancellation between the W and Z KaluzaÄKlein
exchange contribution and the photonic KaluzaÄKlein exchange contribution. The net result is
that with MR � 1 TeV the contribution of the KaluzaÄKlein modes to aµ falls more than 1Ä2
orders of magnitude below the sensitivity that will be achievable in the new aµ experiment.
Thus extra dimensions even as low as 1 TeV provide no serious background for SUSY effects
and if a deviation in aµ from the Standard Model prediction is seen at BNL it could not be
attributed to effects of extra dimensions.

The basic reason why there is a very large suppression of the KaluzaÄKlein contributions
to aµ is the redeˇnition of the Fermi constant which absorbs most of the correction in aµ

from KaluzaÄKlein modes. As discussed in the ˇrst paper [8], there is, however, a variant
model where muon decay and consequently GF receive no contribution from the KaluzaÄKlein
excitations. This is a model where the ˇrst quark lepton generation lies in the bulk, while
the second generation lies on the 4D wall. In this model, while the correction to GF from
the KaluzaÄKlein states are suppressed, there is no such suppression for the KaluzaÄKlein
correction to aµ. The detailed analysis here shows that the new BNL experiment will be
able to probe extra dimensions for this model as follows [22]: MR ∼ 0.65 TeV (d = 2),
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MR ∼ 1 TeV (d = 3), and MR ∼ 1.4 TeV (d = 4). The effects of extra dimensions in the
context of quantum gravity are discussed in [23]. With the current estimates on the scale of
low-scale quantum gravity (section 7) the quantum gravity effects on aµ are again expected
to be rather small. Thus, aside from the special case of the variant model discussed above,
one ˇnds that the effect of extra dimensions on aµ will in general be too small to provide
any serious background to the supersymmetric electro-weak correction.

6. PROBE OF EXTRA DIMENSIONS AT COLLIDERS

If the compactiˇcation radius of extra dimensions is large enough, the KaluzaÄKlein
excitations of the γ, W and Z could be produced at the LHC [24Ä26]. In this case one can
show that quite remarkably the experimental data on the KaluzaÄKlein excitations encodes
information on the nature of compactiˇcation [26]. Thus the resonance structure in the
production cross section associated with KaluzaÄKlein excitations will provide information
on the number of compactiˇed dimensions as well as on the nature of the speciˇc orbifold
compactiˇcation. The most dramatic signals arise from the interference pattern involving the
exchange of the Standard Model spin-1 bosons (γ and Z) and their KaluzaÄKlein modes.
Additional signals arise from the KaluzaÄKlein excitations of the W boson and of the gluon.

The main signal of the KaluzaÄKlein modes is the DrellÄYan process pp → l+l− + X
via the KaluzaÄKlein excitations of the Z and γ. The detailed analysis of the above process
yields the cross section for the KaluzaÄKlein case which is ∼ 10 times larger than that for
the case of the SSM Z ′ boson. The reason for this enhancement is twofold. First, one has
the extra factor of

√
2 in the couplings of the KaluzaÄKlein states to matter as discussed in

section 3 (see (1)). Second, there is also an enhancement from a constructive interference
between KaluzaÄKlein modes of the photon and of the Z boson, which essentially overlap.
There are also other remarkable features associated with the production of the dilepton pair
via KaluzaÄKlein states. An interesting quantity to plot is the cross section dσ/dmll as a
function of the dilepton invariant mass mll (Fig. 1). This cross section exhibits clear resonance
peaks corresponding to the masses of the KaluzaÄKlein states. An interesting feature is that
BreitÄWigner resonances arising from the KaluzaÄKlein excitation of the photon and from the
KaluzaÄKlein excitation of the Z boson superpose and lead to a net distorted BreitÄWigner
resonance. Another interesting phenomenon is that there are sharp dips below the resonance
peaks. The origin of these dips is due to a destructive interference between the contributions
arising from the exchange of the γ and Z gauge bosons and of their KaluzaÄKlein excited
states in the region below the peaks. This phenomenon is unique to the KaluzaÄKlein
excitations. The analysis shows that KaluzaÄKlein excitations with MR up to 6 TeV can be
explored with a luminosity of 100 fb−1 [26].

Next we consider the case of more than one extra dimension. Here for d > 1 there are
in general several orbifold compactiˇcations possible and thus the compactiˇcations are more
model-dependent in this case. For example, for the case d = 2 one can get a Z2×Z2 orbifold
model where the compactiˇed space is S1/Z2 × S1/Z2, where the two S1 have a common
radius R. Another possibility is Z3 or Z6 compactiˇcation with a 2D torus of periodicity 2πR.
We note in passing that the mass spectra of the KaluzaÄKlein excitations for the Z3 and Z6

orbifold cases are related. Thus for the Z3 orbifold compactiˇcation, masses for the KaluzaÄ
Klein excitations are given by M2

Z3
= 4

3R2 (m2
1 +m1m2 +m2

2), where m1, m2 are positive or
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negative integers. Analogously for the Z6 orbifold compactiˇcation the mass fomula for the
KaluzaÄKlein excitations is M2

Z6
= 4

3R2 (m2
1 −m1m2 +m2

2). We note that the mass formulae
for the Z3 and Z6 cases are related by (m1, m2) → (m1,−m2). In general the masses of
the KaluzaÄKlein excitations, their multiplicities and the strength of their couplings to the
boundary fermions depend on the nature of the compactiˇcation and these should manifest
themselves in the production cross section and in the resonance structure of these states at
the LHC. A detailed analysis of the above bears this out and one ˇnds that the d = 1 and the
d = 2 compactiˇcations can be distinguished by a detailed study of the dileptonic cross section
dσll/dmll as a function of the dilepton invariant mass mll (Fig. 2). Further, as the analysis
of Fig. 2 shows, one can even distinguish between the Z2 × Z2 and Z3 compactiˇcations for
the d = 2 case. Thus a study of the resonance structure of the KaluzaÄKlein states will allow
one to determine the dimensionality of the compactiˇed space as well as the detailed nature of
speciˇc orbifold compactiˇcation. In general the compactiˇcation radii for different compact
dimensions could be different, leading to a richer resonance structure. However, the general
observations made above should still hold. A similar analysis can be carried out for the
study of Kaluza-Klein excitations at future lepton colliders which also present an interesting
possibility for the study of extra dimensions [27].

Fig. 1. A plot of the differential cross section dσ/dmll as a function of the dilepton invariant mass mll

for the process pp → l+l− + X including the effects of KaluzaÄKlein excitations for the case when the
compactiˇcation scale is MR = 2 TeV (solid), MR = 5 TeV (dashed), and MR = 8 TeV (dot-dashed).

The resonance structure exhibits the existence of KaluzaÄKlein modes. For comparison the result of

SM case is also shown (long-dashed). (Taken from [26])

Fig. 2. A plot of the differential cross section dσ/dmll as a function of the dilepton invariant mass

mll for the process pp → l+l− + X including the effects of KaluzaÄKlein excitations for the case

d = 1 (solid) and for the case d = 2 for two orbifold compactiˇcations, Z2 × Z2 (dashed) and Z3

(dot-dashed), when the mass of the ˇrst KaluzaÄKlein excitation is taken to be 3 TeV. The features of

the resonance structure distinguish cases with different number of compactiˇed dimensions as well as
cases with different orbifold compactiˇcations. (Taken from [26])
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7. LOW-SCALE QUANTUM GRAVITY

As discussed in section 2, in addition to the Planck scale being low, the fundamental scale
of gravity may also be low because the relation between the Planck scale and the fundamental
scale of gravity depends on the number of extra dimensions. Thus from Gauss's law the
relation between the volume Rn of n new dimensions, the fundamental scale M and the
observed Planck scale in four dimensions is M2

Pl = RnMn+2 [9], where MPl = G
−1/2
N . One

might investigate what happens if the fundamental scale M of quantum gravity is 1 TeV.
The case n = 1 is then excluded since it would modify Newtonian law of gravitation at
planetary distances. The case n = 2 gives R � 1 mm and represents an interesting possibility
for exploration. The low-energy effective lagrangian for theories of this type is discussed
in [28] and the implications at accelerators for this class of theories have been discussed
by several authors [29]. However, astrophysical considerations seem to indicate a limit on
the fundamental scale which is rather large and would seem to exclude the possibility of
observation of quantum gravity phenomenon at accelerator energies. Thus for the interesting
case of two extra dimensions one ˇnds that the analysis of graviton decay to the cosmic
diffuse gamma radiation [30] and studies of graviton emission into large compact dimensions
from a hot supernova core using the SN1987A data [31] put bounds on the fundamental scale
which are very stringent, in the range of 50Ä100 TeV, and place the exploration of extra
dimensions beyond the reach of the laboratory experiment. Extra compact dimensions can
also be probed directly in gravity experiments and there are experiments proposed to probe
distances at the submillimeter scale to look for possible deviations from the inverse square
law [32]. These experiments look for modiˇcations of the type

V (r) = −GN
m1m2

r

(
1 + α e−r/λ

)
, (10)

a form which is valid for r � λ and α = n + 1 for n-sphere and α = 2n for n-torus
compactiˇcation [33]. For the case of interest of two extra dimensions λ = R � 1 mm and
α = 3(4) for the sphere (torus) case. The very recent result from the Seattle Group probes
distances well below the 1 mm level and ˇnds no deviation from the inverse square law [34].
The experiment places a limit on M of M � 3.5 TeV [34].

Next we discuss the generation of neutrino masses in models of this type. In grand uniˇed
theories and in string theories a small neutrino mass is generated by a see-saw mechanism
which gives mν ∼ m2

f/MX , where mf is the fermion mass and MX is a heavy mass
scale. In this mechanism the neutrino mass is small because MX is heavy, where MX is
taken to lie between the intermediate scale and the GUT scale. In a model with large-radius
compactiˇcation such a large mass scale does not exist and one needs to rethink how a small
neutrino mass will arise in such a scenario. One mechanism used is to assume that aside
from gravity some matter ˇelds could also propagate in the bulk. Speciˇcally it is possible
to generate a small Dirac neutrino mass by assuming that the right-handed component of this
neutrino is a Standard Model singlet which resides in the bulk [35, 36]. Here the couplings
between the singlet and the Standard Model particles arise at the wall and the Dirac neutrino
mass is thus suppressed because of the volume factor from extra dimensions [35]. However,
generation of a Majorana mass for the neutrino is more difˇcult as one needs to violate lepton
number on a distant brane (or in the bulk) and communicate this breaking to the physical
brane by a bulk ˇeld.
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A more recent work in a similar direction is on non-factorizable geometries [10,11]. An
example of this is a 5D model with gravity in the bulk and the 5th dimension compactiˇed
on S1/Z2: {xM} = {xµ, φ}; µ = 0, ..., 3, −π � φ � π. One assumes the existence of
two 3-branes, one at φ = 0 and the other at φ = π. One of these could be viewed as the
brane for the hidden sector and the other as the brane for the visible sector. The total action
is S = Sgrav + Svis + Shid. One looks for solutions with Lorentz invariance with the form
ds2 = e−2σ(φ)ηµνdxµdxν + r2

cdφ2. A ˇne tuning among the cosmological constants in the
bulk and on the boundary is necessary, generating a sort of ADS5 geometry, to achieve a 4D
Poincare invariance. Solutions require σ(φ) = krc|φ| generating a warp factor of e−2krc|φ|

which decays exponentially as one moves away from the wall at φ = 0. Some of the
phenomenological consequences of this model are discussed in [37].

8. DIFFICULTIES IN MODELS WITH LARGE-RADIUS COMPACTIFICATIONS

There are several phenomena other than those discussed above which are affected in sce-
nario with large-radius compactiˇcations creating in some cases extra challenges or problems
depending on one's point of view. We begin with a discussion of the problem of gauge
coupling uniˇcation. In MSSM, uniˇcation of the gauge couplings takes place naturally with
a uniˇcation scale of ∼ 2 · 1016 GeV. In models with large-radius compactiˇcations the evo-
lution of the gauge couplings above the compactiˇcation scale obeys a power law behavior
as a function of the scale factor [7, 38]. This power law behavior arises as a consequence
of the contributions from the KaluzaÄKlein excitations. Thus in models with large-radius
compactiˇcation the meeting of two of the gauge couplings constants, say α1 and α2, can
occur at a low scale. However, with the MSSM spectrum the low-scale uniˇcation leads to
a value of α3 which in general is larger than the one given by the LEP data. Thus one of
the successes of MSSM, i.e., a natural uniˇcation of the gauge coupling constants, is lost.
Suggestions on how to recover uniˇcation with additional contributions are discussed in some
of the papers in [39,40]. However, in this case the uniˇcation of the gauge couplings becomes
more of an accident rather than a prediction of the model.

Perhaps the most serious problem in models with large-radius compactiˇcation is that of
proton stability. Since in theories of large-radius compactiˇcations the uniˇcation mass is
typically in the TeV range compared to the uniˇcation scale of ∼ 1016÷17 GeV in uniˇed
theories of the normal sort which includes grand uniˇed theories [41] and old-fashioned string
models [42], one has to suppress baryon and lepton number violating operators to a very high
order. One suggestion made to overcome this difˇculty is to assume that the baryon number
is gauged in the bulk and that this symmetry is then broken on a brane different from the
physical brane [43]. In this case one can arrange proton decay to be suppressed by a huge
exponential factor. However, it is not clear how one may naturally arrange the breaking of
baryon number symmetry on the distant brane. Another set of suggestions to suppress proton
decay require imposition of a discrete symmetry [5, 7, 40, 44]. A detailed analysis of such
discrete gauge symmetries is given in [40], where a generalized matter parity of the type
Z3 × Z3 is proposed in an extended MSSM model which suppresses dangerous operators to
high orders. However, it has been argued that unless a theory has an exact or an almost exact
baryon number conservation one may have rapid proton decay induced by quantum gravity
effects [45]. To suppress this type of proton decay one would need a scale of quantum gravity
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which is similar to the scale one needs to stabilize the proton in grand uniˇed theories and in
ordinary string uniˇed theories [41,42].

CONCLUSIONS

Type I [Type II] strings allow for the possibility of models with large-radius compactiˇ-
cations. In this paper we have considered the physical implications of models where the mass
scale MR = R−1 associated with the extra compactiˇed dimensions is in the TeV region. We
showed that in this case if the accelerator energies are large enough to produce KaluzaÄKlein
excitations, then the experimental data can provide information on the number of compacti-
ˇed dimensions as well as on the nature of orbifold compactiˇcation. Such information can
be gleaned from a detailed study of the differential cross section dσ/dmll as a function of
the dilepton invariant mass mll from the DrellÄYan process pp → l+l− + X . Speciˇcally
this process is an important channel for the discovery of such states up to MR ≈ 6 TeV
for an integrated luminosity of 100 fb−1. Additional processes such as pp → l±νl + X
and pp → jj + X also provide further signals for the discovery of KaluzaÄKlein modes.
An important unknown in these analyses is the compactiˇcation scale MR. Currently the
strongest constraint on MR arises from the closeness of the Standard Model prediction of
the Fermi constant GF and its precision determination from the muon lifetime. The Standard
Model prediction depends on the accuracy of the experimental determinations of electro-weak
parameters, and with their current errors one ˇnds MR � 3 TeV. This limit will increase as
the precision of the electro-weak parameters increases. Effects of KaluzaÄKlein excitations
on aµ are found to be small when the constraint from GF is imposed. Thus if a deviation in
aµ from the Standard Model value is observed in the BNL experiment it will most likely be
an effect other than from contributions from the KaluzaÄKlein excitations.

A similar situation holds in the quantum gravity sector where the recent experiment on
the submillimeter tests of gravity explores distances well below the 1 mm level and ˇnds no
deviations from the inverse square law. Interestingly the lower limit on M of M � 3.5 TeV
deduced in this experiment is similar to the limit on MR of MR � 3 TeV gotten from the
GF constraint. Finally, we note that problems regarding the consistency of theories with
large-radius compactiˇcations persist, the most serious being that of rapid proton decay in
such theories.
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