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CONDITIONAL DENSITY MATRIX:
SYSTEMS AND SUBSYSTEMS
IN QUANTUM MECHANICS

V. V. Belokurov, O. A. Khrustalev1, V. A. Sadovnichy, O. D. Timofeevskaya
Lomonosov Moscow State University, Moscow

A new quantum mechanical notion Å Conditional Density Matrix Å proposed by the authors [5,6]
is discussed and is applied to describe some physical processes. This notion is a natural generalization
of von Neumann density matrix for such processes as divisions of quantum systems into subsystems
and reuniˇcations of subsystems into new joint systems. Conditional Density Matrix assigns a quantum
state to a subsystem of a composite system on condition that another part of the composite system is in
some pure state.

INTRODUCTION

A problem of a correct quantum mechanical description of divisions of quantum systems
into subsystems and reuniˇcations of subsystems into new joint systems attracts a great interest
due to the present development of quantum communication.

Although the theory of such processes ˇnds room in the general scheme of quantum
mechanics proposed by von Neumann in 1927 [1], even now these processes are often
described in a ˇctitious manner. For example, the authors of classical photon teleportation
experiment [2] write:

The entangled state contains no information on the individual particles; it only indicates
that two particles will be in the opposite states. The important property of an entangled pair
is that as soon as a measurement on one particle projects it, say, onto |↔〉 the state of the
other one is determined to be | �〉, and vice versa. How could a measurement on one of
the particles instantaneously in�uence the state of the other particle, which can be arbitrary
far away? Einstein, among many other distinguished physicists, could simply not accept this
®spooky action at a distance¯. But this property of entangled states has been demonstrated
by numerous experiments.

1. THE GENERAL SCHEME OF QUANTUM MECHANICS

It was W. Heisenberg who in 1925 formulated a kinematic postulate of quantum mechanics
[3]. He proposed that there exists a connection between matrices and physical variables:

variable F ⇐⇒ matrix (F̂ )mn.
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In the modern language the kinematic postulate looks like:
Each dynamical variable F of a system S corresponds to a linear operator F̂ in Hilbert

space H:

dynamical variable F ⇐⇒ linear operator F̂ .

The dynamics is given by the famous Heisenberg's equations formulated in terms of
commutators,

dF̂

dt
=

i

�
[Ĥ, F̂ ].

To compare predictions of the theory with experimental data, it was necessary to un-
derstand how one can determine the values of dynamical variables in the given state.
W. Heisenberg gave a partial answer to this problem:

If matrix that corresponds to the dynamical variable is diagonal, then its diagonal elements
deˇne possible values for the dynamical variable, i. e., its spectrum,

(F̂ )mn = fmδmn ⇐⇒ {fm} is spectrum F .

The general solution of the problem was given by von Neumann in 1927. He proposed
the following procedure for calculation of average values of physical variables:

〈F〉 = Tr (F̂ ρ̂).

Here, operator ρ̂ satisˇes three conditions:

1) ρ̂+ = ρ̂,

2) Tr ρ̂ = 1,

3) ∀ψ ∈ H〈ψ|ρ̂ψ〉 ≥ 0.

By the formula for average values, von Neumann found out the correspondence between
linear operators ρ̂ and states of quantum systems:

state of a system ρ ⇐⇒ linear operator ρ̂.

In this way, the formula for average values becomes quantum mechanical deˇnition of
the notion ®a state of a system¯. The operator ρ̂ is called Density Matrix.

From the relation

(〈F〉)∗ = Tr (F̂+ρ̂)

one can conclude that Hermitian-conjugate operators correspond to complex-conjugate vari-
ables, and Hermitian operators correspond to real variables,

F ↔ F̂ ⇐⇒ F∗ ↔ F̂+,

F = F∗ ⇐⇒ F̂ = F̂+.

The real variables are called observables.
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From the properties of density matrix and the deˇnition of positively deˇnite operators

F̂+ = F̂ , ∀ψ ∈ H, 〈ψ|F̂ψ〉 ≥ 0,

it follows that the average value of nonnegative variable is nonnegative. Moreover, the
average value of nonnegative variable is equal to zero if and only if this variable equals zero.
Now it is easy to give the following deˇnition: variable F has a deˇnite value in the state ρ
if and only if its dispersion in the state ρ is equal to zero.

In accordance to general deˇnition of the dispersion of an arbitrary variable

D(A) = 〈A2〉 − (〈A〉)2,

the expression for dispersion of a quantum variable F in the state ρ has the form

Dρ(F) = Tr (Q̂2ρ̂),

where Q̂ is an operator:
Q̂ = F̂ − 〈F〉Ê.

If F is observable then Q2 is a positive-deˇnite variable. It follows that the dispersion of F
is nonnegative. And all this makes clear the above-given deˇnition.

Since density matrix is a positive deˇnite operator and its trace equals 1, we see that its
spectrum is pure discrete, and it can be written in the form

ρ̂ =
∑

n

pnP̂n,

where P̂n is a complete set of self-conjugate projective operators:

P̂+
n = P̂n, P̂mP̂n = δmnP̂m,

∑
n

P̂n = Ê.

Numbers {pn} satisfy the condition

p∗n = pn, 0 ≤ pn,
∑

n

pn Tr P̂n = 1.

It follows that ρ̂ acts according to the formula

ρ̂Ψ =
∑

n

pn

∑
α∈∆n

φnα〈φnα|Ψ〉.

The vectors φnα form an orthonormal basis in the space H. Sets ∆n = {1, . . . , kn} are
deˇned by degeneration multiplicities kn of eigenvalues pn.

Now the dispersion of the observable F in the state ρ is given by the equation

Dρ(F) =
∑

n

pn

∑
α∈∆n

||Q̂φnα||2.
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All terms in this sum are nonnegative. Hence, if the dispersion is equal to zero, then

if pn �= 0, then Q̂φnα = 0.

Using the deˇnition of the operator Q̂, we obtain

if pn �= 0, then F̂ φnα = φnα〈F 〉.

In other words, if an observable F has a deˇnite value in the given state ρ, then this value
is equal to one of the eigenvalues of the operator F̂ .

In this case, we have

ρ̂F̂ φnα = φnαpn〈F〉,
F̂ ρ̂φnα = φnα〈F〉pn,

which proves the commutativity of operators F̂ and ρ̂.
It is well known that, if Â and B̂ are commutative self-conjugate operators, then there

exists self-conjugate operator T̂ with nondegenerate spectrum such that Â and B̂ are functions
of T̂ :

T̂Ψ =
∑
nα

φnαtnα〈φnα|Ψ〉,

t∗nα = tnα, tnα �= tn′α′ , if (n, α) �= (n′, α′).

F̂Ψ =
∑
nα

φnαf1(tnα)〈φnα|Ψ〉,

ρ̂Ψ =
∑
nα

φnαf2(tnα)〈φnα|Ψ〉.

Suppose that F̂ is an operator with nondegenerate spectrum; then if the observable F with
nondegenerate spectrum has a deˇnite value in the state ρ, then it is possible to represent the
density matrix of this state as a function of the operator F̂ .

The operator F̂ can be written in the form

F̂ =
∑

n

fnP̂n,

P̂+
n = P̂n, P̂mP̂n = δmnP̂m, tr (P̂n) = 1,

∑
n

P̂n = Ê.

The numbers {fn} satisfy the conditions

f∗
n = fn, fn �= fn′ , if n �= n′.

We obviously have

F̂ =
∑

n

fnP̂n.
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From

〈F 〉 =
∑

n

pnfn = fN ,

〈F 2〉 =
∑

n

pnf2
n = f2

N ,

we get
pn = δnN .

In this case, density matrix is a projective operator satisfying the condition

ρ̂2 = ρ̂.

It acts as
ρ̂Ψ = ΨN〈ΨN |Ψ〉,

where |Ψ〉 is a vector in Hilbert space.
The average value of an arbitrary variable in this state is equal to

〈A〉 = 〈ΨN |ÂΨN〉.

It is so-called pure state. If the state is not pure, it is known as mixed.
Suppose that every vector in H is a square integrable function Ψ(x), where x is a set of

continuous and discrete variables. Scalar product is deˇned by the formula

〈Ψ|Φ〉 =
∫

dxΨ∗(x)Φ(x).

For simplicity, we assume that every operator F̂ in H acts as follows:

(F̂Ψ)(x) =
∫

F (x, x′)dx′Ψ(x′).

That is, for any operator F̂ there is an integral kernel F (x, x′) associated with this operator:

F̂ ⇐⇒ F (x, x′).

Certainly, we may use δ function if necessary.
Now the average value of the variable F in the state ρ is given by equation

〈F〉ρ =
∫

F (x, x′)dx′ρ(x′, x)dx.

Here, the kernel ρ(x, x
′
) satisˇes the conditions

ρ∗(x, x′) = ρ(x′, x),∫
ρ(x, x)dx = 1,

∀Ψ ∈ H
∫

Ψ(x)dxρ(x, x′)dx′Ψ(x′) ≥ 0.
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2. COMPOSITE SYSTEM AND REDUCED DENSITY MATRIX

Suppose the variables x are divided into two parts: x = {y, z}. Suppose also that the
space H is a direct product of two spaces H1, H2:

H = H1 ⊗H2.

So, there is a basis in the space that can be written in the form

φan(y, z) = fa(y)vn(z).

The kernel of operator F̂ in this basis looks like

F̂ ⇐⇒ F (y, z; y′, z′).

In quantum mechanics it means that the system S is a uniˇcation of two subsystems S1 and
S2:

S = S1 ∪ S2.

The Hilbert space H corresponds to the system S and the spaces H1 and H2 correspond to
the subsystems S1 and S2.

Now suppose that a physical variable F1 depends on variables y only. The operator that
corresponds to F1 has a kernel

F1(y, z; y′, z′) = F1(y, y′)δ(z − z′).

The average value of F1 in the state ρ is equal to

〈F1〉ρ =
∫

F (y, y′)dy′ρ1(y′, y)dy,

where the kernel ρ1 is deˇned by the formula

ρ1(y, y′) =
∫

ρ(y, z; y′, z)dz.

The operator ρ̂1 satisˇes all the properties of Density Matrix in S1. Indeed, we have

ρ1
∗(y, y′) = ρ1(y′, y),∫

ρ1(y, y)dy = 1,

∀Ψ1 ∈ H∞

∫
Ψ1(y)dyρ1(y, y′)dy′Ψ1(y′) ≥ 0.

The operator
ρ̂1 = Tr2 ρ̂1+2

is called Reduced Density Matrix. Thus, the state of the subsystem S1 is deˇned by reduced
density matrix.
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The reduced density matrix for the subsystem S2 is deˇned analogously:

ρ̂2 = Tr1 ρ̂1+2.

Quantum states ρ1 and ρ2 of subsystems are deˇned uniquely by the state ρ1+2 of the
composite system.

Suppose the system S is in a pure state, then a quantum state of the subsystem S1 is
deˇned by the kernel

ρ1(y, y′) =
∫

Ψ(y, z)dzΨ∗(y′, z).

If the function Ψ(y, z) is the product

Ψ(y, z) = f(y)w(z),
∫

|w(z)|2dz = 1,

then subsystem S1 is a pure state, too:

ρ1(y, y′) = f(y)f∗(y′),
∫

|f(y)|2dy = 1.

As was proved by von Neumann, it is the only case when purity of composite system is
inherited by its subsystems.

Let us consider an example of a system in a pure state having subsystems in mixed states.
Let the wave function of composite system be

Ψ(y, z) =
1√
2
(f(y)w(z) ± f(z)w(y)),

where 〈f |w〉 = 0 and 〈f |f〉 = 〈w|w〉 = 1. The density matrix of the subsystem S1 has the
kernel

ρ1(y, y′) =
1
2
(f(y)f∗(y′) + w(y)w∗(y′)).

The kernel of the operator ρ2
1 has the form

ρ2
1(y, y′) =

1
4
(f(y)f∗(y′) + w(y)w∗(y′)).

Therefore, the subsystem S1 is in the mixed state. Moreover, its density matrix is proportional
to unity operator. The previous property resolves the perplexities connected with EinsteinÄ
PodolskyÄRosen paradox.

3. EPR PARADOX

Anyway, it was Schréodinger who introduced a term ®EPR paradox¯. The authors of
EPR themselves always considered their article as a demonstration of inconsistency of present
quantum mechanics rather than a particular curiosity.
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The main conclusion of the paper ®Can Quantum-Mechanical Description of Physical
Reality Be Considered Complete?¯ [4] published in 1935 (eight years after von Neumann's
book) is the statement:

...We proved that (1) the quantum-mechanical description of reality given by wave func-
tions is not complete or (2) when the operators corresponding to two physical quantities do
not commute, the two quantities cannot have simultaneous reality. Starting then with the
assumption that the wave function does give a complete description of the physical reality, we
arrived at the conclusion that two physical quantities, with noncommuting operators, can have
simultaneous reality. Thus the negation of (1) leads to negation of only other alternative (2).
We can thus focus to conclude that the quantum-mechanical description of physical reality
given by wave function is not complete.

After von Neumann's works this statement appears obvious. However, in order to clarify
this point of view completely, we must understand what is ®the physical reality¯ in EPR. In
EPR paper the physical reality is deˇned as:

If, without in any way disturbing a system, we can predict with certainty (i. e., with
probability equal to unity) the value of physical quantity, then there exists an element of
physical reality corresponding to this physical quantity.

Such a deˇnition of physical reality is a step back as compared to von Neumann's
deˇnition. By EPR deˇnition, the state is actual only when at least one observable has an
exact value. This point of view is incomplete and leads to inconsistency.

When a subsystem is separated, ®the loss of observables¯ results directly from the deˇ-
nition of density matrix for the subsystem. ®The occurrence¯ of observables in the chosen
subsystem when the quantities are measured in another ®subsidiary¯ subsystem can be natu-
rally explained in the terms of conditional density matrix.

4. CONDITIONAL DENSITY MATRIX

The average value of a variable with the kernel

F c(x, x′) = F1(y, y′)u(z)u∗(z′),
∫

|u(z)|2dz = 1

is equal to

〈F c〉ρ = p

∫
F1(y, y′)dy′ρc(y′, y)dy,

where

ρc(y, y′) =
1
p

∫
u∗(z)dz ρ(y, z; y′, z′)u(z′)dz′,

p =
∫

u∗(z)dz ρ(y, z; y, z′)u(z′)dz′dy.

Since we can represent p in the form

p =
∫

P (z, z′)dz′ ρ2(z′; z)dz,

P (z, z′) = u(z)u∗(z′),
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we see that p is an average value of a variable P of the subsystem S2. Operator P̂ is a
projector (P̂ 2 = P̂ ). Therefore, it is possible to consider the value p as a probability.

It is easy to demonstrate that the operator ρ̂c satisˇes all the properties of density matrix.
So the kernel ρc(y, y′) deˇnes some state of the subsystem S1. What is this state?

According to the decomposition of δ function

δ(z − z′) =
∑

n

φn(z)φ∗
n(z′),

{φn(z)} being a basis in the space H 2, the reduced density matrix is represented in the form
of the sum

ρ1(y, y′) =
∑

pnρc
n(y, y′).

Here,

ρc
n(y, y′) =

1
pn

∫
φ∗

n(z)dz ρ(y, z; y′, z′)φn(z′)dz′,

and

pn =
∫

φ∗
n(z)dz ρ(y, z; y, z′)φn(z′)dz′dy,

=
∫

P̂n(z, z′)dz′ ρ2(z′, z)dz.

The numbers pn satisfy the conditions

p∗n = pn, pn ≥ 0,
∑

n

pn = 1

and are connected with a probability distribution.
The basis {φn} in the space H2 corresponds to some observable Ĝ2 of the subsystem S2

with discrete nondegenerate spectrum. It is determined by the kernel

G2(z, z′) =
∑

n

gnφnφ∗
n, gn = g∗n; gn �= gn1 if n �= n1.

The average value of G2 in the state ρ2 is equal to

∫
dyρ2(z, z′)dz′G(z′, z) =

∑
n

gn

∫
dyρ2(z, z′)dz′φn(z′)φ∗

n(z′) =
∑

n

pngn.

Thus, number pn deˇnes the chance that the observable Ĝ2 has the value gn in the state ρ2.
Obviously, the kernel ρc

n(y, y′) in this case deˇnes the state of system S1 on condition that
the value of variable G2 is equal to gn. Hence, it is natural to call operator ρ̂c

n Conditional
Density Matrix (CDM) [5,6]:

ρ̂c1|2 =
Tr2 (P̂2ρ̂)
Tr (P̂2ρ̂)

.
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It is (conditional) density matrix for the subsystem S1 on condition that the subsystem S2 is
selected in a pure state ρ̂2 = P̂2. It is the most important case for quantum communication.
Conditional density matrix satisˇes all the properties of density matrix.

Conditional density matrix helps to clarify a sense of operations in some ˇnest experiments.

5. EXAMPLES: SYSTEM AND SUBSYSTEMS

5.1. Parapositronium. As an example, we consider parapositronium, i. e., the system
consisting of an electron and a positron. The total spin of the system is equal to zero. In
this case the nonrelativistic approximation is valid, and the state vector of the system is
represented in the form of the product

Ψ(re, σe; rp, σp) = Φ(re, rp)χ(σe, σp).

The spin wave function is equal to

χ(σe, σp) =
1√
2
(χn(σe)χ−n(σp) − χn(σp)χ−n(σe)).

Here, χn(σ) and χ(−n)(σ) are the eigenvectors of the operator that projects spin onto the
vector n:

(σn) χ±n(σ) = ±χ±n(σ).

The spin density matrix of the system is determined by the operator with the kernel

ρ(σ; σ′) = χ(σe, σp)χ∗(σ′
e, σ

′
p).

The spin density matrix of the electron is

ρe(σ, σ′) =
∑

ξ

χ(σ, ξ)χ∗(σ′, ξ) =

=
1
2
(χn(σ)χ(−n)(σ′) + χn(σ)χ(−n)(σ′)) =

1
2
δ(σ − σ′).

In this state the electron is completely unpolarized.
If an electron passes through polarization ˇlter, then the pass probability is independent

of the ˇlter orientation. The same fact is valid for the positron if its spin state is measured
independently of the electron.

Now let us consider quite a different experiment. Namely, the positron passes through the
polarization ˇlter, and the electron polarization is simultaneously measured. The operator that
projects the positron spin onto the vector m (determined by the ˇlter) is given by the kernel

P (σ, σ′) = χm(σ)χ∗
m(σ′).

Now the conditional density matrix of the electron is equal to

ρe/p(σ, σ′) =

∑
(σ,σ′) χm(σ)χ∗

m(σ′)χ(σe, σ
′)χ∗(σ′

e, σ)∑
(ξ,σ,σ′) χm(σ)χ∗

m(σ′)χ(ξ, σ′)χ∗(ξ, σ)
.
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The result of the summation is

ρe/p(σ, σ′) = χ(−m)(σ)χ∗
(−m)(σ

′).

Thus, if the polarization of the positron is selected with the help of polarizer in the state
with well-deˇned spin, then the electron appears to be polarized in the opposite direction. Of
course, this result is in an agreement with the fact that total spin of composite system is equal
to zero. Nevertheless, this natural result can be obtained if positron and electron spins are
measured simultaneously. In the opposite case, the more simple experiment shows that the
direction of electron and positron spins are absolutely indeˇnite.

A. Einstein said, ®Rafˇniert ist der Herr Gott, aber boschaft ist Er nicht.¯
5.2. Quantum Photon Teleportation. In the Innsbruck experiment [2] on a photon state

teleportation, the initial state of the system is the result of the uniˇcation of the pair of photons
1 and 2 being in the antisymmetric state χ(σ1, σ2) with summary angular momentum equal
to zero and the photon 3 being in the state χm(σ3) (that is, being polarized along the vector
m). The joint system state is given by the density matrix

ρ(σ, σ′) = Ψ(σ)Ψ∗(σ′),

where the wave function of the joint system is the product

Ψ(σ) = χ(σ1, σ2)χm(σ3).

Considering then the photon 2 only (without ˇxing the states of the photons 1 and 3), we ˇnd
the photon 2 to be completely unpolarized with the density matrix

ρ(σ2, σ
′
2) = Tr(1,3) ρ(σ1, σ2, σ3; σ1, σ

′
2, σ3) =

1
2
δ(σ2 − σ′

2).

However, if the photon 2 is registered when the state of the photons 1 and 3 has been
determined to be χ(σ1, σ3), then the state of the photon 2 is given by the conditional density
matrix

ρ2/{1,3} =
Tr(1,3) (P1,3 ρ1,2,3)

Tr (P1,3 ρ1,2,3)
.

Here, P1,3 is the projection operator

P1,3 = χ(σ1, σ3)χ∗(σ1, σ3).

To evaluate the conditional density matrix, it is convenient to ˇrst ˇnd the vectors

φ(σ1) =
∑
3

χ∗
m(σ3)χ(σ1, σ3)

and

θ(σ2) =
∑
1

φ∗(σ1)χ(σ1, σ2).
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The vector θ equals to

θ(σ2) = −1
2
χm(σ2)

and the conditional density matrix of the photon 2 appears to be equal to

ρ2/{1,3} = χm(σ2)χ∗
m(σ′

2).

Thus, if the subsystem consisting of the photons 1 and 3 is forced to be in the antisymmetric
state χ(σ1, σ3) (with total angular momentum equal to zero), then the photon 2 appears to be
polarized along the vector m.

5.3. Entanglement Swapping. In the recent experiment [7] in installation two pairs of
correlated photons emerged simultaneously. The state of the system is described by the wave
function

Ψ(σ) = Ψ(σ1, σ2, σ3, σ4) = χ(σ1, σ2)χ(σ3, σ4).

The photons 2 and 3 are selected into antisymmetric state χ(σ2, σ3).
What is the state of pair of photons 1 and 4?
Conditional density matrix of the pair (1 and 4) is

ρ̂14/23 =
Tr23 (P̂23ρ̂1234)
Tr (P̂23ρ̂1234)

,

where operator that selects pair (2 and 3) is deˇned by

P23(σ, σ′) = χ(σ2, σ3)χ∗(σ′
2, σ

′
3)

and density matrix of four-photon system is determined by kernel

ρ1234(σ, σ′) = Ψ(σ1, σ2, σ3, σ4)Ψ∗(σ′
1, σ

′
2, σ

′
3, σ

′
4).

Direct calculation shows that the pair of the photons (1 and 4) has to be in pure state with
the wave function

Φ(σ1, σ4) = χ(σ1, σ4).

The experiment conˇrms this prediction.
5.4. Pairs of Polarized Photons. Now consider a modiˇcation of the Innsbruck experiment.

Let there be two pairs of photons (1, 2) and (3, 4). Suppose that each pair is in the pure
antisymmetric state χ. The spin part of the density matrix of the total system is given by the
equation

ρ(σ, σ′) = Ψ(σ)Ψ∗(σ′),

where
Ψ(σ) = χ(σ1, σ2)χ(σ3, σ4).

If the photons 2 and 4 pass through polarizers, they are polarized along χm(σ2) and χs(σ4),
then the wave function of the system is transformed into

Φ(σ) = χn(σ1)χm(σ2)χr(σ3)χs(σ4).

Here, n, m and r, s are pairs of mutually orthogonal vectors.
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Now the conditional density matrix of the pair of photons 1 and 3 is

ρ(1,3)/(2,4)(σ, σ′) = Θ(σ1, σ3)Θ∗(σ′
1, σ

′
3).

The wave function of the pair is the product of wave functions of each photon with deˇnite
polarization

Θ(σ1, σ3) = χn(σ1)χr(σ3).

We note that initial correlation properties of the system appear only when the photons pass
through polarizers. Although the wave function of the system seems to be a wave function of
independent particles, the initial correlation exhibits in correlations of polarizations for each
pair. Pairs of polarized photons appear to be very useful in quantum communication.

5.5. Quantum Realization of Vernam Communication Scheme. Let us recall the main
idea of Vernam communication scheme [8]. In this scheme, Alice encrypts her message (a
string of bits denoted by the binary number m1) using a randomly generated key k. She simply
adds each bit of the message with the corresponding bit of the key to obtain the scrambled
text (s = m1 ⊕ k, where ⊕ denotes the binary addition modulo 2 without carry). It is then
sent to Bob, who decrypts the message by subtracting the key (s � k = m1 ⊕ k � k = m1).
Because the bits of the scrambled text are as random as those of the key, they do not contain
any information. This cryptosystem is, thus, proved secure in sense of information theory.
Actually, today this is the only probably secure cryptosystem!

Although perfectly secure, the problem with this security is that it is essential for Alice
and Bob to possess a common secret key, which must be at least as long as the message
itself. They can only use the key for a single encryption. If they used the key more than
once, Eve could record all of the scrambled messages and start to build up a picture of the
plain texts and, thus, also of the key. (If Eve recorded two different messages encrypted
with the same key, she could add the scrambled text to obtain the sum of the plain texts:
s1 ⊕ s2 = m1 ⊕ k ⊕ m2 ⊕ k = m1 ⊕ m2 ⊕ k ⊕ k = m1 ⊕ m2, where we used the fact that
⊕ is commutative.) Furthermore, the key has to be transmitted by some trusted means, such
as a courier, or through a personal meeting between Alice and Bob. This procedure may be
complex and expensive, and even may lead to a loophole in the system.

With the help of pairs of polarized photons we can overcome the shortcomings of the
classical realization of Vernam scheme. Suppose Alice sends Bob pairs of polarized photons
obtained according to the rules described in the previous section. Note that the concrete
photons' polarizations are set up in Alice's laboratory and Eve does not know them. If the
polarization of the photon 1 is set up by a random binary number pi and the polarization of the
photon 3 is set up by a number mi ⊕ pi, then each photon (when considered separately) does
not carry any information. However, Bob after obtaining these photons can add corresponding
binary numbers and get the number mi containing the information (mi ⊕ pi ⊕ pi = mi).

In this scheme, a secret code is created during the process of sending and is transferred
to Bob together with the information. It makes the usage of the scheme completely secure.

CONCLUSION

Provided that the subsystem S2 of composite quantum system S = S1 +S2 is selected (or
will be selected) in a pure state P̂n, the quantum state of subsystem S1 is conditional density
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matrix ρ̂1c/2n. Reduced density matrix ρ̂1 is connected with conditional density matrices by
an expansion:

ρ̂1 =
∑

pnρ̂1n/2n;

here ∑
P̂n = Ê,

∑
pn = 1.

The coefˇcients pn are probabilities to ˇnd subsystem S2 in pure states P̂n.
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