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UNIVERSAL HYBRID QUANTUM PROCESSORS

A. Yu. Vlasov1

FRC/IRH, St. Petersburg, Russia

A quantum processor (the programmable gate array) is a quantum network with a ˇxed structure.
A space of states is represented as tensor product of data and program registers. Different unitary
operations with the data register correspond to ®loaded¯ programs without any changing or ®tuning¯
of network itself. Due to such property and undesirability of entanglement between program and data
registers, universality of quantum processors is subject of rather strong restrictions. Universal ®stochas-
tic¯ quantum gate arrays were developed by different authors. It was also proved, that ®deterministic¯
quantum processors with ˇnite-dimensional space of states may be universal only in approximate sense.
In the present paper it is shown that, using hybrid system with continuous and discrete quantum vari-
ables, it is possible to suggest a design of strictly universal quantum processors. It is also shown that
®deterministic¯ limit of speciˇc programmable ®stochastic¯ U(1) gates (probability of success becomes
unit for inˇnite program register), discussed by other authors, may be essentially the same kind of
hybrid quantum systems used here.

INTRODUCTION

The quantum programmable gate array [1Ä4] or quantum processor [5, 6] is a quantum
circuit with ˇxed structure. Similarly with usual processor here are data register |D〉 and
program register |P 〉. Different operations u with data are governed by a state of the program;
i. e., it may be described as

U : (|P 〉 ⊗ |D〉
)
�→ |P ′〉 ⊗ (uP |D〉). (1)

Each register is a quantum system2 and may be represented for particular task using qubits
[1Ä4], qudits [5, 6], etc.

It can be simply found [1] that Eq. (1) is compatible with unitary quantum evolution,
if different states of program register are orthogonal, due to such a requirement number of
accessible programs coincides with dimension of Hilbert space, and it produces some challenge
for construction of universal quantum processors. Few ways were suggested to avoid such
a problem: to use speciˇc ®stochastic¯ design of universal quantum processor [1Ä3, 6], to
construct (nonstochastic) quantum processor with possibility to approximate any gate with
given precision [2Ä5] (it is also traditional approach to universality [7Ä9], sometimes called
®universality in approximate sense¯ [10]).

Here is discussed an alternative approach for strictly universal quantum processor Å
use of continuous quantum variables in program register and discrete ones for data, i. e.,

1e-mail: Alexander.Vlasov@PObox.spbu.ru
2Usually ˇnite-dimensional.
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hybrid quantum computer [12]. In such a case, number of different programs is inˇnite,
and it provides possibility to construct strictly universal hybrid quantum processor for initial
(®deterministic¯) design described by Eq. (1). It is enough to provide procedures for one-qubit
rotations with three real parameters together with some ˇnite number of two-gates [10,11].

It is also shown that hybrid quantum gates used in this article can be considered not only
as limit of deterministic design [4, 5], but also coincide with ®deterministic limit¯ [3] of a
special case of programmable U(1) ®stochastic¯ gates with probability of failure, which tends
to zero for inˇnite program register.

1. CONSTRUCTION OF HYBRID QUANTUM PROCESSORS

In ˇnite-dimensional case, unitary operator U satisfying Eq. (1) can be simply found [4,5].
Let us consider the case with |P ′〉 = |P 〉 in Eq. (1). It was already mentioned that states |P 〉
of program register corresponding to different operators uP are orthogonal and, thus, may be
chosen as basis. In such a basis, uP is simply a set of matrices numbered by integer index
P , and operator U (1) can be written as block-diagonal NM × NM matrix:

U =




u1

u2 0
. . .

0 uM


 , (2)

with N × N matrices uP , if dimensions of program and data registers are M and N ,
respectively;

U =
M∑

P=1

|P 〉〈P | ⊗ uP . (3)

It is conditional quantum dynamics [13]. For quantum computations with qubits M = 2m,
N = 2n.

Generalization of hybrid system with program register described by one continuous quan-
tum variable and qubit data register is straightforward. The states of program register may be
described as Hilbert space of functions on line ψ(x). In coordinate representation, a basis is

|q〉 = δ(x − q), 〈q | ψ(x)〉 = ψ(q). (4)

To represent some continuous family of gates u(q) acting on data state, say, phase rotations

θ(q) = exp (2πiqσ3), (5)

it is possible to write continuous analog of Eq. (3):

U =
∫

dq(|q〉〈q| ⊗ u(q)), (6)

U
(
ψ(x)|s〉

)
=

∫
δ(x − q)ψ(q)|u(q)s〉dq = ψ(x)|u(x)s〉, (7)
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where ⊗ is omitted because |ψ〉|s〉 can be considered as product of scalar function ψ(x) on
complex vector |s〉. Finally,

U(|q〉|s〉) = |q〉|u(q)s〉. (8)

It is also convenient to use momentum basis, i. e.,

|p̃〉 = eipx, 〈p̃ψ(x) |=〉
∫

e−ipxψ(x)dx ≡ ψ̃(p), (9)

(where ψ̃ is Fourier transform of ψ) and operator Ũ:

Ũ =
∫

dp
(
|p̃〉〈p̃| ⊗ u(p)

)
, (10)

Ũ
(
ψ(x)|s〉

)
=

∫
eipx

(∫
e−ipx′

ψ(x′)dx′)|u(p)s〉dp =

=
∫∫

eip(x−x′)ψ(x′)|u(p)s〉dx′dp = −
∫∫

e−ipqψ(x − q)|u(p)s〉dqdp. (11)

Here Ũ is not rewriting U in momentum basis, it is the other operator with property:

Ũ(|p̃〉|s〉) = |p̃〉|u(p)s〉. (12)

Using such an approach with hybrid program register (few continuous variables for dif-
ferent qubit rotations and discrete ones for two-gates like CNOT), it is possible to suggest a
design of universal quantum processor with qubits data register.

Hilbert space of hybrid system with k continuous and M = 2m discrete quantum variables
can be considered as space of CM -valued functions with k variables

F (x1, . . . , xk) : R
k → C

M .

For construction of universal processor, it is possible to use three continuous variables1

for each qubit together with discrete variables for control of two-qubit gates.
It should be mentioned that it is a rather simpliˇed model. More rigorous consideration for

different physical examples may include different functional spaces, distributions, functions
localized on discrete set of points, and symbol ®∫¯ or scalar product used in formulas above.
In such a case it should be deˇned with necessary care. Due to such a problem, in many works
about quantum computations with continuous variables Heisenberg approach and expressions
with operators like coordinate Q and momentum P are used [14].

Heisenberg approach may simplify description, but hides some subtleties. For example, in
many models variables could hardly be called ®continuous¯, because they may be described as
set of natural numbers; i. e., terms ®inˇnite¯, ®nonˇnite¯ perhaps ˇts better for such quantum
variables.

Let us consider an example with qubit controlled by above-described continuous variable
u(q) ≡ θ(q) Eq. (5). In such a case, it is enough to use operator U in Eq. (8) only at the

1Angular parametrization of SU(2).
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interval of values 0 < q � 2π or even consider Hilbert space of periodic functions ψ(q),
such as phases. But in such a case in dual space momenta one has only discrete set of
values p ∈ Z and both spaces are connected by Fourier transform, it is an example of relation
between periodical functions of continuous variable and functions deˇned on inˇnite, but
discontinuous set Z of integer numbers.

Here is an important issue: the commutation relations like i[P,Q] = 1 are not compatible
with linear algebra of any ˇnite matrix1, but may be simply satisˇed by inˇnite-dimensional
operator algebras, like Schréodinger representation Q = x, P = −id/dx. But here is yet
another problem: integer and real numbers are used for representation of inˇnite quantum
variables, but cardinality of the sets are different, cardN = ℵ0, cardR = ℵ. To avoid discus-
sion, related with the cardinality issues, Russell paradox, etc., some formal cardinality ℵQP

of ®quantum inˇnite variables¯ is used here; i. e., any model of inˇnite numbers appropriate
for introduction of Heisenberg relations.

It should be mentioned that the term ®hybrid¯ is also used with other meaning [15].
Formally, it is a different thing, but for discussed strategy for hybrid quantum processors,
these two topics are closely connected. Let us discuss it brie�y. For realistic design of
quantum computers, it is useful to have some language for joint description with more
convenient classical microdevices, which could be used as some base for development of
quantum processors. Generally, such a task is very difˇcult (if possible at all) and has variety
of different approaches.

But there is an especially simple idea that could be applied for the model under consid-
eration. The quantum gates and ®wires¯ may be roughly treated as (pseudo)classical, if only
elements of computational basis are accepted in a model as states of system, and also gates
may not cause any superposition and directly correspond to set of invertible classical logical
gates [9].

Really, such a model is still quantum, but has closer relation with usual classical circuits
and, thus, may reduce some difˇculties in description of hybrid classical-quantum processor
design. It was already discussed in [4,5] that from such point of view program register can be
treated as pseudoclassical2. It was designed with ˇnite number of state in program register.

Similar procedure without difˇculties may be extended for continuous case, but now it
corresponds to continuous classical variables; i. e., it is similar either to analogous classical
control or to more detailed description of usual microprocessor, when inputs and outputs are
not described as abstract zeros and ones, but as real dynamically changed classical continuous
signals (ˇelds, currents, laser beams, etc.).

2. COMPARISON WITH LIMIT OF ®STOCHASTIC¯ MODELS

In this paper, design of universal hybrid quantum processor was used that could be
considered as some limit of approximately universal ®deterministic¯ quantum processors [4,5],
when the size of program register formally becomes unlimited. On the other hand, in [2, 3]
a design of programmed ®stochastic¯ U(1) gates is considered with probability of success

1It is simple to show, taking trace of the commutator for D × D matrices: iTr [P,Q] = i Tr (PQ) −
iTr (QP) = 0 �= Tr 1 = D.

2In fact, there was used even more speciˇc design with intermediate register (bus) between program and data.
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comming arbitrary close to unit with extension of program register and, thus, such design
formally also becomes deterministic for inˇnite size of program register.

Conceptually, the ®probabilistic¯, ®stochastic¯ design of quantum processors [1Ä3, 6, 16]
is a rather tricky question, but it is not discussed here in details.

For our purposes it is enough to use ®stochastic¯ quantum circuit [2, 3] for applica-
tion of gate θ(q) (5) with probability of success p = 1 − 1/M for size M = 2m of
(m-qubits) program register with existance of ®deterministic¯ limit p = 1 for M → ∞ [3].
Let us, without plunging into discussion about speciˇc problems of ®stochastic¯ model, con-
sider the limit and show that it is essentially the same programmable phase gates discussed
in Sec. 1.

The construction is straightforward. For ®encoding transformations¯ θα to state of
m-qubits program register in [2, 3] a family of states is used

|Φα,m〉 =
m−1⊗
k=0

|φ2kα〉, where |φa〉 ≡
1√
2
(eia/2|0〉 + e−ia/2|1〉). (13)

It can be rewritten as1

|Φα,m〉 =
eiα(M−1)/2

√
M

M−1∑
K=0

e−iKα|K〉 (M = 2m) (14)

and for α = −2πp/M with integer p states (14) coincide with usual momentum basis |p̃〉 =
|Φ−2πp/M,m〉 (p ∈ Z, 0 � p < M) of M -dimensional Hilbert space.

Such elements |p̃〉 may be used as M orthogonal basic states of program register in
®deterministic¯ quantum processor [c.f. Eq. (3)],

Ũ =
M−1∑
p=0

|p̃〉〈p̃| ⊗ θ(2πp/M). (15)

The ®deterministic¯ approach uses only the computational basis p̃, and it prevents the
entanglement between program and data registers. Stochastic U(1) approach [2,3] uses |Φα,m〉
with arbitrary α and for ˇnite-dimensional case such states are not always orthogonal, but here
it is possible not to discuss the issues related with interpretation of quantum measurements
used for ®probabilistic¯ calculations of θ(α) for entangled case α �= 2πp/M , because for
inˇnite-dimensional case all states |Φα,∞〉 are orthogonal.

So, continuous (inˇnite) limit of ®stochastic¯ U(1) programmable gates suggested in [2,3]
is essentially2 the same as deterministic hybrid gate like Eq. (12) discussed in Sec. 1.

Acknowledgements. Author is grateful to Prof. V. Bu�zek for interesting discussion and
also to all organizers of the Workshop ®Quantum physics and communication¯.

1Here is used ®inverted¯ binary notation for |K〉, 0 � K < M , i. e., |b0b1b2 · · ·〉 corresponds to K =
b0 + 2b1 + 22b2 + . . . Another choice is to save standard binary notation, and to change order of terms in initial
tensor product Eq. (13) to opposite one.

2There is some difference, if state of program register changes in [2, 3], even if there is no entanglement in
continuous limit under consideration.
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