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We study cooperative behaviour of the system of two-level atoms coupled to a single mode of
the electromagnetic ˇeld in the resonator. We have developed a general procedure allowing one to
rewrite a polynomial deformed SU(2) algebra in terms of another polynomial deformation. Using
these methods, we have constructed a perturbation series for the TavisÄCummings Hamiltonian and
diagonalized it in the third order. Based on the zero-order Hamiltonian we calculate an intensity of
spontaneous emission of N two-level atoms inside a cavity, which are in thermal equilibrium with the
reservoir. The atomÄatom correlation determining superradiance in the system is analyzed.

INTRODUCTION

We consider here the collective behaviour of the system of N two-level atoms coupled to
a single mode of the electromagnetic ˇeld in a resonator. The useful form for the atomÄˇeld
interaction was proposed in the rotating wave approximation (RWA) by Tavis and Cummings
[1]. In their model N identical two-level atoms interact via dipole coupling with a single-mode
quantized radiation ˇeld at resonance, so that the Hamiltonian is given by

H = H0 + V, H0 = ωa†a + ω0

(
S3 +

N
2

)
,

V = g
(
a†S− + aS+

)
.

(1)

Here, ω is a frequency of the electromagnetic ˇeld and ω0 is the level splitting of the two-
level atoms. The operators S3, S± are collective spin variables of N two-level atoms. These
operators are deˇned as

S3 =
N∑

j=1

σj
3, S± =

N∑
j=1

σj
±, (2)
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where σ's are Pauli matrices. They satisfy the SU(2) algebra. a, a† are the annihilation and
creation operators of the ˇeld. Due to historical reasons, the TavisÄCummings (TC) model
is often called the Dicke model [2]. We concentrate here on the case of exact resonance,
i. e., ω = ω0. In this case, the system exhibits a most interesting collective behaviour. For
simplicity, time will be measured in units of the coupling constant g; i. e., we assume in the
following that g = 1.

The Hamiltonian (1) belongs to a class of operators that can be expressed in the form:

H = f(A0) + g (A+ + A−) . (3)

Here, f(x) is an analytic function of x with real coefˇcients, while the operators A± satisfy
the commutation relations

[A0, A±] = ±A±. (4)

We also assume that the operators A0, A± must satisfy the conditions

(A0)
† = A0, (A−)† = A+. (5)

We reformulate the Hamiltonian in terms of an algebra that allows one to diagonalize it
in terms of perturbation series with some small parameter which should be introduced. This
idea was already used by Holstein and Primakoff [3]. They expressed the generators S3, S±
of the SU(2) algebra in terms of boson operators b, b†:

S3 = r − b†b, S+ =
√

2r

√
1 − b†b

2r
b, S− = (S+)†. (6)

Here, r is an index that characterizes the irrep of SU(2).
However, in [3] the square root in the transformation (6) was in the end replaced by

unity, which amounts to applying the so-called ®weak ˇeld¯ approximation (〈b†b〉 � 2r).
Obviously, this approximation corresponds to zeroth order in the expansion of the problem
with respect to parameter 1/2r. Transfromation (6) has also been applied [4] with expansion
up to second order.

We consider here the case when the operators A0, A± in Eq. (3) are generators of a poly-
nomial deformation SUn(2) of the Lie algebra SU(2) [5Ä7]. Numerous physical applications
exist for polynomially deformed algebras [3, 8Ä18]. A particularly interesting, in view of
the present problem, application of deformed algebras was developed by Karassiov (see [8]
and references therein). The method to be introduced below is an extension of Karassiov's
method.

We introduce here the notion of a Polynomial Algebra of Excitations (PAE). In this
algebra, the coefˇcients of the structure polynomials are c numbers. We derive an exact
mapping between isomorphic representations of two arbitrary PAE. We formulate then an
analytical approach that allows us to expand the Hamiltonian, when expressed in terms of
PAE, as a perturbation series.

For completely symmetric states of atoms our results agree with those reported in [19,
20]. Our formalism provides however a solution of the problem for any value of r, which
allows us to discuss new physical effects in the Dicke model.

The article is organized as follows. In Section 1, we discuss the irreducible representations
of PAE and apply the general approach to the TavisÄCummings model in order to construct
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the perturbation theory. We solve eigenvalue problem of the Hamiltonian up to third order.
The generalized N -atom quantum Rabi frequency is deˇned for arbitrary quantum states of the
system. In Section 2, we use the zero-order approximation for the TC Hamiltonian to calculate
the intensity of spontaneous emission of atoms prepared in the state of thermal equilibrium
with the resonator mode. We show that the correlation of the atoms due to interaction with
the ˇeld gives rise to the enhancement of spontaneous emission as compared to the atoms
in the absence of resonator. In conclusion, we discuss possible further applications of the
methods developed here.

1. TAVISÄCUMMINGS MODEL

The coefˇcients of the structure polynomial of a polynomially deformed algebra are
usually expressed through the Casimir operators of the algebra. We discuss representations
of a special class (PAE) of polynomially deformed algebras when the coefˇcients of the
structure polynomial are c numbers. We denote a PAE with a structure polynomial of order κ
as Uκ. Formally Uκ is deˇned by three generators A±, A0. These operators satisfy two basic
commutation relations, Eq. (4). As can be readily seen from these commutation relations,
[A0, A+A−] = 0. We can thus assume that

A+A− = pκ (A0) = c0

κ∏
i=1

(A0 − qi). (7)

Here, pκ(x) is a structure polynomial of order κ, whose coefˇcients are generally complex
numbers. The terminology is chosen in analogy to the structure functions of quantum algebras
(q-deformed algebras) [21], and the structure constants of the linear Lie algebras. The set of
κ real roots of the structure polynomial is denoted as {qi}κ

i=1. In physical applications the
operators A± of Eq. (4) often play the role of creation and annihilation operators of collective
excitations. Therefore, hereafter the algebra Uκ will be referred to as the polynomial algebra
of excitations (PAE) of order κ.

To begin, we assume, without loss of generality, that c0 = ±1. Indeed, in the case
|c0| �= 1, it is always possible to renormalize the generators of Uκ,

A± → |c0|−1/2
A±, (8)

such that the commutation relations (4) remain intact. The most simple and important example
of a PAE of ˇrst order, U1, is provided by the well-known HeisenbergÄWeylÄLie algebra,
viz.

b† → A+, b → A−, b†b → A0, c0 = 1, q1 = 0. (9)

Here, b, b† are the usual boson operators. For the sake of simplicity, in what follows we will
denote the generators of U1 by b, b†. The algebra U1 allows us to construct the irrep of any
other PAE of higher order κ > 1 as a multiple tensor product of U1.

An irrep of PAE is characterized by a set of parameters {k−, k+, d}, where d is a
dimension of the invariant subspace and k− is an order of the left and k+ of the right roots
deˇning the corresponding irreducible representation (see Ref. [22]). We will denote such
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irrep by R(k−, k+, d). For instance, R(1, 0,∞) means the representation of U1, while the
irrep of Sr is R(1, 1, 2r + 1).

An isomorphism between irreps of Uκ and U ′
κ′ that belong to the same class R(k−, k+, d)

is given by

A0 = A′
0 + (qj − q′j′),

A+ =

√√√√√√√√√
c0

κ∏
i=1

(
A′

0 + qj − q′j′ − qi

)

c′0

κ′∏
i′=1

(A′
0 − q′i′)

A′
+, A− = A′

−

√√√√√√√√√
c0

κ∏
i=1

(
A′

0 + qj − q′j′ − qi

)

c′0

κ′∏
i′=1

(A′
0 − q′i′)

,
(10)

or by

A0 = (q′j′ + qj − 1) − A′
0,

A+ = A′
−

√√√√√√√√√
c0

κ∏
i=1

(
q′j′ + qj − A′

0 − qi

)

c′0

κ′∏
i′=1

(A′
0 − q′i′)

, A− =

√√√√√√√√√
c0

κ∏
i=1

(
q′j′ + qj − A′

0 − qi

)

c′0

κ′∏
i′=1

(A′
0 − q′i′)

A′
+.

(11)

In Eqs. (10), (11) the operator argument of the square root function should be taken after
identical multipliers in the nominator and denominator are cancelled. The roots qj and q′j′ ,
which we call pivotal roots, deˇne a vacuum vector of the irrep.

Now, the interaction part of the Hamiltonian (1) can be expressed in terms of third-order
PAE. The generators M0, M± of this algebra are realized as

M− = aS+, M+ = a†S−, M0 =
a†a − S3

2
. (12)

It is plain that these generators satisfy the commutation relations (4). The generators of the
algebra M0, M± commute with the operators

M = a†a + S3 + r, S2 = S2
3 +

1
2

(S+S− + S−S+) . (13)

Hereafter we use the same notation M both for the Casimir operator and its eigenvalue, if
no confusion arises. We show below that the eigenvalues M, r(r + 1) of the operators of
Eq. (13) parameterize the PAE in question. We thus denote this PAE as MM,r. The structure
polynomial of MM,r can be expressed in the form

p3 (M0) = M+M− = a†a
(
S2 − S2

3 − S3

)
= a†a (r − S3) (r + S3 + 1) =

= −
(

M0 +
M − r

2

)(
M0 −

M − 3r

2

)(
M0 −

M + r + 2
2

)
. (14)
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The parameters of this structure polynomial are

c0 = −1, q1 = −M − r

2
, q2

M − r

2
− r, q3 =

M − r

2
+ r + 1. (15)

We turn next to the description of ˇnite dimensional irrep of MM,r. In physical appli-
cations the parameter r has the meaning of collective Dicke index. This index runs from

ε(N ) =
1 − (−1)N

4
to

N
2

with unit steps, while M can be any natural number including

zero. Thus, q3 is the biggest positive root of ˇrst order. If M < 2r, then q1 > q2; if M > 2r
then q1 < q2; the case M = 2r ⇒ q1 = q2 corresponds to a root of second order. The
different values of M and r deˇne different algebras MM,r, whose single physical ˇnite di-
mensional representation we will call a zone. The case M < 2r corresponds to nearby zones.
The two largest roots are q1 and q3 and the irrep has the type R(1, 1, M + 1). Consequently,
the well-known weak-ˇeld limit corresponds to nearby zones.

The case M > 2r corresponds to remote zones. The two largest roots are q2 and q3, and
the corresponding irrep is of the type R(1, 1, 2r + 1). Notice that the region M 	 2r is
usually called the strong-ˇeld limit.

In the special case 2r = M , referred to intermediate zone, the algebra MM,r possesses
an irrep of the type R(2, 1, 2r + 1). It is the only irreducible representation that principally
differs from all the others.

The simplest PAE with irrep of the type R(1, 1, d) is Sr̃ (we use here r̃ to distinguish
it from the (physical) collective index r). It would be convenient to solve the eigenvalue
problem in terms of the simplest algebra Sr̃.

To begin with, we consider the transformation of MM,r to Sr̃ for the case of remote
zones. The dimension of a remote zone is 2r + 1, and the algebra Sr̃ should be characterized
by r̃ = r. The ˇnite dimensional irrep of Sr̃ is isomorphic to the corresponding irreducible
representation of the algebra of Eq. (2) of the atomic subsystem. For the pivotal root qj , we
choose the largest root that bounds the irrep of MM,r from the right (the root q3 in (15)),
while as the root q′j′ we take the root q1 = −r of Sr. Applying the mapping (11), we obtain

M0 =
M − r

2
− S̃3, M+ = S̃−

√(
M − r + 1 − S̃3

)
,

M− =
√(

M − r + 1 − S̃3

)
S̃+.

(16)

The spectrum {m̃} of the operator S̃3 belongs to the region −r ≤ m̃ ≤ r, consequently, the
argument of the square root function in Eq. (16) is positive in the remote zones (M − r > r).
The relations (16) express the generators of algebra MM,r as analytic function of the generators
of the Sr algebra. Thus, they allow us to approximate the more complex algebra MM,r of
third order by a simpler algebra of second order.

We turn now to the nearby zones M < 2r. For this region, the mapping of the algebra
MM,r to the algebra Sr̃ is realized through procedure similar to that described above for
remote zones. Notice that the dimension of nearby zones is d = q3 − q1 = M + 1, and
therefore r̃ = M/2. Applying Eq. (11), we obtain

M0 =
r

2
− S̃3, M+ = S̃−

√(
4r − M

2
+ 1 − S̃3

)
, M+ = (M−)†. (17)
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Since all the eigenvalues of the operator S̃3 belong to the interval −r̃ to r̃, the argument of
the square root function does not have zero eigenvalues in the nearby zones.

Let us introduce an N -atom generalization for arbitrary values r and M of the well-known
quantum Rabi frequency such that

ΩR ≡




2
√

M − r +
1
2
, M ≥ 2r

2

√
4r − M + 1

2
, M < 2r

. (18)

For r = N/2, our deˇnition agrees with that used in [19, 20]. Introducing a small parameter
α ≡ (1/2ΩR)−2, we can rewrite the realizations of M± in nearby and remote zones (see
Eqs. (16), (17)) in the form

M+ =
ΩR

2
S̃−

√
1 − α

(
S̃3 −

1
2

)
, M− = M †

+. (19)

The diagonalization problem for the operator in Eq. (1) can now be solved in each zone by
means of perturbation theory with respect to the small parameter α. One can show that
the eigenvalues of the argument of the square root function in Eq. (19) are less than unity.
Hence, we can expand the square with respect to α and ˇnd thereby the interaction part of
the Hamiltonian. In the interaction representation, the Hamiltonian coincides with V , we only
need to diagonalize the latter. Up to third order in α, we ˇnd that

V =
ΩR

2

(
V

(0) + V
(1) + V

(2) + V
(3)
)

,

where the V (n) are terms of nth order in α and are given in the Appendix 2. In the
Appendix, we also show the unitary transformations Ũk, k = 0, 1, 2, 3, which bring the
interaction operator into diagonal form

V̄ ≡ ŨV Ũ−1 = ΩRS̃3

{
1 +

(α

4

)2 [
5S̃2

3 − 3r̃ (r̃ + 1) + 1
]}

, Ũ ≡ Ũ3 Ũ2 Ũ1 Ũ0. (20)

The spectrum of the operator V as given by Eq. (20) agrees with the results of [19, 20] for
the symmetric states of the atoms.

We compared the third-order solution of Eq. (20) with the exact numerical diagonalization
of V and found that the result (20) is very accurate, especially for increasing values of
|M − 2r|. The results of this comparison are shown in Fig. 1.

Figure 2 compares the energies calculated numerically and in accordance with the analyt-
ical solution of Eq. (20). In the intermediate region of M , the curves for nearby and remote
zones overlap and coincide, thus providing still satisfactory correspondence to the exact solu-
tion. However evidently the expansion for the remote zone breaks down in the nearby zone
and vice versa. This means that the classiˇcation of zones introduced in this paper is indeed
adequate.
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Fig. 1. Deviation of the eigenvalues of V from their numerical values in zero (curve 1) and second
(curve 2) order in α, for r = 6

Fig. 2. The dependence on M of the maximal eigenvalue of V for r = 3, as calculated numerically

and from Eq. (20): 1 Å remote zones; 2 Å neaby zones; ◦ Å numerical values

2. ENHANCEMENT OF SPONTANEOUS EMISSION IN THE RESONATOR
DUE TO COLLECTIVE EFFECTS

In the previous section we developed an algebraic approach to the TavisÄCummings
model. We introduced the operators S̃± describing collective excitations in the atomÄˇeld
system. In terms of these operators, we constructed a perturbation series for the TavisÄ
Cummings Hamiltonian (1). The derived perturbation series gives us a tool to distinguish and
classify cooperative (multiparticle) effects of different orders that are involved in calculations
of different physical observables characterizing the atomÄˇeld system. In this section, we
study a contribution of cooperative effects into the rate of spontaneous emission generated
by the atomÄˇeld system. The atomÄˇeld system is assumed to be prepared in the state
of thermal equilibrium. This state is described by the canonical Gibbs ensemble with the
thermostat temperature T . We demonstrate that nontrivial physical results for the intensity of
spontaneous emission of N two-level atoms placed inside the cavity can be already obtained
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for the zero-order approximation of the exact Hamiltonian (1). The thermal state is given by

ρtherm =
1
Z

exp


−H0 + ΩR/2

(
S̃+ + S̃−

)
kT


 . (21)

Here Z is a normalization factor.
When calculating the rate of spontaneous emission (or the intensity proportional to this

quantity) we merely follow the ideas of Dicke's paper (see, e. g., [2]). According to this
theory, the rate of spontaneous emission in the system is proportional to the average of the
square of the atomic dipole, viz.,

I = I0〈S+S−〉 = I0 Tr {ρthermS+S−} . (22)

It can be shown (Ref. [22]) that the intensity of spontaneous emission is given by

I =
I0

Z

∞∑
M=0

N/2∑
r=ε

G(r)×

×
r̃∑

m̃=−r̃

exp
(
−ω (M − r + N/2) + ΩRm̃

kT

)[
r̃

(
2r − 3

2
r̃ +

1
2

)
+

1
2
m̃2

]
. (23)

Here ε ≡ 1 − (−1)N

4
, and G(r) =

N !(2r + 1)
(N/2 + r + 1)!(N/2 − r)!

is the number of equivalent

representations with the same r.

Fig. 3. The intensity of spontaneous emission per atom (in units of I0) versus cavity temperature. The

curve 1 is the classical result given by Eq. (25), the curves 2, 3, 4 correspond to N = 10, N = 50,

N = 100, respectively, and ω/g = 10

Let us consider the intensity per atom, i. e., I1 ≡ I/N . This intensity consists of two
terms; i. e., the ˇrst is given by a single-particle contribution Isingle and the second one is
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proportional to the two-particle correlation function Cor, I1 = Isingle + I0(N − 1)Cor. They
are found to be

Isingle ≡ I0
1
N 〈

∑
i

σi
+σi

−〉 = I0

(
1
2

+
1
N 〈S3〉

)
,

Cor ≡ 1
N (N − 1)

〈
∑
i�=j

σi
+σj

−〉...
(24)

It is plain that in the absence of the cavity, the correlation function vanishes and the only
contribution to I1 is given by the ˇrst term,

Isingle = Icl ≡ I0

(
1 + eω/kT

)−1

. (25)

Notice that if the number of atoms is big enough, the intensity of radiation exhibits a
high maximum. In a cavity at low T , the cluster of N two-level atoms emits much more
intensively than it does in the free space. It should be possible to drive the system to
thermal equilibrium at the temperature where the spontaneous emission exhibits maximum.
The marked ampliˇcation of spontaneous emission should be observed in cavity experiments.

Concluding this section, we recapitulate our main results. We consider spontaneous
emission of the system comprised of N two-level atoms strongly coupled to the cavity mode
and prepared in the state of thermal equilibrium. In the absence of the cavity the atoms in
the thermal equilibrium would be uncorrelated. In this case, the spontaneous emission would
be described by the conventional formula (25). For high-Q resonators the strong coupling
to the resonator mode should necessarily be taken into account. We demonstrate that in
this case the intensity of spontaneous emission can be greatly enhanced. This phenomenon
can be explained by additional correlation between atoms established by the cavity mode.
Analytically, we have replaced the exact TavisÄCummings Hamiltonian (1) by its zero-order
approximation derived in the previous sections. This allowed us to represent the intensity of
spontaneous emission in the simple analytical form Eq. (23). It is appropriate to emphasize
once again that the zero-order approximation of the Hamiltonian contains strong coupling
and, thus, describes cooperative effects in the atomic subsystem. This is the consequence of
the fact that the operators S̃± describe collective excitations in the atomÄˇeld system.

CONCLUSION

In this work, we solved the TavisÄCummings problem by applying the technique of
polynomially deformed algebras. We constructed the transformations that map one polynomial
algebra of operators onto another. This allowed us to reformulate the problem in terms of a
simpler algebra of second order, Sr, and develop a speciˇc perturbation theory. We were able
to ˇnd analytical expressions for all the eigenvalues of the Hamiltonian up to third order in the
small parameter α. For the nearby zones, we showed explicitly how the collective quantum
Rabi frequency depends on Dicke index r. Since this index characterizes the symmetry of
atomic states, the result has signiˇcant physical implications. The dependence on atomic
symmetry is revealed already in zeroth order in the perturbation expansion. Employing our
methods, we found an interesting new effect, which is ampliˇcation of spontaneous emission
of thermal N -atom states due to collective effects. We expect that this phenomenon can be
observed in cavity experiments.
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APPENDIX

1. Similarity Transformations. We look for similarity transformations Ũk that diagonalize
the Hamiltonian in different orders of α,

V
(n)
k ≡ ŨkV

(n)
k−1Ũ

−1
k , (A1)

where k = 0, 1, 2, 3. In Eq. (A1) only the terms of order n in the small parameter α are

present. For k = 0, the term V
(n)
k−1 should be replaced by the corresponding term in expansion

of V in the series. Regrouping the terms, we obtain

V (0) = 2S̃x

(
1 − 1

2

(α

4

)2
)

, (A2)

V (1) = −α

2

(
1 +

1
4

(α

4

)2
)

B, (A3)

V (2) = −
(α

2

)2
[
S̃3

S̃+ + S̃−
2

S̃3

]
, (A4)

V (3) = −1
2

(α

2

)3 [
S̃3BS̃3

]
, (A5)

where

B ≡
[
S̃3S̃x + S̃xS̃3

]
, (A6)

and

S̃x ≡ S̃+ + S̃−
2

. (A7)

2. The Zero-Order Transformation Ũ0. As is known from the theory of SU(2) algebra,
the operator S̃x can be diagonalized by the transformation

Ũ0 = exp
[π

4

(
S̃+ − S̃−

)]
= exp

[
−i

π

2
S̃y

]
. (A8)

Employing this transformation, we obtain

V
(0)
0 = 2S̃3

(
1 − 1

2

(α

4

)2
)

, V
(1)
0 = −V (1),

V
(2)
0 = −

(α

2

)2 [
S̃xS̃3S̃x

]
, V

(3)
0 =

1
2

(α

2

)3 [
S̃xBS̃x

]
.

(A9)
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3. The First-Order Transformation Ũ1. It can readily be seen that the transformation

Ũ1 = exp [αxD1] , D1 ≡ −i
[
S̃3S̃y + S̃yS̃3

]
(A10)

diagonalizes the operators in the ˇrst order. In the diagonalization, one needs the commutators[
S̃3, D1

]
= B,

[[
S̃3, D1

]
, D1

]
= 4S̃3

(
S̃2 − 2S̃2

3 − 1
4

)
,[[[

S̃3, D1
]
, D1

]
, D1

]
=
(
4S̃2 − 1

)
B − 8

[
S̃3B + BS̃3 − S̃3S̃xS̃3

]
,[

S̃3S̃xS̃3, D1
]

= 2S̃2
3

(
S̃2 − 2S̃2

3

)
+
(
S̃3S̃x

)2

+
(
S̃xS̃3

)2

.

(A11)

Then up to third order in α,

Ũ1V
(0)
0

(
Ũ1

)−1

= V
(0)
0 − 2αx

(
1 − 1

2

(α

4

)2
)

B + 4(αx)2S̃3

(
S̃2 − 2S̃2

3 − 1
4

)
−

− (αx)3

3

{(
4S̃2 − 1

)
B − 8J̃

}
, (A.12)

and

Ũ1V
(1)
0

(
Ũ1

)−1

=
α

2

(
1 +

1
4

(α

4

)2
)

B − α2x2S̃3

(
S̃2 − 2S̃2

3 − 1
4

)
+

+ α3
(x

2

)2 {(
4S̃2 − 1

)
B − 8J̃

}
, (A.13)

where J̃ ≡ S̃3B + BS̃3 − S̃3S̃xS̃3.

Ũ1V
(2)
0

(
Ũ1

)−1

= V
(2)
0 + α3

(x

2

)2 {
S̃xS̃3

(
2S̃2 − 4S̃2

3 − S̃2
x

)
+

+
(
2S̃2 − 4S̃2

3 − S̃2
x

)
S̃3S̃x

}
. (A.14)

In the third order, the operator V
(3)
0 remains unchanged after the transformation, i. e., V

(3)
1 =

V
(3)
0 . In order to calculate V

(2)
0 up to third order, we take into account that

x =
1
4

(
1 + (α/8)2

)
(
1 − 2 (α/8)2

) ≈ 1
4

(
1 + 3

(α

8

)2
)

,

and ˇnd then that

V
(0)
1 = V

(0)
0 − 4

(α

4

)2

S̃3

(
S̃2 − 2S̃2

3 − 1
4

)
, V

(1)
1 = 0, V

(2)
1 = V

(2)
0 ,

V
(3)
1 = V

(3)
0 − 1

2

(α

4

)3

B +
2
3

(α

4

)3 {(
4S̃2 − 1

)
B − 8J̃

}
+

+
(α

4

)3
{

S̃xS̃3

(
2S̃2 − 4S̃2

3 −
(
S̃x

)2
)

+
(

2S̃2 − 4S̃2
3 −

(
S̃x

)2
)

S̃3S̃x

}
.

(A15)
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4. The Second- and the Third-Order Transformations. To ˇnd the second-order trans-
formation, we rewrite V

(2)
1 in a symmetrized form,

V
(2)
1 = −1

2

(α

2

)2 [
L̃xS̃3 + S̃3L̃x + S̃3

(
S̃2 − S̃2

3 − 1
)]

, (A16)

where L̃x ≡
S̃2

+ + S̃2
−

4
. The diagonalizing transformation is then given by

Ũ2 ≡ exp
{

i
1
2

(α

4

)2 [
L̃yS̃3 + S̃3L̃y

]}
, (A17)

where L̃y ≡
S̃2

+ − S̃2
−

4
. Keeping the terms up to third order we obtain (see (A13))

Ũ2V
(0)
1

(
Ũ2

)−1

= V
(0)
1 +

1
2

(α

2

)2 [
L̃xS̃3 + S̃3L̃x

]
. (A18)

The transformation (A17) does not change the expressions given above for V
(2)
1 and V

(3)
1 ,

and we ˇnd that

V
(0)
2 = V

(0)
1 −

(α

4

)2

2S̃3

(
S̃2 − S̃2

3 − 1
)

,

V
(1)
2 = V

(2)
2 = 0, V

(3)
2 = V

(3)
1 .

(A19)

Diagonalization of V
(3)
2 can be performed in a similar way with an operator Ũ3 =

exp
[
− (α/4)3 O

]
. As there are no diagonal terms in V

(3)
2 , which would contribute to the

spectrum of the Hamiltonian, we do not give here the fairly complicated form of operator O.
The ˇnal diagonal form for the interaction V is thus given by

V̄ = ΩS̃3

{
1 +

(α

4

)2 [
5S̃2

3 − 3r̃ (r̃ + 1) + 1
]}

. (A20)

To recapitulate, we introduced four transformations Ũk, k = 0, 1, 2, 3, which successively
diagonalize the interaction operator in the TavisÄCummings Hamiltonian up to third order
with respect to the small parameter α = (1/2ΩR)−2, with ΩR the generalized Rabi frequency
of Eq. (18), such that

V̄ ≡ ŨV Ũ−1, Ũ ≡ Ũ3Ũ2Ũ1Ũ0. (A21)
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