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MULTIFRACTAL ANALYSIS OF AFM IMAGES OF Nb THIN FILM
SURFACES1

M.V.Altaisky, L.P.Chernenko, V.M.Balebanov2, N.S.Erokhin2,
S.S.Moiseev2

The multifractal analysis of the atomic Force Microscope (AFM) images of the
Niobium (Nb) thin ˇlm surfaces has been performed. These Nb ˇlms are being used
for the measurements of the London penetration depth of stationary magnetic ˇeld by
polarized neutron refectometry. The analysis shows the behavior of Rsenyi dimensions
of images (in the range of available scales 6Ä2000 nm), like the known multifractal
p-model, with typical Hausdorff dimension of prevalent color in the range of 1.6 − 1.9.
This indicates the fractal nature of ˇlm landscape on those scales. The perspective of
new mechanism of order parameter suppression on superconductor-vacuum boundary,
manifested in anomalous magnetic ˇeld penetration, is discussed.

The investigation has been performed at the Frank Laboratory of Neutron Physics

and at the Laboratory of Computing Techniques and Automation, JINR.
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1. INTRODUCTION

The thin, with thickness from 1000 nm to a few atomic layers, metallic ˇlms are being
extensively used in different branches of science and technology. Their properties are being
studied, both experimentally and theoretically, in relation to the superconductivity problems
[1], quantum electronics, compact energy sources [2] and so on. The thin ˇlm preparation
is a high technology process which requires a precise control of the deposition condition
and the resulting layer parameters. The existing deposition methods, including magnetron
puttering, an electron beam evaporation, molecular beam epitaxy and others, being based
on nonequilibrial processes, yield thin ˇlms with surfaces rough at nanoscales. This is
microroughness. Since the typical microroughness scales are comparable to the scales of
quantum processes occurring on the boundary of the ˇlms, the surface structure may and does
affect such processes as the anomalous magnetic ˇeld penetration [1], anomalous increasing
of electron emission (the Schottky effect), optical effects [3], the neutron refectivity, etc. All
these processes, as well as unequilibrium deposition and relaxation processes, are essentially
fractal [3Ä5], and that is why the fractal analysis of the resulting surfaces is most perspective
here.

In this paper we present the results of fractal and multifractal data processing of the
AFM images of Nb superconducting thin ˇlms used for polarized neutron refectometry.
The experiments have been performed at the Frank Laboratory of Neutron Physics of JINR
since 1989 and devoted to the study of anomalous penetration of magnetic ˇeld H0 into
the superconducting layer. The results of experiments [1] indicate the penetration depth
of the magnetic ˇeld about 90 nm, which is roughly twice as great as standard theoretical
estimation [6].

The typical scale of the Nb thin ˇlm surface inhomogeneity, estimated by neutron meth-
ods, is in the range of (0.5 − 10) nm, therefore the Atomic Force Microscope capable of
resolving such scales was used. The visual analysis of AFM images clearly displays the het-
erogeneous cluster structure, see Figs. 1,2, with typical cluster size of about (20− 70) nm for
different samples. For quantitative study of the images we calculated the fractal (Hausdorff)
dimension with respect to the prevalent conditional color for each image and the spectrum of
Rsenyi dimensions also.

The remainder of the paper is organized as follows. In Sect. 2 we recall the basics of
multifractal formalism. In Sect. 3 the results of the multifractal analysis of the images are
presented. In Sect. 4, based on the ideas proposed in [7], we consider the possible increasing
of magnetic ˇeld penetration due to the effective increasing of the metal-vacuum bound surface
area for fractal (d > 2) surfaces. In Conclusion the possible technological applications of the
results obtained and further development of the methods used are discussed.

2. MULTIFRACTAL FORMALISM

Simple box-counting method N(δ) ∼ δ−d relates the dependence of the number of cells
required to cover a geometrical object to their size δ. This is sufˇcient to describe smooth
sets, such as lines and surfaces, and universal fractals (which have the same dimension
anywhere), but is unfair to the objects with variable characteristics. First of all, the box-
counting formalism prescribes the same weight 1 to the cells with only one point inside and
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Fig. 1. The AFM image of the 700 nm (in the average) thick Nb-ˇlm. The ˇlm was prepared in Particle
Physics Laboratory of JINR by electron beam evaporation. The neutron refection roughness is 8 nm.
The conditioned colors indicate the height range (0− 40) nm (from dark-red to light-red, respectively).
The AFM average roughness is 6.7 nm, which is in good agreement with neutron refection estimation

that densely populated. To distinguish between these two polarities it was suggested [9] to
use weighted curdling measure

Md(q, δ) =
∑
i

µq
i δ

d ∼ δd−τ(q). (1)

where µi = Ni

N is the ratio of the pixels of the given color whithin the ith cell to the total
number of pixels of this color. The function τ(q), which is the scaling exponent of the qth
moment of the measure µ, is often referred to as the mass exponent. For practical purposes,
instead of direct calculation of the measure (1), an analog of box-counting method can be
applied. First, the ®partition function¯

N(q, δ) =
∑
i

µq
i ∼ δ−τ(q) (2)

is calculated in the same way as in standard box-counting method, and than the logarithmic
slope of the graph N(q, δ) versus δ gives the Rsenyi dimension Dq = τ(q)/(1 − q) (also
introduced by Grassberger and Procaccia [8]):

Dq =
1

q − 1
lim
δ→0

lnN(q, δ)
ln δ

. (3)

The multifractal formalism was ˇrst successfully applied in physics to the description of
cascade processes in hydrodynamic turbulence, for example, it is the so-called p-model [10].
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Fig. 2. The AFM image of the 265 nm (in the average) thick Nb-ˇlm. The ˇlm was prepared in Particle
Physics Laboratory of JINR by electron beam evaporation. The neutron refection roughness is 0.5 nm.
The conditioned colors indicate the height range (0−37.5) nm (from dark-red to light-red, respectively).
The AFM average roughness is 0.7 nm, which is in good agreement with neutron refection estimation

Remind it briefy. The p-model describes a nonequal sharing of the energy fux from a
large eddy of size l to 2d small ones of size l/2, where d is space dimension. The simplest
hypothesis is that a p1 fraction of the energy goes to one half of them and a fraction p2 = 1−p1
goes to another half. The qth moment of the energy dissipated by the eddies of a given size
l can be used as a measure

∑
Eq
l = Eq

L

(
l

L

)(q−1)Dq

, (4)

where L is the maximal size of the eddies the process start with. For the nth stage of the
process there will be all possible eddies

El = pn−m
1 pm2 El,m ≤ n, l = L/2n,

and hence the Rzenyi dimension can be written in the form

Dq = log2[p
q
1 + pq2]

1
1−q ,

1
2
≤ p1 ≤ 1.

Two limiting cases
D∞ = log2 p

−1
1 and D−∞ = log2 p

−1
2

are of most experimental interest. They correspond to the domination of most strong and
most weak domains of the cascade. The typical dependence Dq vs. q is presented in Fig.3.
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Fig. 3. The dependence of the Rsenyi dimensionsD(q) versus q in the p model for the cases: a) p1 = 0.6,
p2 = 0.4, b) p1 = 0.9, p2 = 0.1

For the case of p-model D(q) is decreasing function of q: q1 < q2 implies D(q1) > D(q2).
The important characteristics of the cascade processes is the singularity spectrum f(α), i.e.,
the dimension of subsets Iα on the singularity strength (LipschitzÄHéolder exponent) α. To
cover a fractal subset Iα (with index between α and α+ dα), the number of required δ balls
is given by

N(α, δ) = ρ(α)dαδ−f(α).

Hence, the measure (1) can be written in the form

Md(q, α) =
∫

δqα−f(α)+dρ(α)dα.

This measure is ˇnite if the dimension d is not less than the mass exponent

τ(q) = f(α(q))− qα(q) . (5)

Having the mass exponents τ(q) one can express the singularity strengths α(q) and the
dimension of their supporters by means of the Legendre transform

α(q) = − d

dq
τ(q) , (6)

f(α) = qα+ τ(q) .

The maximum of f(α) curve corresponds to q = 0, i.e., to the dimension of the supporter
of the whole set ∪αIα. Thus measuring the moments of a given distribution and using the
relation (6) we obtain the information about the geometry of singularities, i.e., the geometry
of energy dissipation if dissipative cascade processes are considered.
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In general, the physics of the thin ˇlm deposition is different from that taking place in
turbulence. However, for low energies, e.g., for molecular epitaxy, they may be roughly de-
scribed by the same KardarÄParisiÄZhang [4] stochastic differential equation. These processes
have in common the presence of self-similarity (scaling) and the existence of two limiting
scales (η, L), between which the scaling law holds. We may also suggest, that they both
are universal with respect to the energy dissipation rate E (which completely determines the
spectra of hydrodynamic turbulence in the Kolmogorov range (η, L)).

The problem of thin ˇlm deposition has two aspects Å the dynamic and the static. The
dynamic aspect is related to the quantum processes of beam interaction with the forming
surface. The static problem is to describe the geometry of the formed layer using available
data of observations. In our investigation we concentrate ourselves on static problem only.
We consider the observed surfaces as static and study their geometry by means of multifractal
analysis.

3. DATA PROCESSING RESULTS

In our data processing studies we have analyzed 8 AFM images (304x304 and 504x504
pixels format) taken with horizontal resolution from 0.4 nm/pixel to 15 nm/pixel, respectively,
and height range up to 40 nm marked by about 70 conditional colors. In the table below the
summary of image information is presented

Name Size Resolution Palette Main color Count of Dimension
(pixels) (nm/pixel) (colors) (R,G,B) main color D0

mdt0 300x303 3.1 77 (232,132,56) 6331 1.92
mdt1 302x303 0.7 68 (184,104,32) 6379 1.80
mdt2 302x302 3.8 69 (248,152,88) 6209 1.75
mdt3 302x302 15.3 75 (248,148,80) 6357 1.89
nbsi1 502x501 1.9 70 (208,116,32) 19888 1.90
nbsi2 503x504 0.4 66 (208,116,32) 18311 1.69
nbsi3 503x503 15.3 77 (224,124,48) 22687 1.91
nbsi4 502x501 2.3 69 (200,112,32) 25983 1.75

All calculations were performed for the conditional color which is dominant for each image,
and thus represents the dominant height of the landscape. (We have also done some checks
for other conditional colors and they show similar results). The value of D0 (the Hausdorff
box-counting dimension) is presented for all images. Below we present the geometry of
prevalent colors (Figs. 4, 5) cropped from the images of Figs. 1, 2. The main color in the
other images is distributed in a way similar to either of these two classes. The dependence
of the Rsenyi dimension D(q) is a typical behavior of p model. The asymptotic of D(q)
dimension at positive q which is about 1.5 indicates that most densely populated clusters of
the given color have the isoline dimension about 1.5 and, if admit the standard hypothesis of
transversal smoothness [11], the dimension of the surface is about 2.5, see Fig. 6.

4. ANOMALOUS MAGNETIC FIELD PENETRATION

The practical goal of neutron refectometry is the precise determination of magnetic
ˇeld penetration beneath the surface of the ˇlm. The results of experiments give about
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Fig. 4. The main color (248,152,88) crop of the image shown in Fig. 1

Fig. 5. The main color (248,148,80) crop of AFM image shown in Fig. 2
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Fig. 6. Dq dimensions for high (3 nm/pix) and low (15 nm/pix) resolution samples

twice as deep penetration, that is about 90 nm [1], as expected from the London (45 nm)
theory for the same experiment [6]. To study the problem let us ˇrst outline the London
theory [12].

Due to the action of electric ˇeld E the electrons in the metal are accelerated according
to the Newton law me

dv
dt = −eE, thus we have the following nonrelativistic equation for the

electron current j = −enev:

d

dt

(
Λj
)
= E , (7)

where Λ = me

nee2
is the London constant.

The electromagnetic ˇelds are governed by the pair of Maxwell equations

∇× E = −1
c
∂H
∂t

, ∇× H =
4π
c

j . (8)

Since ∇ ·H = 0, applying ∇× operation to the ˇrst of the equations (8) (∇×∇× → −∆),
one yields the equation for H

∆H− 4π
Λc2

H = 0. (9)

If the ˇeld H = Hey is parallel to the plane surface of the metal, determined by the
condition y = 0, the equation (9) has a simple solution exponentially decaying into the metal

H(x) = H(0) exp(−x/δ), (10)

where δ2 = Λc2

4π is called the penetration depth.
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Fig. 7. The contour for the integration Eq.(11) of magnetic ˇeld circulation for fractal surface

Strictly speaking, if the (x, y) section of the surface is a nondifferentiable (fractal) curve,
there is no way to apply the operation ∇×∇× → −∆. Instead we can only use the integral
form of the second of the equations (8) like the close curve l contour integral∮

Hdl =
4π
c

IS , (11)

where IS is the current passing through the surface S with the boundary curve ∂S = l. Doing
so, we can compare the line curve integral (11) taken along a straight line lr (at the right
in Fig. 7) with the same integral taken along the fractal curve lF (at the left in Fig. 7). If
we adopt the standard Hausdorff measure and there is no current inside lr + lF contour, the
integral should have equal values:

Hl · Lr −
∑

δ ·Hτk = 0 , (12)

where Lr is the length of straight line lr, Hτk is the tangential component of magnetic ˇeld
H and the summation is performed over the set of boxes of size δ covering the fractal curve
lF . Averaging the equation (12) and taking into account that δN(δ) = LF (δ) is the fractal
curve lF length, we can introduce the effective magnetic ˇeld Heff = 〈Hτk〉 acting in a metal
ˇlm beneath the fractal surface:

Heff =
HLL

LF (δ)〈cosφk〉
, (13)

where φk is the angle between magnetic ˇeld direction and the tangent ort in the kth cell.
For a fractal curve its length LF (δ) must increase when the box size δ decreases. It means

that the effective magnetic ˇeld Heff (13) produced by the surface current will be less in the
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case of fractal curve. So, the absolute value of the total magnetic ˇeld Ht = Hext +Heff ,
including the external magnetic ˇeld and that induced by surface current becomes larger. This
consideration conˇrms the experimental result [1] on the increasing of penetration depth of
the magnetic ˇeld in the case of superconducting ˇlm with fractal surface.

In fact, two concurring factors in the denominator of equation (13) are observed here: the
average cosine of the tangent angle, which makes the effective ˇeld less than its ®straight¯
counterpart, and the increasing at δ → 0 length Lδ, which decreases the effective magnetic
ˇeld. Due to the complexity of presurface phenomena it is difˇcult to calculate which of those
factors will dominate, and in general we should admit that both increasing and decreasing of
the ˇeld may happen under certain condition.

It may be asked here why we use the contour integration instead of the exact form (11)
with the induced surface current in the r.h.s. In fact, our consideration is not rigorous in
this sense. It is demonstrative at the same extent as the derivation of the London equation
(9), that is strictly valid only for harmonic ˇelds H,E ∼ eıωt. What is physically true, that
the density of the surface currents (induced by external magnetic ˇeld) decreases with the
increasing length of the contour i ∼ L−1(δ). Thus, the higher is the fractal dimension of the
surface, the less is local magnetic ˇeld acting a contre external magnetic ˇeld and contribute
to Heff , and the higher is the effective magnetic ˇeld Heff , measured locally by neutrons.
Therefore, the expected effect is the increasing of the magnetic ˇeld inside the metal with
regard to the London estimation.

The consideration is valid until seriously affected by quantum effects. The rough esti-
mation of quantum limit is the comparability of the fractal momentum pa = π�

a or energy
Ea = p2a/(2me) with the Fermi energy. For a surface of microroughness a = 5nm this gives
Ea ≈ 0.015 eV � EFermi, while for the surface of microroughness a = 1nm the quantum
effects may be signiˇcant.

For the images presented in Fig. 1 and Fig. 2 we have reconstruct the vertical section
(height) of the images using the color scale. The vertical cross sections have been performed
at x = 150 for the images. The linear dependence of the height from the green component of
the RGB color scale is assumed. The reconstructed height proˇles are presented in Figs. 8, 9.

The fractal dimensions calculated for the graphs of Figs. 8, 9 are 1.36 and 1.50, respec-
tively, but even visually the fractal nature of the landscape is clearly observed and indicates
the possibility of anomalous magnetic ˇeld penetration.

Similar consideration is valid for the electric ˇeld on a fractal surface [7]. For the fractal
metal surface the decreasing of the surface work function takes place. As a consequence of
it, the growth of secondary electron emission stimulated by the passage of fast ions through
metal ˇlms is expected. In this problem the static electric ˇeld E = −∇φ is determined by
the equation ∇ · E = 4πρ, where ρ(x, y) is the density of electric charge. In analogy to the
consideration above, we can write ∮

S

E · dS = 4πQ,

where Q is the total electric charge within the volume bounded by the surface S. Since the
total charge of a metal conductor is zero the following condition holds

En0 · S0 =
∑
k

Enk ·∆Sk,
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Fig. 8. The reconstructed height proˇle for the x = 150 vertical cross section of the AFM image of the
Nb-ˇlm shown in Fig. 1. The ˇlm horizontal axis is in pixels, the vertical axis is in nm
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Fig. 9. The reconstructed height proˇle for the x = 150 vertical cross section of the AFM image of the
Nb-ˇlm shown in Fig. 2. The ˇlm horizontal axis is in pixels, the vertical axis is in nm

where Enk is the electric ˇeld component normal to the surface element ∆Sk. Therefore, for
the average value of the normal component of electric ˇeld 〈Enk〉 ≡ Eeff there is an estimation
Eeff = E0S0/SF , with SF being the fractal surface area measured at a given scale F . Let
us introduce the similarity parameter ξ = lmin/lmax < 1, and let df = 2 + β(0 < β < 1)
be the Hausdorff dimension of the considered fractal surface. According to [7] we have
S0/SF = ξβ = Eeff/E0. So, for the case of fractal conducting surface, the surface density
of the electric charge decreases as 〈σF /σ0〉 = ξβ . The dependence of G(β) = ξβ on the
parameter β = dF − 2 in the range 0.2 < β < 0.8 is given in Fig. 10 for the cases ξ = 0.2
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5. CONCLUSION

In this paper the results of the analysis of Nb-ˇlms fractal properties were presented. The
fractal properties of different surfaces have been already studied by means of electromag-
netic wave diffraction. The idea of using neutrons for this purpose was also suggested [3].
The novelty of neutron application for fractal surface studies and of our work in general is
its concentration on the problem of microstructures. The neutrons are the very instrument
capable of resolving surface properties locally. Thus all technologically interesting fractal
microstructures can be thoroughly investigated by neutron refectometry. The practical appli-
cation of our approach is the construction of different thin ˇlm devices where it is important
to enhance, or just to control, the penetration of electric and magnetic ˇelds beneath thin
ˇlm surface. For electric ˇeld a ®fractal¯ solution of similar type was proposed in [7]. In
the present study we investigate the possible increasing of magnetic ˇeld penetration beneath
metal surface. We found the experimental results on anomalous magnetic ˇeld penetration
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to be in qualitative agreement with our approach based on generalization of the Stokes the-
orem to fractal boundaries. More rigorous quantitative study requires a detailed simulation
of induced surface currents, and possibly will be done in future under certain simplifying
assumptions.

We hope the methods proposed in this paper could be effectively used for thin ˇlm
technologies. In particular, we plan to use these methods and software for the manufacturing
of thin-ˇlm multilayer emitters for atomic batteries. For such emitters the AFM and neutron
methods of control could be a technological method of controlling designed properties.
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