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A HOMOGENEOUS STATIC GRAVITATIONAL FIELD
AND THE PRINCIPLE OF EQUIVALENCE

N.A.Chernikov
Joint Institute for Nuclear Research, Dubna

In this paper any gravitational ˇeld (both in the Einsteinian case and in the Newtonian case) is
described by the connection, called gravitational. A homogeneous static gravitational ˇeld is considered
in the four-dimensional area z > 0 of a space-time with Cartesian coordinates x, y, z, and t. Such ˇeld
can be created by masses, disposed outside the area z > 0 with a density distribution independent of
x, y, and t. Remarkably, in the four-dimensional area z > 0, together with the primitive background
connection, the primitive gravitational connection has been derived. In concordance with the Principle
of Equivalence all components of such gravitational connection are equal to zero in the uniformly
accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force.
However, all components of such background connection are equal to zero in the resting frame system,
but not in the accelerated frame system.
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1. FORMULATION OF THE PROBLEM

Let us determine the space-time M as a direct product M = E×T of the Euclidean space
E and the Euclidean line T .

Choosing the length unit (for example, the centimetre), we deˇne a metric in E. This
means that the square length between two points in E, marked by the indices 1 and 2, in
Cartesian coordinates x, y, z (according to Phifagor's theorem) equals

s2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (1)

Choosing the time unit (for example, the second), we deˇne a metric in T . This means,
that the time τ between two instants in T , marked by the indices 1 and 2, in Cartesian
coordinate t equals

τ = t2 − t1. (2)

The set Ξ of coordinates x1 = x, x2 = y, x3 = z, x4 = t is a simple coordinate map in
the product E × T , mutually unique to its covering, and so the space-time M turns out to be
a simple four-dimensional manifold.
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Supplying the space-time M with the coordinate map Ξ, we will call the pair (M, Ξ) the
resting frame system. In order to justify this name, we will consider M as a four-dimensional
afˇne space, in which the coordinates of the map Ξ turn out to be afˇne coordinates. The
world trajectory of a particle, freely moving by inertia in the absence of an outside force,
is represented in M as an afˇne straight line. In the particular case the world trajectory of
a particle ®at rest¯ is represented in the reference frame (M, Ξ) as a line x = x0, y = y0,
z = z0.

Deˇning M as a four-dimensional afˇne space, we have in this way introduced in the
space-time M a symmetric afˇne connection. Let us call it a background one and denote it
by Γ̌.

In Newton's theory of gravity the background connection Γ̌ is present in an explicit form.
About the necessity of restoring this connection in Einstein's theory of gravity see Ref. 1.

Let us note the following four properties of the background connection Γ̌ in M .
1. In the map Ξ all its components Γ̌a

mn equal zero.
2. Its curvature tensor Řa

mnk equals zero.
3. The equality Γ̌a

mn = 0 is preserved under the transition from the map Ξ to another
afˇne map in M .

4. The equality Řa
mnk = 0 preserves under the transition from the map Ξ to any other

coordinate map in M .
Each symmetric connection, the curvature tensor of which is equal to zero, shall be called

a primitive one. In a suitable coordinate map all the components of the primitive connection
are zero.

In Newton's and Einstein's theories of gravity the background connection is a primitive
one. In other theories of gravity the background connection may be a nonprimitive one. For
example, in Lobachevky's theory of gravity the background connection is a nonprimitive one.

In ˇeld theories the gravitational ˇeld is described by the afˇne connection. Let us call
it a gravitational one and denote it by Γ. In each coordinate map its components Γa

mn are
functions of the coordinates, composing this map.

If the gravitational ˇeld is absent, then the gravitational connection coinsides with the
background one. It may be said that the background connection describes the gravitational
ˇeld in its vacuum state. Such a gravitational ˇeld is trivial.

If in an arbitrary space-time area the gravitational ˇeld is absent, then in this area the
tensor ˇeld

P a
mn = Γ̌a

mn − Γa
mn (3)

of the afˇne deformation equals zero.
If the tensor ˇeld of the afˇne deformation (3) in a certain space-time area does not equal

zero, then in this area a nontrivial gravitational ˇeld is present.
The gravitational connection is an equiafˇne one. In particular, the background connection

is also an equiafˇne one.
As proved in [1], in space-time area with no gravitational ˇeld sources, in the general

case the gravitational connection is a solution of the equation

Rmn = Řmn. (4)

In this paper it is required to ˇnd a nontrivial gravitational ˇeld, not depending on x, y,
and t and satisfying in the area z > 0 of space-time M the equation Rmn = 0. Such ˇeld can
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be created by masses, disposed outside the area z > 0 with a density distribution independent
of x, y, and t.

The following facts about the curvature tensor Ra
kln composed by means of the afˇne

connection Γa
mn are necessary for the solution of the problem.

2. ALGEBRAIC PROPERTIES OF THE CURVATURE TENSOR

The following construction is called a curvature tensor of each afˇne connection Γa
mn:

Ra
kln = ∂kΓa

ln − ∂lΓa
kn + Γa

ksΓ
s
ln − Γa

lsΓ
s
kn. (5)

Obviously
Ra

kln + Ra
lkn = 0. (6)

That is why of interest are only the following contractions:

Rln = Ra
aln, Ωkl = Ra

lla. (7)

It is not difˇcult to see that

Ωkl = Ra
kla = ∂kΓl − ∂lΓk, (8)

where
Γm = Γa

ma. (9)

The contraction (9) is called a contracted connection. The contraction (18) is called a
curvature tensor of the contracted connection (9).

If
Γa

nm = Γa
mn, (10)

then the connection is called a symmetric one. Such a connection is given by the geodesic
equations:

d2xa

dτ2
+ Γa

mn

dxm

dτ

dxn

dτ
= 0. (11)

Together with (6), the curvature tensor of the symmetric connection has the following
property:

Ra
kln + Ra

nkl + Ra
lnk = 0. (12)

From here it follows that
Ωkl + Rkl = Rlk. (13)

Theefore, in the case of a symmetric connection the equality

Rkl = Rlk (14)

is equivalent to the equality
Ωkl = 0. (15)

The symmetric connection, satisfying condition (15), is called an equiafˇne one.
Consequence. Since the energy-momentum tensor is a symmetric one, each solution of

the Einstein's equation represents an equiafˇne connection.
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3. METRIC OBJECTS IN M IN THE ABSENCE
OF A GRAVITATIONAL FIELD

In the absence of a gravitational ˇeld the metric objects in M represent themselves in the
map Ξ as differential forms with constant coefˇcients. In the group of afˇne transformations
these objects single out in the ˇrst case Å the nonhomogeneous Galilean group, in the second
case Å the nonhomogeneous Lorentz group (i.e., the Poincare group).

In the Galilean case the time t is absolute in the Newtonian meaning, and therefore in M
the linear form

dτ = dt (16)

is given. Moreover, in the Galilean case the degenerate cometric is determined:

∂

∂x
⊗ ∂

∂x
+

∂

∂y
⊗ ∂

∂y
+

∂

∂z
⊗ ∂

∂z
. (17)

In the Lorentz case in M the metric

− 1
c2

(dx ⊗ dx + dy ⊗ dy + dz ⊗ dz) + dt ⊗ dt) (18)

and the cometric
∂

∂x
⊗ ∂

∂x
+

∂

∂y
⊗ ∂

∂y
+

∂

∂z
⊗ ∂

∂z
− 1

c2

∂

∂t
⊗ ∂

∂t
. (19)

are given.
Here and further (in the theory of gravitation) c denotes the light velocity Å the known

parameter in the Lorentz transformation

x́ = x, ý = y, ź =
z − vt√
1 − (v

c )2
, c2 t́ =

c2t − vz√
1 − (v

c )2
. (20)

The Newtonian case of the theory of gravitation we will denote by the sign c = ∞ of
inˇniteness of the light velocity.

The Einsteinian case of the theory of gravitation we will denote by the sign c < ∞,
meaning the ˇniteness of the light velocity.

In the limit c → ∞ the case c < ∞ transforms into the case c = ∞.
For example, the Lorentz transformation (20) in the limit c → ∞ transforms into the

Galilean transformation

x́ = x, ý = y, x́ = x − vt, t́ = t. (21)

It is interesting that background connection does not depend on the light velocity c.

4. SOLUTION OF THE PROBLEM IN THE CASE OF c = ∞

In the case of c = ∞ the gravitational ˇeld is described by the afˇne connection with the
help of Newton's potential U and the equations of motion of a material point. In our problem
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potential U = U(z) depends only on z. Therefore we have the Newton's equations in the
form

d2x

dt2
= 0,

d2y

dt2
= 0,

d2z

dt2
= −dU

dz
. (22)

In the case c = ∞ the time t is always absolute in the Newtonian meaning, and the linear
form (16) in the presence of the gravitational ˇeld is conserved. Consequently we must put

dt

dτ
= 1. (23)

From (22) and (23) the equations of the type (11) follow, namely

d2x

dτ2
= 0,

d2y

dτ2
= 0,

d2z

dτ2
+

dU

dz

dt

dτ

dt

dτ
= 0,

d2t

dτ2
= 0. (24)

That is why in the case of c = ∞ the following component of the gravitational connection
equals

Γ3
44 =

dU

dz
(25)

and the others are zero. Now we ˇnd the following components

R3
344 =

d2U

dz2
= −R3

434 = R44 (26)

of the gravitational curvature tensor and its contraction; the others are equal to zero.
Therefore in this case the equation Rmn = 0 is equivalent to the equation U ′′ = 0 and to

the equation Ra
kln = 0. Consequenly, in the problem solved here, the gravitational connection

should be a primitive one and the potential U should obey the equation U ′′ = 0 in the area
z > 0. Thus, U(z) is a linear function: U = A + Bz, if z > 0.

Let us note that the equations of motion (22) have the integral of energy

E =
1
2

[(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2 ]
+ U(z). (27)

Assuming that E = 0 when a material point is at rest on the plane z = 0, we ˇnd A = 0.
Accorging to (22), the constant B equals the acceleration of a freely falling material point

on the plane z = 0. We may put B = g, where g is the acceleration of a freely falling body,
measured in the town Dubna.

Thus we ˇnd that in the area z > 0 the gravitational potential equals U = gz, where g is
a positive constant.

Therefore, in the given case in the map Ξ only one component of the gravitational
connection is not equal to zero, namely

Γ3
44 = g. (28)

As a plane z = 0, one can choose the 	oor, on which in Dubna the world ex-champion
stands. In the year 1952, it was accelerating protons up to 480 MeV. In that time the
concurrent rival in Berkeley (USA) was accelerating protons up to 340 MeV.
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5. SOLUTION OF THE PROBLEM IN THE CASE c < ∞

In the case c < ∞ the gravitational ˇeld is described by the Christoffel's connection for
the metric

− 1
c2

(dx ⊗ dx + dy ⊗ dy + dz ⊗ dz) + V 2dt ⊗ dt, (29)

where V = V (z) is a function only of one coordinate z. From the geodesic equations

d2x

dτ2
= 0,

d2y

dτ2
= 0,

d2z

dτ2
+ c2V

dV

dz

( dt

dτ

)2

= 0 ,
d2t

dτ2
+

2
V

dV

dz

dz

dτ

dt

dτ
= 0 , (30)

for the metric (29) we ˇnd following three componets of this connection

Γ3
44 = c2V V ′, Γ4

34 =
V ′

V
= Γ4

43 (31)

and the others are zero.
Let us consider the curvature tensor of this connection. If one of the indices of the

component Ra
kln (see (5)) of the curvature tensor or of the component Rln (see (7)) of the

contracted curvature tensor equals 1 or 2, then, as can be easily seen, such a component
equals zero. Together with these, owing to (6), the components Ra

33n and Ra
44n equal zero.

It remains to consider the four components

R33 , R44 , R34 = R43 (32)

of the tensor Rln and the eight pair-opposite components

R3
343 = −R3

433 , R3
344 = −R3

434 ,

R4
343 = −R4

433 , R4
344 = −R4

434 (33)

of the tensor Ra
kln. The following relation holds between them:

R33 = R4
433 , R34 = R4

434 ,

R43 = R3
343 , R44 = R3

344 . (34)

Let us calculate these components:

R33 = − d

dz
Γ4

43 − Γ4
34Γ

4
43 = −V ′′

V
, R34 = 0 ,

R43 = 0 , R44 =
d

dz
Γ3

44 − Γ3
44Γ

4
43 = c2V V ′′ . (35)

Therefore in this case the equation Rmn = 0 is equivalent to the equation V ′′ = 0 and
to the equation Ra

kln = 0. Consequenly, in the problem solved here, gravitational connection
should be a primitive one and the function V should obey the equation V ′′ = 0 in the area
z > 0. Thus, V (z) is a linear function: V = a + bz if z > 0.
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Since on the plane z = 0 the metric (29) should coincide with the unperturbed metric
(18), we have a = 1. Moreover, instead of (23) we have the equality

c2V 2

(
dt

dτ

)2

−
(

dx

dτ

)2

−
(

dy

dτ

)2

−
(

dz

dτ

)2

= c2. (36)

From (36) we ˇnd
dt

dτ
=

1√
V 2 − v2/c2

, (37)

where

v2 =
(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

. (38)

The integral of energy in the case c < ∞ has the form

E =
[
V 2 dt

dτ
− 1

]
c2. (39)

From (37) and (39) we ˇnd

E =
(

V 2√
V 2 − v2/c2

− 1
)

c2. (40)

From (27) and(40) in the case v2 = 0 we receive E = U(z) = gz and E = [V (z)−1)c2 =
bc2z. Consequently, bc2 = g and

V = V (z) = 1 +
gz

c2
. (41)

In the limit c → ∞ (40) transforms into (27).
Substituting the (41) into (29) and (30), we receive

−(dx ⊗ dx + dy ⊗ dy + dz ⊗ dz) +
(

c +
gz

c

)2

dt ⊗ dt (42)

and
d2x

dτ2
= 0,

d2y

dτ2
= 0,

d2z

dτ2
+ g

(
1 +

gz

c2

)( dt

dτ

)2

= 0 ,
d2t

dτ2
+

2g

c2 + gz

dz

dτ

dt

dτ
= 0 , (43)

6. A NONINERTIAL REFERENCE FRAME WITHOUT ROTATION
IN THE CASE c = ∞

Now consider in the case c = ∞ a homogeneous gravitational ˇeld, arbitrary depending
on the time t. If only this ˇeld is acting on the material point, then its movement in the
resting reference frame (M, Ξ) is described by the Newton equations

d2x

dt2
= −g1(t),

d2y

dt2
= −g2(t),

d2z

dt2
= −g3(t), (44)
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where gn(t), n = 1, 2, 3, are integrable on Euclidean line T functions. In the noninertial
reference frame (M, Ξ̂) without rotation

x̂ = x + f1(t), ŷ = y + f2(t), x̂ = z + f3(t), t̂ = t, (45)

where

fn(t) = an + bnt +
∫ t

0

dη

∫ η

0

gn(ξ)dξ, (46)

an = fn(0), bn =
dfn

dt
(0), n = 1, 2, 3,

the equations (44) acquire the simplest form

d2x̂

dt̂2
= 0,

d2ŷ

dt̂2
= 0,

d2ẑ

dt̂2
= 0. (47)

In such a way, in the mechanics of Newton in the given case the inertial force is balanced
by the gravity force.

Taking into account (23), equations (44) can be written in the form of a geodesic equations,
namely

d2xn

dτ2
+ gn(t)

dt

dτ

dt

dτ
= 0, n = 1, 2, 3,

d2t

dτ2
= 0. (48)

Therefore, the considered ˇeld is described by a connection, three components of which
in the map Ξ are equal to

Γn
44 = gn(t), n = 1, 2, 3, (49)

and the rest are equal to zero. This connection is a primitive one, since in the map Ξ̂ all of
its components are equal to zero and therefore its curvature tensor is equal to zero.

A partial case of the transformation (45) is the transition to a uniformly accelerated
reference frame

x̂ = x, ŷ = y, ẑ = z +
gt2

2
, t̂ = t, (50)

imitating a homogeneous static gravitational ˇeld in the case of c = ∞.
A resting reference frame with a homogeneous static gravitational ˇeld turns out to be

equivalent to a uniformly accelerated (falling) frame of reference without a gravitational ˇeld
not only in the case of c = ∞, but also in the case of c < ∞. This is the Principle of
Equivalence, advanced by Einstein.

7. THE UNIFORMLY ACCELERATED REFERENCE FRAME
IN THE CASE c < ∞

The transition from the resting reference frame (M, Ξ) to the uniformly accelerated refer-
ence frame (M, Ξ̂) is represented by the following trasformation:

x̂ = x, ŷ = y,

ẑ =
(
z +

c2

g

)
cosh

gt

c
− c2

g
,
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ct̂ =
(
z +

c2

g

)
sinh

gt

c
. (51)

All the information about the homogeneous static ˇeld in the area z > 0 is contained in
formulae (42) and (43). In its turn, the last ones are derived from formulae (51) as a result
of simple differentiation. Since

−(dx̂ ⊗ dx̂ + dŷ ⊗ dŷ) = −(dx ⊗ dx + dy ⊗ dy) (52)

and
d2x̂

dτ2
=

d2x

dτ2
,

d2ŷ

dτ2
=

d2y

dτ2
, (53)

it is enough to prove that

−dẑ ⊗ dẑ + c2dt̂ ⊗ dt̂ = −dz ⊗ dz +
(

c +
gz

c

)2

dt ⊗ dt , (54)

that
d2ẑ

dτ2
=

[
d2z

dτ2
+ g

(
1 +

gz

c2

)( dt

dτ

)2
]

cosh
gt

c
+

+
[

d2t

dτ2
+

2g

c2 + gz

dz

dτ

dt

dτ

] (
c +

gz

c

)
sinh

gt

c
,

d2 t̂

dτ2
=

[
d2z

dτ2
+ g

(
1 +

gz

c2

)( dt

dτ

)2
]

sinh
gt

c
+ (55)

+
[

d2t

dτ2
+

2g

c2 + gz

dz

dτ

dt

dτ

] (
c +

gz

c

)
cosh

gt

c
,

and that the area

−∞ < x < ∞, −∞ < y < ∞, z > 0, −∞ < t < ∞ (56)

transforms to the area

−∞ < x̂ < ∞, −∞ < ŷ < ∞,

ẑ >
c2

g

(√
1 +

(gt̂

c

)2

− 1
)

, −∞ < t̂ < ∞ . (57)

In view of (42), (43) and (52)Ä(57) with respect to the reference frame (M, Ξ̆) in the
four-dimensional space-time area (57) the gravitational ˇeld is absent and a material point
moves according to the law

d2x̂

dτ2
= 0,

d2ŷ

dτ2
= 0,

d2ẑ

dτ2
= 0,

d2 t̂

dτ2
= 0, (58)

i.e., on a straight line and uniformly (without acceleration).
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In such a way, the following theorem has been proved: the transition from Cartesian
coordinates ẑ, t̂ on the pseudo-Euclidean plane to polar coordinates

r = z +
c2

g
, φ =

gt

c
(59)

is formally equivalent to a transition from the uniformly accelerated reference frame (M, Ξ̂),
in the four-dimensional area (57) in which there is no gravitational ˇeld, to the resting
reference frame (M, Ξ) with the homogeneous static ˇeld in the four-dimensional area (56).

Footnote. According to (50) in the case c = ∞ instead of (57) we have the area

−∞ < x̂ < ∞, −∞ < ŷ < ∞, ẑ >
gt̂2

2
, −∞ < t̂ < ∞. (60)
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