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A HOMOGENEOUS STATIC GRAVITATIONAL FIELD
AND THE PRINCIPLE OF EQUIVALENCE
N.A.Chernikov

Joint Institute for Nuclear Research, Dubna

In this paper any gravitational field (both in the Einsteinian case and in the Newtonian case) is
described by the connection, called gravitational. A homogeneous static gravitational field is considered
in the four-dimensional area z > 0 of a space-time with Cartesian coordinates z, y, z, and ¢. Such field
can be created by masses, disposed outside the area z > 0 with a density distribution independent of
z, Yy, and t. Remarkably, in the four-dimensional area z > 0, together with the primitive background
connection, the primitive gravitational connection has been derived. In concordance with the Principle
of Equivalence all components of such gravitational connection are equal to zero in the uniformly
accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force.
However, all components of such background connection are equal to zero in the resting frame system,
but not in the accelerated frame system.

I'p BuT 1moHHOe nose (K K 9HHINTEHHOBCKOE, T K M HBIOTOHOBCKOE) OIMCHIB €TCS 3[€Ch CBSI3HOCTHIO,
H 3bIB €MOi I'p BUT LHOHHOI. OXHOpPOAHOE CT TUYECKOe IP BUT LMOHHOE IOJIe P CCM TPHUB €TC B Ye-
THIpEXMEpPHOI 0011 c¢Ti 2z > 0 mpOCTp HCTB -BPEMEHH C JeK PTOBBIMH KOOPAIWMH T MU z,y,2z U t. T Koe
ToJIe TIOPOXJ €TCSd M CC MH, OTCYTCTBYIOIIMIMH B 001 ¢TH z > 0, BHe dTOi 06JI CTH p CIIpefesIeHHbIMH
HE3 BHUCHMO OT Z,y U t. 3 Med TeJbHO, YTO B YETHIpEXMEpPHOH 001 cTH z > ( BMecTe ¢ MPUMHTHBHOM
(poHOBOI CBA3HOCTBIO I'P BUT LUOHH S CBI3HOCTb IIOJIyd €TCS TOXe NPUMMTUBHOW. B coorBercTBHM C
HPUHIAIIOM 9KBHB JICHTHOCTH BCE KOMITOHEHTHI T KOW P BHUT LHOHHOU CBSI3HOCTH P BHSIOTCS HYIIO B
P BHOMEPHO YCKOPEHHOI CHCTeMe OTCYeT , B KOTOPOH Ip BUT LMOHH S CWJI Yp BHOBEIUUB €TCs CHIIOH
uHepuy. KoMmoHeHTsI ke (hOHOBOI CBSI3HOCTH P BHBI HYJIIO HE B YCKOPEHHOM, B IOKOSIIENCS CHCTeMe
oTCYerT .

1. FORMULATION OF THE PROBLEM

Let us determine the space-time M as a direct product M = E x T of the Euclidean space
E and the Euclidean line 7T'.

Choosing the length unit (for example, the centimetre), we define a metric in E. This
means that the square length between two points in F, marked by the indices 1 and 2, in
Cartesian coordinates x, y, z (according to Phifagor’s theorem) equals

s°= (@2 —21)’ + (12— )* + (22 — 21)* (1)
Choosing the time unit (for example, the second), we define a metric in 7'. This means,
that the time 7 between two instants in 7', marked by the indices 1 and 2, in Cartesian

coordinate ¢ equals
T = tQ — tl. (2)

The set = of coordinates 2 = x, x? =y, 23 = 2, 2* = ¢ is a simple coordinate map in

the product £ x T', mutually unique to its covering, and so the space-time M turns out to be
a simple four-dimensional manifold.
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Supplying the space-time M with the coordinate map Z, we will call the pair (M, =) the
resting frame system. In order to justify this name, we will consider M as a four-dimensional
affine space, in which the coordinates of the map = turn out to be affine coordinates. The
world trajectory of a particle, freely moving by inertia in the absence of an outside force,
is represented in M as an affine straight line. In the particular case the world trajectory of
a particle «at rest» is represented in the reference frame (M,Z) as a line x = xg, ¥y = Yo,
z = Z0.

Defining M as a four-dimensional affine space, we have in this way introduced in the
space-time M a symmetric affine connection. Let us call it a background one and denote it
by T

In Newton’s theory of gravity the background connection I" is present in an explicit form.
About the necessity of restoring this connection in Einstein’s theory of gravity see Ref. 1.

Let us note the following four properties of the background connection I" in M.

1. In the map = all its components I equal zero.

mn
2. Its curvature tensor R? , equals zero.

mnk

3. The equality f?,m = 0 is preserved under the transition from the map = to another
affine map in M.

4. The equality annk = 0 preserves under the transition from the map = to any other
coordinate map in M.

Each symmetric connection, the curvature tensor of which is equal to zero, shall be called
a primitive one. In a suitable coordinate map all the components of the primitive connection
are zero.

In Newton’s and Einstein’s theories of gravity the background connection is a primitive
one. In other theories of gravity the background connection may be a nonprimitive one. For
example, in Lobachevky’s theory of gravity the background connection is a nonprimitive one.

In field theories the gravitational field is described by the affine connection. Let us call
it a gravitational one and denote it by I'. In each coordinate map its components I';, . are
functions of the coordinates, composing this map.

If the gravitational field is absent, then the gravitational connection coinsides with the
background one. It may be said that the background connection describes the gravitational
field in its vacuum state. Such a gravitational field is trivial.

If in an arbitrary space-time area the gravitational field is absent, then in this area the
tensor field

pe =T —T¢ (3)

mn mn mn

of the affine deformation equals zero.

If the tensor field of the affine deformation (3) in a certain space-time area does not equal
zero, then in this area a nontrivial gravitational field is present.

The gravitational connection is an equiaffine one. In particular, the background connection
is also an equiaffine one.

As proved in [1], in space-time area with no gravitational field sources, in the general
case the gravitational connection is a solution of the equation

In this paper it is required to find a nontrivial gravitational field, not depending on z, ¥,
and ¢ and satisfying in the area z > 0 of space-time M the equation R,,, = 0. Such field can
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be created by masses, disposed outside the area z > 0 with a density distribution independent
of z, y, and t.

The following facts about the curvature tensor Rj,;, composed by means of the affine
connection I'? ~ are necessary for the solution of the problem.

2. ALGEBRAIC PROPERTIES OF THE CURVATURE TENSOR

The following construction is called a curvature tensor of each affine connection I'?,

Rzln = ak]'—‘?n - al]'—‘%n + P%s lsn - 75 Zn (5)
Obviously
That is why of interest are only the following contractions:
Rin, = Rgln’ Q= R?la' (7)
It is not difficult to see that
Q= R}y, = Okl — Ok, (8)
where
Iy = Fafma' (9)

The contraction (9) is called a contracted connection. The contraction (18) is called a
curvature tensor of the contracted connection (9).
If
F(rlzm = Ftrlrmv (10)
then the connection is called a symmetric one. Such a connection is given by the geodesic

equations:

dQl‘a dz™ dz™

— + I =0. 11
dr2 *mn dr dr (11)

Together with (6), the curvature tensor of the symmetric connection has the following
property:

R + Ry + Riyy = 0. (12)
From here it follows that
Qi + R = Rig. (13)
Theefore, in the case of a symmetric connection the equality
Ry = Ry, (14)
is equivalent to the equality
Q= 0. (15)

The symmetric connection, satisfying condition (15), is called an equiaffine one.
Consequence. Since the energy-momentum tensor is a symmetric one, each solution of
the Einstein’s equation represents an equiaffine connection.
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3. METRIC OBJECTS IN M IN THE ABSENCE
OF A GRAVITATIONAL FIELD

In the absence of a gravitational field the metric objects in M represent themselves in the
map = as differential forms with constant coefficients. In the group of affine transformations
these objects single out in the first case — the nonhomogeneous Galilean group, in the second
case — the nonhomogeneous Lorentz group (i.e., the Poincare group).

In the Galilean case the time ¢ is absolute in the Newtonian meaning, and therefore in M
the linear form

dr =dt (16)

is given. Moreover, in the Galilean case the degenerate cometric is determined:
—®—+—®—y+—®—. (17)
In the Lorentz case in M the metric
—01—2(dx®dx+dy®dy+dz®dz)+dt®dt) (18)

and the cometric
0 0 0 0 0 0 10 0
— Q=+ =R —+==®

g _ 282 1
20 Ty t:%0: 2 (19)

are given.
Here and further (in the theory of gravitation) ¢ denotes the light velocity — the known
parameter in the Lorentz transformation

/. , . z—t Qtf C2t_vz
r =2, y=v, =, Cl= —F————.
o Ve

The Newtonian case of the theory of gravitation we will denote by the sign ¢ = oo of
infiniteness of the light velocity.

The Einsteinian case of the theory of gravitation we will denote by the sign ¢ < oo,
meaning the finiteness of the light velocity.

In the limit ¢ — oo the case ¢ < oo transforms into the case ¢ = oo.

For example, the Lorentz transformation (20) in the limit ¢ — oo transforms into the
Galilean transformation

(20)

t=x 4=y, d=xz—0vt (=t (21)

It is interesting that background connection does not depend on the light velocity c.

4. SOLUTION OF THE PROBLEM IN THE CASE OF ¢ =

In the case of ¢ = oo the gravitational field is described by the affine connection with the
help of Newton’s potential U and the equations of motion of a material point. In our problem
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potential U = U(z) depends only on z. Therefore we have the Newton’s equations in the

form ) ) )
d d d dau
4y LY,y 24 (22)
dit? dit? dt? dz
In the case ¢ = oo the time ¢ is always absolute in the Newtonian meaning, and the linear
form (16) in the presence of the gravitational field is conserved. Consequently we must put

dt
= 1 23
dr (23)
From (22) and (23) the equations of the type (11) follow, namely
d’z d?y d’z dU dt dt d’t
P _— = —_— _—— = - = O. 24
dr? T dr? T dr? + dz dr dr " dr? (24)

That is why in the case of ¢ = oo the following component of the gravitational connection

equals

= — 25
W= (25)
and the others are zero. Now we find the following components
d*U
R§44 T 422 _Ri34 = Ry (26)

of the gravitational curvature tensor and its contraction; the others are equal to zero.
Therefore in this case the equation R,,,, = 0 is equivalent to the equation U” = 0 and to
the equation Rj;, = 0. Consequenly, in the problem solved here, the gravitational connection
should be a primitive one and the potential U should obey the equation U” = 0 in the area
z > 0. Thus, U(z) is a linear function: U = A + Bz, if z > 0.
Let us note that the equations of motion (22) have the integral of energy

@ @] e

Assuming that £/ = 0 when a material point is at rest on the plane z = 0, we find A = 0.

Accorging to (22), the constant B equals the acceleration of a freely falling material point
on the plane z = 0. We may put B = g, where ¢ is the acceleration of a freely falling body,
measured in the town Dubna.

Thus we find that in the area z > 0 the gravitational potential equals U = gz, where g is
a positive constant.

Therefore, in the given case in the map = only one component of the gravitational
connection is not equal to zero, namely

Fi4 =g (28)

As a plane z = 0, one can choose the floor, on which in Dubna the world ex-champion
stands. In the year 1952, it was accelerating protons up to 480 MeV. In that time the
concurrent rival in Berkeley (USA) was accelerating protons up to 340 MeV.
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5. SOLUTION OF THE PROBLEM IN THE CASE ¢ < oo

In the case ¢ < oo the gravitational field is described by the Christoffel’s connection for
the metric

1
——(dz @ dz + dy ® dy + dz ® dz) + V?dt @ dt, (29)
c
where V' = V(2) is a function only of one coordinate z. From the geodesic equations
d? d?
do_o Py _
dr? dr?
d? dV dt\2 d*t 2 dV dz dt
oy Wy B 2V @)
dr? dz \dr dr?  V dz drdr
for the metric (29) we find following three componets of this connection
3 2171/ 4 v’ 4
Py =cVV, Tyy= v L3 (31)

and the others are zero.

Let us consider the curvature tensor of this connection. If one of the indices of the
component R, (see (5)) of the curvature tensor or of the component Ry, (see (7)) of the
contracted curvature tensor equals 1 or 2, then, as can be easily seen, such a component
equals zero. Together with these, owing to (6), the components 45, and R%,, equal zero.

It remains to consider the four components

R33, Ras, Rss= Rus (32)
of the tensor R;, and the eight pair-opposite components
R§43 = _Rizsg ) R§44 = _RZ34 )

R§43 = _3333 ) R§44 = _3334 (33)

of the tensor Rj,;,,. The following relation holds between them:

4 4
R33 = R433 ’ R34 = R434 ’

Ryz = R:§43 ; Rus= R:§44 . (34)
Let us calculate these components:
d 144
R33 = _EI&S - F§4F33 = _7 , R3a=0,
d 3 3 4 21,171
R43 == 0 ; R44 == $F44 - F44F43 =C VV . (35)

Therefore in this case the equation R,,, = 0 is equivalent to the equation V" = 0 and
to the equation R2{;,, = 0. Consequenly, in the problem solved here, gravitational connection
should be a primitive one and the function V' should obey the equation V" = 0 in the area
z > 0. Thus, V(2) is a linear function: V =a + bz if z > 0.



A Homogeneous Static Gravitational Field 67

Since on the plane z = 0 the metric (29) should coincide with the unperturbed metric
(18), we have a = 1. Moreover, instead of (23) we have the equality

dt\? [dz\? [dy\® [dz\®
ap2( O _ far\ _ (ay\ _ [az\ _ o
v <d7) <d7’> <d7'> <d7'> < (36)
From (36) we find

a1 37)

dr V2 —2jc2

#= () () (&)

The integral of energy in the case ¢ < oo has the form

where

E = [VQ% - ]c? (39)

From (37) and (39) we find

E = <\/V2+27v%2 - 1>02. (40)

From (27) and(40) in the case v? = 0 we receive E = U(z) = gz and E = [V (2)—1)c? =
bc?z. Consequently, bc? = g and

V=V =1+Z. (41)

In the limit ¢ — oo (40) transforms into (27).
Substituting the (41) into (29) and (30), we receive

2
—(dx@dx+dy®dy+dz®dz)+(H@) dt ® dt (42)
c
and
Py
dr?2 7 dr?2 7
d?z gz\ /dt\2 d’t 2g dz dt

g 1 _) <_) =0, -—-— —— =0, 43
d7'2+g< +02 dr d7'2+62—|—gzd7d7' (43)

6. A NONINERTIAL REFERENCE FRAME WITHOUT ROTATION
IN THE CASE ¢ = ¢

Now consider in the case ¢ = oo a homogeneous gravitational field, arbitrary depending
on the time ¢. If only this field is acting on the material point, then its movement in the
resting reference frame (M, =) is described by the Newton equations

d*z 1 d*y 9 d?z 3
- _ LA — =— 44
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where ¢"(t),n = 1,2,3, are integrable on Euclidean line 7' functions. In the noninertial
reference frame (M, =) without rotation

t=x+ '), g=y+ ), T=z+f301), t=t, (45)
where
t n
oy =aves [ g (46)
0 0
n
= ot =20, n=123
the equations (44) acquire the simplest form
d*s d*y d*z
s = 0, T = 0, A = 0. 47
dt? dt? dt? (47)

In such a way, in the mechanics of Newton in the given case the inertial force is balanced
by the gravity force.
Taking into account (23), equations (44) can be written in the form of a geodesic equations,
namely , ,
d=x™ ns,y At dt d=t
dr2 +9 ()E%fovn*172a37 ﬁ
Therefore, the considered field is described by a connection, three components of which
in the map = are equal to

~0. (48)

FZ4 :gn(t)5 n= 172537 (49)

and the rest are equal to zero. This connection is a primitive one, since in the map =2 all of
its components are equal to zero and therefore its curvature tensor is equal to zero.

A partial case of the transformation (45) is the transition to a uniformly accelerated
reference frame
gt*
7;
imitating a homogeneous static gravitational field in the case of ¢ = oc.

A resting reference frame with a homogeneous static gravitational field turns out to be
equivalent to a uniformly accelerated (falling) frame of reference without a gravitational field
not only in the case of ¢ = oo, but also in the case of ¢ < co. This is the Principle of
Equivalence, advanced by Einstein.

=z, G9=y, Z=z+ t=t, (50)

7. THE UNIFORMLY ACCELERATED REFERENCE FRAME
IN THE CASE ¢ < oo

The transition from the resting reference frame (M, =) to the uniformly accelerated refer-
ence frame (M, =) is represented by the following trasformation:
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2
A 4
ct = (z + C—) sinh . (51)
g c

All the information about the homogeneous static field in the area z > 0 is contained in
formulae (42) and (43). In its turn, the last ones are derived from formulae (51) as a result
of simple differentiation. Since

—(di ® di + dy @ dij) = —(dz ® dx + dy @ dy) (52)
and 2 2 2 2
d‘z d°z d°y  d°y
P a R ar (53)
it is enough to prove that
2 2
—d2®d2+02df®df:—dz®dz+<c+‘%> dt @ dt , (54)
that ) )
2z [d?z dt
i Lw o(1+5)(5) } cosh &+

_|_

+d_2t+ 2g dz dt (c
dr? 62+gZdeT

o= [ o1 ><d—i>}smh : )

+d_2t+ 2g dz dt (c—|— ) gt
dr2 ' 2 +gzdrdr ¢’

) smh gt

and that the area
—co<r<oo, —co<y<oo, 2>0, —c0o<t< (56)
transforms to the area

—0 < T <00, —00 <Y < 0o,
2 .EQ .

z>c—< 1+(g—) —1>,—oo<t<oo. (57)
g &

In view of (42), (43) and (52)—(57) with respect to the reference frame (M, é) in the
four-dimensional space-time area (57) the gravitational field is absent and a material point
moves according to the law

d*z d%j d?z d*t
dr? " dr? " dr? " dr? ’ (58)

i.e., on a straight line and uniformly (without acceleration).
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In such a way, the following theorem has been proved: the transition from Cartesian
coordinates %, on the pseudo-Euclidean plane to polar coordinates
2
r=z+=, ¢=2 (59)
g c

is formally equivalent to a transition from the uniformly accelerated reference frame (M, é),
in the four-dimensional area (57) in which there is no gravitational field, to the resting

—_

reference frame (M, =) with the homogeneous static field in the four-dimensional area (56).

Footnote. According to (50) in the case ¢ = co instead of (57) we have the area

12 .
—oo<ﬁ<oo,—oo<g<oo,2>97,—oo<t<oo. (60)
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