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The problem of including approximate corrections, for the centre-of-mass motion in calculating the
elastic form factor and the nucleon momentum distribution of the 4

2He nucleus, when nontranslationally
invariant single particle wave functions are used, is addressed and results are discussed.
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As is well known, the measurements of the charge form factor Fch of various nuclei in
a range of momentum transfers has stimulated extensive theoretical work for the calculation
of this quantity and also for the corresponding nucleon momentum distribution η(p) [1Ä5].
The 4

2He nucleus has received particular attention, not only because of the relative simplicity
of this nucleus and its importance in nuclear physics but also because its Fch(q) has been
measured in a wide region of momentum transfers q [6].

It was realized long ago that the simple harmonic oscillator (HO) model is not able to
reproduce the diffraction minimum of the Fch(q) which appears at q2 ∼= 10 fm−2. If one
wishes to reproduce that feature in the framework of a single particle potential model, thus
avoiding more complicated calculations, a proper potential has to be used. It was found that
potentials having a short range strong repulsion aiming at simulating in a way part of the
effect of omitted characteristics, such as short-range nucleon correlations in the nuclear wave
function, have that desirable feature. Thus, a square (or a WoodsÄSaxon) well with hard
core or a Morse potential were used [7Ä9]. Alternatively, a ®modiˇed harmonic oscillator
(MHO) potential¯ [10, 11], which has in addition considerable analytic advantages, appears to
be quite suitable for that purpose. Using, however, a single particle potential, except the HO
potential, one faces the serious problem of the treatment of the centre-of-mass (CM) motion
[1Ä5, 12], in particular for a light nucleus such as 4

2He and also for high values of momentum
transfer. It is the aim of this letter to address this problem and attempt an approximate
treatment. Such an investigation seems to be rather appealing, in particular for the nucleon
momentum distribution η(p), since it appears that a sound CM correction for that quantity
has been neglected so far in various treatments employing nontranslationally invariant wave
functions, except those for the HO potential, in certain studies [13].
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In the following, we discuss the single particle wave functions used in the present treat-
ment, and subsequently, the expressions for the (point proton) elastic form factor in Born
approximation and the nucleon momentum distribution η(p), corrected for the CM motion.
Finally, we give and discuss the basic numerical results obtained.

The single-particle (nontranslationally invariant) wave functions, used here, are the fol-
lowing:

Firstly, that for the ground state in the ®modiˇed harmonic oscillator¯ (MHO) potential

V (r) = −V0 + (�2/2mb4)r2 + B/r2 , V0 > 0, B > 0. (1)

For B = 0 this reduces to the usual HO potential.
The energy eigenvalues and eigenfunctions for this potential are given analytically. The

(normalized) 1s-radial (φ(r) = rR(r)) state needed for 4
2He is: φMHO

00 (r) = [2/bΓ(2λ0 +
1/2)]1/2(r/b)2λ0e−r2/2b2 , λ0 = (1/4)[1 + (1 + (8mB/�

2))1/2]. Analytic expressions have
also been given for the single (point) particle (the ®body¯) density ρs(r), the corresponding
elastic form factor Fs(q) and the nucleon momentum distribution ηs(p) [10].

Secondly, the Radhakant, Khadkikar and Banerjee [14] (RKB) normalized radial wave
function for the lowest single-particle state of 4

2He:

φRKB(r) = (1 + β2)−1/2(φ00(r) + βφ10(r)), (2)

where φ00 and φ10 are the normalized HO radial orbitals with parameter bH for the states
with n = 0, l = 0 and n = 1, l = 0, respectively, and β is the mixing parameter. This wave
function leads to simple analytic expressions for the quantities of interest, such as:

ηs(p) = π−3/2b3
H(1 + β2)−1[1 + β(3/2)1/2(−1 + (2/3)(bHp)2)]2e−(bHp)2 . (3)

In the ®ˇxed CM approximation¯, the Ernst, Shakin and Thaler (EST) prescription [14Ä16],
the nuclear many-body wave function is written

Ψ = (2π)3/2|P)ΦEST
intr . (4)

A round bracket is used to represent a vector in the space of the CM coordinate only, so
that, e. g., |P) means the eigenstate of total momentum operator P̂. The EST intrinsic wave
function

ΦEST
intr = (R = 0|Φs〉[〈Φs|R = 0)(R = 0|Φs〉]−1/2 (5)

is constructed from an arbitrary (in general, nontranslationally invariant) wave function Φs,
by requiring that the CM coordinate R be equal to zero.

Use of a Slater determinant for Φs leads to the following expression of F (q) Å the elastic
form factor for 4

2He corrected for the CM motion [14, 16]:

F (q) =
∫

Fs(|q + u|)F 3
s (u)du /

∫
F 4

s (u)du. (6)

This expression may be used to calculate F (q) numerically. A convenient way to do this
with the RKB wave function has been considered and such a calculation is reduced to one-
dimensional integrals from 0 to 1 of polynomials and of other well-known functions of suitable
arguments.
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Pertaining to η(p) with the ®ˇxed CM approximation¯:

η(p) = 〈Φs|(2π)3δ(R)δ(p1 − P/A − p)|Φs〉/〈Φs|(2π)3δ(R)|Φs〉, (7)

one can show that for 4
2He with the RKB wave function, η(p) can be calculated again

semianalytically (after a lengthy procedure) by reducing it to one-dimensional integrals of
structure similar to those derived for F (q).

In view of the valuable advantages of ΦRKB(r), the approximation of ΦMHO by ΦRKB

has been investigated. This was achieved through a best approximation in the mean, that is
by requiring ε2 =

∫
|φMHO(r) − φRKB(r)|2dr to be minimum, which leads to expressions of

β and bH in terms of b and λ0.
We give ˇrst the results of the charge form factor of 4

2He with the MHO model and
the RKB wave function by ˇtting to the known experimental values [6] using the ®ˇxed
CM approximation¯ and considering for the ˇnite proton size fp(q) the Chandra and Sauer
prescription [17]. The two parameters in each case are determined by least-squares ˇt. The
results for log |Fch(q2)| are shown in Fig. 1. The most satisfactory ˇt is with the MHO model.
Also the ˇt with the RKB wave function is very good apart from the higher q values, where
a second diffraction minimum is predicted at q2 
 37 fm−2, which does not seem to be
indicated there by the data. The results with the HO and Tassie and Barker (TB) factor are
shown as well. The quality of the ˇt is very poor in this case.

Having determined the parameters in the described way, the values of η(p) were calculated
with the φRKB(r) wave function without and with CM correction (see Fig. 2 for the plots of
log η(p)). The parameters in the ΦRKB used were determined directly from the ˇt of Fch(q).
In the same ˇgure the corresponding quantities for the HO potential, namely:

log ηHO(p) = log
b3
HO

π
√

π
exp (−b2

HOp2) (8)

Fig. 1. The log |Fch(q2)| versus q2 for various cases. For the abbreviations see the text

Fig. 2. The log η(p) versus p for various cases. For the abbreviations see the text
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and

log ηHO
cm (p) = log

(
4
3

)3/2
b3
HO

π
√

π
exp

[
−4

3
b2
HOp2

]
, (9)

are also shown for comparison. It is seen that a considerable improvement is mostly observed
in comparison with the HO case if we consider the ®experimental points¯ (which are model
dependent). It should be also noted that if φRKB is determined by the minimization of ε2, it
approximates very well the φMHO since the minimum value of ε2 is very small (ε2 
 0,00163).

In conclusion, the present analysis shows that the approximate treatment of the CM motion
with the ˇxed CM method for the η(p) of 4He is feasible, through the RKB wave function,
although quite cumbersome.
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