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EHRENFEST FORCE IN INHOMOGENEOUS MAGNETIC FIELD

A.N.Sissakian, O.Yu.Shevchenko, V.N.Samoilov

The Ehrenfest force in an inhomogeneous magnetic ˇeld is calculated. It is shown
that there exist the such (very rare) topologically nontrivial physical situations when the
Gauss theorem in its classic formulation fails and, as a consequence, apart from the
usual Lorentz force an additional, purely imaginary force acts on the charged particle.
This force arises only in inhomogeneous magnetic ˇelds of special conˇgurations, has a
purely quantum origin, and disappears in the classical limit.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical

Physics, JINR.
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IˆŸˆ.

After discovery of the so-called ®topological effects¯ (Aharonov-Bohm effect in quantum
mechanics [1], solitons, instantons, monopoles, Chern-Simons, etc., in the ˇeld theory Å
see [2] for review) we began to fully realize importance of boundary conditions and of
space topology in physics. In particular, it became clear that we often cannot neglect the
full derivative without risking to lose an important (and even the most signiˇcant) part of
relevant information. Inspired by these arguments we could attempt to look for some new
topologically nontrivial physical situations where the full derivative plays a crucial role and
gives rise to observable phenomena. For this purpose we might consider observable quantities
explicitly including space integrations (for example, some quantum-mechanical averages) with
a nonsimply-connected integration area and pay special attention to the full derivative under
the space integral symbol.
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So, let us evaluate the quantum-mechanical average force (the Ehrenfest force Å see, for
example, [3], chapter 10) acting on a particle with an electrical charge q which is put in an
electromagnetic (for a moment arbitrary) ˇeld �E = �gradA0 − (1/c)(∂ �A/∂t), �H = �rot �A,
or in terms of the ˇeld strength Fµν = ∂µAν − ∂νAµ: Ei = Fi0, Hi = 1

2 εijk Fjk. The
quantum-mechanical Hamiltonian of the particle has the standard form 1

Ĥ =
1

2m

(
�̂p− q

c
�A
)2

+ qϕ + V, (1)

where q and m are the electric charge and mass of the particle, p̂i = −i � ∂i is the momentum
operator, e ϕ = −A0 and V are the electrostatic and nonelectrostatic parts of the interaction
potential, respectively.

The average quantum-mechanical force reads

F̄i = m
d2x̄i

dt2
, (2)

where we use the notation

L̄ ≡ N

∫
d3xψ∗ L̂ ψ, N−1 ≡

∫
d3xψ∗ψ. (3)

In accordance with the theorem on the average value 2

dL̄/dt ≡ (d/dt)〈ψ|L̂|ψ〉 = N

∫
d3xψ∗ (dL̂/dt)ψ,

where

dL̂

dt
=

∂L̂

∂t
+

1
i�

[L̂, Ĥ ], (4)

we have

F̄i = N

∫
d3xψ∗

(
m
d2x̂i

dt2

)
ψ, (5)

where the operator d2x̂i/dt
2 has to be calculated by using Eq. (4) (see, for example, [4],

problem 7.3).
Calculating the simple commutators of the respective operators with the Hamiltonian (1)

one easily obtains F̂i = F̂ pot
i + F̂magn

i , where F̂ pot
i = −∂V/∂xi + Ei, and

F̂magn
i =

q

2c
[Fij v̂j + v̂jFij ], (6)

1We neglect here by the spin and relativistic effects.
2Strictly speaking, taking into account the speciˇc nature of the material presented below, we ought to add the

term dN/dt
∫
d3xψ∗ L̂ ψ in r.h.s of this equation. However, we omit this term having in mind that we will use as

a starting point wave functions with conserved normalization Ä the wave functions of instantaneous approximation,
®frozen¯ at the moment when the magnetic ˇeld is switched on.



Sissakian A.N. et al. Ehrenfest Force in Inhomogeneous Magnetic Field 17

where

v̂i =
1
m

(
p̂i −

e

c
Ai

)
(7)

is the velocity operator v̂i = dx̂i/dt = −i�[x̂i, H ] and F̂ pot
i and F̂magn

i are the operators of
potential and magnetic forces, respectively.

We will study, here, only the nontrivial magnetic part of the interaction. Thus, the
expression for the average magnetic force F̄magn

i = N
∫
d3xψ∗F̂magn

i ψ reads

F̄magn
i = N

q

2c

∫
d3xψ∗ [Fij v̂j + v̂jFij ]ψ (8)

and, evidently, transforms into the expression for the usual Lorentz force FL
i = (q/c)Fijvj

in the classical limit � → 0.
Till now all our consideration was quite standard. However, further we will show that

there exist such physical situations when the magnetic force (8) has an nontrivial purely
imaginary part that does not equal zero only in inhomogeneous magnetic ˇelds of special
conˇgurations and that disappears in the classical limit � → 0.

Let us calculate the imaginary part of the average magnetic force F̄magn
i (if any) which

we denote by ∆Fmagn
i :

∆Fmagn
i = i Im F̄magn

i . (9)

Conjugating Eq. (8) and using the explicit form of the velocity operator (7) we get

(
F̄magn

i

)∗ = N
q

2c

∫
d3xψ

[
Fij v̂

∗
j + v̂∗jFij

]
ψ∗ = F̄magn

i +
i�q

mc
N

∫
d3x∂j (ψ∗Fijψ)

and, therefore

∆Fmagn
i = −i q�

2mc

∫
d3x∂j (ψ∗Fijψ)∫

d3xψ∗ψ
. (10)

One can see that the integrand in (10) is a full derivative and at ˇrst sight it seems evident
that in accordance with the Gauss theorem∫

V

d3x∂iai =
∫
Σ

d�σ�a(σ) (11)

r.h.s. of Eq. (10) equals zero if the wave functions decrease at the space inˇnity fast enough.
However, we will show, further, that r.h.s. of (10) may differ from zero even if the wave
functions decrease at inˇnity exponentially. But, ˇrst of all, let us consider mathematical
example illuminating the essence of the problem.

Paradox

Let us consider the following mathematical object

I =
∫

d3x∂i

[
ρ(�x2)(xjFij)

]
, (i, j = 1, 2, 3) (12)
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where ρ is an arbitrary function of �x2. Using the equality

∂iρ(�x2) = 2xi
dρ

d�x2
≡ 2xiρ

′
(�x2)

and the identity Fii ≡ 0 we get, instead of (12), the equation

I =
∫

d3x
[
2ρ

′
(�x2) (xiFijxj) + ρ(�x2)xj (∂iFij)

]
.

However, because of the antisymmetry of the tensor Fij we have xiFijxj ≡ 0, and the ˇrst
term in r.h.s of the last equation equals zero identically. Thus, we have

I =
∫

d3xρ(�x2)xj (∂iFij) . (13)

Let us remember, now, that the ˇeld strength Fij satisˇes the Maxwell equations

∂jFij ≡ ( �rot �H)i = Ji, (14)

where the generalized current density �J = (4π/c)�j + (1/c) ∂ �E/∂t is the sum of the usual
and displacement current densities. Making use of (14) we immediately get, instead of (13),
the equation

I =
∫

d3xρ(�x2) (xjJj) , (15)

and the statement is that this expression does not always equal zero even if one chooses here
as ρ(�x2) such perfectly decreasing at inˇnity function as the Gaussian exponential:

ρ(�x2) = e−α�x2
(α > 0). (16)

Let us present two examples proving this statement.
First example (quasi-stationary case).

It is easy to see that if the displacement current (1/c) ∂ �E/∂t would not present in the Maxwell
equation (14), then, choosing as an �j in (14), (15) the usual expression

�j(t, �x) = q �v(t) δ(3)
(
�x− �r(t)

)
(17)

for the current density of a charge q moving with a velocity �v(t) ≡ d�r/dt along the trajectory
�r(t), one at once would obtain nonzero result I = (4πq/c) exp

(
−α�r2(t)

) (
�v(t)�r(t)

)
. How-

ever, the question immediately arises Å could the displacement current contribution cancel
this expression?

Let us consider now, as an example, the case of a charged particle moving with a
nonrelativistic constant velocity and see that in this case the cancellation does not occur. We
will follow here to the textbooks by L.D. Landau and E.M. Lifshitz [5] (chapter 5, section 38)
and by V.G. Levich [6] (chapter 3, sections 19, 20), where it is shown that electrodynamical
description of a single charge q moving with a nonrelativistic constant velocity �v(t) = v
just reduces to the particular case of the well-known (see, for example [6], chapter 3) and
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widely used quasi-stationary approximation, where one, from the very beginning, omits the
displacement current (1/c)∂ �E/∂t and the term −(1/c)∂ �H/∂t in the respective Maxwell
equations for �rot �H and �rot�E and the sources �j and ρ depend on t as on a parameter.

Indeed, using the condition v 
 c, one can keep in the expansion in powers of v/c of
the exact expression for the electric ˇeld created by the moving charge

�E(t, �x) =
q �R

R3

1 − v2/c2(
1 − sin2θ v2/c2

)3/2
,

where θ is the angle between �R ≡ �x− �vt and �v, only the main contribution

�E = q
�x− �vt

|�x− �vt|3
(
1 + O(v2/c2)

)
.

Thus, the expression for the magnetic ˇeld

�H = (1/c)
(
�v × �E

)
up to corrections of order O(v3/c3) reads (see [5], chapter 5, section 38)

�H =
q

c

�v × (�x− �vt)
|�x− �vt|3 . (18)

However, the last expression is nothing else but the solution3 of the equation

�rot �H =
4π
c
q �v δ(3)(�x − �vt), (19)

and we arrive at nonzero r.h.s. of Eq. (13) (as if we, in the spirit of the quasi-stationary
approximation, at once omit the displacement current in (14) and would deal with (17) for
the particular choice �r(t) = �v(t)t) :

I = 4πq (v/c) vt exp
(
−αv2t2

)
+O(v3/c3) (20)

because the corrections in the expansion in powers of a small dimensionless parameter can
never cancel the main contribution.

Second example (stationary case).
To avoid even the slightest doubt in correctness of application of the quasiÄstationary approx-
imation (actually, one can make any expansion under the symbol of a convergent integral
Å factor exp(−α�x2) in the integral I) in the just considered case, let us consider another
example. We will try to ˇnd the conˇguration of the ˇelds and currents providing r.h.s. of
Eq. (13) differing from zero in the purely stationary case (∂�j/∂t = 0), when no displacement
current whatever is present in r.h.s. of Eq. (14).

3The proof that (18) is the solution of (19) is easily performed using the vector potentials in the Coulomb
gauge div �A = 0 (see, for example [6], chapter 3, sections 19,20)
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It is easy to check that the conˇguration4 of the form

H1 = H2 = 0, H3 = f(x1, x2),

j1 =
c

4π
∂2 f, j2 = − c

4π
∂1 f, j3 = 0 (21)

satisˇes the stationary Maxwell equations �rot �H = (4π/c)�j, div �H = 0, and the stationarity
condition div�j = 0. Eq. (13) with the choice (16), for conˇguration (21), looks as

I =
∫

d3x e−α�x2
xj

(
�rot �H

)
j

=
4π
c

∫
d3x e−α�x2

[x1∂2 − x2∂1] f(x1, x2). (22)

Fig. 1. Cross-section in plane orthogo-
nal to the x3 Å axis, showing the re-
gion where θ(x1/x2 − 1) differs from
zero. The shaded and blank regions are
the regions where θ(x1/x2 − 1) equals
one and zero, respectively

Let us now choose function f in the form (see the
Figure)

f = R

(√
x2

1 + x2
2

)
θ
(
x1/x2 − 1

)
, (23)

where R is an arbitrary function of ρ ≡
√
x2

1 + x2
2,

satisfying the condition (see below)

∞∫
0

dρ ρ e−αρ2
R(ρ) �= 0, (24)

and, θ is the usual step-function with the derivative
dθ(x)/dx = δ(x).

Using the equality

∂

∂xi
F [g(x1, ..., xn)]

∣∣∣
i=1,...,n

=
dF

dg

∂g

∂xi
≡ F

′
[g]

∂g

∂xi

one easily gets

∂1θ(x1/x2 − 1) = (1/x2) δ(x1/x2 − 1), ∂2θ(x1/x2 − 1) = −(x1/x
2
2) δ(x1/x2 − 1), (25)

and

(x1∂2 − x2∂1) R
(√

x2
1 + x2

2

)
= 0. (26)

4The idealized current (21) is not restricted in z direction and, certainly, cannot be created in reality (just as,
for example, the well-known idealized stationary current �j(x, y, z) = ẑ V δ(x)δ(y) Lowing inside inˇnitely long
and inˇnitely thin wire placed along z-axis). However, it absolutely does not matter for existence of the contra-
example (showing violation of the Gauss theorem under special conditions) whether we can create experimentally
the appropriate magnetic ˇelds and currents or not (the integral (12) is a formal mathematical object Å just the test
object for the Gauss theorem). So, we even could allow div �H �= 0 (some unphysical monopole-like ˇelds but
with nonzero curls) and maintain only the equation �rot �H = (4π/c)�j. Nevertheless, having in mind the following

material in this paper, we will provide for both Maxwell equations being valid for a stationary ˇeld �H. Notice also,
that in the rest of the paper it is shown that it is possible to ˇnd the proper current restricted in all the space.
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Making use of (23)Ä(26) in (22), one obtains nonzero result

I = −4π
c

∞∫
−∞

dx3 e−αx2
3

∞∫
−∞

dx2 ×

× e−αx2
2

∞∫
−∞

dx1 e−αx2
1 R

(√
x2

1 + x2
2

) (
x2

1

x2
2

+ 1
)
δ

(
x1

x2
− 1
)

= −8π
c

√
π

α

∞∫
−∞

dx2 e−αx2
2

∞∫
−∞

dx1 e−αx2
1 R

(√
x2

1 + x2
2

) [
|x2|δ(x1 − x2)

]

= −8π
c

√
π

α

∞∫
0

dρ ρ e−αρ2
R(ρ) �= 0, (27)

where we use the usual properties of the δ-function

δ [f(x)] =
(

1/|f ′
(x0)|

)
δ(x− x0), f(x) δ(x − x0) = f(x0) δ(x− x0)

in the second line, integrating with respect to x1, and use the fact that the integrand is the
even function of x2 in the third line.

So, we conclude, eventually, that the purely stationary conˇguration (21),(23), satisfying
the full set of the Maxwell equations, yields the nonzero result for the basic integral (12).

Thus, we see that in the general case the integral (12) differs from zero. On the other
hand, however, if we started with application of the Gauss theorem to this integral and chose
ρ in the form (16) then, evidently, we would obtain zero.

So, what is the matter? Let us stress that to obtain (13) we use nothing but the ˇeld
strength antisymmetry and such absolutely legal operations as differentiation and use of the
Maxwell equations. Thus, equation (13) seems to be valid without any doubts. Then why
does the Gauss theorem fail in this case?

To understand this apparent contradiction one must remember that the Gauss theorem
(11) is proved in mathematics only for continuous integrands (see, for example, [7]) and,
therefore, the Gauss theorem (11) may be not valid5 for the discontinuous integrands, like the
integrands we just deal with in two considered examples.

Let us now stress that the second considered example is especially interesting because,
on the one hand, it is directly connected with the rest material of the paper, and, on the other
hand, the arguments may be present that the nonzero result in this case ought to be regarded
as a topological phenomenon. Indeed, ˇrst of all, one can see that it is not sufˇcient to have
just a θ-like discontinuity of the magnetic ˇeld for the Gauss theorem violation6. The nonzero

5However, and it seems to be even amazing now, despite this circumstance the Gauss theorem in its classical
formulation (11) occurs very stable and, as a rule, holds even for discontinuous integrands Å see below.

6On the contrary, this is rare enough situation (Gauss theorem occurs really very stable!). The identity
xiFijxj ≡ 0 plays the crucial role in (12). For example, if you change xjFij in the test integral (12) to njFij ,
where �n is a constant vector, then you obtain zero result.
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result is a consequence of the nontrivial space-ˇeld composition (the test object (12) already
implicitly contains the such composition Å the presence of the term xjFij in the integrand
plays the crucial role for the nonzero result (see footnote 6)). So, to obtain nonzero result one
must either consider the object similar to (12), where the magnetic ˇeld enters in a nontrivial
manner, or look for some very special conˇguration of the magnetic ˇeld, satisfying the
proper restriction (like the orthogonality condition x1H2−x2H1 = 0 in the rest of this paper,
playing the same role as the identity xiFijxj = 0 for the test integral (12)). Moreover, even if
the respective orthogonality condition is satisˇed, it is not still sufˇcient for a nonzero result
and one must look for still more speciˇc magnetic ˇeld conˇgurations. So, for example,
the replacement of θ(x1/x2 − 1) by θ(x1 − x2) in (23) (or in (41) Ä see below) would
immediately give rise to zero. Thus, only very rare conˇgurations of the magnetic ˇeld yield
nonzero result (27). On the other hand, however, it is well known, that namely the presence
of the magnetic ˇelds of the special conˇgurations (remember Dirack string, AharonovÄBohm
solenoid, etc.) can make the space nonsimply-connected (topologically nontrivial), and this is
just what happens in the considered case.

There exists still one important argument conˇrming this statement. Indeed, in one-
dimensional (topologically trivial) space, the analog of the integral (12), where under the
symbol of the derivative in the integrand stays θ-function and some well decreasing at inˇnity
function like (16), looks as I(d=1) =

∫∞
−∞ dx d/dx[θ(x) exp(−αx2)f(x)], where f(x) is a

continuous function satisfying the condition lim|x|→∞ f(x) exp(−αx2) = 0. Then, using the
usual properties of the θ- and δ-functions, one obtains zero result:

I(d=1) =

∞∫
−∞

dx δ(x)d/dx[exp(−αx2)f(x)] +

∞∫
0

dx d/dx[exp(−αx2)f(x)] = 0.

Notice, that this circumstance, even apart from the Gauss theorem (11), could lead one
to the wrong conclusion that the initial three-dimensional test integral (12), at the choice
(16),(21),(23), also equals zero. The incorrect logical chain would look as: ®At the choice
(16),(21),(23) there is nothing more dangerous than the discontinuous θ-function in the square
brackets of (12), and the rest is a well decreasing at inˇnity continuous function. Therefore,
this case just reduces to the above considered one-dimensional case (the last equation), and
one obtains zero for every of the three terms in r.h.s. of (12), containing ∂1, ∂2 and ∂3 in the
integrands, respectively¯. However, we know that the correct calculation leads to the nonzero
result (27) just in this case. Thus, we conclude that there exist the selected situations, when
even the presence under the full derivative symbol of such ®innocent¯ in the trivial one-
dimensional space quantity as θ-function, can make three-dimensional space multiconnected
and give rise to a nonzero result.

Let us now return to equation (10) for ∆ �Fmagn. It is obvious that to perform a rigorous
calculation one must know the exact form of the wave functions entering in (10). However,
the task of solving the Schréodinger equation for a charged particle in a magnetic ˇeld was till
now exactly solved only in the case of a homogeneous magnetic ˇeld (see, for example, [7])
and we have to look for some approximation to deal with the inhomogeneous magnetic ˇeld.
Fortunately, such a wide spread in quantum mechanics approximation as the instantaneous
approximation (see, for example, [8]) turns out to be quite adequate for our aim Å ˇnding the
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physical situations where ∆�Fmagn would differ from zero. Let us brieLy remind the essence
of this approximation. Let ψ(t) be the wave function to be found at the time moment t, if
the wave function ψ(t0) at the time moment t0 is known. The Hamiltonian of the system
H(t) explicitly depends on time and changes its value from H(t0) at the moment t0 to H(t)
at the moment t during the time interval ∆t = t− t0. Then ψ(t) = U(t, t0)ψ(t0), where the
evolution operator U(t, t0) is uniquely determined and satisˇes the integral equation

U(t, t0) = 1 +
1
i�

t∫
t0

dτ H(τ)U(t, t0). (28)

In the limit of ®very fast¯ transition ∆t → 0 the second term in r.h.s of (28) disappears
and thus U(t, t0) → 1 and ψ(t) ∼ ψ(t0), i.e., we can consider the dynamical state of the
system during such ®very fast¯ transition to be constant. The words ®very fast transition¯
mathematically mean that the transition time ∆t must satisfy the criterion of validity of the
instantaneous approximation

∆t < �/∆H̄, (29)

where in terms of the dimensionless variable s = τ − t0/∆t and of the operators

H(s) = H(τ) ≡ H(t0 + s∆t), H̄ =

1∫
0

dsH(s) =
1

∆t

t∫
t0

dτ H(τ),

the root-mean-square deviation ∆H̄ takes the form (∆H̄)2 = 〈ψ(0)|H̄2|ψ(0)〉−〈ψ(0)|H |ψ(0)〉2.
Thus, we can now reformulate our task as follows. Let no magnetic ˇeld be present

at the initial time moment t0 and, thus, the charged particle state |ψ(0)〉 ≡ |ψ(t0)〉 at the
moment t0 corresponds to a purely potential interaction qϕ + W, where W is the potential
of some self-consistent ˇeld corresponding to the concrete many-particle system when the
many-particle task is reduced to the one-particle one in the Hartree-Fock method. Suppose
now that we can create such experimental conditions that the intensive strong-inhomogeneous
magnetic ˇeld switches on very fast, namely, so fast that the ˇeld �H and the respective current
density achieve their stationary (or quasi-stationary Å see footnote 11 below) conˇguration
during the time ∆t1 ≡ t1− t0 which is less than the time interval ∆t2 ≡ t2− t1 satisfying the
criterion of validity of the instantaneous approximation (29). Thus, during the time interval
t1 < t < t2 the instantaneous approximation is still valid (i.e. we deal with the ®frozen¯
wave functions ψ(0)) and, simultaneously, the magnetic ˇeld and the respective current take

their stationary values (i.e. the displacement current (1/c)∂ �E/∂t is already absent7). Then,
in correspondence with the instantaneous approximation, we can rewrite the expression for
∆�Fmagn (10) in the form8

∆Fmagn
i

∣∣∣
t1<t<t2

= −i q�

2mc

∫
d3x∂j

[
ψ∗

(0)Fijψ(0)

]
. (30)

7or gives the small corrections in the quasi-stationary case Å see footnote 11 below.
8Here we consider the initial states normalized to 1.
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Therefore, our goal, now, is to ˇnd the such physical situations, i.e. such initial quantum-
mechanical states ®prepared¯ by the experimenter and such stationary conˇgurations of the
magnetic ˇelds and currents, that the expression for ∆Fmagn

i (30) turns out to be different
from zero.

Let us consider as an example the simplest quantum-mechanical system Å hydrogen
atom in an external magnetic ˇeld (actually, the procedure given below suits any central-
symmetrical initial states of a charged particle). As the initial states we consider only
completely spherically symmetrical electron bound states9, i.e. the states with zero angular
momentum l = 0:

ψ(0) = ψ
(H)
n00 = Rn00(r)Y00(θ, φ) =

1
2
√
π
Rn0(r), (31)

|ψ(0)|2 ≡ Φ(r). (32)

Let us, now, note that for the effect to occur it is quite sufˇcient, if even only one of the
components of ∆�Fmagn, for example ∆Fmagn

3 turns out to be different from zero. Making
use of Eqs. (30), (32) and the identity ∂iΦ(r) = xi

(
Φ

′
(r)/r

)
one easily gets

∆Fmagn
3 = −i e�

2mc
[I1 + I2] , (33)

where

I1 =
∫

d3x
Φ

′
(r)
r

(xjF3j), (34)

I2 =
∫

d3xΦ(r) (∂jF3j) ≡
∫

d3xΦ(r)
(

�rot �H
)

3
. (35)

Thus (remember the paradox), one can see that to provide for the value ∆Fmagn
3 to differ

from zero it sufˇces to ˇnd such stationary magnetic ˇeld conˇgurations for which the integral
I2 would not equal zero and, simultaneously, the orthogonality condition xjF3j = 0 would
be valid. It is easy to verify that the choice

H1 = x1f1 + x2f2, H2 = x2f1 + x2
x2

x1
f2, (36)

where f1 and f2 are arbitrary functions of �x, satisˇes the orthogonality condition, and our
task, now, is to look for the functions f1 and f2 providing a nonzero value of the integral
I2 (35). Using the arbitrariness in the choice of f1 and f2 we can simplify the task and set
one of the functions, for example, f2, equal to zero in the general expression (36) for the
appropriate magnetic ˇeld conˇguration. Then we obtain

H1 = x1f, H2 = x2f, (37)

I1 =
∫

d3x
Φ

′
(r)
r

(x1H2 − x2H1) ≡ 0 (38)

9For example, the ground state reads ψ(0) = π−1/2 e−r .
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and

∆Fmagn
3 = −i e�

2mc
I2 = −i e�

2mc

∫
d3xΦ(r) (x2∂1 − x1∂2) f. (39)

The order of action is now the following. We ˇrst have to ˇnd a proper function f
providing for r.h.s. of Eq. (39) to differ from zero. If we manage to do this and to ˇnd the
such function f and, therefore, using (37) to ˇnd the respective H1 and H2 components of
the magnetic ˇeld, then we would easily reproduce the remaining third component10 solving
the Maxwell equation div �H = 0 with respect to H3:

H3 = −
x3∫
0

dx3 (∂1H1 + ∂2H2) . (40)

Then, one easily restores the respective current density �j from the stationary (or quasi-
stationary Å see footnote 11 below) Maxwell equation �rot �H = (4π/c)�j.

Thus, let us choose the function f entering (39) in the form

f(�x) =
4π
c
F
(√

x2
1 + x2

2, x3

)
θ(x1/x2 − 1), (41)

where F is an arbitrary function of ρ ≡
√
x2

1 + x2
2 and x3 ≡ z variables, satisfying the

condition (see below)

∞∫
0

dρρ

∞∫
−∞

dz Φ
(√

ρ2 + z2
)
F (ρ, z) �= 0. (42)

It is very important that, using the arbitrariness in the choice, one can take as an F in (37),
(41) the function well decreasing in the ρ and z directions, which makes all the components
of the respective magnetic ˇeld and current density completely restricted11 in the space.

10Note that H3 is uniquely ˇxed by this way. Otherwise, we would have �H �= �rot �A and thus �H would not
be the physical (experimentally created) magnetic ˇeld.

11Besides, it is very important to stress that it is quite enough for a nonzero result to create not purely stationary
conˇguration (37), (41) but the quasi-stationary one (and it gives us the additional experimental possibilities). Let
us remind that for an arbitrary system of slowly moving charges, the condition of the quasi-stationarity reads
(see [6], chapter 3, section 19) V ≈ L/T � c, where L is the average dimension of the system, T is the
characteristic period of movement and V ∼ L/T is interpreted as the average velocity of the charges in the system

So, one can allow the function F in (41) to depend also on time as on a parameter F = F (
√
x21 + x22, x3|t),

having in mind that the quasi-stationarity condition must be satisˇed. Then, in the spirit of the quasi-stationary
approximation [6], one just omits the displacement current (1/c)∂ �E/∂t and the term −(1/c)∂ �H/∂t in the respective

Maxwell equations for �rot �H and �rot �E, neglecting the terms of highest orders in powers of a small dimensionless
parameter V/c (which just transforms to the parameter v/c � 1 in the particular case [5,6] of the quasi-stationary
approximation Å alone charge moving with a constant nonrelativistic velocity �v(t) = �v, considered above, in the
paradox formulation). Thus, up to corrections of highest orders in powers of V/c, one again deals with the equation(
�rot �H
)
3
= (x2∂1 − x1∂2)f(�x|t) = (4π/c)j3(�x|t), where f = F (

√
x21 + x22, x3|t) θ(x1/x2 − 1) depends on t

only as on a parameter, and, therefore, again arrives at nonzero result (44) for ∆Fmagn
3 , because the corrections in

powers of a small dimensionless parameter cannot cancel the main contribution.
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So, using the obvious identity

(x1∂2 − x2∂1) F
(√

x2
1 + x2

2, x3

)
= 0, (43)

the relations (25), and making use of the usual properties of the δ-function integrating with
respect to x1, one literally repeats the chain of operations leading to Eq. (27) of the paradox
formulation, and gets from (39), (41) the nonzero result for ∆Fmagn

3 :

∆Fmagn
3 = −i �

4πe
mc2

∞∫
−∞

dx3

∞∫
−∞

dx2 |x2|Φ
(√

2x2
2 + x2

3

)
F

(√
2x2

2, x3

)

= −i �
4πe
mc2

∞∫
−∞

dz

∞∫
0

dρ ρΦ
(√

ρ2 + z2
)
F (ρ, z) �= 0, (44)

where Φ is the squared wave function (32) and F is some well decreasing function of
ρ ≡

√
x2

1 + x2
2 and z variables, satisfying the condition (42).

While the components H1 and H2 are given by (37), where function f has the form (41),
the H3 component of the magnetic ˇeld is restored from (40). Using (25) it is easy to show
that

(x1∂2 + x2∂1) θ(x/x2 − 1) = 0 (45)

and

(x1∂1 + x2∂2)F
(√

x2
1 + x2

2, z
)
= ρ

∂F (ρ, z)
∂ρ

. (46)

Substituting (37), (41) to (40), and making use of (45), (46), one obtains for H3 the expression

H3 = θ(x1/x2 − 1)
(

2 + ρ
∂

∂ρ

) z∫
0

dx3 F (ρ, x3), (47)

where ρ ≡
√
x2

1 + x2
2.

At last, knowing all the components of the magnetic ˇeld �H , one easy restores the
respective stationary (or quasi-stationary) current density �j (that, evidently has the δ−like
singularity in the plane x1 = x2), making use of the stationary (or quasi-stationary Ä see
footnote 11) Maxwell equation �rotH = (4π/c)�j.

Thus, we have found one of the possible conˇgurations of the ˇelds and currents resulting
(at least, at the moment when the magnetic ˇeld switches on) in the quantum-mechanical,
purely imaginary addition ∆�Fmagn (44) to the usual Lorentz force differing from zero.

Certainly, this is a very unusual result. What does it mean and what would happen with
a particle under such (very special) conditions providing for ∆�Fmagn �= 0? It is reasonable
to suppose that, besides the obvious and rather science-ˇction scenario, there may exist some
much less exotic and hither to unknown explanation of the phenomenon (perhaps this is
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just an indication of some instability12 of a charged particle in such strong, inhomogeneous,
®instantly¯ switched on magnetic ˇelds of certain special conˇgurations?). In any case, it
seems to us that the results presented here (for example, violation of the Gauss theorem
in some, very rare, topologicallyÄnontrivial physical situations) can shed new light on our
understanding of the role of nontrivial space topology and the problem of hermiticity in
quantum mechanics.
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12Here it is relevant to remind that in the case of a usual, purely potential interaction the appearance of
an imaginary part of the energy in the Schréodinger equation points to an instability of a composite particle and
determines its decay width. Certainly, this is very indirect analogy, because in this paper we consider a stable, in the
usual treatment, quantum-mechanical particle (like the proton or electron) put in very special external conditions.


