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ALGEBRAIC DESCRIPTION OF MULTILAYER SYSTEMS WITH
RESONANCES

V.K.Ignatovich', F.V.Ignatovich?, D.R.Andersen?

A multiple reflection method is applied to multilayer systems to demonstrate the ap-
pearance of resonances, their splitting, and tunneling through magnetic layers in neutron
optics.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.

Anredp H4YecKoe OMUC HHE MHOTOCJIOMHBIX CHCTEM
C Pe30H HC MM

B.K.Hen moeuu, @.B.Hen moeuu, /I.P.Anoepcen

C nOMOIIBIO METOZ, MHOTOKP THOTO OTP XEHHs BOJIH P CCUUTBIB €TCS OTP XKEHHUE OT
MHOTOCTIOMHOM CHCTEMBI, IEMOHCTPUPYETCA BO3HUKHOBEHHE U P CIUEIUIEHHE PE30H HCOB
U HCCIENYETCA TYHHENNPOB HUE YEPE3 M THUTHBIE IUIEHKH B HEMTPOHHOH ONTHKE.

P 6or Bbmonnen B JI Gop Topuu HeiirpoHHOU usuku um. U.M.®p nx OVIH.

1. INTRODUCTION

To find reflection and transmission amplitudes for a neutron incident on a multilayer
system (MS) one (as shown in many text books) usually solves a one-dimensional quantum
mechanical problem with rectangular potentials (Fig. 1). Wave functions inside ith potential
(i=a,b,c...) of height u; can be represented in the form:

¥; = A; exp(ik;x) + B; exp(—ik;z),

where k; = \/k?) — u;, ko are the neutron wave-numbers in the potential and in vacuum,
respectively. All the wave functions and their derivatives should be matched at all the inter-
faces, which gives two equations at every interface for determination of A; and B;. Thus,
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if there are n interfaces in the potential, one obtains 2n linear algebraic equations. The
solution of these equations is a very tedious problem, and the result is usually very difficult
to interpret. We show here how to avoid

Uy this tedious process and to obtain a trans-

u Ug parent analytical result without multiple
a . .« .

i ‘ | matching. Only one (almost trivial) match-
ezkuz Ue . . . . .

ing at a single interface is sufficient.

o Many papers devoted to simplification

of MS have been published in mathemat-

— ical and popular journals. Among them

are some very famous ones [1-3], how-
ever we use the different approach elabo-
rated in [4-8], and hope that it will give
additional insight into the physics of interaction of radiation with MS.

We shall consider first spinless neutrons, and after that take into account their magnetic
interaction characteristics. We shall show how resonances appear in a middle layer of a three-
layer system, and demonstrate how these resonances split, if two-side layers are replaced
by more complicated MS. Following that, we shall consider magnetic MS, and describe
resonances and tunneling in them.

Sometimes formulas represented here, especially in magnetic case, seem to be compli-
cated, however, and we want to stress it, the algorithm of their derivation is elementary. Thus
one can easily construct them, and after that can straightforwardly calculate all the necessary
magnitudes. In magnetic case it requires only the knowledge how to calculate product and
inverse of 2x2 matrices.

Fig. 1. Multilayer system potential

2. A POTENTIAL STEP

First we suppose that the particle, we shall investigate in this section, is a spinless scalar
one, like a neutron in the absence of a magnetic field. Let us consider propagation of such a
particle in the potential shown in Fig.2 and given
ikow by:

foae V(z) = usf(z > 0),
which represents a step of height u,. This finite
0% 4 poe~ikor | Uy step potential models, e.g., nuclear scattering of
neutrons. Here Heaviside 6-function is equal to
1 or O depending on whether the inequality in its
argument is satisfied or not, respectively. The one-
dimensional Schrédinger equation describing neu-

tron propagation in this system is:

[d2/da® + k2 — V()] ¥(z) = 0. (1)

u=0

Fig. 2. Reflection and transmission at a po-
tential step

If we seek for a solution containing the incident neutron described by the plane wave,
exp(ikox), propagating from the left to the right, we find it in the form:

U(z) = 0(x < 0)[exp(ikox) + roq exp(—ikox)] + 0(x > 0)toq exp(ikqx), )
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where k, = «/kzg — Ug, Toq and tg, are reflection and transmission amplitudes, respectively.
Matching of the function and its first derivative at the point x = 0 gives equations for rg,
and to,:

14700 =toa, ko[l — r0a] = katoa,
which have the solution:

ko — kq 2ko

rog = 0 "o oy M0
0 ko + ka %™ %o + ka

(3)
For this solution it does not matter whether the potential step u, is positive, i.e., a barrier, as
shown in Fig. 2, or negative, i.e., a well, and it does not matter, whether it is real or complex.

From (3) we can immediately find reflection r,o and transmission t,o amplitudes from
inside to outside of the potential. In that case we seek for a solution of (1) with the incident
particle propagating toward the step at = 0 from the right, i.e., with the incident plane wave
exp(—ikqx). From (3), purely from symmetry considerations, it follows that r,9 and ¢, are:

kq — ko 2ka ka

Ko + ku T0a> a0 Ko + Ky ko Oa 4)

Ta0

These formulas can be generalized for the interface between two potentials u, and uy:

ka - kb ka Qka

tab = s—tha = m,
a

_ o _a 5
ey ko ©)

Tab = —Tba

where kqp = \/kg — Uq,p, and ko denotes the neutron’s vacuum wave number.

As the reader may have noticed, the left indices in 745, 4, denote the space containing
the incident wave, so the amplitudes ¢, and 73, can be immediately obtained from 745, tap
by simply interchanging a and b.

In the case where u,; are real, and kzg > Uqp, the wave-numbers k,, ky and the
coefficients 4, and t,; are also real. However because of losses u,,; usually contain small
imaginary parts, thus the k’s also contain small imaginary parts, however for simplicity, in
the following we shall neglect imaginary parts of u, ;, which means that we shall neglect the
losses.

If k:g < up the number k; becomes imaginary: k, = ik, where xp = /up — k(Q) If at
the same time k(Q) > g, the amplitudes 74, t4p also become complex:

ka — ’Zlib 2idap KRp
b = " = e*'Pab b = — arct — ], 6
Tab - e Dab arctan ke (6)
tap = 2 cos(gf)ab)ew“b, the = —21 sin(qﬁab)ew“b 7

with the phase ¢, being real. This phase increases with energy, from —x/2 up to 0, when
k2 grows from u, up to up. It is important to note that it is the general property of the phase
for reflection from a potential barrier of any form.
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2.1. Magnetic Systems. In the presence of a magnetic field, the spin of the neutron and the
spinor nature of the neutron wave function must be taken into account. With a magnetic field
B, inside the ith region (i=a,b) the total potential becomes V (z) = 0(x < 0)+a, 0(x > 0),
where ﬂj = u;(ow;) = u; + ow; includes both nuclear (u;) and magnetic (ow;) parts. The
magnetic term contains the Pauli matrices o, and vector w = —(2m/h?)uB, in which p is
the neutron magnetic moment equal to -1.91 of the nuclear magneton.

The neutron wave number in the ith region now becomes an operator l%f = l%i(awi) =

\/ k& — ﬁ:r Thus incident neutrons propagating from the left to the interface are described

by the plane wave exp(iiﬂ; x)&p, and those propagating from the right are described by the
plane wave eXp(—iij)Eo, where & is spinor part of the incident wave. The solution of (1)
in the first case becomes

U(z) = {0(x < 0)[exp(ik] z) + i, exp(—ik] z)] + 0(z > 0)E, exp(ik; z)}&o.  (8)
Matching this function at the interface = = 0 gives the equations:
L+, = tay, k(L= idy) =kt

which have the solution

Fap = (kg KD THERS — kD). i = (7 + k) 2k ©
If all the fields in different regions are collinear, the magnetic case is identical to the non-
magnetic one because the neutrons polarized along or opposite the fields can be treated
independently as scalar particles. Of more interest is the case of noncollinear fields, which
became important following recent reports of theoretical [4] and experimental [9,10] advances.
All the magnitudes in (9) are 2x2 matrices of the type f(ow), which can be represented

as

fwo) = Fut Z2F, Fy = [f(w) £ f(-w))/2. (10)

+ it

b Laps and we need

Such a representation can be used for all the l;:i(o'wi) in (9) and for 7
only to find the form of the function f(ow).

For instance, l%:r = k;(ow,) has the representation (10) with K1 ; = (k" £k;)/2, and
kE = ki(dw;) = \/kZ — w; Fw;. The factor (kF + k)~ = 1/(kf + k) in 7}, £, can
be reduced to the form (10) after multiplication of nominator and denominator by lAﬂa’ + k7,
where l%; = lzzi(fawi) =/k} —4; and 4] = 4i(—ow;) = u; — w;o (i = a,b).

This operation gives:
(ki + k)7 = (kg +ky)/N, (11)

where R X o o
N = (kf + k) ky +ky))=kFky + Kk, + kT ky +kfky, =

(ki + k) (kg + Ky ) +4K_ oK sin®(945/2), (12)



52 Ignatovich V.K. et al.  Algebraic Description of Multilayer Systems

and ¥, is the angle between w, and wy, in adjacent spaces: cos¥ap = (Wawyp)/wWawp. TO
get the expression (12) we used the easily checkable relations:

flow)f(-ow) = f(w)f(-w), (owi)(ows) = (wiws) +i(o[wiw,]),

where (AB) and [AB)] denote scalar and vector product of vectors A and B, respectively.
After the transformation (11) we obtain

1 A A A A
Fap = v (Ko ko — kg 4k kT — kg k) =
L
N

ow,

<k;ka — ki ky 42K oK,
w,

ok, K T2 QZ‘K,GKJ)M> 7
Wy WaWp
(13)

a

2 A A
by = 5 (ka kq + Ky k) =

ow,

2
= (k;k; F Ky Kpot+ Ky bK_ g

2 O S K,bw) ,

Wa wp WaWh
(14)

It is clear that, if the magnetic field is zero in both regions, then kjr =k; = k;, and for any
1 we recover the amplitudes for scalar case:

o Rk ka—k o Zka(kat k) 2k,
b (ko k)2 katky Y (ke t k)2 kot ky

2.2. Reflection and Transmission of a Rectangular Potential Barrier. Now we shall
consider a rectangular potential barrier (Fig.3), and show how to find expressions for the
reflection R, and the transmission T
amplitudes without matching the wave-
function on two interfaces.

The reflection amplitude is composed
etz 4 R_e~ikoz | u, T,e*ko(z=za)  of two parts. The first one describes a sin-

L gle reflection from the interface at « = 0,

0 T, and the second one contains multiple re-

flections and propagations inside the po-

Fig. 3. Reflection and transmission of a rectangular tential between the two interfaces at x = 0
potential barrier and x = z,:

Aaeikax +Bae—ika(x—xﬂ)

R=r+terell+r'er'e+ (rer'e)® +--- |t =

r (t'e?) /(1 — e2r'?), (15)

where for simplicity we omit indices and use the notation r = roq, 7’ = 740, t = toa, t' = tao
and e = exp(ikqa).
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The transmission amplitude is obtained in a similar fashion:
T=t[1+r"er'e+ (Fer’e)® +---]et = tet/(1 — e*'?). (16)

Using the trivial relationship ¢/ = 1 — r2, we obtain the final expressions:

1 — exp(2ikqxq) . 1—r3
R = T = k a . 17
@ = ey 72 exp(2ik,z,)’ ¢ exp(i axa)l — 12, exp(2ikaz,) a7
For arbitrary k, we can directly show that:
|Ra|” + |Tal? = 1, (18)

which is a consequence of unitarity.

For real k, the amplitude R, exhibits decaying oscillations, and T, exhibits growing
oscillations with energy. When 2k,x, = 27n with integer n we have R, =0, T, = (—1)".
For the first maxima of T,, when ro, ~ 1, it is useful to represent (17) in the form

—2ik -1 1— 72
exp(—2ikaza) . T, = exp(—ikawa) e (19)

R =
@~ T0a exp(—2ikqza) — 12, exp(—2ikqza) — 12,

and to expand denominator over Ey — F,,, near maxima of transmissions, where Fy(= k(Q)) =
E, = (7m/24)? + 14, and m are integers:

E() - Em ZFI
Ry =rog— ™ g (1o — L 20
@ B = By +iT)2 TO“( E()EerzT/Z)’ 20)
T
T, = (—1)™ 2

Eo— Epy +iL/2’

where I =T'1 + Ty = (1 —73,)2mm /2%, Ty =Ty =T/2.
Besides R, and T, the wave-function inside the barrier

U(x) =0(0 <z < a)[Aq exp(ikez) + Bgexp(—ike{z — 24})] 21)
can also be found without matching. Indeed, the amplitudes A,, B, of the waves propagating

to the right and to the left, respectively are related to reflection and transmission amplitudes
as follows:

A, =t+1'eBy, B, =71'eA,, (22)
from which it is easy to find

toa a0 €Xp(ikaq)toa

C =2y exp(2ikazy)’ " 1 =12, exp(2ikaza)

(23)
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3. RELATIONS BETWEEN R AND 7' FOR ARBITRARY POTENTIALS
For the rectangular potential of Fig.3 the phases ¢r and ¢ of the complex amplitudes

R, = |R.|exp(2i¢r,) and T, = |T,| exp(2i¢r,) are related to each other in a simple way:
2¢ra = 2¢14 £ 7/2. To prove this we need only put down (17) in the form

Ra _ [e—ikaxa _ eikaxa]

70a exp(ika) 1 700 €Xp(ikay)
= | — T
1 — 72 exp(2ikaza)’ 1— 12, exp(2ikerq)’
(24)

T0a

and to observe that for real k, the first factor in R, is imaginary, and it is equal to
—2isin(k,x,), while the first factor in T, is real. In the case, when k, = ik, is an
imaginary value, the first factor in R, is a real magnitude 2sh(k,z,), while the first factor in
T, is imaginary: —2isin(2¢o,), where ¢, is defined by (6).

From these considerations and from unitarity (18) it follows that

R: — T3 = exp(4idra). (25)

b b €

Fig. 4. An arbitrary potential with two different energy levels on both sides

These relations were obtained for a potential like that one shown in Fig.3, however it
is valid for any symmetric potential, because the reflection and transmission amplitudes from
both sides are the same for such a potential.

For a general, nonsymmetrical potential V,, like the one shown in Fig. 4, it is not difficult
to prove that the reflection amplitudes R, from the right and Rj. from the left, and the
analogous transmission amplitudes T3, and T, satisfy the relations:

Rbc,cb == exp(2i<bc,cb)|Rcb|7 Tbc == %ch; RbcRcb - TbcTCb = exp(4i¢Ra)a (26)
where ¢ro = ((pe + Cep)/2. From (26) it follows that reflections from both sides differ
only by a phase, and the ratio of the transmission amplitudes is reciprocal to the ratio of the
neutron velocities ky . = \/k:g — uyp, on both sides of the potential V.

If the potential level on both sides of the potential is the same, then the transmission
amplitudes from the left and from the right become identical for arbitrary potential V.
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To prove (26) we use something like mathematical induction method. We find the
reflection and transmission amplitudes for the potential shown in Fig.4 splitting it by an
infinitesimal gap of the width € with the same potential level inside it as at b to the left of V.
We show that, if the relations (26) are valid for the asymmetric potential V,, they are also
valid for the full potential of Fig.4.

The reflection and transmission amplitudes for potential with the gap may be written in
a straight-forward fashion using our multiple reflection formalism inside the gap:

R, — Tec(R?l - TC?) Tce — (Tecrce - tectce)R;

R c = 9 Rc - 5 27
b 1— Rlre b 1— Rlre @7
T(LtEC T{lt()€
Ty, = ——a€c o, — _“ace
T IR T 1-Rir.

where Tcc = Thes Tee = Tebs tee = thes tee = tep are the amplitudes of the interaction with a
potential step defined by (3), (4), and satisfying the relation 7¢.7ce — tectee = —1.

If for the same potential level on both sides of the potential V,, the reflection amplitudes
R,, R, from the left and right, respectively satisfy the relations (26), i.e., differ by a phase,
and transmission amplitudes T,, T of the potential V;, from both sides are identical, then it
is easy to see that the full reflection and transmission amplitudes in (3) satisfy relations (26)
for different potential levels on both sides.

It is easy to check that if we chose the potential level in the gap different from the side
b, and supposed R and T amplitudes of the left part of the potential satisfiy (26), we would
obtain again that for the reflection and transmission amplitudes of the total potential in Fig. 4
the relations (26) are also valid.

Fig. 5. Any potential can be split by an infinitesimal gap into two ones

To illustrate (26) on a simple model let us consider the asymmetrical potential of Fig. 5,
consisting of two rectangular potentials. The reflection and transmission amplitudes may be
found using the same relations as (15,16) but with e = 1, because propagation phase in the
infinitesimal gap is itself infinitesimal and can be put equal to 0. Thus:

R2 - R1 (R% - T22) T1T2

Ry — Ry(R2 — T2
1 — Ro(RY = T7) Ry — Ty = —222 =Ty, (28)

Rio =
12 1 — RiRy ’ 1 — RiRy ’ 1 — Ry Ry
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Applying relation (25), it is easy to see that:

) R — R )
Ry = exp(4i[pr1 — ¢R2])ﬁR21 = exp(2ix12)Ro1, (29)
o — 411

which means that the reflection amplitudes from two opposite sides differ by a phase-factor.

4. THE BREIGHT-WIGNER RESONANCE IN MS

Now we shall consider an arbitrary potential with a well inside it (Fig.6), and show
how to get the Breight—-Wigner (BW) resonant form for the transmission and the reflection
amplitudes and to calculate the wave function inside the well. We shall study only the case
of the incident wave propagating from the left, where the potential is zero.

4.1. A Single Resonance. Transmission 7y_,. and reflection Ry_. amplitudes for the
whole potential (Fig.6) can be obtained in the same way as was shown in (15) and (16).
Indeed, let us suppose that the reflection and transmission amplitudes for the left barrier are
P0as> Pa0> Toa> Teo and those for the right barrier are pcq, Pacs Teas Tac-

eiko(r—zo)+
RO_)ce—iko(z—:cg) ike(z—zc)

‘/1 0 ua za VZ uc

Fig. 6. A potential with a well inside it

The reflection Ry_. and transmission 7y_.. amplitudes from the left for the whole
potential are

Tac exp(ikaxa>7_()a
1- exp(Qikama)pacpaO

Ta0 exp<2ikaxa>7()apac
1- exp(Qikaxa)paOpac

Ro—c = poa + y Tome = ; (30)

and the amplitudes A, and B, of the wave-function inside the well obtained as in (22) are

_ Toa __ Pacexp(ikaZa)Toa
1- eXp(Qikama)paOpac, “ 1- eXp(Qikama)pacpaO

A, €29

All the magnitudes in (30,31) behave resonantly at those energies k2 for which the phase
&(ko) of the second term in denominator is 27n with integer n, i.e.:

ga (k()) = 2kaza + 2Ca() + 2<ac = 2’/TTL, (32)

where 2(,0, 2(,. are the phases of two complex amplitudes p,o and p,., respectively.
To get the BW form of R and 7" we use the same technique that was successful in
obtaining (19, 2.2), i.e., we divide the numerator and the denominator of expressions (30) by
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exp(i&, (ko)) and expand exp(—i&, (ko)) near ko = k,, where k,, is defined as a solution of
&a(kn) = 27n. This yields:

n exp(iCOa + Z'Cca)’)/Q
Eo— By +ilq/2

_ i1
Ey— E, +il,/2]’

Ro—c = poa |1 Towr = (_1) (33)

where Eg, = k?)’n, and 2((,c), are the phases of the appropriate reflection amplitudes:
Poa,ca = |Poa,cal €XP(2iCoa,ca) at the point kg = k,,. The magnitudes v and I', are defined as
follows

|pac/p0a| - |pacp0a| |TOaTac| . — 9% 2(1 - |pa0pac|)
déq(kn)/dky, ’ déo(kn)/dky’ “ " déq(kn)/dky

We should take into account that the resonant representation has distinct BW resonant behavior
only if the widths are narrow enough, which means that both p,0 4.’s are very close to unity
and |7| < 1. In this case

Pa0,ac = \/1 - |Ta0,ac|2k0,c/k3a ~ |Ta0,ac|2k0,c/2ka; kc,a =/ k'g — Uc,a and ko = kp.

The derivative d¢,/dk,, can be calculated as follows:

v1 = 2ky, Y2 = 2k, . (34)

dga(k'n) dga(k/’a) dka / kn / dCac(k'a) dCaO(ka)
dk, ke dky,  tef, Te= TatATa ATe =g o
Now all the v magnitudes can be approximated as follows:

ke ke ke 9 9

Y1 = l__,lTOaTaO|7 Y2 = l__,|7-0a7-ac|7 Iy = x_,(|7-a0| kO/ka + |Tac| kc/ka)- (35)
ke ke ke 9 9

Y1 = _,lTOaTaO|7 Y2 = _,|TOaTac|7 Iy = _,(|Ta0| kO/ka + |Tac| kc/ka)- (36)

xa xa xa

The reflection and the transmission coefficients can be represented in the BW form now:

VIl Lol

R —c = a 2 1- + ’ 37

[Ro—c|” = |poal (Eo — En)? + (Ta/2)2 ' (Eo — En)2 + (Ta/2)2 G7
ke T'ol's

T —c|7 - — : 38

| 0 |]€0 (EO _En)2 +Fg/4 ( )

The first term in (37) represents a potential scattering (reflection from the first barrier), the
second term represents an interference between the potential and the resonant scattering, and
the last term gives pure resonant scattering with T'g = |704|?k2/kox/, being the width for
entering the potential well u,. 'y = |740|?(ko/ka)(ko/",) is the width for leaving the well
to the left. In (38) the magnitude I'y = |74¢|?(kcka)(Ke/2),) represents the width for leaving
the well to the right. We see that I'y = I'; 4+ 1’9, as it is for processes with two open channels.
Here the two channels correspond to leaving the well to the left and to the right through the
potentials V; and V5, respectively.
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4.2. Splitting of Two Resonances. To study splitting of the resonances let us suppose,
that the potential V5 also has a resonance inside it, i.e., that there is a constant potential level
uq of width x4 inside the potential V. Then p,. in the denominators of (30) can be written
as:

Pag — exP(2ikeTq) Pgc(PagPga — TagTya)
' . (39)
1 — exp(2ikqzq)PgcPqa

Pac =

After substitution of (39) into (30) we find that the amplitudes Ry_. and Ty_.. are
expressed as fractions with the denominator:

D =1 — exp(2ikqxq)pgcPqal[l — €xp(2ikaxa)PagPao] — exp(2ikqzq + 2ikaTa)PgcPa0TagTqa-

(40)
After extraction of the phase exp(i{, + i), where:
Ea = 2kawq + 204e + 2Cqa, &g = 2kqmq + 2Caq + 2Ca0,
we obtain
D= ei§a+i§q{[6_i€a - |chpqa|][6_i§q = |pagPaol] + |PgcPa0TaqTqal}s (41)
where we have taken into account that 7,474 = —|TaqTqal €XP (440 Rge) and 200 rgq = Cga+Cag-

After expansion of &, (ko) and &, (ko) near the points kg = k,, and ko = kJ,, respectively we
reduce formulas for Ry_.. and Tj_. to fractions with the denominator equal to:

D' = [Ey — En+iTul[Bo — B 4Ty — Q% Q% = dkyk,—PacPoToaToal
[ 0 +1 ][ 0 nT1 q] Q ) Q ndfa(kn)/dkndﬁq(kiL)/dkg
(42)

One can see that the denominator can be split into two BW-type denominators with modified
position of the resonances and their widths. If both resonances are identical, i.e., E! = E,,
and I'y =I'y =T, then

D' =[Ey— E,+Q+il[Ey — E, — Q + T, (43)

which means that there is a splitting of the resonances. The splitting 2¢) decreases as the
transmission between wells a and ¢ decreases.

There is an interesting case when we have two resonances with the same energy E,, = E/,,
but with different widths I';, # I';. It may happen such that, if [I'; — ;| > 2@, then there
will be no splitting, but only a modification of the widths. The difference of the widths in
such a case decreases. It is interesting to investigate the physical meaning of this effect, and
to see how such resonances do interfere with each other.

4.3. Reflection and Transmission Amplitudes of a Magnetic MS. If we take into account
the neutron magnetic moment, then the neutron wave-function becomes a spinor one. The
potential barrier is now a matrix 4, = u,+wo as in section (2.1), where u, is the nonmagnetic
potential. The transmission and reflection amplitudes become operators or 2 x 2 matrices which
do not commute if fields in ajacent layers are noncollinear.
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For rectangular magnetic barrier the reflection and transmission amplitudes are determined
in the same way as in (15,16), for nonmagnetic one, but the positions of different factors in
formulas cannot be arbitrarily changed. Indeed, in the magnetic case the formulas (15,16)
appear slightly more complicated:

R=r+1ere[l +#ér'e+ (#er'e)? 4 -1t =i+ T'er'é(1 — #éer'e) M, (44)
where for simplicity we have omitted indices and have denoted 7 = fg'a, P = 72;'0, t= fg'a,
t' = t1, for matrix reflection and transmission amplitudes of interfaces given by (9), and
é = exp(ik;] z,) for phase factor of propagation inside the potential.

The transmission matrix amplitude is obtained in a similar way:

T =tel+#er'e+ (Fer'e)® +-- |t =1e(l —i'er'e) 't (45)
Substitution of the operators gives the final expressions

1

1-— f;ro exp(il%j{:ca)f:o exp(z‘l%jxa)

+_ 3t
L =t

a0 eXP(H%Zsza) f(J)ra (46)

and:

. . A - 1 “
RI = ¢ 4+ tf exp(ik)x )it exp(ik) x - - tr . (47)
a Oa a0 ( a a) a0 ( a a) 1— 'F;FO eXp(ik;xa)fjo exp(ik,faca) Oa
For a more complicated potential, like the one shown in Fig. 6, the formulas with the magnetic
field look similar to (46), (47) but contain more complicated matrices £ and 7:
1

R()Hc = ﬁ()a + 7A—a() exp(ikaxa)ﬁar exp(ikaxa) N T N iy 710]'7 (48)
1 = pao exp(ikaq)par exp(ikaxa)

N N 1
To—e = Tacexp(ikqxq = = Toa- (49)
’ ( ) 1 — pao exp(ikaxa)ﬁac exp(ikaxa) ’

Let us consider the case when u; = uq, — wq < k(g) < Ug +wg = uj In this case the neutron
with one projection of the spin (say up, spinor v,,) propagates as a plane wave, and acquires
the phase factor e; = exp(ik,x,) during propagation from one side of the well to another,

where k, = \/k2 — ug . The other projection of spin (say down, spinor t4) cannot propagate,

because its phase factor becomes ex = exp(—£q%,) < 1, where k, = Jud — k2. To find
the transmission it is necessary to find the eigenfunctions, /g, and the eigenvalues () of the
operator Q = 1 — pao exp(il%ama)p:ac exp(ifcama) in the denominators of (48,49).

One eigenfunction ¢ with Qg = Q"¢ will correspond to the polarization close to
up, and another one, 1/)% with Qz/;% = de% — close to down.

Let us suppose that the neutron propagates from the left to the potential of Fig. 6 and has
a polarization along the field and is described by spinor )", then the amplitudes TOJF_J,FC, TOJF_TC
of transmission without and with reversal of the polarization are given:

T = [fae exp(ikaxa)]ﬂi[m]“*v*, (50)

Qu
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where [/1]*“ represents the matrix element of the operator A between the states ¥t and VG-
If there is a resonance in the well in the state g, then the transmission coefficients can

be represented in BW form:

F-f-uFqu

k‘h*
T“r"rri’* T — Oa 51
| 0—r | kg- (E_ETL)2+I—\2/47 ( )

where T' = I + T%; + % + T'% is the total width, which is the sum of the widths for
a neutron leaving the well to the left and to the right (lower indices a0 and ac, respectively)
with the polarization 4+ or — (upper indices u+ and u—, respectively). The width Ff{;‘
describes penetration into the well in the propagating state u from the left, when the neutron
is polarized along the external field.

It is interesting to note that if the neutron is polarized along the external field, which
is parallel to the field inside the magnetic layer a (of high magnetic permeability), then the
direct transmission of the neutron through the layer a is exponentially suppressed. However
the neutron can transit the system via a nontunneling effect. This is possible if there is some
noncollinearity of the internal and external fields inside of potentials V; and V> in Fig.6. In
that case there are matrix elements for the neutron to pass into the region a in the propagating
mode, and, if the layer a is resonant, the transmission becomes high.

5. CONCLUSION

We have demonstrated the method for calculating reflection and transmission through
magnetic and nonmagnetic multilayer systems (MS) without matching the wave function at
interfaces, but using instead the multiple reflections approach. We also considered resonances
in MS and showed how to find positions and widths of resonances describing scattering with
the Breit—-Wigner formula. We also found the amplitude of the wave function inside resonant
layer, which is important for prediction of magnitudes of phenomena, which can take place
at resonances.

We found an interesting phenomenon of resonant level splitting, when positions of reso-
nances in two ajacent wells are the same but widths are different. In this case splitting will
not really give two resonances with slightly different positions, but gives two resonances with
the same position and with two different widths. It is very interesting to consider to what real
phenomena can lead such a splitting.

We also have shown how to calculate nontunneling transmission of polarized neutrons
through reflecting magnetic MS with noncollinear distribution of internal magnetization. It is
not difficult to generalize the obtained formulas to look for splitting of magnetic resonances
and study the analogous peculiarities of splitting as in nonmagnetic case.

We have considered only few examples in neutron optics, though the method is applicable
to a wide variety of other problems which are manifest in wave and particle propagation
through layered media.
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