
�¨¸Ó³  ¢ �—
Ÿ º3[100]-2000 Particles and Nuclei, Letters No.3[100]-2000

“„Š 535.8; 539.125.523.32

ALGEBRAIC DESCRIPTION OF MULTILAYER SYSTEMS WITH
RESONANCES

V.K.Ignatovich1, F.V.Ignatovich2, D.R.Andersen3

A multiple reLection method is applied to multilayer systems to demonstrate the ap-
pearance of resonances, their splitting, and tunneling through magnetic layers in neutron
optics.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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1. INTRODUCTION

To ˇnd reLection and transmission amplitudes for a neutron incident on a multilayer
system (MS) one (as shown in many text books) usually solves a one-dimensional quantum
mechanical problem with rectangular potentials (Fig. 1). Wave functions inside ith potential
(i=a,b,c...) of height ui can be represented in the form:

ψi = Ai exp(ikix) + Bi exp(−ikix),

where ki =
√
k2
0 − ui, k0 are the neutron wave-numbers in the potential and in vacuum,

respectively. All the wave functions and their derivatives should be matched at all the inter-
faces, which gives two equations at every interface for determination of Ai and Bi. Thus,
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if there are n interfaces in the potential, one obtains 2n linear algebraic equations. The
solution of these equations is a very tedious problem, and the result is usually very difˇcult

Fig. 1. Multilayer system potential

to interpret. We show here how to avoid
this tedious process and to obtain a trans-
parent analytical result without multiple
matching. Only one (almost trivial) match-
ing at a single interface is sufˇcient.

Many papers devoted to simpliˇcation
of MS have been published in mathemat-
ical and popular journals. Among them
are some very famous ones [1Ä3], how-
ever we use the different approach elabo-
rated in [4Ä8], and hope that it will give

additional insight into the physics of interaction of radiation with MS.
We shall consider ˇrst spinless neutrons, and after that take into account their magnetic

interaction characteristics. We shall show how resonances appear in a middle layer of a three-
layer system, and demonstrate how these resonances split, if two-side layers are replaced
by more complicated MS. Following that, we shall consider magnetic MS, and describe
resonances and tunneling in them.

Sometimes formulas represented here, especially in magnetic case, seem to be compli-
cated, however, and we want to stress it, the algorithm of their derivation is elementary. Thus
one can easily construct them, and after that can straightforwardly calculate all the necessary
magnitudes. In magnetic case it requires only the knowledge how to calculate product and
inverse of 2x2 matrices.

2. A POTENTIAL STEP

First we suppose that the particle, we shall investigate in this section, is a spinless scalar
one, like a neutron in the absence of a magnetic ˇeld. Let us consider propagation of such a

Fig. 2. ReLection and transmission at a po-
tential step

particle in the potential shown in Fig. 2 and given
by:

V (x) = uaθ(x > 0),

which represents a step of height ua. This ˇnite
step potential models, e.g., nuclear scattering of
neutrons. Here Heaviside θ-function is equal to
1 or 0 depending on whether the inequality in its
argument is satisˇed or not, respectively. The one-
dimensional Schréodinger equation describing neu-
tron propagation in this system is:

[d2/dx2 + k2
0 − V (x)]Ψ(x) = 0. (1)

If we seek for a solution containing the incident neutron described by the plane wave,
exp(ik0x), propagating from the left to the right, we ˇnd it in the form:

Ψ(x) = θ(x < 0)[exp(ik0x) + r0a exp(−ik0x)] + θ(x > 0)t0a exp(ikax), (2)
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where ka =
√
k2
0 − ua, r0a and t0a are reLection and transmission amplitudes, respectively.

Matching of the function and its ˇrst derivative at the point x = 0 gives equations for r0a

and t0a:

1 + r0a = t0a, k0[1 − r0a] = kat0a,

which have the solution:

r0a =
k0 − ka

k0 + ka
, t0a =

2k0

k0 + ka
. (3)

For this solution it does not matter whether the potential step ua is positive, i.e., a barrier, as
shown in Fig. 2, or negative, i.e., a well, and it does not matter, whether it is real or complex.

From (3) we can immediately ˇnd reLection ra0 and transmission ta0 amplitudes from
inside to outside of the potential. In that case we seek for a solution of (1) with the incident
particle propagating toward the step at x = 0 from the right, i.e., with the incident plane wave
exp(−ikax). From (3), purely from symmetry considerations, it follows that ra0 and ta0 are:

ra0 =
ka − k0

k0 + ka
= −r0a, ta0 =

2ka

k0 + ka
=

ka

k0
t0a. (4)

These formulas can be generalized for the interface between two potentials ua and ub:

rab = −rba =
ka − kb

ka + kb
, tab =

ka

kb
tba =

2ka

ka + kb
, (5)

where ka,b =
√
k2
0 − ua,b, and k0 denotes the neutron's vacuum wave number.

As the reader may have noticed, the left indices in rab, tab denote the space containing
the incident wave, so the amplitudes tba and rba can be immediately obtained from rab, tab

by simply interchanging a and b.
In the case where ua,b are real, and k2

0 > ua,b, the wave-numbers ka, kb and the
coefˇcients rab and tab are also real. However because of losses ua,b usually contain small
imaginary parts, thus the k's also contain small imaginary parts, however for simplicity, in
the following we shall neglect imaginary parts of ua,b, which means that we shall neglect the
losses.

If k2
0 < ub the number kb becomes imaginary: kb = iκb, where κb =

√
ub − k2

0 . If at
the same time k2

0 > ua, the amplitudes rab, tab also become complex:

rab =
ka − iκb

ka + iκb
= e2iφab , φab = − arctan

(
κb

ka

)
, (6)

tab = 2 cos(φab)eiφab , tba = −2i sin(φab)eiφab (7)

with the phase φab being real. This phase increases with energy, from −π/2 up to 0, when
k2
0 grows from ua up to ub. It is important to note that it is the general property of the phase

for reLection from a potential barrier of any form.
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2.1. Magnetic Systems. In the presence of a magnetic ˇeld, the spin of the neutron and the
spinor nature of the neutron wave function must be taken into account. With a magnetic ˇeld
Bi inside the ith region (i=a,b) the total potential becomes V̂ (x) = û+

a θ(x < 0)+û+
b θ(x > 0),

where û+
i ≡ ui(σωi) = ui + σωi includes both nuclear (ui) and magnetic (σωi) parts. The

magnetic term contains the Pauli matrices σ, and vector ω = −(2m/�2)µB, in which µ is
the neutron magnetic moment equal to -1.91 of the nuclear magneton.

The neutron wave number in the ith region now becomes an operator k̂+
i ≡ k̂i(σωi) =√

k2
0 − û+

i . Thus incident neutrons propagating from the left to the interface are described

by the plane wave exp(ik̂+
a x)ξ0, and those propagating from the right are described by the

plane wave exp(−ik̂+
b x)ξ0, where ξ0 is spinor part of the incident wave. The solution of (1)

in the ˇrst case becomes

Ψ(x) = {θ(x < 0)[exp(ik̂+
a x) + r̂+

ab exp(−ik̂+
l x)] + θ(x > 0)t̂+ab exp(ik̂+

b x)}ξ0. (8)

Matching this function at the interface x = 0 gives the equations:

1 + r̂+
ab = t̂+ab, k̂+

a (1 − r̂+
ab) = k̂+

b t̂
+
ab,

which have the solution

r̂+
ab = (k̂+

a + k̂+
b )−1(k̂+

a − k̂+
b ), t̂+ab = (k̂+

a + k̂+
b )−12k̂+

a . (9)

If all the ˇelds in different regions are collinear, the magnetic case is identical to the non-
magnetic one because the neutrons polarized along or opposite the ˇelds can be treated
independently as scalar particles. Of more interest is the case of noncollinear ˇelds, which
became important following recent reports of theoretical [4] and experimental [9,10] advances.

All the magnitudes in (9) are 2x2 matrices of the type f(σω), which can be represented
as

f̂(ωσ) = F+ +
σω

ω
F−, F± = [f(ω) ± f(−ω)]/2. (10)

Such a representation can be used for all the k̂i(σωi) in (9) and for r̂+
ab, t̂

+
ab, and we need

only to ˇnd the form of the function f(σω).
For instance, k̂+

i ≡ ki(σωa) has the representation (10) with K±,i = (k+
i ± k−i )/2, and

k±i ≡ ki(±ωi) =
√
k2
0 − ui ∓ ωi. The factor (k̂+

a + k̂+
b )−1 ≡ 1/(k̂+

a + k̂+
b ) in r̂+

ab, t̂
+
ab can

be reduced to the form (10) after multiplication of nominator and denominator by k̂−a + k̂−b ,

where k̂−i ≡ k̂i(−σωi) =
√
k2
0 − û−

i and û−
i ≡ ûi(−σωi) = ui − ωiσ (i = a, b).

This operation gives:

(k̂+
a + k̂+

b )−1 = (k̂−a + k̂−b )/N, (11)

where
N = (k̂+

a + k̂+
b )(k̂−a + k̂−b ) = k+

a k
−
a + k+

b k
−
b + k̂+

b k̂
−
a + k̂+

a k̂
−
b =

(k+
a + k+

b )(k−a + k−b ) + 4K−,aK−,b sin2(ϑab/2), (12)
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and ϑab is the angle between ωa and ωb in adjacent spaces: cosϑab = (ωaωb)/ωaωb. To
get the expression (12) we used the easily checkable relations:

f(σω)f(−σω) = f(ω)f(−ω), (σω1)(σω2) = (ω1ω2) + i(σ[ω1ω2]),

where (AB) and [AB] denote scalar and vector product of vectors A and B, respectively.
After the transformation (11) we obtain

r̂+
ab =

1
N

(k+
a k

−
a − k+

b k
−
b + k̂−b k̂

+
a − k̂−a k̂

+
b ) =

1
N

(
k+

a k
−
a − k+

b k
−
b + 2K+,bK−,a

σωa

ωa
− 2K+,aK−,b

σωb

ωb
+ 2iK−,aK−,b

σ[ωaωb]
ωaωb

)
,

(13)

t̂+ab =
2
N

(k+
a k

−
a + k̂−b k̂

+
a ) =

2
N

(
k+

a k
−
a + K+,bK+,a + K+,bK−,a

σωa

ωa
−K+,aK−,b

σωb

ωb
+ 2iK−,aK−,b

σ[ωaωb]
ωaωb

)
,

(14)

It is clear that, if the magnetic ˇeld is zero in both regions, then k+
i = k−i = ki, and for any

ϑ we recover the amplitudes for scalar case:

r̂+
ab =

k2
a − k2

b

(ka + kb)2
=

ka − kb

ka + kb
≡ rab, t̂+ab =

2ka(ka + kb)
(ka + kb)2

=
2ka

ka + kb
≡ tab.

2.2. Re_ection and Transmission of a Rectangular Potential Barrier. Now we shall
consider a rectangular potential barrier (Fig. 3), and show how to ˇnd expressions for the

Fig. 3. ReLection and transmission of a rectangular
potential barrier

reLection Ra and the transmission Ta

amplitudes without matching the wave-
function on two interfaces.

The reLection amplitude is composed
of two parts. The ˇrst one describes a sin-
gle reLection from the interface at x = 0,
and the second one contains multiple re-
Lections and propagations inside the po-
tential between the two interfaces at x = 0
and x = xa:

R = r + t′er′e[1 + r′er′e + (r′er′e)2 + · · · ]t =

r + (tt′r′e2)/(1 − e2r′
2), (15)

where for simplicity we omit indices and use the notation r = r0a, r′ = ra0, t = t0a, t′ = ta0

and e = exp(ikaa).
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The transmission amplitude is obtained in a similar fashion:

T = t′[1 + r′er′e + (r′er′e)2 + · · · ]et = t′et/(1 − e2r′
2). (16)

Using the trivial relationship tt′ = 1 − r2, we obtain the ˇnal expressions:

Ra = r0a
1 − exp(2ikaxa)

1 − r2
a0 exp(2ikaxa)

, Ta = exp(ikaxa)
1 − r2

0a

1 − r2
a0 exp(2ikaxa)

. (17)

For arbitrary ka we can directly show that:

|Ra|2 + |Ta|2 = 1, (18)

which is a consequence of unitarity.
For real ka the amplitude Ra exhibits decaying oscillations, and Ta exhibits growing

oscillations with energy. When 2kaxa = 2πn with integer n we have Ra = 0, Ta = (−1)n.
For the ˇrst maxima of Ta, when r0a ≈ 1, it is useful to represent (17) in the form

Ra = r0a
exp(−2ikaxa) − 1

exp(−2ikaxa) − r2
a0

, Ta = exp(−ikaxa)
1 − r2

0a

exp(−2ikaxa) − r2
a0

, (19)

and to expand denominator over E0 −Em near maxima of transmissions, where E0(≡ k2
0) =

Em = (πm/xa)2 + ua, and m are integers:

Ra = r0a
E0 − Em

E0 − Em + iΓ/2
= r0a

(
1 − iΓ1

E0 − Em + iΓ/2

)
, (20)

Ta = (−1)m iΓ2

E0 − Em + iΓ/2
,

where Γ = Γ1 + Γ2 = (1 − r2
0a)2πm/x2

a, Γ1 = Γ2 = Γ/2.
Besides Ra and Ta, the wave-function inside the barrier

Ψ(x) = θ(0 ≤ x ≤ a)[Aa exp(ikax) + Ba exp(−ika{x− xa})] (21)

can also be found without matching. Indeed, the amplitudes Aa, Ba of the waves propagating
to the right and to the left, respectively are related to reLection and transmission amplitudes
as follows:

Aa = t + r′eBa, Ba = r′eAa, (22)

from which it is easy to ˇnd

Aa =
t0a

1 − r2
a0 exp(2ikaxa)

, Ba =
ra0 exp(ikaxa)t0a

1 − r2
a0 exp(2ikaxa)

. (23)
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3. RELATIONS BETWEEN R AND T FOR ARBITRARY POTENTIALS

For the rectangular potential of Fig. 3 the phases φR and φT of the complex amplitudes
Ra = |Ra| exp(2iφRa) and Ta = |Ta| exp(2iφTa) are related to each other in a simple way:
2φRa = 2φTa ± π/2. To prove this we need only put down (17) in the form

Ra =
[
e−ikaxa − eikaxa

] r0a exp(ikaxa)
1 − r2

a0 exp(2ikaxa)
, Ta =

[
1
r0a

− r0a

]
r0a exp(ikaxa)

1 − r2
a0 exp(2ikaxa)

,

(24)

and to observe that for real ka the ˇrst factor in Ra is imaginary, and it is equal to
−2i sin(kaxa), while the ˇrst factor in Ta is real. In the case, when ka = iκa is an
imaginary value, the ˇrst factor in Ra is a real magnitude 2sh(κaxa), while the ˇrst factor in
Ta is imaginary: −2i sin(2φ0a), where φ0a is deˇned by (6).

From these considerations and from unitarity (18) it follows that

R2
a − T 2

a = exp(4iφRa). (25)

Fig. 4. An arbitrary potential with two different energy levels on both sides

These relations were obtained for a potential like that one shown in Fig. 3, however it
is valid for any symmetric potential, because the reLection and transmission amplitudes from
both sides are the same for such a potential.

For a general, nonsymmetrical potential Va, like the one shown in Fig. 4, it is not difˇcult
to prove that the reLection amplitudes Rcb from the right and Rbc from the left, and the
analogous transmission amplitudes Tbc and Tcb satisfy the relations:

Rbc,cb = exp(2iζbc,cb)|Rcb|, Tbc =
kb

kc
Tcb, RbcRcb − TbcTcb = exp(4iφRa), (26)

where φRa = (ζbc + ζcb)/2. From (26) it follows that reLections from both sides differ
only by a phase, and the ratio of the transmission amplitudes is reciprocal to the ratio of the
neutron velocities kb,c =

√
k2
0 − ub,c on both sides of the potential Va.

If the potential level on both sides of the potential is the same, then the transmission
amplitudes from the left and from the right become identical for arbitrary potential Va.
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To prove (26) we use something like mathematical induction method. We ˇnd the
reLection and transmission amplitudes for the potential shown in Fig. 4 splitting it by an
inˇnitesimal gap of the width ε with the same potential level inside it as at b to the left of Va.
We show that, if the relations (26) are valid for the asymmetric potential Va, they are also
valid for the full potential of Fig. 4.

The reLection and transmission amplitudes for potential with the gap may be written in
a straight-forward fashion using our multiple reLection formalism inside the gap:

Rbc =
Ra − rεc(R2

a − T 2
a )

1 −R′
arεc

, Rcb =
rcε − (rεcrcε − tεctcε)R′

a

1 −R′
arεc

, (27)

Tbc =
Tatεc

1 −R′
arεc

, Tcb =
Tatcε

1 −R′
arεc

,

where rεc ≡ rbc, rcε ≡ rcb, tεc ≡ tbc, tcε ≡ tcb are the amplitudes of the interaction with a
potential step deˇned by (3), (4), and satisfying the relation rεcrcε − tεctcε = −1.

If for the same potential level on both sides of the potential Va the reLection amplitudes
Ra, R′

a from the left and right, respectively satisfy the relations (26), i.e., differ by a phase,
and transmission amplitudes Ta, T ′

a of the potential Va from both sides are identical, then it
is easy to see that the full reLection and transmission amplitudes in (3) satisfy relations (26)
for different potential levels on both sides.

It is easy to check that if we chose the potential level in the gap different from the side
b, and supposed R and T amplitudes of the left part of the potential satisˇy (26), we would
obtain again that for the reLection and transmission amplitudes of the total potential in Fig. 4
the relations (26) are also valid.

Fig. 5. Any potential can be split by an inˇnitesimal gap into two ones

To illustrate (26) on a simple model let us consider the asymmetrical potential of Fig. 5,
consisting of two rectangular potentials. The reLection and transmission amplitudes may be
found using the same relations as (15,16) but with e ≡ 1, because propagation phase in the
inˇnitesimal gap is itself inˇnitesimal and can be put equal to 0. Thus:

R12 =
R1 −R2(R2

1 − T 2
1 )

1 −R1R2
, R21 =

R2 − R1(R2
2 − T 2

2 )
1 −R1R2

, T12 =
T1T2

1 −R1R2
≡ T21. (28)
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Applying relation (25), it is easy to see that:

R12 = exp(4i[φR1 − φR2])
R∗

1 −R2

R∗
2 −R1

R21 = exp(2iχ12)R21, (29)

which means that the reLection amplitudes from two opposite sides differ by a phase-factor.

4. THE BREIGHTÄWIGNER RESONANCE IN MS

Now we shall consider an arbitrary potential with a well inside it (Fig. 6), and show
how to get the BreightÄWigner (BW) resonant form for the transmission and the reLection
amplitudes and to calculate the wave function inside the well. We shall study only the case
of the incident wave propagating from the left, where the potential is zero.

4.1. A Single Resonance. Transmission T0→c and reLection R0→c amplitudes for the
whole potential (Fig. 6) can be obtained in the same way as was shown in (15) and (16).
Indeed, let us suppose that the reLection and transmission amplitudes for the left barrier are
ρ0a, ρa0, τ0a, τa0 and those for the right barrier are ρca, ρac, τca, τac.

Fig. 6. A potential with a well inside it

The reLection R0→c and transmission T0→c amplitudes from the left for the whole
potential are

R0→c = ρ0a +
τa0 exp(2ikaxa)τ0aρac

1 − exp(2ikaxa)ρa0ρac
, T0→c =

τac exp(ikaxa)τ0a

1 − exp(2ikaxa)ρacρa0
, (30)

and the amplitudes Aa and Ba of the wave-function inside the well obtained as in (22) are

Aa =
τ0a

1 − exp(2ikaxa)ρa0ρac
, Ba =

ρac exp(ikaxa)τ0a

1 − exp(2ikaxa)ρacρa0
. (31)

All the magnitudes in (30,31) behave resonantly at those energies k2
0 for which the phase

ξ(k0) of the second term in denominator is 2πn with integer n, i.e.:

ξa(k0) ≡ 2kaxa + 2ζa0 + 2ζac = 2πn, (32)

where 2ζa0, 2ζac are the phases of two complex amplitudes ρa0 and ρac, respectively.
To get the BW form of R and T we use the same technique that was successful in

obtaining (19, 2.2), i.e., we divide the numerator and the denominator of expressions (30) by
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exp(iξa(k0)) and expand exp(−iξa(k0)) near k0 = kn, where kn is deˇned as a solution of
ξa(kn) = 2πn. This yields:

R0→c = ρ0a

[
1 − iγ1

E0 − En + iΓa/2

]
, T0→r = (−1)n exp(iζ0a + iζca)γ2

E0 − En + iΓa/2
, (33)

where E0,n = k2
0,n, and 2ζ(0,c)a are the phases of the appropriate reLection amplitudes:

ρ0a,ca = |ρ0a,ca| exp(2iζ0a,ca) at the point k0 = kn. The magnitudes γ and Γa are deˇned as
follows

γ1 = 2kn
|ρac/ρ0a| − |ρacρ0a|

dξa(kn)/dkn
, γ2 = 2kn

|τ0aτac|
dξa(kn)/dkn

, Γa = 2kn
2(1 − |ρa0ρac|)
dξa(kn)/dkn

. (34)

We should take into account that the resonant representation has distinct BW resonant behavior
only if the widths are narrow enough, which means that both ρa0,ac's are very close to unity
and |τ | 
 1. In this case

ρa0,ac =
√

1 − |τa0,ac|2k0,c/ka ≈ |τa0,ac|2k0,c/2ka, kc,a =
√
k2
0 − uc,a, and k0 = kn.

The derivative dξa/dkn can be calculated as follows:

dξa(kn)
dkn

=
dξa(ka)
dka

dka

dkn
= 2x′a

kn

ka
, x′a = xa + ∆xa, ∆xa =

dζac(ka)
dka

+
dζa0(ka)
dka

.

Now all the γ magnitudes can be approximated as follows:

γ1 =
ka

x′a
|τ0aτa0|, γ2 =

ka

x′a
|τ0aτac|, Γa =

ka

x′a
(|τa0|2k0/ka + |τac|2kc/ka). (35)

γ1 =
ka

x′a
|τ0aτa0|, γ2 =

ka

x′a
|τ0aτac|, Γa =

ka

x′a
(|τa0|2k0/ka + |τac|2kc/ka). (36)

The reLection and the transmission coefˇcients can be represented in the BW form now:

|R0→c|2 = |ρ0a|2
[
1 −

√
Γ0Γ1Γa

(E0 − En)2 + (Γa/2)2
+

Γ0Γ1

(E0 − En)2 + (Γa/2)2

]
, (37)

|T0→c|
kc

k0
=

Γ0Γ2

(E0 − En)2 + Γ2
a/4

. (38)

The ˇrst term in (37) represents a potential scattering (reLection from the ˇrst barrier), the
second term represents an interference between the potential and the resonant scattering, and
the last term gives pure resonant scattering with Γ0 = |τ0a|2k2

a/k0x
′
a being the width for

entering the potential well ua. Γ1 = |τa0|2(k0/ka)(ka/x
′
a) is the width for leaving the well

to the left. In (38) the magnitude Γ2 = |τac|2(kcka)(kc/x
′
a) represents the width for leaving

the well to the right. We see that Γa = Γ1 +Γ2, as it is for processes with two open channels.
Here the two channels correspond to leaving the well to the left and to the right through the
potentials V1 and V2, respectively.
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4.2. Splitting of Two Resonances. To study splitting of the resonances let us suppose,
that the potential V2 also has a resonance inside it, i.e., that there is a constant potential level
uq of width xq inside the potential V2. Then ρac in the denominators of (30) can be written
as:

ρac =
ρaq − exp(2ikqxq)ρqc(ρaqρqa − τaqτqa)

1 − exp(2ikqxq)ρqcρqa
. (39)

After substitution of (39) into (30) we ˇnd that the amplitudes R0→c and T0→c are
expressed as fractions with the denominator:

D = [1 − exp(2ikqxq)ρqcρqa][1 − exp(2ikaxa)ρaqρa0] − exp(2ikqxq + 2ikaxa)ρqcρa0τaqτqa.
(40)

After extraction of the phase exp(iξa + iξq), where:

ξa = 2kaxa + 2ζqc + 2ζqa, ξq = 2kqxq + 2ζaq + 2ζa0,

we obtain

D = eiξa+iξq{[e−iξa − |ρqcρqa|][e−iξq − |ρaqρa0|] + |ρqcρa0τaqτqa|}, (41)

where we have taken into account that τaqτqa = −|τaqτqa| exp(4iφRqa) and 2φRqa = ζqa+ζaq .
After expansion of ξa(k0) and ξq(k0) near the points k0 = kn and k0 = k′n, respectively we
reduce formulas for R0→c and T0→c to fractions with the denominator equal to:

D′ = [E0 − En + iΓa][E0 − E′
n + iΓq] −Q2, Q2 = 4knk

′
n

|ρqcρa0τaqτqa|
dξa(kn)/dkndξq(k′n)/dk′n

.

(42)

One can see that the denominator can be split into two BW-type denominators with modiˇed
position of the resonances and their widths. If both resonances are identical, i.e., E′

n = En,
and Γa = Γq ≡ Γ, then

D′ = [E0 − En + Q + iΓ][E0 − En −Q + iΓ], (43)

which means that there is a splitting of the resonances. The splitting 2Q decreases as the
transmission between wells a and q decreases.

There is an interesting case when we have two resonances with the same energy En = E′
n,

but with different widths Γa �= Γq. It may happen such that, if |Γa − Γq| > 2Q, then there
will be no splitting, but only a modiˇcation of the widths. The difference of the widths in
such a case decreases. It is interesting to investigate the physical meaning of this effect, and
to see how such resonances do interfere with each other.

4.3. Re_ection and Transmission Amplitudes of a Magnetic MS. If we take into account
the neutron magnetic moment, then the neutron wave-function becomes a spinor one. The
potential barrier is now a matrix ûa = ua+ωσ as in section (2.1), where ua is the nonmagnetic
potential. The transmission and reLection amplitudes become operators or 2×2 matrices which
do not commute if ˇelds in ajacent layers are noncollinear.



Ignatovich V.K. et al. Algebraic Description of Multilayer Systems 59

For rectangular magnetic barrier the reLection and transmission amplitudes are determined
in the same way as in (15,16), for nonmagnetic one, but the positions of different factors in
formulas cannot be arbitrarily changed. Indeed, in the magnetic case the formulas (15,16)
appear slightly more complicated:

R̂ = r̂ + t̂′êr̂′ê[1 + r̂′êr̂′ê + (r̂′ êr̂′ê)2 + · · · ]t̂ = r̂ + t̂′êr̂′ê(1 − r̂′ êr̂′ê)−1t̂, (44)

where for simplicity we have omitted indices and have denoted r̂ = r̂+0a, r̂
′ = r̂+

a0, t̂ = t̂+0a,
t̂′ = t̂+a0 for matrix reLection and transmission amplitudes of interfaces given by (9), and
ê = exp(ik̂+

a xa) for phase factor of propagation inside the potential.
The transmission matrix amplitude is obtained in a similar way:

T̂ = t̂′ê[1 + r̂′êr̂′ê + (r̂′ êr̂′ê)2 + · · · ]t̂ = t̂′ê(1 − r̂′êr̂′ê)−1t̂. (45)

Substitution of the operators gives the ˇnal expressions

T̂+
a = t̂+a0 exp(ik̂+

a xa)
1

1 − r̂+
a0 exp(ik̂+

a xa)r̂+
a0 exp(ik̂+

a xa)
t̂+0a (46)

and:

R̂+
a = r̂+

0a + t̂+a0 exp(ik̂+
a xa)r̂+

a0 exp(ik̂+
a xa)

1

1 − r̂+
a0 exp(ik̂+

a xa)r̂+
a0 exp(ik̂+

a xa)
t̂+0a. (47)

For a more complicated potential, like the one shown in Fig. 6, the formulas with the magnetic
ˇeld look similar to (46), (47) but contain more complicated matrices t̂ and r̂:

R̂0→c = ρ̂0a + τ̂a0 exp(ik̂axa)ρ̂ar exp(ik̂axa)
1

1 − ρ̂a0 exp(ik̂axa)ρ̂ar exp(ik̂axa)
τ̂0j , (48)

T̂0→c = τ̂ac exp(ik̂axa)
1

1 − ρ̂a0 exp(ik̂axa)ρ̂ac exp(ik̂axa)
τ̂0a. (49)

Let us consider the case when u−
a ≡ ua −ωa < k2

0 < ua +ωa ≡ u+
a . In this case the neutron

with one projection of the spin (say up, spinor ψu) propagates as a plane wave, and acquires
the phase factor e1 = exp(ikaxa) during propagation from one side of the well to another,

where ka =
√
k2
0 − u−

a . The other projection of spin (say down, spinor ψd) cannot propagate,

because its phase factor becomes e2 = exp(−κaxa) 
 1, where κa =
√
u+

a − k2
0 . To ˇnd

the transmission it is necessary to ˇnd the eigenfunctions, ψQ, and the eigenvalues Q of the

operator Q̂ = 1 − ρ̂a0 exp(ik̂axa)ρ̂ac exp(ik̂axa) in the denominators of (48,49).
One eigenfunction ψu

Q with Q̂ψu
Q = Quψu

Q will correspond to the polarization close to

up, and another one, ψd
Q with Q̂ψd

Q = Qdψd
Q Å close to down.

Let us suppose that the neutron propagates from the left to the potential of Fig. 6 and has
a polarization along the ˇeld and is described by spinor ψ+, then the amplitudes T++

0→c, T
+−
0→c

of transmission without and with reversal of the polarization are given:

T++,+−
0→c = [τ̂ac exp(ik̂axa)]+u 1

Qu
[τ̂0a]u+,−, (50)
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where [Â]+u represents the matrix element of the operator Â between the states ψ+ and ψu
Q.

If there is a resonance in the well in the state ψu
Q, then the transmission coefˇcients can

be represented in BW form:

|T++,+−
0→r |k

+,−
r

k+
0

=
Γ+u

0a Γu+

(E − En)2 + Γ2/4
, (51)

where Γ = Γu+
a0 + Γu−

a0 + Γu+
ac + Γu−

ac is the total width, which is the sum of the widths for
a neutron leaving the well to the left and to the right (lower indices a0 and ac, respectively)
with the polarization + or − (upper indices u+ and u−, respectively). The width Γ+u

0a

describes penetration into the well in the propagating state u from the left, when the neutron
is polarized along the external ˇeld.

It is interesting to note that if the neutron is polarized along the external ˇeld, which
is parallel to the ˇeld inside the magnetic layer a (of high magnetic permeability), then the
direct transmission of the neutron through the layer a is exponentially suppressed. However
the neutron can transit the system via a nontunneling effect. This is possible if there is some
noncollinearity of the internal and external ˇelds inside of potentials V1 and V2 in Fig. 6. In
that case there are matrix elements for the neutron to pass into the region a in the propagating
mode, and, if the layer a is resonant, the transmission becomes high.

5. CONCLUSION

We have demonstrated the method for calculating reLection and transmission through
magnetic and nonmagnetic multilayer systems (MS) without matching the wave function at
interfaces, but using instead the multiple reLections approach. We also considered resonances
in MS and showed how to ˇnd positions and widths of resonances describing scattering with
the BreitÄWigner formula. We also found the amplitude of the wave function inside resonant
layer, which is important for prediction of magnitudes of phenomena, which can take place
at resonances.

We found an interesting phenomenon of resonant level splitting, when positions of reso-
nances in two ajacent wells are the same but widths are different. In this case splitting will
not really give two resonances with slightly different positions, but gives two resonances with
the same position and with two different widths. It is very interesting to consider to what real
phenomena can lead such a splitting.

We also have shown how to calculate nontunneling transmission of polarized neutrons
through reLecting magnetic MS with noncollinear distribution of internal magnetization. It is
not difˇcult to generalize the obtained formulas to look for splitting of magnetic resonances
and study the analogous peculiarities of splitting as in nonmagnetic case.

We have considered only few examples in neutron optics, though the method is applicable
to a wide variety of other problems which are manifest in wave and particle propagation
through layered media.
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