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The work presents systematic theoretical investigation of even-even N = 82 isotones from *2Sn
up to *®Gd, based on the random phase approximation with finite range two-body effective interaction
identical in the particle—particle, particle-hole and pairing channels. Comparison with the experiment
concerning the values of energies of levels, probabilities of electromagnetic transitions and electromag-
netic moments available by now is offered.

H ocnoe MeTon X oTudyecKoi ¢ 3bl ¢ 3()(heKTHBHBIM B3 UMOAEHCTBHEM KOHEUHOTO P JIHUYyC , eIH-
HBIM B Y CTUYHO-Y CTUYHOM, Y CTUYHO-IBIPOYHOM U B CII PUB TEJIBHOM K H JI X, IIPOU3BEIAEHO CUCTE-
M THYECKOE TEOPETHYECKOE HCCIeNOB HUe YeTHO-yeTHBIX anep ¢ N = 82, ot *2Sn 1o ®Gd. Ilpencr -
BJIEHO CpP BHEHHE C 3KCIIEPUMEHTOM, K C Iolleecs CIIEKTPOB YPOBHEH, BEPOATHOCTE! dJIEKTPOM THUTHBIX
MEepexooB U SAEPHBIX MOMEHTOB, B KOTOPOE BKJIIOUEHBI MMEIOIINeCS K H CTOSIIEMY BPEMEHH 3KCIIepH-
MEHT JIbHBIE JI HHBIE.

INTRODUCTION

By the present time there are accumulated a large set of experimental data [1-10] con-
cerning the properties of even—even nuclei with N = 82. The investigated region of the
mentioned isotones covers the interval from the neutron excess double magic nuclei '%2Sn
up to the neutron deficient nuclide '*6Gd, in which the proton configuration with Z = 64
manifests some properties of the closed shell.

It should be mentioned that the nuclei considered here were the subject of intent attention
in many theoretical papers. So, still in the works [11, 12] the set of proton single-particle
energies for the N = 82 nuclei was established by using the inverse gap equations yielding
as a result the evidence of an energy gap between the d5/2, g7/2 and the h11/2, d3/2, s1/2
levels for nuclei close to '“6Gd. In works [13-16] the properties of the mentioned nuclei
were considered using the TD approximation accounting the pairing correlations and particle
number projection. In [17] the N = 82 isotones were considered in the framework of
generalized seniority scheme. Shell model calculations of level energies for even and odd
nuclei with NV = 82 were carried out in [18], while in [15, 16, 19-21] the calculations of
selected electromagnetic properties were performed demonstrating that some of them are very
sensitive to the values of spectroscopical factors, i.e., to the values of single-particle energies.

At the same time numerous recent experimental data available by now need a new trying to
review the situation as a whole. Due to this it seems quite reasonable to perform a theoretical
analysis of the even N = 82 nuclei in the framework of common theoretical scheme using
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for all of them identical parameters that define residual interaction and the mean field. As
all the mentioned nuclides are close to the filled shells they may be considered as having
the spherical form. As such a theoretical tool we use here the random phase approximation
considering the pairing correlations and smoothing of the Fermi step (QPRPA method).

The mentioned method but without pairing correlations was successfully used by us in cal-
culations of magic nuclei or nuclei having the structure «magic nuclei plus two (quasi)particles»
[22-27]. Here we use the more general scheme that covers a larger variety of nuclei and
automatically transforms to the method used by us earlier when the numbers of nucleons ap-
proach to that ones forming the closed shells. Everywhere if possible we make a comparison
with the experiment.

1. BASIC RELATIONS DEFINING THE SPECTRA OF LEVELS

Here and below we shall proceed from the assumption that the nuclei are described by the
Hamiltonian H with an effective two-body interaction ﬁ(ml, x2), where D is a scalar relatively
to rotations in coordinate-spin and isospin spaces. In the case of two interacting protons we
shall also include in ¥ the pairing Coulomb interaction that destroys isotopic invariance:

N ~ 1 ~
H=23 (pITa)afas+ 7 Y daBlilyd)aatafasa,. (1)

af afyé

Here T is a kinetic energy operator, o(c3|9|y8), is an antisymmetrized two-body matrix

«) are single-particle eigenfunctions of an arbitrary
single-particle set while af and ag are creation and annihilation nucleon operators.
Using the standard procedure [28, 29] we can pass to the quasi-particle basis, at — £7:

af = Ujal€d — VaiPaboai Ul +fy = 1. ©)

Here ¢, is the phase of the particle-hole transformation (we use below the designations
Uja| = U and v)q| = v, omitting the magnetic quantum numbers that enter only in ),
|—a) is a state with the opposite sign of magnetic quantum number with respect to |a).
Defining the Hartree—-Fock-Bogoliubov vacuum |®g) of the even—even system as satisfying
the stability condition, <¢0|I§£;r &7|®o) = 0, we may transform the expression (1) to the
form [30, 31]:

H=Ey+) E& & + Hin, 3)

where

Ey Zva < r szar5|19|rs ) - —Z o 4)

<T|T|m> + Z a<rn|1§|mn>avi = €r5rm; (5)
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1 Er— A
2 _ 1|4 _¢r _ )2 2
vy = 5 [1 B } , E. (er = A2+ A2, N(p,n E v (p,n (6)
1 (l<r - 7“|1§|5 - 5>a<PTSOSAs
A, = ~1 E E. . @)

In formula (3) Ej is the energy of vacuum in the sense of the Hartree—-Fock—Bogoliubov
method and all the single-particle indices entering equations (3)—(7) correspond to the self-
consistent HFB orbitals that are defined by the formulas (5)-(7) while the Hj,; term presents
the normal, with respect to the vacuum ®(, potential energy term from the equation (1). It
has the form H;y, = Hoo + Hyg + Hos + H31 + Hys, where H;;, is an item that contains «i»
operators 1 and «k» operators €. As the v,., the A, in equations (4)—(7) also do not contain
the dependence on magnetic quantum numbers.

We shall not be interested below in the total binding energies supposing also that the nuclei
in question have the spherical form with the mean field generated by some phenomenological
potential. In this case we should remain from the system (4)—(7) only the (6) and (7) relations,
where |r) = |n.l,j.(m,)) is an eigenfunction of a spherical mean field.

Here we use spherical harmonics with the phases of the work [32], where Y;_,, =
(—1)™Y;*, and define ¢, as ¢, = (—1)/» 7=~ Under the mentioned conditions and using
short range attraction in the pairing channel, the A, = A,, ;, ;. values are proved to be of the
same sign while the system of equations defining the superfluid characteristics of nuclei has
the form

25"+ 1Ay (p,n) . A ) ,
Anij(pyn) = —5 Lot "7'5')%, 00 |9](nlg)?; 0 ) (— 1) 8
s =3 % T B (U0 @O ) ®)

/l/ -/

. 25 +1 nlj (P, 1) — A(p,
N(p.m) = 325+ Doy (o) = 3 2 [1 _ Enl (2;)@ o O
nlj nlj ’
Euis(p, ) = 3/ wts (0, 1) = Ap, m)]2 + A2, (p, ). (10)

Supposing the presence of correlations in the true ground state |0) of an even—even
nuclei we define the creation operator Q. ;,, of the one-phonon excited state |w,,, JM) with

lwn, JM) = Q;JMK)) in the following way:

n,J n, J
wne = DX (656 g = DoV ekl (11
a>b c>d
where
[gtjfb ] Z Ci%ajb7r1b§+ maf.]bmb7 (12)

V 1+5]a]b Mamyp
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[C&i = W > Crimedami&s-m &amaPea (13)
cJd memyg
X = (wns MU [656] 0,100, Y75 = (wns TM] [6a&] 51, 10)- (14)

Here and below j, = ng,la, Ja, (t2, ); for even—even nuclei both the indices «a» and «b»
(«c» and «d») in (11) simultaneously belong to protons or to neutrons: a,b(c,d) € p or
a,b(e,d) €

Using the relation [H, Q] = w,Q,;", which is equivalent to the Shrodinger equation
and calculating the commutators from both the sides of the mentioned relation with the pair
operators fi"' 5,;" and ;& one may obtain the set of the QPRPA equations [30, 31] that define
the amplitudes «X» and «Y'» of the states |w,, JM) and the eigenvalues w,,. They have the

form
[(E—w)I+ A B X —o (15)
-B —[(E+w)I + 4] Y
In formulas (15) £ = Eq, = Ej, + Ej,, Icd,ap = 6j,4.04,4, While the matrix elements of the

submatrices A and B in the case of even—even nuclei occur to be as follows:
Acdab = AT, e = (Wi 05,005,105, + 05,05,05,05,) aljeda; 9] jadv; J)at
+ (ujcvjdujavjb + chu'jdvjaujb) a<.7'c]ti§ Jlﬁljaj_ﬁ J>a+
+(_1)ja+jb+J+1 (vjuujdujavjb + ujuvjdvjuujb) a<jc]rd; J|1§|jb,7j1; J>a; (16)
Bedab = B, uin = (W5.05,05,05, + 05.05,45,15,) aldeda; J|9)jadv; J)a—
— ()05, v5,uj, + V5 u5,05,05,) adedas J|O|jadv; T)at
(=17 (v w5, 05,05, + w5,05,15,05,) ddeda; T10|jbdas T)a- (17)
In formulas (16) and (17) o(jeja; J|9]jaje; JVa and o (jeja; J|0|jajv; J)a are the antisym-

metric matrix elements of the effective interaction ¥ in the particle—particle and particle-hole
channels with a given spin. They have the form

~ 1 R
a<jcjd;=]|19|jajb;<]>a = <jcjd;=]|19|jajb;=]> +
V+65.5,)(1+6,5,) [
(=D s 1D s T) | (18)
(_1)lb+ld

> @J + D)Wljsjajesas JJ']x

a<jcjd; J|1§|ja5b; J>a = -
V05500 + 65,5,) 5

Goges I'1Dliagas J') + (=15 G jes I Dl jajas 7] (19)
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If we represent the effective interaction ¥ in the form
Va1, 22) = 0O(F1,72,51,52) + 0D (F1, 72,51, 52)T1Ta + +Ve(r1,v2, Ly 1), (20)

where 9 and 9V are scalars in coordinate—spin space and V. is a Coulomb interaction,
then the pair matrix elements (j.jq; J|¥|jajp; J) entering the right-hand side of relations (18)
and (19) are different from zero only in the case of ¢t,, +t,, =t,. + 1., and have the form

(Ge(m)ja(n); J10|ja(n)jp(n); ) = Geja; J1OO + 9D 5a5p; ),

. . A . .. A A 62 ..
(Je(P)ja(p); J|9ja(p)is(p); J) = <Jc]d§J‘19(O)+19(l)+EJa]b§J>7(21)
(e(p)ja(n); T9)ja(p)is(n); J) = (jejas J10 — 9D fages; J),

(e(p,n)ja(n, p); J19)ja(n, p)js(p, n); J) = (Gedas J1200 | fagiv; J).

From the explicit form of the matrix equation (15) one may easily obtain the orthonorma-
lization relation

n,J ym,J _ n,Jym,J| _
ZXjajijajb 2 :chjd chjd = dmn, (22)
a>b c>d

which in terms of the QPRPA bosons corresponds to condition

<6|QH,JMQL7J7”|6> = 6mn (23)

The system (15) is applicable for description of systems with any even numbers of
protons and neutrons describing the nucleus by the method in which the nucleon numbers
Z and N are conserved only on the average. In the case of magic, Z = Zy and N = Nj,
or semimagic nuclei, when the pairing vanishes to zero, the system (15) splits into several
unlinked subsystems each describing the (Zy, Ng), (Zo£2, Ny), (Zp, No£2) nuclei. One
should mention that the least two solutions, as conserving the numbers of particles exactly,
may be in some sense more adequate than those obtained by using the equation (15) with
Z = ZypE+2 or N = Ny=+2.

2. PROBABILITIES OF ELECTROMAGNETIC TRANSITIONS

We shall consider below the electromagnetic transitions that are described by the single-
particle operator

M) = (ilm()|k)a a. (24)
ik

Here we must distinguish between two different cases, i.e., between the phonon—phonon
(between the two excited states) and the phonon—ground state transitions. The latter transition
is described by the matrix element

(OLM M) |wn, TM) = <6 |[MOw), Q1 ]| 0>- (25)
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Taking the M in the form (24), using the relations (2), (11) and reducing the results of
commutation in (25) to the normal form, one can obtain the final result which looks as
follows:

OIMN) lwn, I) = (=1)6(J, \)d(mn7a)
(

_1)lb

e (allmN)|l5s) —
Ul )

J
x| D X (v, £ vj,u,)
Ja>Jb
s (-l .
— Z Y" U]au]b iuga%)ﬁ%ﬂm@)llm )
JaJb

Ja2>Jb

(26)

where the upper signs refer to T-even (E'\) while the lower ones to T-odd (M \) transitions.
We notice here that we define the reduced matrix elements according to relation

(J' M| Ty M) = (—1)7 =M (_}@k J><J’IIT( )J)- 27)

One can easily see that the «phonon—phonon» matrix element has the form

<wn7 J,M,|M(/\N)|wm; JM> <wn7 J'M' |[ ()‘M) Qm Jjw]|0> + Omndxro Z mii”?- (28)

Remaining in (28) only the terms corresponding to the QPRPA space and taking into consid-
eration the case of A # 0, we obtain the result

m,J vn,J m,Jy n,J'
|:X]U..]b Jeja Jadv Yjujd,

(o I i, /) = [T DS 50 e

X{éjb]d (Niedgb; Jad N(wj g, F vj.05,) (Gel ) | Ja) —
—(= 1) 5 WINGa b Ga ) (w105, F 05,05,) Galli (V) ||ja) —
_( 1)]a+]b+J5]aJd [/\jcjja§jb'],](ujcujb + ’chvjb)<jc|‘m(/\)”jb>+

(= 1)etdet IRt it T W Njad fas Gu ") (ws, g, F Ujdvjb)@dllm()\)ﬂjb)} (29)

where the upper signs refer to £ \; while lower ones, to M\ transitions.

The QPRPA method for excited states takes into account the correlations with the quasi-
particle numbers equal to 2, 6, 10 and so on and does not include the correlations with the
quasi-particle numbers 4, 8, 12 ... . It means that considering the transitions between the
one-phonon states we omit the two-quasi-particle admixtures which are the most responsible
for the renormalization of single-particle vertices. One may compensate this shortcoming of
the theory by introducing the effective charges (i.e., by the renormalization of single-particle
operators m(Au), entering equation (29)). As to transitions between the excited and the
ground states, they proceed with the variation of the quasi-particles number by two and in
principle may be described without introducing the effective charge. However, the words
«in principle» mean that really we must involve into calculations all the single-particle states,
including that of continuum. As we really do not make this in our calculations using the
limited basis, the introduction of the effective charge seems also quite reasonable also in this
case, especially for positive parity transitions.
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3. PARAMETERS OF THE THEORY

As the nuclei under consideration have the magical neutron number N = 82 and the values
of Z in the interval between the magical (or almost magical at N = 82) proton numbers 50
and 64, it is reasonable to carry out the analysis of their properties in the framework of
single particle scheme generated by spherical potential. As a such we used the potential of
Woods—Saxon type with the parameters defined by us earlier from the best description of
single-particle spectrum in the vicinity of '32Sn. This potential has the form

1
+ Ulsro — |1 (30)

U(r7o-): |:T—R:|
1+4+exp|——
a

1+exp{ }
N —

Z
In formula (30) U = —U (1 -0

), R = rgAY3, Uy = aU, t, = 1/2 for

neutrons and ¢, = —1/2 for protons. In the case of protons we added to (30) the potential of a
uniformly charged sphere with R, = . A'/3. The parameters of potential (Setl, corresponding
to our works [25-27]) were: Uy = 51.5 MeV, rg = 1.27 fm, r. = 1.25 fm, o = —0.39,
0 =1.39, a = 0.55 fm for neutrons and a = 0.67 fm for protons. For checking the sensitivity
of our results to the values of single particle levels we repeated the calculations using some
different sets of the mean field parameters: Uy = 51.5 MeV, rp = 1.26 fm, r, = 1.20 fm,
a = —0.43, B =1.39, a = 0.60 fm both for protons and neutrons (Set2). We also used Set3
of parameters which is the same as the Setl, except the o value which in this case is equal
to —0.33.

In our previous works [22-27] we defined the finite range effective interaction in nuclei
near '32Sn and 2°®Pb which is suitable for description of particle—particle, particle-hole,
even—even and odd—odd nuclei adjacent to the magic core. Here we deal with nuclei whose
properties are mainly defined by the interaction of valence protons above the Z = 50 shell.
The interaction between protons in such system was defined in [13, 14] as having the form

0 = Vo(Ps +tP,) exp (—ar,), (31)

with V; = —33.2 MeV, ¢t = 0.2, a = 0.325 fm—2, P, and P, are singlet and triplet spin
projectors. As we really include in the consideration not only protons, but also neutron
excitations, we must introduce a more general force. Instead of dealing with our previous
complicated interaction, we used here a more simple one, which for the particle—particle
T = 1 channel coincides with that of the works [13, 14], resembling also the interaction of
our works [22-27] in other channels. As a such we selected the interaction

R e /1 . 1 .
9= (V+V,p0102T172) €Xp (—rfg/rgo) + . (5 — tzl) (5 — tZ2> (32)
1

with V = —13.3 MeV, V., = 6.65 MeV, rgp = 1.75 fm, which we used in our calculations.
We notice here that the interaction (32) was used by us both in the QPRPA equations (15) and
in the pairing equations (8)—(10), giving automatically zero energies of the ghost 0 states in
the case of developed pairing.
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In the work [33] we obtained a good agreement with the experiment in description of
electromagnetic properties of the '32Sb nuclei using the values of effective charges for £2
transitions equal to e (p) = 1.6le| and eer(n) = 0.9]e|, with effective M1 electromagnetic
operator in the form

m(M1), = @m {obal + gins + golor’Vo 0 01'} | (33)
where ¢lg(p) = 1.10, giz(p) = 3.796, g'z(n) = —0.005, giz(n) = —2.038, go =
—0.031 fm~2. The above values of parameters also well describe the E2 and M1 char-
acteristics of nuclei in the vicinity of 2°®Pb [23]. In our work [8] we specially defined the
values of proton effective charges with respect to E2 and E3 transitions in the '34Te nuclei,
which both were found to be ~1.9|e|. Here we performed all the calculations by using the
values of proton effective charges relatively to £2, E3 and E4 transitions all equal to 1.9]e],
with the neutron charge equal to 0.9]e|. As to the M1 electromagnetic operator, it was taken
in the form (33) with the parameters presented above.

4. RESULTS OF CALCULATIONS

The properties of nuclei considered by us are mainly defined by the valence protons that
successively fill the 50-64 (sub)shell. However, for an adequate description of some collective
levels, for example, the 3] state, as well as for a description of nuclei with filled shells, it is
necessary to include in the basis more remote proton orbitals as well as the most important
neutron single-particle states that form particle—hole neutron configurations with the excitation
of neutrons from the filled shell with N = 82. Therefore our basis set of single particle states
consisted of 11 proton orbitals, namely the 1£7/2, 1£5/2, 2p3/2, 2p1/2, 1g9/2, 1g7/2, 2d5/2,
2d3/2, 1h11/2, 3s1/2 and 2f7/2 levels, and also included 2d3/2, 3s1/2, 1h11/2, 2f7/2, 1h9/2
neutron states that are most close to the neutron N = 82 gap. Everywhere we used theoretical
values of single-particle energies that corresponded to potential (30).

In Figs. 1-3 one can see the systematics of experimental and calculated energies of 27,
25, 05 and 37 levels for the variants 1-3 of the mean field parameters. The energies of
all levels in A(Z, N) nuclei with a nonzero pairing are defined by the system (15) with the
given values of Z and N. The situation becomes more delicate near the closed shells. So, for
example for '2Sn nuclei, the energies are defined by the particle-hole branch of solutions
of the mentioned system by Z, N = 50, 82. As to the 3*Te nuclei, for the description of
all its levels except the 3] state, we used the solution that exactly conserves the number of
particles (i.e., proton particle—particle branch of solutions of the system (15) when Z, N =
50, 82). This branch corresponds to the particle—particle RPA method [25] with Z, N = 52,
82. As the mentioned branch does not contain the particle-hole states, for description of the
lower 3] state having large particle-hole admixtures, and only for it, we used the system
(15) with Z, N = 52, 82 (the next 3~ state has a larger energy and is mainly defined by the
particle—particle channel).

One can see from Fig. 1 that all the mentioned variants of the mean field parameteriza-
tion correctly reproduce the experimental pattern for the 2 and 27 levels, which structure
essentially alters with the increase of Z. So, in 132Sn the 2] and 2] levels have the neutron
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E2},), MeV
A
4+

]

1 1 1 1 1 1 1 1

132 134 136 138 140 142 144 146
A

Fig. 1. Systematics of the 27 and 23 levels in the N = 82 isotones

E(03), MeV

3k

Fig. 2. Systematics of 0] levels in the N = 82 isotones

particle-hole structure with the main configurations correspondingly of the (2f7/2, 1h11/2)
and (1h9/2, 1h11/2) types. At Z > 52, the mentioned levels have mainly the proton two-
quasi-particle nature and with the increase of Z from 52 up to 62 the structure of the 2] level
changes from the configuration (1g7/2)? to (2d5/2)%. At the same time the main component
of the 27 level, presented in '*4Te by the proton (1g7/2, 2d5/2) configuration, changes in
140Ce and becomes the mixture of (1g7/2, 2d5/2) and (2d5/2)? configurations. In '#6Gd both
the mentioned states have the structure that corresponds to the «crossing» by protons of the
Z = 64 gap.
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E(3)), MeV

Sk

1 1 1 1 1 1 1 1 | g

132 134 136 138 140 142 144 146
A

Fig. 3. Systematics of 3] levels in the /N = 82 isotones

Sp, MeV

1692 1g72 1g772 l1g72 1g72 2d52 2452 24572
15 ___':j}j\\

lg72 1g72 1g72 1g72 24572 2452 24572 Ih1ln2
132 134 136 138 140 142 144 146
A

Fig. 4. Proton separate energies S, from the even—even Z, N = (A — 82), 82 (upper curve) and from
the proton-odd with Z, N = (A — 81), 82 (lower curve) nuclei. Single-particle prescriptions correspond
to the remainder proton-odd (upper line) or to the initial proton-odd (lower line) nuclides

As to the pairing—vibrational 05 states, one can see from Fig.2 that their energies are
systematically underestimated as compared to the experiment, though the general energy
systematics is reproduced quite satisfactory in all cases.

One can see another pattern in the case of 3 states. Though the global tendency for the
variation of energy levels is reproduced here for all variants, «Setl» and «Set2» are found to
be more preferable. In all cases the wave function of the 3] level in '32Sn is a collective
particle-hole mixture. As the number of protons increases, the main configuration of this
level successively occurs to be of the (1g7/2, 1h11/2) and (2d5/2, 1h11/2) types.
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Tables 1-8 present experimental and theoretical energy levels for all nuclei considered
by us. For each given J”™ one can find there all the calculated levels with energies less
than the maximal, presented in the Tables for given J™. For large excitation energies the
correspondence of experimental and theoretical energies may be rather arbitrary as not all
levels may be known from the experiment by the present time. On the whole, the coincidence
with the experiment in the energies of positive parity levels proves to be the best in case of the
«Set2» variant remaining quite acceptable for the «Setl» variant of the mean field parameters,
that optimizes single-particle spectra in the vicinity of '>2Sn. The negative parity levels are
better described by the mean field parameters of the variant «Setl» and a little worse — by
those of the «Set2» variant. From the analysis of Tables 1-8 one can also see that there is a
nonsatisfactory agreement with the experiment in the case of «Set3» variant.

The global properties of both the mean field parameters and the residual interaction used in
calculations may be checked in description of the one-nucleon separation energies. If Z, N are
even numbers, then in the framework of theory that takes into account pairing correlations of
superconducting type we have the formula describing the (one-proton for example) separation
energy from the A(Z, N) nuclei:

S;zj)(ZaN):_Ap(ZvN)—'—E;D(ZaN)v (34)

where the index «j» refers to the final odd nuclei. At the same time the (proton) separation
energy from the proton-odd (Z 4 1, N) nuclei that stays in the state «j» is given by the
expression

SI(Z+1,N) = -\,(Z,N) — E,(Z,N). (35)

One should note that in the absence of pairing correlations E; — (A—¢;) and Ej; — (g5 — )
(here j refers to holes; while j/, to particles), and thus the relations (34) and (35) turn into
those presenting the Coopman theorem in the case of the Hartree—Fock procedure.

Comparison of experimental and calculated proton separation energies is presented in
Fig. 4. One can see that with the differences in the calculated and experimental separation
energies at most of about one MeV (usually less) the calculations correctly reproduce both the
values of S, and the global tendencies of their systematics, including the peculiarities near
the closed shells.

In Table 9 one can see the results of our calculations for the reduced transition probabilities
and nuclear moments as well as comparison with the experiment.

Among the transitions entering Table 9 there exist those proceeding between the excited
and ground states. The latter E')\ transitions are described by the formula (26) and are rather
weakly dependent on the single-particle spectra. Such a dependence is mainly due only to the
X, Y amplitudes entering Eq. (26), while the factors (uv’ 4+ vu’) are only slightly dependent
on single particle energies. One can see that the mentioned transitions are rather well described
by our calculations, what really confirms the approximate equality of the £E2, E3 (and E4)
effective charges in the region of '32Sn. It is useful to mention that the energies of 27, 3,
and 4f states in '®2Sn are also close to each other (see Table 1). Such a «degeneracies» of
proton effective charges and phonon energies for different EX vibrations in 132Sn manifest
about some additional symmetry of collective Hamiltonian of this nucleus.

Turning to description of transitions between the excited states (transitions of the type
«phonon—phonon») we see that the EX transition rates are extremely dependent on the varia-
tions of single particle spectrum. Such sensitivity is due to the factor (uu’ — vv’) in formula
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Table 1. The level energies of >?Sn, MeV

J™ | Exp. | Setl Set2 Set3 J™ | Exp. | Setl Set2 Set3

1+ 6.184 | 6.702 | 5.418 1- 5.475 5.440 5.534
2+ | 4.04 | 4274 | 4.163 | 4.045 1- 7.466 7.539 | 7.549
2+ 5.310 | 5.816 | 4.579 2- 6.298 5.985 6.630
2+ 5.712 | 6.160 | 5.203 2- 6.828 6.796 7.073
3+ 5.071 | 4.741 | 4.377 3— | 435 | 4877 | 4870 | 4.810
3+ 5.127 | 5.632 | 4.830 3- 5.654 | 5.468 5.743
3+ 5.492 | 6.157 | 5.062 3- 5.880 | 5.705 5.958
4+ | 442 | 4746 | 4482 | 4.194 4- | 483 | 5.694 | 5428 5.706
4+ 4.990 | 5.463 | 4.546 4- 1 539 | 5.963 5.889 5.881
4+ 5.335 | 5.941 | 4.841 4- 6.076 5.941 5.950
5+ 4919 | 4.692 | 4.168 5- 5.647 5.391 5.515
5+ 5.038 | 5.421 | 4.758 5- 6.022 6.518 5.806
5+ 5.467 | 6.132 | 4.846 5- 6.095 6.836 6.103

6+ | 472 | 4792 | 4.551 | 4.076 6- | 6.60 | 6.434 | 7.001 6.183
6+ | 5.40 | 4.930 | 5.334 | 4.627 6- | 6.71 | 7.599 7.540 7.753
6+ | 6.17 | 5.314 | 5943 | 4.733 6- | 7.21 | 9.145 9.273 9.014
6+ | 6.63 | 5.564 | 6.129 | 5.146 7- | 7.24 | 7.461 7.399 | 7.616
6+ 7.803 | 7.858 | 7.235 7- 11.955 | 12.354 | 11.334
T+ | 492 | 4.826 | 4709 | 4.074
7+ | 5.63 | 5.049 | 5.328 | 4.686
7+ | 6.23 | 5.517 | 6.052 | 4.826
7+ | 690 | 5.695 | 6.352 | 5.482
7+ 10.19 | 9.544 | 10.639
8+ | 4.85 | 4729 | 4594 | 3.974
8+ | 548 | 4958 | 5.250 | 4.706

8+ 5.527 | 6.059 | 4.724
9+ 5.272 | 4.933 | 4.641
9+ 5.475 | 6.062 | 5.050
10+ 5.531 | 6.072 | 4.709

(29), the magnitude of which is strongly dependent on the structure of single particle spectrum
near the Fermi level. It follows from Table 9 that with the increase of Z the experimental
ratio of the B(E2; 4f—>2f) to B(F2; 6f—>4f) values changes in a rather irregular manner.
One should also pay attention to the irregularity of the relative distance between the 6] and
47 levels with the increase of Z. The mentioned facts are due to variation of the structure
of the lower 2], 41 and 67 levels. So, if in '**Te and '3Xe all the mentioned states have
the structure of the (1g7/2)? type, in '3®Ba the 6] level presents the mixture of the (1g7/2)?
and (1g7/2, 2d5/2) configurations, while in 1448m the mentioned 2{, 4f and 6f levels have
the structure of the (2d5/2)2, (2d5/2)? and (1g7/2, 2d5/2) types. The amplitudes «X» and
«Y» in formula (29) and especially the factor (uu’ — vv’) are extremely dependent on the
relative position of single-particle proton states in the 50-82 proton shell. Potential (30) with
its global parameterizations gives only some averaged properties of single particle spectra not
reproducing in detail the structure of single particle spectrum in each given nucleus. This
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Table 2. The level energies of >*Te, MeV

J* | E Setl Set2 Set3 J* | B Setl Set2 Set3

0+ 2.216 | 2.460 | 3.052 5+ 5.029 | 5.439 | 5.095
1+ | 2.600 | 2.557 | 2.678 | 2.996 6+ | 1.665 | 1.921 | 1.876 | 1.838
2+ | 1.265 | 1.562 | 1.515 | 1.480 6+ | 2.350 | 2.250 | 2.358 | 2.669

2+ | 2435 | 2.516 | 2.641 | 2.996 3- 4.107 | 3.484 | 4.733
2+ | 2.900 | 2.825 | 3.117 | 4.643 4- 4.594 | 4.061 | 5.491
2+ 4.517 | 4.895 | 5.894 5- 4471 | 3.943 | 5.377
3+ 2.591 | 2.712 | 3.030 6— 5.006 | 4.072 | 5.502
4+ | 1.550 | 1.838 | 1.787 | 1.744 7- | 4.440 | 4.363 | 3.835 | 5.268
4+ | 2.520 | 2.484 | 2.605 | 2.918 8- 4.619 | 4.085 | 5.515
4+ 3.005 | 3.305 | 3.970 9- | 4.170 | 3.905 | 3.371 | 4.801

5+ | 2.700 | 2.594 | 2.688 | 3.033

Table 3. The level energies of **Xe, MeV

Experiment Theory Experiment Theory

J FE J™ | Setl Set2 Set3 J7T FE JT | Setl Set2 | Set3
0+ 2.582 | 0+ | 1.820 | 1.955 | 2.055 5+ | 4.508 | 4.900 | 4.408
1, 2(+) 3211 | 1+ | 2.442 | 2556 | 2.634 || 6+ | 1.892 | 6+ | 1.875 | 1.912 | 1.761
2+ 1.313 | 2+ | 1430 | 1.464 | 1.334 || 6+ | 2.262 | 6+ | 2.073 | 2.152 | 2.182
2+ 2289 | 2+ | 2.270 | 2.386 | 2.423 7+ | 5.284 | 6.033 | 4.985
2+ 2.414 | 2+ | 2.379 | 2.555 | 2.776 8+ | 5.101 | 4.854 | 4.334
2+ 2.634 | 2+ | 3.681 | 3.882 | 3.550 8+ | 5.207 | 5.018 | 4.778
3+,4+ 2.125 | 3+ | 2.334 | 2.438 | 2.431 3— | 3275 | 3— | 3.727 | 3.318 | 4.472
2,3,4(+) | 3.873 | 3+ | 4.408 | 4.790 | 4.295 4— | 4.154 | 3.598 | 4.761
4+ 1.694 | 4+ | 1.796 | 1.816 | 1.655 5- | 3.967 | 3.432 | 4.593
4+) 2465 | 4+ | 2.223 | 2.324 | 2.361 6— | 4.115 | 3.559 | 4.709
4+ 2.560 | 4+ | 2.511 | 2.715 | 2.972 7- | 3.907 | 3.356 | 4.530
4+ 2.608 | 4+ | 4.085 | 4.398 | 4.080 8— | 4.099 | 3.544 | 4.687
5 2.444 | 5+ | 2.306 | 2.409 | 2.447 9- | 3.620 | 3.062 | 4.268

structure was in particular defined from the experiment in [15] using the procedure of inverse
gap equations and it was shown the isolation of a Z = 64 (sub)shell in the '6Gd nuclide,
with the energy gap between the groups of 1g7/2, 2d5/2 and 1h11/2, 3s1/2, 2d3/2 levels of
about 3 MeV.

With the reservations presented above we can say that the coincidence with the experiment
for E2 transitions between the one-phonon levels for the Setl of single-particle spectrum,
which parameters were defined by us from the description of «one quasi-particle above the
core» nuclei near '32Sn, seems to be quite acceptable. It remains the same for «Set2» variant,
where we used the same diffuseness parameter a = 0.60 fm (see Eq. (30)) both for protons
and neutrons. The largest discrepancies with the experiment are observed for the 4] —2; and
67 —47 transitions in *®Ba, '4°Ce and '#>Nd where there happens the change of a valence
1g7/2 to 2d5/2 orbitals. It is worth of mentioning that though the «Set3» variant gives in
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Table 4. The level energies of 13*Ba, MeV

Experiment Theory Experiment Theory

J" E JT | Setl Set2 Set3 JT E JT | Setl Set2 | Set3

0+ 2340 | O+ | 1.711 | 1.794 | 1.627 4+ | 3.155 | 4+ | 4.097 | 4.453 | 4.017
(0+) 3.612 | 0+ | 4436 | 3.569 | 5.224 5+ | 2416 | 5+ | 2.258 | 2.340 | 2.250
(1,2,3) | 2.190 | 1+ | 2.444 | 2.544 | 2.520 5+ | 4302 | 4.716 | 4.141
(1+, 24) | 2.583 | 1+ | 4.494 | 4951 | 4.488 6+ | 2.091 | 6+ | 1.919 | 1.996 | 1.878
2+ 1.436 | 2+ | 1.473 | 1.541 | 1.440 6+ | 2203 | 6+ | 2.148 | 2.192 | 2.064

2+ 2218 | 2+ | 2.184 | 2.296 | 2.241 6+ | 5.225 | 4.415 | 4.639
2+ 2.640 | 2+ | 2.297 | 2.392 | 2.365 || (7+) | 3.360 | 7+ | 6.025 | 6.019 | 5.170
2+ 3.049 8+ | 3.184 | 8+ | 5.229 | 4.449 | 4.541

2+ 3339 | 2+ | 3.460 | 3.652 | 3.297 3— | 2.881 | 3— | 3.339 | 2.921 | 4.046
3+ 2446 | 3+ | 2.295 | 2.379 | 2.298 || (4)- | 3.561 | 4— | 3.913 | 3.394 | 4.448
3+ 2991 | 3+ | 4171 | 4572 | 3.995 || (5)- | 3.857 | 5—- | 3.671 | 3.183 | 4.259
4+ 1.899 | 4+ | 1.897 | 1.950 | 1.793 6— | 3.853 | 3.333 | 4.365
4+ 2.308 | 4+ | 2.204 | 2.280 | 2.188 7- | 3.657 | 3.141 | 4.214
4+ 2.583 | 44 | 2.319 | 2466 | 2.510 || (8-) | 3.678 | 8- | 3.825 | 3.305 | 4.327
4+ 2779 | 4+ | 3.815 | 4.105 | 3.763 || (9-) | 3.633 | 9— | 3.449 | 2.922 | 4.044

Table 5. The level energies of 1“°Ce, MeV

Experiment Theory Experiment Theory
JT E J™ | Setl Set2 | Set3 JT E JT | Setl Set2 | Set3
0+ 1.903 | 0+ | 1.706 | 1.798 | 1.412 5+ | 4.116 | 4563 | 3.928

0+ 3.017 | O+ | 3.772 | 3.055 | 4.371 6+ | 2.108 | 6+ | 1.981 | 2.095 | 1.939
1+ 2547 | 1+ | 2493 | 2.619 | 2.495 6+ | 2.629 | 6+ | 2.350 | 2.443 | 2.318
2+ 1.596 | 2+ | 1.531 | 1.644 | 1.576 6+ | 3.484 | 6+ | 4.872 | 3.885 | 5.117
2+ 2348 | 2+ | 2.172 | 2.281 | 2.073 7+ | 3433 | 7+ | 6.419 | 5.175 | 5.262
2+ 2.521 | 2+ | 2.342 | 2.450 | 2.269 8+ | 3.513 | 8+ | 4.906 | 3.918 | 4.549
2+ 2900 | 2+ | 3.256 | 3.373 | 3.086 8+ | 3.621 | 8+ | 5.319 | 5.063 | 5.152
2+ 3.001 3— | 2464 | 3— | 2962 | 2.563 | 3.468
2+ 3.118 3— | 3.040 | 3— | 3.724 | 3.277 | 4.201
3+ 2412 | 3+ | 2.329 | 2.437 | 2.244 3— | 3473 | 3— | 5266 | 5.271 | 5.245
3+ | 3.957 | 4395 | 3.754 || (4-) | 3.395 | 4- | 3.597 | 3.177 | 4.076
4+ 2.083 | 4+ | 1.988 | 2.111 | 1.958 5- | 3.256 | 5- | 3.345 | 2.925 | 3.837
4+ 2481 | 4+ | 2.229 | 2.353 | 2.150 6— | 3.616 | 3.183 | 4.071
3+, 4+ | 2.515 | 4+ | 2313 | 2.410 | 2.258 7- | 3425 | 7- | 3415 | 2973 | 3911
4+ 3.331 | 4+ | 3.533 | 3.707 | 3.365 8— | 3.477 | 8- | 3.590 | 3.149 | 4.022
(4+) 3.395 9- | 3493 | 9- | 3.305 | 2.837 | 3.856
5+ 2350 | 5+ | 2.296 | 2.394 | 2.191

some cases better description with the experiment for E2 transitions, the overall description
of energy levels given by this variant seems to be not acceptable.
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Table 6. The level energies of **>Nd, MeV

Experiment Theory Experiment Theory
JT E JT | Setl Set2 | Set3 JT E JT | Setl Set2 | Set3
0+ 2217 | 0+ | 1.852 | 1.939 | 1.739 5+ | 3.964 | 4.465 | 3.832

0+ 2978 | 0+ | 3.057 | 2.612 | 3.433 6+ | 2.210 | 6+ | 2.126 | 2.268 | 2.124
1(+) 2583 | 1+ | 2.623 | 2.782 | 2.650 6+ | 2.887 | 6+ | 2.695 | 2.854 | 2.922
2+ 1.576 | 2+ | 1.584 | 1.680 | 1.457 6+ | 4.198 | 3.351 | 4.601
2+ 2385 | 2+ | 2.320 | 2.427 | 2.334 || (7+) | 3.520 | 7+ | 5.395 | 5.975 | 6.190
2+ 2.846 | 2+ | 2.522 | 2.658 | 2.608 8+ | 3.454 | 8+ | 4.235 | 3.358 | 5.015

2)+ 3.046 | 2+ | 3.062 | 3.030 | 2.938 8+ | 5.330 | 5.153 | 5.232
(1,2+) | 3.128 3— | 2.085 | 3— | 2.579 | 2.220 | 2.882
2+ 3.487 4- | 2960 | 4- | 3.210 | 2.848 | 3.481

3+ 2548 | 3+ | 2475 | 2.611 | 2437 || (4)- | 3.244 | 4- | 3.541 | 3.189 | 4.027
24,3+ | 3.300 | 3+ | 3.690 | 4.185 | 3.347 || (4)— | 3.296 | 4— | 4.754 | 4.741 | 4.905
4+ 2.101 | 4+ | 2.011 | 2.142 | 1.783 || (5-) | 2.976 | 5—- | 2.973 | 2.617 | 3.261
4+ 2438 | 4+ | 2.329 | 2.459 | 2.298 6- | 3.237 | 2.874 | 3.513
4 2738 | 4+ | 2.616 | 2.758 | 2.806 7- | 3.243 | 7- | 3.091 | 2.732 | 3.380
4+ | 3.247 | 3.222 | 2.940 8— | 3.457 | 8- | 3.302 | 2.925 | 3.575
5+ 2514 | 5+ | 2.440 | 2.571 | 2.393 9- | 3486 | 9- | 3.177 | 2.786 | 3.839

Table 7. The level energies of 14*Sm, MeV

Experiment Theory Experiment Theory

J E J™ | Setl Set2 | Set3 J7 E J™ | Setl Set2 | Set3

0+ | 2478 | O+ | 2.116 | 1.962 | 2.409 || 6+ | 2.323 | 6+ | 2.430 | 2.521 | 2.532
0+ | 2.827 | O+ | 2.436 | 2.633 | 2.493 || (6+) | 2.729 | 6+ | 3.220 | 2.864 | 3.710
I+ | 2902 | 3.044 | 3.009 || 6+ | 3.308 | 6+ | 3.457 | 3.367 | 4.018
2+ | 1.660 | 2+ | 1.686 | 1.680 | 1.487 7+ | 5.366 | 5.342 | 6.606
2+ | 2423 | 2+ | 2.542 | 2.440 | 2.509 8+ | 3.489 | 2.874 | 4.057
24+ | 27799 | 2+ | 2.846 | 2.882 | 2.883 || 3— | 1.810 | 3— | 2.201 | 1.977 | 2.394
2+ | 3318 | 2+ | 3.029 | 3.158 | 2.936 || 3— | 3.228 | 3— | 3.472 | 3.212 | 3.964
3+ 1 2.796 | 2.903 | 2.879 || (4-) | 3.205 | 4— | 2.848 | 2.627 | 2.991

3+ | 3.347 | 3.902 | 2.912 4- 1 3.455 1 3.199 | 3.936
4+ | 2.191 | 4+ | 2.108 | 2.199 | 1.815 || 5- | 2.825 | 5- | 2.609 | 2.393 | 2.762
4+ | 2.588 | 4+ | 2.621 | 2.619 | 2.523 6— | 2.870 | 2.647 | 3.016

4+ | 2.884 | 4+ | 2.954 | 2.849 | 2.786 || T- | 3.124 | 7- | 2.734 | 2.521 | 2.880
4+ | 3.160 | 3.288 | 3.465 || 8- | 3.377 | 8 | 2.957 | 2.709 | 3.110
5+ | 2770 | 2.871 | 2.854 9- | 3.079 | 2.797 | 3.666
5+ | 3.864 | 4.419 | 3.808

Table 9 presents also some data about the M1 properties of nuclei in question. One can
see that the theory correctly reproduces the global characteristics of this type. The situation
is different for the quadrupole moments another time manifesting on the sensitivity of this
characteristic to the peculiarities of single particle spectrum.
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Table 8. The level energies of *°Gd, MeV

Experiment Theory Experiment Theory

J" E JT | Setl Set2 Set3 JT E J™ | Setl Set2 | Set3

0+ 2.165 | O+ | 1.885 | 1.902 | 1.728 || 6+ | 3.457 | 6+ | 2.714 | 2.436 | 2.972
0+ 3.020 | O+ | 2.843 | 3.054 | 2.568 || 6+ | 3.486 | 6+ | 3.012 | 2.925 | 3.301
0+ 3.485 | O+ | 3.149 | 4.090 | 2.882 || 6+ | 3.660 | 6+ | 3.973 | 3.891 | 4.549
1+ | 3.431 | 3.366 | 3.029 7+ | 5.328 | 5411 | 7.353
2+ 1972 | 2+ | 1.759 | 1.592 | 1.715 || 8+ | 3.779 | 8+ | 2.782 | 2.513 | 3.024
2+ | 2513 | 2.385 | 2459 || 8+ | 4.107 | 8+ | 5.281 | 5.298 | 5.365
2+ | 2.886 | 3.144 | 2.717 || 3— | 1.579 | 3— | 2.038 | 1.853 | 2.095
2+ | 3.174 | 3.377 | 2786 || 4— | 2.997 | 4- | 2.681 | 2.524 | 2.696
3+ 3.031 | 3+ | 3.150 | 3.257 | 2.682 || 5— | 2.658 | 5- | 2.416 | 2.281 | 2.432
3) 3.389 | 3+ | 3.367 | 3.698 | 3.108 || 6— | 3.098 | 6- | 2.699 | 2.541 | 2.719
3) 3.436 | 3+ | 3.408 | 3.935 | 3.653 || 7- | 2.982 | 7- | 2.551 | 2.418 | 2.539
4+ 2.612 | 4+ | 2.346 | 2.206 | 2.126 || 7- | 3.290 | 7- | 3.030 | 3.053 | 2.812
4+ (2+) | 2.967 | 4+ | 2.665 | 2.488 | 2.582 || 8- | 3.183 | 8- | 2.797 | 2.607 | 2.837
4(+) 3412 | 4+ | 2942 | 3.117 | 2905 || 8 | 3.293 | 8 | 3.288 | 3.168 | 3.748
4(+) 3411 | 4+ | 3.244 | 3.380 | 3.461 || 9— | 3.428 | 9- | 3.097 | 2.863 | 3.660
(3, 5)+ | 3.287 | 5+ | 3.354 | 3.231 | 3.662

CONCLUSION

The calculations presented above manifest that the bulk of experimental data on the prop-
erties of N = 82 even—even isotones may be rather successfully explained in the framework
of the two-quasi-particle RPA (QPRPA) method that treats the pairing force and residual in-
teraction in other channels on equal grounds. In our calculations we used the minimal amount
of free parameters. The «Setl» variant of them that practically borrows their values from our
previous calculations and the «Set2» variant, employing some fitting of single-particle poten-
tial with the same diffusenesses for protons and neutrons, give practically the same quality
of description of experimental data. The sensitivity of the calculation scheme to the input
parameters is demonstrated on the example of the «Set3» parameters, where the 15 % decrease
of the spin-orbit splitting leads to a better description of transition rates but to unsatisfactory
agreement in the energies of levels. The divergence between the predictions of theory and
the experimental data in each specific nucleus may be often diminished by the variations of
single particle energies close to the Fermi levels, i.e., by considering the mentioned energies
as free parameters in each nuclide. In our calculations we used a more general approach
in which the mentioned energies were generated by a mean field potential which parameters
are the same (except the Z, N values) for all nuclides considered by us. The other way to
improve the agreement with the experiment may consist in using the method in which the
particle numbers conserve not on the average, but exactly. This will be made by us in the
future.

This work was supported by the Russian Foundation for Basic Research (grant
No. 00-15-96610 in support of Science Schools).
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Table 9. Probabilities of the £2, E3 and M1 transitions and the values of electrical quadrupole
and magnetic dipole moments for the even—even N = 82 nuclei. The B(E, M )\) values are given
9¢>R* 10 ( 3

= ————and B(M\N)w = — | ——
W= Torae 2 BMAw = = (/\+3

1.2A'3 fm. The values of the quadrupole moments are presented in the units of e.fm?, whereas the

2
in Weisskopf units: B(F)\) ) R* 723 with R =

magnetic moments are in the units of ;i n

Nucleus Value Exp. Setl Set2 Set3
1328n | B(E2,47 — 27) 0.426 0.413 | 0.347 | 0.075
B(E2,67 — 47) 0.263 0.283 | 0.389 | 0.118
B(E2,87 — 67) 0.110 0.076 | 0.180 | 0.032
B(E2,5] — 31 ) 0.275 0.749 | 0.654 | 0.660
B(M1,47 —3]) 0.0078 0.0058 | 107¢ | 7.107°
B(M1,7{ — 8+) 0.037 0.101 | 0.0074 | 0.106
B(M1,7f — 6+) 0.059 0.123 | 0.0091 | 0.189
B(M1,57 — 47) 0.0307 0.038 | 0.068 | 0.183
134Te | B(E2,2] — 0)) - 4.52 4.39 4.62
B(FE4,47 — 01) - 2.81 2.65 2.78
B(E2,4f —21) 4.3 4.38 4.32 433
B(E2,617 — 4)) 2.05 1.95 1.94 1.96
B(E2,2] — 0F) - 0.24 0.22 0.13
B(E2,65 — 43) - 1.66 1.54 1.54
B(E2,65 — 67) - 0.53 | 0415 | 031
B(E3,3] — 07) - 13.6 6.8 45.2
136x%e | B(E2,2 — 0) 9+4 14.88 | 13.09 | 13.08
B(FE4,47 — 01) - 8.79 6.92 7.13
B(E2,4f —2) | 1.254£0.06 | 0.473 | 0.340 | 0.101
B(FE2,67 —47) | 0.0132(5) | 0228 | 0.147 | 0.037
B(E2,2} — 03) - 0.054 | 0.045 | 0.069
B(F2,65 — 43) >0.28 0.444 | 0.508 | 0.594
B(E2,65 —67) | >0.0003 | 0320 | 0324 | 0238
B(E3,37 — 07) 16.91 16.99 | 1234 | 229
1%8Ba | B(E2,27 —07) | 114403 19.9 17.7 15.6
B(E4,47 — 07) - 13.2 10.3 9.1
B(E2,47 —27) | 0286(11) | 0.077 | 0.017 | 0.106
B(E2,6]7 —4F) | 0.053(7) | 0.076 | 0.029 | 0.028
B(E2,27 — 03) - 0.331 | 0337 | 0.54
B(E2,45 —21) >0.2 0.217 | 0215 | 0.286
B(E2,25 — 01) 1.98(24) 0.46 0.92 2.05
B(E3,37 — 07) 16.8 19.1 15.1 18.0
B(M1,3F — 27) 0.135 0.354 | 0.325 | 0.19
Q(2+) —14(7) -5.27 | -4.24 | -8.19
u(4h) +3.2(6) 3.71 3.52 3.37
w(67) +5.86 6.40 6.13 5.46
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Ending of Table 9

Nucleus Value Exp. Setl Set2 Set3
M0ce | B(E2,2f —0]) | 16.6+£24 | 227 21.3 17.7
B(E4,47 — 07) (12.1) 17.0 14.8 14.3
B(E2,47 —2F) | 0.137(1) | 0.062 | 0.075 | 0.159
B(E2,67 —47) | 0.286) | 0.025 | 0.033 | 0.025
B(E2,27 — 0F) 2.3(2) 0.54 0.64 1.51
B(F2,65 — 43) - 0.020 | 0.022 | 0.048
B(E2,65 — 67) - 0.024 | 0.036 | 0.056
B(E2,2f —0f) | %=521| 775 6.36 8.40
B(E3,3; —0]) 25.7 21.8 18.3 16.2
u(4h) +4.35 4.72 4.59 4.89
MINd | B(E2,27 — 0f) 12.04 22.2 23.3 15.5
B(E4,47 — 07) 13+4 13.8 12.5 9.7
B(E2,47 — 21) 0.50 0.039 | 0.174 | 0.26
B(E2,67 — 47) 0.018 0.0022 | 0.0015 | 0.0084
B(E2,27 — 0F) - 0.26 0.20 0.37
B(F2,65 — 43) - 0.010 | 0.013 | 0.0017
B(F2,65 — 67) - 0.018 | 0.017 | 0.036
B(E2,25 — 0}) 1.0 2.23 2.53 4.3
B(FE3,37 — 07) 28.4 25.2 22.5 19.7
Wism | B(E2,2] — 0)) 11.9 22.7 27.5 16.3
B(FE4,47 — 0}) - 13.4 14.1 11.1
B(E2,47 — 2) - 0.003 | 0.12 | 0.0024
B(F2,67 — 47) 0.19 0.042 | 0.0019 | 0.088
B(E2,2] — 0+) - 0.17 0.11 0.15
B(E2,8] — 77) <3.6 1.73 0.67 1.80
B(E3,3] — 0+) 31.3 29.2 26.5 25.7
M6Gd | B(FE2,27 — 0f) >0.4 29.8 33.0 23.8
B(E4,47 — 07) - 25.9 9.9 22.0
B(E2,47 — 21) - 0.49 0.76 0.21
B(E2,67 — 47) - 0.60 0.94 | 0.076
B(E2,2] — 0+) - 1.58 0.53 1.66
B(E2,7] — 57) 0.46 0.024 | 0.0026 | 2.107°
B(E3,3] — o+) 37(4) 324 29.0 31.1
w(37) +2.1(9) 3.34 3.40 3.32
1.86(36)
w(77) +8.98(19) | 9.56 9.78 9.09
+7.56(56)
+8.26(35)
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