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ON THE MASS SURFACE AND THE PROPERTIES OF NUCLIDES
CLOSE TO HYPOTHETIC DOUBLY MAGIC LEAD-164

V.ILIsakov', K.I.Erokhina®, B.Fogelberg®, Yu.N.Novikov', H.Mach?,
K.A.Mezilev'

The work presents calculations of the mass values and the decay energies for a set
of nuclei close to the extreemely remote from the stability line 154Pb. Different decay
modes of the mentioned nuclide, as well as the properties of excited states of isobars
with A = 164 and close to '5*Pb, are carefully examined.

The investigation has been performed at the St.Petersburg Nuclear Physics Institute,
RAS, Physicotechnical Institute, RAS, and Department of Radiation Sciences, Uppsala
University.

O M ccoBOif TOBEPXHOCTH M CBOMCTB X fep BOJIU3U TMIOTETH-
YeCKOro IB XKJIbl M TMYeCKOro HyKiauja cBuHI -164

B.H.Hc koé u op.

IIpoBeneHsI p CYETHI M CCOBOM MOBEPXHOCTH M ®HEPIUH P CI [ JUISI COBOKYIHOCTH
sjiep BOJIM3HU IPENEIbHO YiI JIEHHOTO OT J0OPOXKH CT GuiibHOCTH Hykmu “0*Pb. H3yuenst
P 3/MYHbIE MOIBI P CIT JI OTOTO SAP , T KX€ CBOWCTB BO30YKIEHHBIX COCTOSHHIM Psit
1306 p ¢ A = 164, Gnuskux x “**Pb.

P 6or Bemonnen B IletepOyprckoM mHCTUTYyTE sdaepHOi usnkn PAH, ®dusnko-
texHnueckoM uHCTUTYTe PAH 1M Otaene p oM IMOHHBIX HCCIEOB HUU YHHBEPCUTET
r. Ymc Il

1. INTRODUCTION

In our work [1] we investigated mass surface and some properties of nuclei close to
neutron-rich nuclide “®Ni offering the astrophysical interest. The mentioned work used two
different approaches. The first one consisted in applying the multiparticle shell model that used
the mean field and residual interaction with parameters defined from description of nuclear
structure in the regions of less neutron excess or in stable nuclei. The second approach was
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based on resemblance of the shell structure of "®Ni and that of '2Sn. The latter doubly
magic nuclide is actively investigated at the present time [2,3]. Such resemblance was first
observed by Blomqvist [4], but conformably to the pair of nuclei — '32Sn and 2°Pb. It was
noted by us in [1] that the known so far as well as not yet well investigated (or even not
yet discovered) regions of magicity, in the sence of resemblance of nuclear structure, may
be considered as lying in the (Z, N) coordinates on two axes, one leading to neutron excess,
while another one — to neutron deficient nuclei. Among the least, one may mention the
nuclides in the vicinity of '°°Sn, also hardly studied so far (see for example [5-10] and the
references therein) as well as nuclei close to Z = N = 82, about which any experimental
information is absent by now.

The investigation of both mass regions (A ~ 100 and A ~ 164) is of great importance be-
cause it can shed light on the problem of «universality» of nucleon magic numbers throughout
the Chart of nuclides. The question whether this universality is fulfilled in the mass regions
very far off the (-stability line has a principal meaning. Especially, it is interesting to learn
whether the magic properties of the '4Pb nuclide, which is situated beyond and far from the
proton drip-line, can provide the existence of the island of quasi-stability in the sea of full
nucleon instability of nuclides.

The problem of universality which was formulated long time ago [11] is still under
discussion [12, 13]. Meanwhile the interest to the hypothetic magic nuclides should be
increased nowadays in connection with the advent of Radioactive Ion Beam facilities which
main goals are just concentrated on the production and investigation of exotic nuclides. To
prepare some guide for the future experiments we have carried out the evaluation of the
expected properties of the mentioned nuclides.

Thus the aim of the present paper is to obtain some theoretical estimates on the prop-
erties of nuclides utmost remote from the [-stability line, which are evidently unstable to
the proton decay. The calculations for the magic region of light lead were held in the
framework of two microscopical and partially overlapping approaches, one of which is
based on the multiparticle shell model [14], whereas the other — on the self consistent
procedure of Hartree—Fock, accounting for pairing correlations (HF+BCS; see, for example,
[15-18]).

2. CALCULATIONS OF THE MASS SURFACE OF NUCLEI CLOSE TO '5‘Pb USING
THE MULTIPARTICLE SHELL MODEL

The shell-model calculations presented in this work are based on the concepts of nuclear
mean field and residual interaction. The parameters of the mean field potential of the Woods-
Saxon type were fitted by us from the comparison with the experimental data on single-particle
energies for nuclei close to 2°®Pb and '32Sn. The finite range effective interaction used by
us here was applied earlier for the description of «two-quasiparticle» nuclei around the magic
cores [19-23].

Another basic idea consists in using the ground state of '®4Pb as a vacuum relatively to
which all near-magic nuclei can be considered as few quasiparticle ones. This consideration
in practice includes all the nuclei having proton and neutron numbers in the interval 80 <
Z, N < 84 (totally 25 cases studied by us here).
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Let us consider the Hamiltonian in the Hartree—Fock representation which in this case
has the form:

1
H=FEy+ ZEQN(a;raa) + 1 Z o(afB0|v0)q N(aja;a(;av), (1)
a a,B,7,0

where the single-particle orbitals |o) are formally determined from the self-consistent proce-
dure of the Hartree—Fock type for the core nucleus. In Eq.(1) Ey is a vacuum energy (binding
energy of a '%4Pb core with the opposite sign) which is not essential in the case of decay
energy determinations, 1 is the residual interaction and N(---) means a normal (relatively to
the assumed vacuum) product of operators.

In reality, for generating single particle orbitals we used Woods—Saxon potential (instead
of Hartree—Fock) of the form

_ v
~ 1+exp((r—R)/d]

1d 1

2 Do~
s -0 ) 2
T Vesto rdr |[1+exp[(r—R)/a] ts &

U(r,&)

where V = —V(1 — B%tz), R = rgAY3, t, = —1/2 for p and t, = +1/2 for n (for
protons the potential of the uniformly charged sphere with radius R, = roc AL/ was added).

We performed calculations using three different sets of parameters entering Eq. (2). Poten-
tial Stnd was borrowed from the works [19-23] and had the following values of parameters:
Vo = 51.5 MeV, rg = 1.27 fm, 8 = 1.39, Vs = —0.43V, r,c = 1.25 fm. The effective
diffuseness parameters a for protons and neutrons were chosen to be: a, = 0.67 fm and
a, = 0.55 fm, where index «p» refers to protons, while «n» — to neutrons. Potential Set3
was defined by us in [24] and gives the best description of single-particle spectra in the
region of 1%°Sn. At the same time, the BEn potential gives an adequate description of the
single particle separation energies in the chain of isotopes from 32Sn to 1°9Sn. Our effective
interaction has the form:

2
V=V +Vo0102+VrS12a+VoTiT2+ Voro102 - T172 + Vor S127T172) €xp (_:T) 3)
00

with V = —-9.95, V, = 2.88, Vpr = —1.47, V. = 5.90, V,, = 4.91, Vr = 1.51 MeV and
Too — 1.8 fm.

Single-particle energies generated by the potential (2) were used to define the binding
energies for four odd-mass nuclei adjacent to '6*Pb as well as to generate the whole single-
particle spectrum which is necessary for calculations of binding energies for nuclides having
more than one quasiparticle (where the residual interaction between the nucleons as well as
configuration mixing are essential).

Let us consider separately different cases arising for nuclides with more than one valence
quasiparticle:

2.1. The Nuclides of the Type «'®*Pb Core Plus Two Quasiparticles». Ground state
binding energies were obtained from the RPA-calculations, with the eigenfrequencies and
amplitudes of states f,3 = (if) defined by systems of equations that have the following form

in a matrix notation:
A M X\ X 4
M oc |[\y) =y @



Isakov V.I. et al. On the Mass Surface and the Properties of Nuclides 47

with the normalization condition

D Xap(wn) Xap(wrr) = Y Yag(wr) Yap(wi)| = 5(kE), ©)
o o3

where fo5 = (éj:,) for particle—particle (nuclides of the type «core +2p, +2n, 4+p 4 n») and

Jop = (i(,a/b;) for particle-hole (nuclides of the type «core 4p F n») channels. Latin indices
with and without primes refer to states below and above the Fermi levels, respectively.
The expressions in equation (4) stand for the following:

A(Yﬁ?l“j = E(Yﬁéaﬂéﬂl’ + M;l]ﬁ;p,u (6)
Caﬁ?lﬂ/ = - aﬁéaﬂéﬁl’ + MO{B;HV' (7)

For the particle-particle channel E,g = €4 + €50 =a, § =0b (or @« = d/, § = 1') and
M (;{5; v 18 @ properly antisymmetrized particle-particle matrix element between the states
|aB; J > and |uv; J > with a given value of angular momenta. For the particle-hole channel
Ewp=¢coa—egsa=a, =Y (ora=ad,=0"> and M&]ﬁ;/w is a particle-hole matrix
element. The formulae for particle-particle and particle-hole matrix elements M, &]5; v One
may see in [19, 20]. The «upper» solutions having w, ~ ¢, + €, for the particle-particle
channel correspond to the (A + 2), while the «lower» ones, with w,, =~ ¢/, + ¢, correspond to
the (A —2) nuclides. In this case the solutions w of the system (4) are related to the excitation

energies by equations:

En(A+2) = wn+ B(A+2)-B(4), (®)
Em(A_Z) = _Wm“‘B(A_Z)_B(A)a )

where B(A) and B(A + 2) present the ground state binding energies and A refers to the core
(B(A) = —Ey(A)). For the charged particle-hole channel w,, ~ ¢, — ¢}, corresponds to the
«core +p — n», while w,, ~ ¢/, — &, — to the «core —p + n» nuclides. Here we have:

E.(Z+1,N—-1) = w,+B(Z+1,N—1)-B(Z,N), (10)
En(Z—-1,N+1) = —w,+B(Z-1,N+1)-B(ZN), (1)

where Z, N refer to the core. The differences of binding energies B(A + 2) — B(A) and
B(Z+1,NF1)— B(A) between the two quasiparticle states and the core nuclei were defined
by variation of the B(A +2) and B(Z £ 1, N F 1) values until the excitation energies F,
and E,, of the lowest states as defined by (8)—(11) become equal to zero.

2.2. The Nuclides of the Type «'%*Pb Core Plus Three Quasiparticles». The nuclei
considered by us here have a structure of the types «core+2p + n, £2p F n, £2n £ p, and
+2n F p». In all these cases the calculations have been performed in the framework of the
three quasiparticle shell model and the wave function was expressed as follows:

J
_ I + ot +.
=Y Xau(J)5|[jO j,l,] &5 IM0) (12)
a,B,u,J
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with
.60 = T 3 Ol G, B
Jadn me,my
and
JJ':ma = a;;ma; gt/ma/ = (_1)€°’/+]"' el (14)

In(12) a,p € p, BEN Or a, 4 € m, B € p (v, u simultaneously belong to particles or holes),
|0) is a ground state wave function of '4Pb. The eigenvectors (X) and the eigenstates were
obtained by solving the secular equation:

| D[] - (X) = wi(X) (15)
with
JoJi (I _ _ _
Dazu;(ﬁz),mmﬁl = (6‘11 + € + 561)5a2a15u2m 562615J2J1
+  (oop2(J2)B2; I Hint|apa (J1) 51 1), (16)
where £, = €4, = —&4, etc., and the excitation energies Fj are connected with wy in
Eq. (15) by the relation:
Ex = wy + B(A + 3qp) — B(A). (17)

The three quasiparticle interaction matrix element in (16) can be expressed via M7-values:

(aapa(J2)B2; I Hing|orpn (J1)B13 1) = 08,8,6750, ;Iz,malm—f—

> QL+ D)W (ig, LIajus: o TIW (g, LT1Gyis' o 1]

(1 + 602#2)(1 + 601#1 L

(205 + 1)(2; + 1) ]1/2 {5
) H2 1

x ME 5 o5 + (=)ot ttls Z(2L+ VW 38, L2 o TIW 38y L1 Jin s Gun 1]
L

X M a2 B2;01 61 + (_1)jaz+ju2+J2+160(2H1 Z(2L+ 1)W[j52LJ2jO(2;j/L2I]W[j51LJ1jOé2;jO(1[]
L

X M 1o B30 B + (_’_1)]{12+]M2+J2+.701+.7/11 +J16

2041

x Y 2L+ )W j@wﬂw;jHZI]W[mLJljm;jmf]Mfz[Wl}. (18)
L

In Eq.(18) and below M7, abiea and M, abrrq Tefer to particle-particle, while Mab/ g and
MY, p:erq Tefer to particle-hole channels.

The values of B(A + 3¢gp) are determined by the condition that the energy Ej of the
lowest level is equal to zero.
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Table 1. Mass surface in the neighborhood of °*Pb

164po. 0 165pg;1/2+ 166p; o+ 167po;9/2~ 168po; o+
a) | —48.99(1.15) | —31.88(1.09) | —13.34(0.84) | 0.26(0.94) 14.27(1.05)
b) | —49.84 —32.62 —14.70 —2.14 11.95
163Bj;9/2~ 164Bj; 4~ 165Bj;9/2~ 166gj; 1+ (0T) 167Bj;9/2~
a) | —42.04(0.87) | —25.09(0.63) | —7.24(0.44) 7.08(0.46) 20.52(0.90)
b) | —42.00 —25.48 —7.66 5.50; 91 (11, 0%) | 18.20
162pp, o+ 163pp; 1 /2+ 164pp; o+ 165pp, 9/2~ 166pp; o+
a) | —33.89(0.67) | —17.64(0.34) 12.87(0.43) 27.06(0.83)
b) | —33.63 —17.34 11.85 24.85
1617y 1 /2% 162y, 1+ 16311 /2% 164); 4~ 16511 /2%
a) | —28.92(0.45) | —12.90(0.11) | 3.15(0.24) 15.89(0.65) 29.36(1.10)
b) | —30.54 —13.09 2.74 14.12 27.22
160Hg;0+ 161Hg; 1/2+ 162Hg;0+ 163Hg; 9/2~ 164Hg;0+
a) | —23.26(0.20) | —8.41(0.12) 7.16(0.46) 19.43(0.87) 32.70(1.30)
b) | —27.01 —10.82 5.83 17.02 29.62
80 8T 82 83 8% N
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The values of B(Z, N) — B('54Pb) in the multiparticle shell-model, with averaging over the mean field
potential, are presented in lines «a»; numbers in brackets are the dispersions of the averaging procedure, o. The

results of the HF+BCS calculations are presented in lines «b».

The differences of energies are calculated with

Mn # myp. In this case B(164Pb) = 1200.3 MeV. If one takes my, = mp = m, then B(16*Pb) is equal to
1202.3 MeV, while the B(Z, N)— B(164Pb) values change very small, by the numbers not more than ~ 0.05 MeV.

Table 2. Averaged decay energies in the vicinity of 14Pb, calculated in the multiparticle shell-model

Nucleus Qs+ Qp Q2p Qo
18Poga — 6.25(1.38) | 12.79(1.34) | 14.03(1.05)
187pogs | 18.45(1.30) | 6.82(1.05) | 12.61(1.03) | 10.40(1.00)
356Pogs | 18.61(0.92) | 6.10(0.95) | 13.34(0.84) | 7.75(1.07)
2%%Pogy | 23.19(1.17) | 6.79(1.26) | 14.24(1.14) -
28%Pogo | 22.09(1.31) | 6.95(1.44) | 15.10(1.33) -
257 Bis4 — 6.54(1.22) | 8.84(1.42) | 10.93(0.93)
396Bigs | 18.17(0.95) | 5.79(0.63) | 8.81(0.80) 8.32(0.47)
255Biga | 18.31(0.61) | 7.24(0.44) | 10.39(0.50) | 6.62(0.63)
254Bigy | 23.28(0.63) | 7.45(0.72) | 12.19(0.64) -
$55Bigo | 22.59(0.93) | 8.15(1.10) | 13.12(0.98) -
+5%Pbs — 2.30(1.38) | 5.64(1.54) 8.40(0.95)
i5%Pbss | 14.68(1.18) | 3.02(0.78) | 6.56(0.97) 7.02(0.45)
254Pbgy | 14.08(0.65) | 3.15(0.24) | 7.16(0.46) 5.04(0.20)
35%Pbs1 | 18.98(0.42) | 4.76(0.36) | 9.23(0.36) -
852Pbgo | 19.18(0.68) | 4.97(0.81) | 10.63(0.70) -
855 Tlga - 3.34(1.70) - -
294Tlg3 | 15.00(1.45) | 3.54(1.09) - -
13Tlgy | 14.47(0.90) | 4.01(0.52) - -
392Tls1 | 18.25(0.47) | 4.49(0.16) - -
851 Tlgo | 18.70(0.47) | 5.66(0.49) - -

Root mean square errors of the @) values correspond to the «errors» o of binding energies of the initial and final
states, that are pointed in Table 1.
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Table 3. Decay energies of nuclei close to '°*Pb, calculated in the framework of the HF+BCS method

Nucleus Q[-;'F Q;D QQT‘ Qa
168pg, — 6.25 12.90 16.35
167pg 18.53 7.64 13.99 13.10
166p, 18.39 7.04 14.70 9.37
165p, 23.15 7.14 15.28 -
164p, 22.55 7.84 16.21 -
167Bj — 6.65 9.02 12.84
166 j 17.54 6.35 8.62 9.71
165g; 17.70 7.66 10.40 5.42
164p; 23.67 8.14 12.39 -
163Bj 22.85 8.37 11.46 -
166py, — 237 477 9.28
165py, 13.56 227 5.17 5.63
164pyp 12.31 274 5.83 1.29
163pp 18.27 425 6.52 -
162py, 18.73 3.09 6.62 -
1657] — 2.40 — —
1647y 13.69 2.90 — —
1637y 12.47 3.09 — —
1627y 17.11 227 — —
1617y 17.91 3.53 — —

In composing this Table the Skyrme III interaction and G, = 23/A MeV, G,, = 21/A MeV values of the
pairing constants are used.

2.3. The Nuclides of the Type «'%“Pb Plus Four Quasiparticles». These nuclides have
a structure «core+2p + 2n and +2p F 2n». The wave function can be written in this case as

follows:

I J Ja.
ir= Y Xouanenn &R 666,17 IM|0) 19)
a,p,8,1,J1,J2

with a, 0 € p, B,m € nor a,u € n, [,n € p and ap or Bn simultaneously belong to
particles or holes. In practical calculations we used in the basis only the functions with
J1 = Jo = 0 giving the greatest matrix elements of interaction within the I = 0 basis states.

In this case @ = u, § =1 and the corresponding secular equation formally also has the form
(15) with

Da26270’151 = (25042 + 2552)50420415[32[31 + 5[32[31 M((x)zaz,mm + 5“2041M,(3)262”31ﬁ1

4
Sena, 0 § 2L+ 1)ME . 20
+ 201982061 (Zjal _‘_1)(2.7-51 +1) . ( + ) 11,0161 (20)

The single-particle basis that includes all single-particle states of corresponding valence
shells was used for all two-, three- and four-quasiparticle nuclides.

Table 1 (lines «a») presents the calculated differences of binding energies, B(A) —
—B(1%4Pb). The predicted values of the ground state spins are also presented in this Table.
The values of one- and two-proton separation energies, as well as 3- and a-decay energies
are presented in Table 2. One should mention that the procedure for definition of B(A) —
B(1%4Pb) values, based on the shell-model approach that uses the same vacuum for all the
nuclei studied by us, does not take into account the rearrangement effects (see the discussion
below).
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3. CALCULATIONS USING THE SELF CONSISTENT APPROACH

As the nuclei considered by us here are extremely neutron-deficient, long extrapolations
of the phenomenological parameters defining the mean field and residual interaction may be
rather speculative. Below we consider the problem of the mass surface in the vicinity of
164ph in the framework of another method, namely the HF+BCS approximation using the
Skyrme III interaction and the constant pairing theory to account the pairing correlations. In
this case the total energy F has the form (see also [15-18]):

AZ A2
= 47r/ H(r)r 2dr — Gp G , (2))
where
A-1[ R R to 1
A = =3 [2mp7p+2mn7"}+5{(1+ 2)7 _<x°+ >(p”+p”)]
1 1
+ 4(t1 +t2)pT + 2 (t2 —t1)(pnTn + ppTp) + 1 t3ppnpp +
d2 pn 2dpn d2pp 2 dpp
TogpBh i) [ e )T e e )t
1 d°p  2dp 1 9 9
+ 16(t2 3t1)p(d + rdr) + 15t —t2) (J2+772)
1 dJ 2 dd, 2 dJ, 2
(2 g (20 g (B2 )]
2 - 2 Ji 3 (3\"° 2 4/3
+ 2me’p, ;/pp(x)x dx—i—/pp(x)xdx 1 (;) e Pp/ . (22)
0 T

In formula (22) we subtracted (in the single particle approximation) the center of mass
motion and took into account the exchange Coulomb energy in the Slater approach. The
quantities tg, t1, t2, t3, g and Wy entering (22) are the Skyrme III parameters [17], while the
expressions for the density of matter as well as for kinetic energy and spin densities have the
form:

pa(r) = 47”«2 o(2jga+1) B2, (23)
1 _ ARy \> L+ 1)+1 2 dRy.o
Tq(r) = - vaia@qua +1) ( d;{/a) i r2) R2 — Ry d‘l : (24)
1 ) o
I = s 2 V(a4 1) [fnalina + 1)~ by +1) = 3| R @5

where g =p, orn; p=pp+ pn. T=Tp + Ty J = Jp + I,
Radial wave functions R4, (r) entering the densities are normalized by the condition
fooo R2dr =1 and are defined by the system of equations

, 2m 1 dp 1 dp ,
cha(r) = th { {4@1 +t2)d + g(tg —t)— dr ] R + (F, g, Eq@)Rq’a}, (26)
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where
Fro = a0+ (s D+t -
+ %E(h + tQ)% + é(tl - tz)%] + i(h + )T+ é(tz —t1)Ty —
- [ ] g 4
+ %[%WOW Fat—m)[iG+n -+ -3] +
+ {47‘(’62(% /pp(a:)xzdx—i—/pp(x)mdm) - (%)1/362@})/3} “Opq - 27)
0 v

In formulas (26), (27)

(B2) = A1, F(t1+tz)p+%(tz—t1)pq} g (28)

m; A 4 n’

The vgya quantities entering equations (23)—(25) present the occupancies of the (g, ) orbitals
and are defined from the self consistent, together with equations (26), procedure that uses in
the pairing channel the constant pairing approximation:

1 oo — A\
2 g, q 2 2
vq’a o 5( N 2 2)’ ul],a*]‘_vq,aa
\/(Eq,a - >\q) + Aq
G Vg + 1 _
L=t @o D) N Y @t k. 9)
RVIOWEPWERYY -

N, =27, N, = N, where ¢, are defined by the system (26).

For joint solution of systems (26), (29) the iteration procedure was employed. As starting
ones, the eigenfunctions R, single particle energies ¢ and occupancies v? for the appropriate
Woods—Saxon potential were used. They were employed for the calculation of the right-hand
parts of equations (26) that define new values of R, ¢, and then, using (29), — the v? quantities.
Then the procedure was reiterated to achieve the necessary precision.

The method employed for definition of eigenvalues € allowed us to find eigenvalues both
for bound (with ¢ < 0) and unbound (¢ > 0), but sub-barrier (quasi-stationary) states. In
the last case the shell-model function of a quasi-stationary state is defined and normalized to
unity in the interval from r = 0 up to the value 7, corresponding to the external turning
point, which position in case of protons is defined as:

Z ZN\? A-1 (((+1
ro(fm) ~ 0722 5pq+\/o.518(;) Opg + 20.7—— - ( : ) (30)

where the energy ¢ is in MeV.
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The consideration of the quasi-stationary states equally with the levels having ¢ < 0,
presented by us above, is valid in the case if single particle decay widths of such states are
essentially less than the typical nuclear energies. As we shall see further, this condition is
fulfilled practically for all the proton quasi-stationary states in nuclei close to '64Pb, except,
maybe, the most upper ones.

Table 4. Single-particle energies in '5*Pb, calculated in the framework of self-consistent procedure
with the Skyrme III interaction

Protons Neutrons
ntj Enej, MeV ntj Enej. MeV
3pl/2 12.17 3pl/2 —6.46
3p3/2 11.42 3p3/2 —7.41
2f5/2 11.23 2f5/2 —7.84
1:13/2 9.91 1:23/2 —9.21
2f7/2 8.88 2f7/2 —10.66
1h9/2 7.96 1h9/2 —11.42
3s1/2 3.09 3s1/2 —17.08
2d3/2 2.30 2d3/2 —17.75
1h11/2 1.39 1h11/2 —18.10
2d5/2 0.31 2d5/2 —19.90
197/2 —2.18 197/2 —21.97
199/2 —6.84 199/2 —26.65
2pl/2 —7.27 2pl/2 —27.82
2p3/2 —8.42 2p3/2 —29.04
1f5/2 —11.74 1f5/2 —31.86
1£7/2 —14.65 1£7/2 —34.76
2s1/2 —17.09 2s1/2 —38.01
1d3/2 —20.31 1d3/2 —40.75
1d5/2 —21.84 1d5/2 —42.27
1p1/2 —27.54 1p1/2 —48.31
1p3/2 —28.15 1p3/2 —48.91
1s1/2 —33.17 1s1/2 —54.32

Results of self consistent calculations of the binding energies are also presented in Table
1 (lines «b»). The BCS procedure used single-particle basis including one shell above and
the other — below the proton and neutron Fermi energies. The more deep single-particle
states were supposed as completely filled; v?=1. In the cases of odd—odd '%°Bi and 62Tl
nuclei the corresponding diagonal particle—particle matrix elements (see [20]) and in the
cases of '64Bi and '64T1 — diagonal particle-hole matrix elements [20], calculated with
the interaction (3), were added to the expression (21) for energy. The calculated self con-
sistent single-particle energies in %4Pb are presented in Table 4. As one can easily see,
the mentioned nuclide has distinct characteristics of a magic nucleus. The magnitudes of
proton (4.87 MeV) and neutron (5.66 MeV) gaps guarantee the absence of pairing in this
nuclide. For comparison Table 5 presents the similar theoretical spectrum, but for the sta-
ble isotope 2%Pb. Proton and neutron densities in %4Pb are given in Fig. 1. One can
see that in the surface region the proton density is some more than that of neutrons and
that the mean square radius of proton distribution is also some more than that of neu-
trons. At the same time, there is no decrease of the proton density in the center of a
164ph nucleus. The similar picture, but for 2°®Pb is presented for comparison in Fig. 2.
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Table 5. Some of single-particle energies in 2°®Pb, calculated in self-consistent approach with the

Skyrme III interaction

Protons Neutrons
ntj Entj, MeV ntj Enej, MeV
3pl/2 2.88 3d3/2 0.42
3p3/2 2.03 297/2 0.14
2f5/2 0.74 3d5/2 —0.38
1:13/2 —1.53 4s1/2 —0.64
217/2 —1.66 1515/2 -1.93
1h9/2 —4.24 1411/2 —2.77
3s1/2 —17.33 299/2 —2.97
2d3/2 —8.51 3pl/2 —7.13
1h11/2 —9.65 3p3/2 —8.15
2d5/2 —10.28 2f5/2 —8.44
197/2 —13.59 1413/2 —10.21
199/2 —17.36 2f7/2 —11.24
2pl/2 —17.64 1h9/2 —12.67
2p3/2 —18.63 3s1/2 —17.04
1£5/2 —22.21 2d3/2 —17.63
1h11/2 —18.24
2d5/2 —19.61
197/2 —22.12

Density, 1/Fm?

0.12

Density, 1/Fm?

0.12
0.10{  '*Pb (ry)=>.141Fm | " 1 20spy, (r.)=5.646 Fm
(r,)=5.255Fm el e e (y=5.522 Fm
0084 =~ o (r.y=5198Fm | 0081 . T T ol
e e m : ° a (r,)=5.597Fm
0.06 0.06 { e e \\
0.044  « Neutrons \ 0.04 | - N\
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0.001 oo 0.00 - -
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Fig. 1. Proton and neutron densities in '**Pb Fig. 2. Proton and neutron densities in 2°®Pb

The comparison of values of four single-particle nucleon energies closest to proton and
neutron gaps and presented among the others in Table 4 with the magnitudes of differences
B(A)— B(core) for the '®>Pb, 16°Bi, 15Bi and 53Tl nuclei (see lines («b») in Table 1) shows
that the rearrangement effect arising from the variation of single-particle wave functions with
changing the number of nucleons by one unit is not more than 0.4 MeV. This is usually less
than the dispersion of the B(A) — B(core) values obtained by us in the shell-model approach
and less than the distinction in the mentioned values obtained by two different (shell-model
and self-consistent) approaches. This fact presents a justification for using in our shell-model
approach of a unique vacuum for all the nuclei considered by us.



Isakov V.I. et al. On the Mass Surface and the Properties of Nuclides 55

4. ON THE STRUCTURE OF '%“Pb AND IT’S DECAY PROPERTIES

Here we shall consider the stability of lead-164 relatively to different decay modes.

4.1. Evaluation of Half-Life Relatively to alpha-Decay. For evaluation of the partial half-
life T /5 of the 164ph to a-decay remember the relation Ty/5 = 0.6931/T", where I' = P - T,
with I'g — the reduced width, and P — the barrier penetrability defined by the formula

2 '} AZ —2)e? B2 +1
P = exp —ﬁ/\/Zm(y [Ué’pt(r)—l— ( . )e + QT(na_;)—€ dr (€1))

where €, m,, and ¢ are the kinetic energy, mass and the angular momentum of the a- particle,
r< and 7> are the turning points while US,(r) is the real part of the - particle optical
potential relating to the daughter nucleus. The main difficulty in defining the absolute value
of T{’/Q is associated with calculation of the reduced width I'g, which is strongly dependent
on nuclear structure. Even in the most advanced calculations [25] that considered a- decay
of nuclei near the doubly closed shells, which took into account configuration mixing in the
RPA scheme and used the integral approach [26, 27] for description of widths, the obtained
theoretical widths were found to be two orders of magnitude less than the experimental ones.
The reason of this is that up to now one is unable to take properly into account the continuum
states in the particle-particle channel. Therefore here for definition of the Ty, for 164pp
we use the indirect method based on the similarity of the -decay of interest (0T — 0T
transition between the doubly magic nucleus and the nucleus «doubly magic —2p — 2n») and
the 07 — 0% decay of 2'2Po(0") —2%8Pb(0*) + « (transition of the type «doubly magic
nuclei +2p + 2n — «doubly magic nuclide») with @, ~ 8.8 MeV and Tf*/2 =3.04-1077s.
Supposing the identity of reduced widths I'y in both cases we thus have the relation

P(*'2Po,Q, = 8.8 MeV)
P(164Pb, Q, ~ 5 MeV)

1(1/2(164Pb) = 10(/2(212130)' (32)

In numerical calculations we used «- particle optical potentials from the works [28,29], po-
tential «2BL» from [30], and also rectangular—form nuclear potentials with radii 1.17 A'/3 fm
and 1.25(A/3 + 41/3) fm. The obtained values of Tf‘/2(164Pb) in the case of Q, ~ 5 MeV
(the most value of this quantity, presented in Table 2) was found to lie in the interval from 3
to 10 years, with T{’/Q = 5.2 years for the potential [28] and 7.3 years for the potential [30].
Due to uncertainty of the @), value (compare Tables 2 and 3) our estimate presents rather the
lower limit of the half-life.

4.2. Beta-Decay and Some Properties of the A = 164 Isobars. To determine the
probability of the 3+-decay of 154Pb we must know the structure of isobars with A = 164.
Here we present some results concerning '4Pb (the magic nuclide) and 5Tl (magic nuclide
—p—+n). The calculations were performed in the framework of the RPA method. One can find
the corresponding formulas for the magic nuclei in our work [23], while the calculations for
164T] correspond to the procedure described by us in [20]; see also formulas (4)—(11) of the
present work. In our calculations we used the effective interaction (3) while the single-particle
basis included all the proton and neutron single-particle states belonging to the 50 + 82 and
82 + 126 shells with the energies calculated in the self consistent approach (see Table 4).
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Some of the '%4Pb and 4TI levels offering the interest to us are presented in Fig. 3.
The lowest levels of 164T1, in accordance with the structure of the main amplitudes of states,
present the components of the particle-hole multiplets, two of which are partially represented
in the figure. All the low-lying levels of this nucleus have the values of (7, Tz) = (1,1). One
can see another picture in '64Pb. Here the ground state and the lowest levels are characterized
by the values of (7,77) = (0,0) with insignificant admixtures having (7,7%z) = (1,0).
Among the higher lying levels there stand out the ones for which the fraction of components
(sum of the squared amplitudes) with 7' = 1 is close to 100%. These levels are the isobaric
analogs of the '64Tl states and are characterized approximately by the same, as for '64TI,
energy splitting.

Fermi transitions between the 07 ground state of '4Pb and the possible 07 - excitations of
164T] are strongly configurationally forbidden. The most like 3+ -transition of the '54Pb from
it’s ground state is of the Gamow-Teller type and proceeds to the 17 - state of 54Tl with the
energy of 3.30 MeV. Our calculation, performed in the framework of the RPA approach with
the exact implementation of the «difference sum rule», gives for this transition the magnitude
of B(GT;0" — 1) = 18.84. This is slightly less than the diagonal shell model value equal
to 240/11 ~ 21.82, corresponding to the spin-flip phy1/o — nhgp (07 — 17) Gamow-
Teller transition.The mentioned difference is due to configuration mixing and the ground state
correlations considered by us.

To evaluate the T N value remember the formula for Gamow-Teller transitions [31]:

1/2
6163
T1,2(GT) = . (33)
V) = T P Qs 2YBGT)
Here fj is an integral Fermi function for allowed beta-transition
fo(Qs,2) = Fo(BEp=Qp/mec® +1)-5(Qp, 2) (34)

where

1 1
Fo(Bp) = ==(B3—1)"/*(2E} — 9E} —8) + 7 Esln (Eg +\/E2 - 1) (35)

— is a Fermi function for zero charge, while S(Qg, Z) is a screening function.

Taking for the purpose of evaluation the magnitude of |ga/gy| in nuclear media equal
to 1 and S(Qp+ = 9.02 MeV, Z = 82) ~ 0.32 [32], we obtain T} /5(51) = 13 ms.

As one can see from Fig. 3 the difference of binding energies of related isobaric states
in 154Pb and 4TI (for example, 107 states), presenting the difference of Coulomb energies
of the mentioned nuclei, occurs to be about 19 MeV. In the model of uniformly charged
sphere having the radius R, = r,. - A'/? the Coulomb energy of the (A, Z) nucleus and the
difference of Coulomb energies of the (A, Z) and (A, Z — 1) nuclei are correspondingly equal
to

2 Z(z-1)

3 e 27 —2
ECoulomb = g T_OC W ; AE‘Coulomb = 0.86 ( )

from which we obtain r,. = 1.34 fm. This number is about 8 — 10% more than the analogous
value usually obtained from the electron scattering and used by us in phenomenological po-
tential (2). The difference is due to exchange Coulomb interaction that decreases the Coulomb
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Fig. 3. Properties of isobaric nuclei with A = 164

energy. Such interaction was included in our self consistent calculation, but ignored by the
formulas (36). We note here that if we use the single-particle spectrum of phenomenological
potential (variant Stnd of Tables 6 and 7), the difference of Coulomb energies corresponds
to 7o = 1.23 fm, which practically coincides with the value of this parameter in the initial
potential.

Turning again to the excitation spectra of '®4Pb we note that the lowest excited states
here are the collective isoscalar 3~ and 5~ levels.The collectivity of 3~ state (30 W.u.) is
slightly less than in 2°8Pb (experimental value 34 W.u.) and exceed that in '3?Sn (the indirect
estimate ~ 15 W.u. from the experimental [33] value of octupole effective charge in 34Te
and > 10 W.u. from the experimental limit on the half-life of the 3, level in 32Sn [2]).
At the same time, the lowest isoscalar 27 and 47 states lie much higher. The collectivity of
4% is rather strong (~ 14 W.u.), while that for the 27 -state is small (~ 2 — 3 W.u.) being
also strongly dependent on the relative position of the proton 1h9/2 and 2f7/2 states. The last
quantity should be compared with the B(F2;2] — gr. st.) value in 2°°Pb (~ 8 W.u.) and
with the indirect estimate [34] of this characteristic in ®2Sn, obtained from the value of an
effective quadrupole charge in nuclei close to *2Sn and equal to 8 — 10 W.u. We note here
that as the diagrams that define the structure of phonon are similar to those contributing the
magnitude of the effective charge, the B(E\) values presented above were obtained by using
the «bare» (e, = 1 and e, = 0) values of effective charges. However the basis used in our
RPA calculations (one shell above and the other one, with the opposite parity, — below the
Fermi level for each sort of nucleons) may be not enough for saturating the values of effective
charges of the positive parity E2 transitions. This leads to the necessity of introducing the
ep and e, values corresponding to nuclear media. In case of y-decay of the isoscalar 2
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Table 6. Single-particle proton energies of the ‘°*Pb nuclide, corresponding to different phenom-
enological potentials

ntlj Set3 Stnd BEn
3pl/2 11.39(670) 10.68(570) 10.37(446)
3p3/2 10.22(302) 9.75(284) 9.33(190)
2f5/2 10.71(74) 10.43(88) 10.17(66)
1:13/2 7.58(7.08 E-3) 9.30(1.99 E-1) 8.42(4.86 E-2)
2f7/2 7.59(1.92) 7.80(4.02) 7.21(1.42)
1h9/2 6.72(3.22 E-3) 7.89(5.74 E-2) 7.65(3.44 E-2)
3s1/2 3.27(1.28 E-5) 3.37(3.62 E-5) 2.87(1.02 E-6)
2d3/2 2.76(4.04 E-8) 3.06(6.76 E-7) 2.65(2.22 E-8)
1h11/2 | 0.81(1.20 E-28) | 2.49(1.39 E-11) | 1.66(1.57 E-16)
2d5/2 | 0.68(2.18 E-29) | 1.22(2.14 E-18) | 0.59(2.22 E-32)
1g97/2 —1.40 —0.08 —0.44

The values of energies are given in MeV, while the widths of unbound states (in brackets) — in keV. Potential Set3
uses the parameters, defined by us in [24] for 100Gy, potential Stnd is borrowed from our works [19], [20], [23],
while the BEn set reproduces the separation energies of protons and neutrons in isotopes from 132Sn to 199Sn,

Table 7. Single-particle neutron energies of '°*Pb, corresponding to phenomenological Woods-Saxon
potentials

nlj Set3 Stnd BEn
3pl/2 —8.34 —8.49 —7.70
3p3/2 —9.58 —9.62 —8.92
2f5/2 —9.28 —9.55 —8.63
1413/2 —10.94 —10.79 —10.29
2f7/2 —12.40 —12.39 —11.72
1h9/2 —12.93 —13.37 —12.31
3s1/2 —17.81 —17.95 —17.11
2d3/2 —18.17 —18.41 —17.48
1h11/2 —18.27 —18.21 —17.59
2d5/2 —20.13 —20.20 —19.42
197/2 —21.55 —21.91 —20.88

Potential Set3 uses the parameters, defined in [24] for nuclide 1°0Sn, potential Stnd corresponds to works [19],
[20], [23], while the BEn variant gives the best description of the proton and neutron separation energies in the
chain of isotopes from 32Sn to 1008n.

state in '64Pb, having the symmetric spin-coordinate function, this leads to increase of the
B(FE?2) value presented above in (e, + e,)? &~ 2.5% times, where we used the experimental
magnitudes of quadrupole effective charges for nuclei close to 2°8Pb. The resulting value of
about 17 W.u. presents the maximal estimate of the F2 transition probability of the lowest
2+ state in '54Pb, corresponding to coherent contribution of proton and neutron non-spin-flip
1h11/2 — 2£7/2 single-particle E2 transition matrix elements.

4.3. Proton Radioactivity. As the 5*Pb nucleus is an extremely neutron deficient one
and evidently lies outside the border of proton stability (see Tables 2 and 3), it’s most
probable decay mode is expected to be the emission of a proton. Therefore we examine in
this section the problem of the widths of proton unbound states in this nuclide. These widths
were calculated by us in the framework of the integral method, elaborated in [26, 27].

If the mean field potential that forms the «pocket» responsible for appearing of the quasi-
stationary state is composed of two items, namely the attraction (for example, the nuclear
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part of the mean field potential (2)) and the repulsion (Coulomb and the centrifugal parts of
potential), then the formula for the width of a quasi-stationary state looks as:

~TS 2

Fpey = 27 /Rngj(r)Unucl(r)gi)Z(r)dr -~ Snej - (37
0

Here IR, is a radial eigenfunction of a quasi-stationary level, normalized to unity in the
interval from zero up to the external turning point r~, and corresponding to the sum of
nuclear U1, Coulomb U, and centrifugal Uy, potentials (shell model radial function). Those
are the functions defined by us earlier by the finding of the real parts of the (positive)
mean field eigenvalues, €,¢;, and used in particular in our shell model and self consistent
calculations. The function ¢j (), entering formula (37), presents the regular Coulomb function
of continuum, corresponding to the energy ¢ and orbital moment ¢, defined with the account
of the finite size of a nucleus and normalized to - function in energy. By r — oo it has the
asymptotics

R 1 /2m lm
o7 (r — 0) — 7\ 7 sin (kr—?—nhl(QkT)-l—Jg-l-(Sg), (38)

where k = (v2me)/h, n = (mZe?)/(h%k), oy = argT(in + £ + 1) is a Coulomb phase,
while d, is an additional small phase shift considering the finite size of a charge distribution
in nucleus. The functions ¢ were found by numerical integration from r = 0 with the
corresponding boundary condition. The normalization of these functions as well as the phase
shift &, (small for sub-barrier energies) were defined by matching the numerical solution at
r > R, with the sum of properly normalized (see for example (38)) regular F; and irregular
G Coulomb functions for the point-like distribution of nuclear charge.

The quantity Sp¢; in (37) presents the spectroscopical factor of single-particle state,
corresponding to it’s spread over the states of more complicated nature. As we consider here
nuclei close to the doubly magic one, the values of S;,¢; are supposed to be equal to unity,
which corresponds to the well-known experimental situation, for example for 2°8Pb, where
S ~0.7-0.9.

The results of calculation of proton widths I'P obtained by using the formula (37) are
presented in Table 6. Qualitatively close values of I'” were obtained by using the formula anal-
ogous to (31) for protons, if one takes the values I'g ~ Awgsc /21 with hwese = 41/141/3 MeV
and the functions UJ (r), that coincide with the corresponding nuclear potentials for protons.

Turning to the evaluation of 7} /2 for the proton decay of '®*Pb we note that, as it follows
from the single-particle schemes presented in Tables 4 and 6, it is defined by the width of
the decay to the 3s;/5 state of 163T1. The energy of this decay, as one can see from our
calculations (see Table 1) is weakly dependent on the variant of the mean field and offers a
value of about 3 MeV. The width of the mentioned level, that has no centrifugal barrier, is
defined only by the Coulomb field and presents the value of about 0.001 =+-0.04 electron—volts,
which corresponds to the lifetime of about 1 < 0.025 ps. It is just the decay that defines the
degree of (un)stability of '54Pb, because the two- proton decay, which is also possible here,
is substantially weaker than the one-proton transition.
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4.4. Spontaneous Fission. The receiving of a reliable evaluation for the half-life of
164ph relatively to the spontaneous fission presents a complicated problem that includes the
determination of the form and the height of fission barrier, calculation of the reduced width
and finding of corresponding dynamical mass parameters that influence the process of fission.
Here we simplificate the problem limiting by some available and rather simple ideas.

We mention first that the values of the fissility parameter «x» (see [35]),

. Z%/A
©5L77-[1 - 1.79 (254)2]

(39)

for nuclei 2°%Pb, 238U, and '%*Pb are equal to 0.678, 0.757, and 0.792 correspondingly. Thus
we see that as compared to 238U the fissility of '54Pb increases not too much which is mainly
due to the absence of the symmetry term in the surface energy of this nucleus. Note that Tlf /2
for the 238U is a value of the order of 10%° y., this value being much more for 2°®Pb (the decay
is not seen in the experiment). In [36] in the framework of the macroscopic—microscopic
model accounting for shell corrections [35] different global characteristics of nuclei, including
the fission barriers, were defined. The minimal value of N at Z = 82, for which the barrier
was calculated in [36] is NV = 84. Short extrapolation of the results [37] to Z = N = 82
gives the value of By ~ 11.2 MeV. Using the results of [37] we have the following formulas
for definition of the spontaneous decay width, obtained in the approach that potential between
fragments has the form of two matched, «convex-up» and «convex-down», parabolas:

hw 21(By — Lhwys)
r, = 98 S A Mt i 40
f o eXp|: |hw2| ) (40)
where " 1o
8 E° }
hwes =h |=(1 —x . 5 41)
! [3( )] {MOR(%
with "
B [ L9 (27
K [MOR(%} —23.12. 7 MeV. 42)
For 154Pb, as follows from Fig. 8 of [37], we obtain
EO 1/2
|Fiws| A 0.48 - {MO;%Q} h (43)
0

As a result, we have for the asymmetric fission of 54Pb the value of Tlf g ™ 10° years.

One may offer another estimate based on the relation of the type (32) but for fission,
with normalization to the spontaneous fission of 238U (for certainty we considered the decay
238U — 1328n + 1%Mo with Q; ~ 200 MeV). Considering the decay '%/Pb — 190Sn +
64Ge with Q¢ ~ 170 MeV, assuming the equality of the reduced widths in both cases (which
is much less evident than for the o decay studied by us before) and assuming also that the
corresponding nuclear potentials between the fragments have the rectangle-well shape with
Ry = 1.25(141/3 + Aé/g) fm, we obtain the value Tlf/2 ~ 10'2 y. We note here that the
difference between the two estimates in seven orders of magnitude, as can be seen from
formulas (40) and (43), corresponds to the increase of the By magnitude used by us by the
value of one MeV, what is not too excessive.
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5. DISCUSSION AND CONCLUSION

As was already mentioned, the calculations undertaken in this work within the framework
of the shell model approach are valid if the Z = N = 82 nucleon numbers are assumed as
magic ones. However this prerequisite can be considered rather as possible than obligatory.
The «universality» of magic numbers is still an open question. Indeed, recently [13] the
analysis of behavior of the two- proton separation energies Sz, showed the washing out of
gap in the Sy,-values towards the proton drip-line (when the neutron numbers become less
than ~ 114). As it was noted in [13] this behavior is a particular property of the Z = 82
region and reflects the changes in the nuclear structure for single-magic neutron-deficient
nuclides in the lead region. Nevertheless we can expect that due to the effect of «mutual
support of magicities» [38], which works in doubly magic nuclides, the closed shell structure
can be restored for the Z = N = 82 nuclide. In this case the results of the shell model
calculations performed in this work can be considered as quite trustworthy. In addition, it is
worthy to emphasize here that the same magic spectroscopic characteristics for 154Pb have
been obtained as well by different, self-consistent approach (see Section 3), though one can
see numerical difference for some (J-values calculated in the framework of two methods.

As can be seen from the results of previous section and Tables 2 and 3, the most probable
decay in the close vicinity to '%4Pb is a proton disintegration of nuclide. The partial proton-
decay half-life is expected not to be exceedingly small for the lead-164 nuclide and can, in
principle, be measured directly. The new generation Radioactive Ion Beam facilities could be
used for production of the lead isotopes in the region though very small half-lives and cross-
sections in spallation-fragmentation or fusion-evaporation reactions will lead to difficulty in
their observation.

At the same time one should mention that our estimate of the half-life of '*Pb relatively
to the proton decay is strongly based on the structure of the proton single-particle spectrum
near the Fermi surface of this nuclide. One should hope that the Nature may be more kind
to us and so the problem of discovering this nuclide may really become more realistic. This
is especially true if one shall try to identify this nuclide by detecting all the cascade of
decays that lead to the final daughter nucleus which is more stable and which can be reliably
identified.

This work was supported by the Russian Foundation for Basic Research (grant No.
96-15-96764 in support of the Leading Science Schools). The authors are grateful to
Prof. J. Blomgqvist for valuable discussion.
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