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In [1, 2] we applied a nonlinear analysis to trafˇc measurements obtained at the input of a
medium size local area network. The reliable values of the time lag and embedding dimension
provided the application of a layered neural network for identiˇcation and reconstruction of the
underlying dynamical system. The trained neural network reproduced the statistical distribution of
real data, which well ˇts the log-normal form. The detailed analysis of trafˇc measurements [3] has
shown that the reason of this distribution may be a simple aggregation of real data. The Principal
Components Analysis of trafˇc series demonstrated that a few ˇrst components already form the
fundamental part of network trafˇc, while the residual components play a role of small irregular
variations that can be interpreted as a stochastic noise [4]. This result has been conˇrmed by
application of the wavelet ˇltering and Fourier analysis to both the original trafˇc measurements and
individual principal components of original and ˇltered data [5]. The log-normal distribution of trafˇc
measurements and a multiplicative character of trafˇc series conˇrmed the applicability of the scheme,
developed by A. Kolmogorov [6] for the homogeneous fragmentation of grains, also to the network
trafˇc.

‚ [1, 2] ³Ò ¶·¨³¥´¨²¨ ´¥²¨´¥°´Ò°  ´ ²¨§ ± ¨§³¥·¥´¨Ö³ ¨´Ëµ·³ Í¨µ´´µ£µ É· Ë¨± , ¶µ-
²ÊÎ¥´´Ò³ ´  ¢ÒÌµ¤´µ³ Ï²Õ§¥ ²µ± ²Ó´µ° ¸¥É¨ ¸·¥¤´¥£µ · §³¥· . �¥ ²¨¸É¨Î´Ò¥ ¢¥²¨Î¨´Ò ¢·¥-
³¥´´µ£µ ¸¤¢¨£  ¨ ¢²µ¦¥´´µ° · §³¥·´µ¸É¨ µ¡¥¸¶¥Î¨²¨ ¢µ§³µ¦´µ¸ÉÓ ¶·¨³¥´¥´¨Ö ¶·Ö³µÉµÎ´µ°
´¥°·µ´´µ° ¸¥É¨ ¤²Ö ¨¤¥´É¨Ë¨± Í¨¨ ¨ ·¥±µ´¸É·Ê±Í¨¨ ²¥¦ Ð¥° ¢ µ¸´µ¢¥ ¤¨´ ³¨Î¥¸±µ° ¸¨¸É¥³Ò.
�¡ÊÎ¥´´ Ö ´  ÔÉ¨Ì ¤ ´´ÒÌ ´¥°·µ´´ Ö ¸¥ÉÓ ¢µ¸¶·µ¨§¢¥²  ¸É É¨¸É¨Î¥¸±µ¥ · ¸¶·¥¤¥²¥´¨¥  £·¥£¨·µ-
¢ ´´ÒÌ ¶ ±¥Éµ¢ ·¥ ²Ó´ÒÌ ¤ ´´ÒÌ, ±µÉµ·µ¥ Ìµ·µÏµ Ë¨É¨·Ê¥É¸Ö ²µ£´µ·³ ²Ó´Ò³ · ¸¶·¥¤¥²¥´¨¥³.
„¥É ²Ó´Ò°  ´ ²¨§ ¨§³¥·¥´¨° É· Ë¨±  [3] ¶µ± § ², ÎÉµ É ±µ¥ · ¸¶·¥¤¥²¥´¨¥ ¢µ§´¨± ¥É ¢ ·¥-
§Ê²ÓÉ É¥  £·¥£ Í¨¨ ·¥ ²Ó´ÒÌ ¤ ´´ÒÌ. �´ ²¨§ ¶·¨´Í¨¶¨ ²Ó´ÒÌ ±µ³¶µ´¥´É ¨§³¥·¥´¨° É· Ë¨± 
¶·µ¤¥³µ´¸É·¨·µ¢ ², ÎÉµ Ê¦¥ ´¥¸±µ²Ó±µ ²¨¤¨·ÊÕÐ¨Ì ±µ³¶µ´¥´É Ëµ·³¨·ÊÕÉ ËÊ´¤ ³¥´É ²Ó´ÊÕ
Î ¸ÉÓ ¸¥É¥¢µ£µ É· Ë¨± , ¢ Éµ ¢·¥³Ö ± ± µ¸É ÉµÎ´Ò¥ ±µ³¶µ´¥´ÉÒ ¨£· ÕÉ ·µ²Ó ´¥¡µ²ÓÏ¨Ì ´¥·¥-
£Ê²Ö·´ÒÌ ¢ ·¨ Í¨°, ±µÉµ·Ò¥ ³µ£ÊÉ ¡ÒÉÓ ¨´É¥·¶·¥É¨·µ¢ ´Ò ± ± ¸ÉµÌ ¸É¨Î¥¸±¨° ÏÊ³ [4]. �ÉµÉ
·¥§Ê²ÓÉ É ¡Ò² ¶µ¤¤¥·¦ ´ ¶·¨³¥´¥´¨¥³ ¢¥°¢²¥É-Ë¨²ÓÉ· Í¨¨ ¨ ËÊ·Ó¥- ´ ²¨§  ± ± ± ¨¸Ìµ¤´Ò³
¨§³¥·¥´¨Ö³ É· Ë¨± , É ± ¨ ± µÉ¤¥²Ó´Ò³ ¶·¨´Í¨¶¨ ²Ó´Ò³ ±µ³¶µ´¥´É ³ µ·¨£¨´ ²Ó´ÒÌ ¨ µÉ-
Ë¨²ÓÉ·µ¢ ´´ÒÌ ¤ ´´ÒÌ [5]. ‹µ£´µ·³ ²Ó´µ¥ · ¸¶·¥¤¥²¥´¨¥  £·¥£¨·µ¢ ´´ÒÌ ¨§³¥·¥´¨° ¨ ³Ê²Ó-
É¨¶²¨± É¨¢´Ò° Ì · ±É¥· ¢·¥³¥´´µ£µ ·Ö¤  É· Ë¨±  ¶µ¤É¢¥·¦¤ ÕÉ ¶·¨³¥´¨³µ¸ÉÓ ¸Ì¥³Ò, · §· -
¡µÉ ´´µ° �. Šµ²³µ£µ·µ¢Ò³ [6] ¤²Ö µ¤´µ·µ¤´µ° Ë· £³¥´É Í¨¨ ±·Ê¶¨´µ±, É ±¦¥ ¨ ¤²Ö ¸¥É¥¢µ£µ
É· Ë¨± .

INTRODUCTION

In [1Ä3] we systematically applied the nonlinear time series analysis ap-
proach [10] to the trafˇc measurements obtained at the input of the intermediate
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size Local Area Network (LAN). We have demonstrated that nonlinear techniques
can be successfully used for a deeper understanding of main features of the trafˇc
data. In order to reconstruct the underlying dynamical system, we estimated the
correlation length and the embedding dimension of the trafˇc series. The reli-
able values of the correlation length and the embedding dimension provided the
application of a layered neural network for identiˇcation and reconstruction of
the dynamical system. We have found that the trained neural network reproduces
the packet size distribution of real measurements, which follows the log-normal
distribution [2].

The log-normal distribution has been ˇrst observed, to our knowledge, by
Lucas et al. [11] for the empirical probability distributions of packet arrivals
aggregated at 100 ms. Later they developed the background trafˇc model, or
(M , P , S) model [12], which realistically generated the aggregated trafˇc �ows
for a large campus network. The log-normal distributions for packet arrivals
have been observed at different stream scales [12]. Similar interarrival time
distributions for channel arrivals have been observed in cellular telephony [13].
However, there was no a reliable explanation of reasons, which may cause the
appearence of such distribution.

In our work [4], based on the detailed analysis of trafˇc measurements, we
demonstrated that the reason of this distribution may be a simple aggregation
of real data. In fact, we show that the aggregation of trafˇc measurements
forms (starting from some threshold value of the aggregation window) a stable
statistical distribution, which does not change its form with further increase of the
aggregation window. Applying the χ2 test we proved that with a high signiˇcance
level this distribution corresponds to the log-normal distribution.

Later in [5, 6] we proved that the Principal Components Analysis, especially
the ®Caterpillar¯-SSA approach [14,15], is very efˇcient for understanding main
features of terms forming the network trafˇc. The statistical analysis of leading
components demonstrated that a few ˇrst components already form the funda-
mental part of the information trafˇc [5,6]. The residual components play a role
of small irregular variations, which do not ˇt in the basic part of the network
trafˇc and can be interpreted as a stochastic noise.

In order to further decrease the dimension of the dynamical system underlying
the network trafˇc, we applied the wavelet ˇltering to trafˇc measurements [7,8].
The analysis of in�uence of this preliminary ˇltering on characteristics of individ-
ual principal components and on summary distributions of leading and residual
components gave additional arguments for the correctness of results obtained
in [6]. The Fourier analysis of original trafˇc measurements and individual prin-
cipal components for both original and ˇltered data conˇrmed that the fundamental
part of information trafˇc is formed by a few ˇrst leading components.

Applying the continuous wavelet transform to trafˇc measurements, we found
that the corresponding series has a multifractal, multiplicative character. This
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circumstance together with the log-normal distribution of trafˇc data conˇrms the
applicability of Kolmogorov's scheme [9] to the description of network trafˇc.

The aim of this work is to summarize the results obtained in [1Ä8], to
formulate main characteristics of the background statistical model of network
trafˇc and to emphasize possible directions for further studies.

In our work we used trafˇc measurements collected at the input of Dubna
University [16] LAN, which includes approximately 200Ä250 interconnected com-
puters.

In Sec. 1 we describe the data acquisition system of this LAN, realized on
the basis of a standard PC. In Sec. 2 we present ˇrst results of application of
the nonlinear analysis to the trafˇc measurements. We show that the dynamical
model based on the neural network reproduces the packet size distribution of real
measurements, and that this distribution ˇts in the log-normal form. In Sec. 3 we
explain that the reason of this distribution may be caused by a simple aggregation
of real data. In Sec. 4, applying the Principal Components Analysis, we demon-
strate that a few ˇrst components already form the basic part of the network
trafˇc, while the residual components play a role of small irregular variations.
In Sec. 5 we analyze the spectral characteristics of trafˇc measurements applying
the Lomb periodogram technique. The peculiarities of the wavelet ˇltering of
trafˇc series are considered in Sec. 6. Section 7 is devoted to the analysis of sta-
tistical and spectral characteristics of the ˇltered trafˇc series. In Sec. 8 we show
that the main part of network trafˇc can be efˇciently described by a minimal
number of feature components. In Sec. 9 we show that the trafˇc measurements
have a multifractal, multiplicative character, and discuss the applicability of the
Kolmogorov's scheme to the description of network trafˇc.

1. DATA ACQUISITION SYSTEM

Two protocols are used in the ®Dubna¯ LAN. The NetBEUI protocol is
applied only for internal exchanges, and the TCP/IP for external communications.
The measurements of network trafˇc have been realized at the external side of
the input lock of LAN.

The performance of the data acquisition system is based on realization of an
open mode driver [17] (see Fig. 1).

In standard conditions the network adapter of a computer is in a mode of
detecting a carrying signal (main harmonic 4Ä6 MHz). After appearing in the
cable bits of the package preamble, the network adapter comes to a mode of 1 bit
and 1 byte synchronization with the transmitter and starts receiving ˇrst bytes of
the package heading. As soon as one succeeds in extracting the MAC-address of
the shot receiver from the ˇrst bytes taken by the adapter, the network adapter
compares it to its own. In the case of a negative result of the comparison, the
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Fig. 1. Scheme of the data acquisition system

network adapter ceases to record the shot's bytes into its internal buffer and cleans
its contents and then waits until the next package appears.

In order to provide conditions for receiving and analysis of all the packages
transmitted over the network, it is necessary to move the adapter devices to a
free mode when all possible shots are recorded in the buffer. This operation is
executed through the instructions of the NDIS driver.

The free mode driver records the accepted packages in the preliminary capture
buffer and displays the �ag of receiving the package. Then the receiving package
module is activated, and the analysis of the margin of the package's type is carried
out to extract TCP/IP packages from the whole stream.

After identiˇcation it is possible to separate and delete the data block as well
as to record the headers to the SQL-server database. The recording is performed
together with the time data with a frequency up to 10 kHz. Although the recording
is performed with buffering, the mode of saving the packages' headers requires
enormous server's resources, as in this case there is a permanent procedure of
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Fig. 2. Trafˇc measurements aggregated with different bin sizes: 0.1 s (a), 1 s (b) and
10 s (c)

recording with small portions to the hard disk. That is why this mode is switched
on if required at the management system's instruction.

The system also provides control over the external trafˇc of the local area
network on the basis of controlling the records in the router table. Initial infor-
mation on the legal IP addresses is saved in the database of the LAN computers
from which data on legal addresses are loaded into the main memory array. The
users which do not participate in forming the external trafˇc, are not taken into
account when calculating the number of transferred and received bytes. In order
to decrease the number of sessions of recording the information on the external
trafˇc in the database, a timer of load out of the buffer and a timer of changing
a current date have been introduced into the system.

The recorded trafˇc data correspond approximately to 20 h (1600000 records
with a frequency up to 10 kHz, which corresponds to 1 ms bin size) of measure-
ments. The part of this series corresponding approximately to 1 h of measurements
and aggregated with different bin sizes is presented in Fig. 2.

The contribution of the NetBEUI trafˇc has been estimated around 1Ä6 pack-
ages per second during daily working hours. This is negligibly small compared
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to the TCP/IP trafˇc. In this connection, we may neglect the in�uence of non-IP
trafˇc on the TCP/IP trafˇc.

2. NONLINEAR ANALYSIS OF NETWORK TRAFFIC

Chaos theory offers a new methodology, nonlinear or chaotic time series
analysis, to handle irregular time series, such as trafˇc measurements [10]. First
attempts to apply this approach to the network trafˇc analysis demonstrated seri-
ous difˇculties as well as some promising results (see [18] and references therein).

In nonlinear time series analysis we view the signal {xi} as the one-dimensio-
nal projection of a dynamical system operating in a space of vectors yi of larger
dimension [19,20]:

yi = (xi, xi+τ , . . . , xi+(m−1)τ ). (1)

Fig. 3. The dependence of the correlation length
against the size of the aggregation bin

Here m is the dimension of the un-
derlying dynamical system, and τ
is a ®delay time¯, or the correla-
tion length of series {xi}.

The main steps of this ®phase
space reconstruction¯ for the trafˇc
measurements include three main
steps:

1) estimation of the correlation
length τ ,

2) estimation of the embedding
dimension m,

3) reconstruction of underlying
dynamical system.

2.1. Estimating the Correla-
tion Length. In order to choose the
independent components from the
trafˇc data, we may compute the
correlation length [21, 22], where
the linear auto-correlation function

C(τ) =

N∑
i=1

(xi+τ − x̄)(xi − x̄)

N∑
i=1

(xi − x̄)2
(2)

for the ˇrst time crosses the conˇdence tube corresponding to Gaussian white
noise. Here xi are the values of trafˇc measurements; N is the number of points
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in the analyzed time series and

x̄ =
1
N

N∑
i=1

xi.

The dependence of the correlation length against the aggregation bin size is
presented in Fig. 3.

We see that for bin sizes from 0.1 up to 10 s, the correlation length τ is in
acceptable region: τ ∼ 10 s. The points separated by the time interval τ can be
considered as linear independent.

2.2. Estimating the Embedding Dimension. A set of uncorrelated points may
be considered as the components of some m-dimensional vector. The dimension
of the underlying process can be estimated by box-counting or neighbor counting
methods [10]. To make sure that the dimension counting methods give a reliable
result, one must check that starting from a certain value of n (the dimension of the
embedding space), the estimated dimension is not increasing together with further
increase of m. If this is the case, the time series can be considered as generated
by a ˇnite-dimensional system, which, in principle, can be reconstructed from the
original time series.

The dimension counting for aggregated time series has been performed with
the GrassbergerÄProcaccia algorithm [23, 24]. The correlation integral can be
estimated by

Cm
2 (r) =

2
N(N − 1)

∑
i�=j

Θ(r − |yi − yj|), (3)

with the distance between two points given by

|yi − yj | = max
{
|xi − xj |, . . . , |xi+(m−1)τ − xj+(m−1)τ |

}
.

Here Θ = 1 if its argument is non-negative and 0 otherwise. The value Cm
2 (r)

is the empirical probability that a randomly chosen pair (yi,yj ) of points will be
separated by a distance less or equal to r.

To estimate the embedding dimension dE [23,25], one computes Cm
2 (r) for

r ranging from 0 to the largest possible value of |yi − yj | and for m increasing
from 1 up to the largest possible value. Starting from some m in the dependence

log C2(r) ≈ β log r + γ ,

if the parameter β does change its value, then the embedding dimension dE can
be estimated from the relation

β < dE < m.

Thus, the slope of the log Cm
2 (r) vs. log r gives the lowest estimate of the

embedding dimension (see Fig. 4).
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Fig. 4. The dependences of log Cm
2 (r) vs.

log r for trafˇc measurements aggregated
with 1 s bin: τ = 10 s and m = 12 (1),
14 (2), 16 (3), 18 (4)

For various parts of the time series
we have analyzed, no saturation of the
slope with respect to increasing m was
found. For each given value of m in
the range of m = 2 ÷ 18 the slope β
was found to satisfy

m � 2β + 1. (4)

According to the Takens theorem [20],
this may imply very high dimension of
the studied time series.

As usual we may consider the traf-
ˇc measurements as a sum of a regular
process and a stochastic part, related to
the high frequency ®noise¯. The elim-
ination of the noisy part may simplify the analyzed time series and reduce the
dimension of the underlying dynamical process. In order to achieve this, we
applied the ˇltering based on a discrete wavelet transform: the details of wavelet
ˇltering are discussed in Sec. 6.

We observed that for all curves, the slope of all log-log curves decreased
in comparison to the slope calculated for the original (not ˇltered) data. The
dimension about 16 ÷ 18 seems to be close to saturation.

2.3. Reconstruction of Underlying Dynamical System. In order to recon-
struct the dynamical system corresponding to the trafˇc measurements, we used
an artiˇcial neural network (ANN) [10, 28, 29]. The major advantages of neural
networks are that no prior information is required and the identiˇcation of the
regular trafˇc component can be obtained automatically through the ANN train-
ing [30Ä32]. This is important in our case, not only because the trafˇc system is
very complex, but there is also no information about the contribution of individual
components into the system dynamics.

In our study we applied a layered neural network with the feed-forward
architecture from the JETNET3 package [33]: the input layer with the number
of neurons corresponding to the embedding dimension of the trafˇc series, two
hidden layers with varying number of neurons and one output neuron. From the
output neuron we get the predicted value of the ANN model.

For the ANN training we used a data set corresponding approximately to
34 min period and aggregated with time bin 1 s. These data were preliminary
cleaned applying wavelet ˇltering (for the elimination of ®noisy¯ component) and
normalized to the interval [−1, 1]. The following parameters were used for the
input vector (1) formation: τ = 10 s and dE = 15 ÷ 20.

Figure 5 presents part of the trafˇc data (curve 1) and the result of the ANN
approximation (curve 2) after 1000 training epochs. We see that, despite the
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Fig. 5. The result of the ANN approximation of the trafˇc series after 1000 training epochs:
1 Å trafˇc data; 2 Å training data

Fig. 6. The distribution of sizes of the trafˇc packages (normalized to the interval [−1, 1])
for the original trafˇc measurements (a), and those generated by the trained ANN (b)
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Fig. 7. The distribution of the absolute
values of weights between the output
node (neuron) of the ANN and the
nodes of the second hidden layer of the
ANN trained on trafˇc measurements

highly chaotic character of time series,
the neural network approximates these data
quite well.

Figure 6 demonstrates the distributions
of sizes of trafˇc packages (normalized to
the interval [−1, 1]) for the original trafˇc
measurements (Fig. 6, a) and for time series
generated by the trained ANN (Fig. 6, b).
We see that the ANN model reproduces
quite well the statistical distribution of real
data, which seems to be the log-normal.

It is known, that the ANN training on
real data is in general adequate to the so-
lution of the PCA problem [28, 34Ä36]. In
this connection, the distribution of the ANN
weights between the output node (neuron)
of the ANN and the nodes of the second
hidden layer is quite interesting (see Fig. 7).
We will see below, in Sec. 4, that this distribution of weights reproduces the char-
acter of the eigenvalues distribution obtained with the help of the PCA method.

3. LOG-NORMAL DISTRIBUTION OF NETWORK TRAFFIC

Having available trafˇc data measured at high-frequency (each arriving packet
has been recorded independently, see Sec. 1), we obtained the possibility of ana-

Fig. 8. Packet size distribution for trafˇc measurements aggregated with bin size 1 ms

Fig. 9. Packet size distribution for trafˇc measurements aggregated with bin size 10 ms
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lyzing the in�uence of the aggregation bin on the form of the packet size distribu-
tion. Figure 8 shows the packet size distribution for original trafˇc measurements,

Fig. 10. Packet size distribution for traf-
ˇc measurements aggregated with bin
size 100 ms

while Figs. 9, 10, and 11 present the distri-
butions for measurements aggregated with
bin sizes 10 ms, 100 ms, and 1 s, corre-
spondingly.

One can clearly see that for the aggre-
gation with small bin sizes the packet size
distributions have rather chaotic and non-
systematic character. However, when the
aggregation bin size approaches 1 s (see
Fig. 11) the distribution assumes a stable
form that does not change with further
increase of the aggregation bin: see, for
example, Fig. 12 corresponding to the ag-
gregation with the bin size 10 s.

The distributions in Figs. 11 and 12
are well approximated by the log-normal
function [4]

f(x) =
A√
2πσ

1
x

exp
[
− 1

2σ2
(ln x − µ)2

]
, (5)

where x is the variable; σ and µ are the parameters of log-normal distribution,
and A is the normalizing multiplier.

Fig. 11. Packet size distribution for trafˇc measurements aggregated with bin size 1 s:
ˇtting curve corresponds to the function (5)

Fig. 12. Packet size distribution for trafˇc measurements aggregated with bin size 10 s:
ˇtting curve corresponds to the function (5)
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The ˇtting procedure was realized with the help of the MINUIT package [38]
in the frame of the well-known PAW (Physical Analysis Workstation, see details
in [39]).

As we mentioned above, the ˇtting curves corresponding to the log-normal
distribution approximate experimental distributions with a reliable accuracy on
all the regions of the analyzed distributions. However, they did not pass the χ2

test [4].

Results of ˇtting of daily part of
packet size distributions aggregated
with different bin sizes by the func-
tion (5)

Bin, s ν χ2 α,%

1 47 49.84 32.30

2 47 44.76 52.51

3 47 41.53 65.98

The main reason is that the distribu-
tions presented in Figs. 11 and 12 are based
on the whole set of data, which corre-
sponds approximately to 20 h of measure-
ments. But the trafˇc series, as well as
corresponding statistical distributions, be-
have differently depending whether the
measurements were done during working
hours or not.

In this connection, we tested the corre-
spondence of experimental distributions to
the null-hyphothesis (5) applying the χ2 goodness-of-ˇt criterion using only the
daily trafˇc. The results of this analysis are presented in the Table.

Fig. 13. Packet size distribution for
daily trafˇc measurements aggregated
with bin size 1 s: ˇtting curve corre-
sponds to the function (5)

Here α is the probability (in %) that the
observed chi-square will exceed the value
χ2 by chance even for a correct model (see,
for instance, [37, 40]). These results show
that the hyphothesis (5) can be accepted
with a high probability (see also Fig. 13).
At the same time it must be noted (see
Figs. 11 and 12) that the in�uence of the
inactive period of LAN does not change
signiˇcantly the fundamental form of the
statistical distribution.

We conclude, therefore, that

• the aggregation of trafˇc measure-
ments forms (starting from some threshold
value of the aggregation window) a statisti-
cal distribution, which does not change its
form with further increase of the aggrega-
tion window;

• this distribution is approximated with high accuracy by the log-normal
distribution.
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4. PRINCIPAL COMPONENT ANALYSIS OF NETWORK TRAFFIC

The ®Caterpillar¯-SSA approach [14,15] can be used for analysis of time se-
ries corresponding to any arbitrary function f(t), t > 0 determined in equidistant
points:

xi = f [ti] = f [(i − 1)∆t], i = 1, 2, . . . , K, (6)

where ∆t is the sampling interval (in our case ∆t = 1), whose reciprocal is the
sampling rate.

The basic ®Caterpillar¯-SSA scheme includes four main steps:
• transformation of one-dimensional series into multidimensional form,
• singular value decomposition of multidimensional series,
• principal components analysis and selection of feature components,
• reconstruction of one-dimensional series on the basis of selected compo-

nents.
The transformation of one-dimensional series (6) into multidimensional one

is realized by representing 6 in matrix form:

X = (xij)
k,L
i,j=1 =




x1 x2 x3 . . . xL

x2 x3 x4 . . . xL+1

x3 x4 x5 . . . xL+2

...
...

...
. . .

...
xk xk+1 xk+2 . . . xK


 ,

where L < M is called the caterpillar or window length and k = K − L + 1.
Then the eigenvalues λi, i = 1, 2, . . . , L and eigenvectors Vi, i = 1, 2, . . . , L

of the covariance matrix C = (1/k)XXT are determined. The matrix of eigen-
vectors V is used for transition to the principal components

Y = V T X = (Y1, Y2, . . . , YL),

where Yi (i = 1, 2, . . . , L) are rows of k elements.
The equality

L∑
i=1

λi

L
=

L∑
i=1

αi = 1

permits one to estimate the contribution αi (in decreasing order) of the ith prin-
cipal component into the analyzed series.

The ®Caterpillar¯ length (or window) CL has been chosen based on the
analysis of the autocorrelation function for trafˇc measurements [2]. In this study
we used different values of CL, starting from the minimal value CL = 12 up to
CL = 20.
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Fig. 14. Trafˇc measurements aggregated with the bin size 1 s

Figure 14 shows the daily part of trafˇc measurements aggregated with the
bin size 1 s, which has been used in this study. The number of points in this series
K = 2048, that corresponds approximately to 34 min of trafˇc measurements.

One of the main results of the application of the ®Caterpillar¯-SSA tech-
nique to the analyzed series is presented in Fig. 15. It shows the contribution of
eigenvalues in percentages for CL = 12 and 20. This information permits one to
estimate the number of principal components, which effectively contribute into
the analyzed series.

Fig. 15. Contributions of eigenvalues in percentages for the original trafˇc data. The
results are presented for two cases of the caterpillar length: CL = 12 (a) and 20 (b)
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Taking into account [4], it is reasonable to assume that the packet size
distributions, corresponding to leading components, may be described by the
log-normal distribution.

Fig. 16. The dependence of χ2/ν versus the
number of leading components

In Fig. 16 we present the results
of ˇtting of the packet size distri-
butions, corresponding to different
number N of leading components
(the results presented here are for
CL = 20), by function (5). Here χ2

is the calculated value of χ2, corre-
sponding to the testing distribution
and ν is the number of degrees of
freedom.

This dependence demonstrates
that for N =3 there is quite a
good level of correspondence (α =
22%) of the distribution to the null-
hypothesis (see also Fig. 17).

This result is of great inter-
est, because only 3 ˇrst components

(of 20) already form the fundamental part of the information trafˇc. Their sum-
mary contribution into the general dispersion is around 40% (see Fig. 15, b for
CL = 20).

The value of χ2/ν reaches its record minimal value 0.732 for N = 8. The
corresponding statistical distribution is presented in Fig. 17. It demonstrates both
a very good level of correspondence of the reconstructed distribution to the null-

Fig. 17. Fitting distributions corresponding to 3 (a) and 8 (b) leading components by
function (5)
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Fig. 18. Trafˇc series measurements reconstructed by the caterpillar method (for CL = 20)
on the basis of 8 leading components

hypothesis (α = 89.5%) and a reliable accuracy of approximation on all regions
of the analyzed distribution. The summary contribution of 8 leading components
into the general dispersion is around 66%.

Figure 18 shows the series reconstructed by the Caterpillar method (for
CL = 20) on the basis of eight leading components. One can clearly see that it
reproduces characteristic features of the original series presented in Fig. 14.

In the region of large N there is a growth of χ2 especially noticeable at
N � 15 (see Fig. 16). Such tendency is caused by the in�uence of the resid-
ual components related to small irregular variations, which do not ˇt in the

Fig. 19. Trafˇc series reconstructed by the caterpillar method (CL = 20) on the basis of
the smallest component
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basic model of network trafˇc (5) and can be interpreted as a stochastic noise
(see Sec. 5).

Figure 19 shows the series reconstructed on the basis of the smallest residual
component, namely, the component 20. One can clearly see that this series is of
signiˇcantly different character as compared to the original trafˇc measurements.
It looks like a nonstationary dynamical process symmetric against zero mean
value.

Fig. 20. Statistical distribution of the time
series presented in Fig. 19; the ˇtting curve
corresponds to the Gaussian distribution

Figure 20 shows the statistical dis-
tribution corresponding to the series pre-
sented in Fig. 19. It quite well fol-
lows the Gaussian distribution that is
conˇrmed by the χ2 test (see Fig. 20).
The autocorrelation function of the cor-
responding series shows that it behaves
like noise.

However, when increasing the num-
ber of residual components, their sum-
mary distribution starts to gradually
lose the symmetric form together with
growth of correlations between the se-
ries terms.

In order to estimate the amount of
residual components, which can be elim-
inated from the original time series with-
out the in�uence on its fundamental part,

we divide all principal components into two parts:
1) ˇrst part corresponding to the leading components and responsible for the

log-normal form of the packet size distribution,
2) second part related to residual components, which is described by a sym-

metric statistical distribution and behaves like a stochastic noise.
As the criterion for selection of the second part we used the ®moment¯ of

the symmetry violation for the series corresponding to the residual components.
The well-known sign test has been used for testing the symmetry against zero of
residual distributions. The sign test has the following form:

µ =
n∑

i=1

Θ(xi), (7)

where x1, . . . , xn are observables; n is the sample size, and Θ is the Heaviside
function:

Θ(x) =

{
1, x > 0,

0, x � 0.
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Fig. 21. The values of sign test µ versus the number of the residual components for the
caterpillar length CL = 12 (a) and 20 (b)

When the null-hypothesis is true, the µ distribution is approximated (in case of
large n) by

P{µ � m | n, p} ≈ Φ

(
m − np + 0.5√

np(1 − p)

)
,

where Φ is the distribution function of the normal distribution; p = 0.5 and
n = 2048 (in our case).

Figure 21 shows the dependence of µ value versus the number of the residual
components (for caterpillar lengths 12 and 20). It is clearly seen that the µ value
exceeds the reliable conˇdence level, when the number of residual components is
greater than 6 for CL = 12 and 11 for CL = 20.

In order to conˇrm the results obtained by the sign test, we applied more
powerful criterion based on the ω2

n statistics [43]. This criterion tests the symme-
try against x = 0 of the distribution function F (x) of the observables x1, . . . , xn,
i.e., the null-hypothesis H0: F (x) = 1 − F (x). The corresponding ω2

n statistics
has the following form:

ω2
n = n

∞∫
−∞

[Fn(x) + Fn(−x) − 1]2 dFn(x), (8)

where Fn(x) is the empirical distribution function. It is more convenient to
calculate the values of statistics (8) using the following algebraic formula

ω2
n =

n∑
j=1

[
Fn(−x̃j) −

n − j + 1
n

]2

,
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Fig. 22. The dependences of the ω2
n values versus the number of the residual components

for two cases of the caterpillar length: CL = 12 (a) and 20 (b)

where x̃1 � . . . � x̃n is the variational series constructed on the basis of observ-
ables.

Figure 22 shows the dependences of the ω2
n value versus the number of the

residual components for two cases of the caterpillar length: CL = 12 and 20.
One can see from Fig. 22 that the number of residual components l = 6 for

CL = 12 and l = 10 for CL = 20 corresponds to the 5% signiˇcance level
for the ω2-criterion. This coincides with the result obtained for the sign test
(see Fig. 21).

The dependences presented in Fig. 22 have distinct characteristic features at
l = 4 for CL = 12, and l = 7 for CL = 20 (one can see that the number
of such components approximately equals to one third of the caterpillar length),
after which, when l is increasing, there is a quick rise of ω2

n. This means that
the residual series looses its symmetric character, because in the second part
are involved the components responsible for the fundamental property of the
system Å the log-normality.

5. SPECTRAL ANALYSIS OF TRAFFIC MEASUREMENTS

A sampled data set (6) contains complete information about all spectral com-
ponents in a signal x(t) up to the Nyquist critical frequency

fc =
1

2∆t
, (9)

and scrambled or aliased information about any signal components at frequencies
larger than fc (see, for example, [40]).
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In order to estimate the presence or absence of periodic components and to
evaluate the viability of stochastic noise in the trafˇc series, we apply here the
Lomb spectral method (see [40,44] and references therein).

The Lomb normalized periodogram (spectral power as a function of angular
frequency ω ≡ 2πf > 0) of one-dimensional time series (6) is deˇned by

PK(ω) =
1

2π2




[
K∑

i=1

(xi − x̄) cos ω(ti − τ)
]2

K∑
i=1

cos2 ω(ti − τ)
+

+

[
K∑

i=1

(xi − x̄) sin ω(ti − τ)
]2

K∑
i=1

sin2 ω(ti − τ)




, (10)

where

x̄ =
1
K

K∑
i=1

xi, σ2 =
1

K − 1

K∑
i=1

(xi − x̄)2

and τ is deˇned by the relation

tan (2ωτ) =
K∑

i=1

sin 2ωti/

K∑
i=1

cos 2ωti.

In order to estimate the signiˇcance of a peak in the spectrum PK(ω), we
have to test the null-hypothesis that the data values are independent of Gaussian
random values.

Scargle has shown [45] that for the normalized Lomb periodogram (10) at
any ω and when the null-hypothesis is valid, PK(ω) has an exponential proba-
bility distribution with unit mean. This means that the probability that PK(ω)
will be between some positive z and z + dz is exp (−z)dz. If we scan some
M -independent frequencies, the probability that none give values larger than z is
(1 − e−z)M . Thus,

p(> z) = 1 − (1 − e−z)M (11)

determines the false-alarm probability of the null-hypothesis, and it shows the
signiˇcance level α of any peak in the PK(ω) spectrum.

For estimation of the signiˇcance level α, we need to know M in the region
where α assumes small values, α � 1, and Eq. (11) can be represented as

p(> z) ≈ M e−z. (12)
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Fig. 23. The dependence of PK(ω) against the angular frequency ω = 2πf for trafˇc
measurements presented in Fig. 14: 0 � ω < 2πfc (see the text)

The relation (12) shows that the signiˇcance level changes linearly with M . In
practice, an error of even ±50% in the evaluated signiˇcance is often tolerable,
which means that our estimation of M need not to be very accurate.

Horne and Baliunas [46] have found that M is very nearly equal to K when
the data points are equally spaced, and when the sampled frequencies ®ˇll¯ the
frequency range from 0 up to fc.

Figure 23 shows the result of application of the Lomb method to the time
series shown in Fig. 14: we used the code period from the Numerical Recipes

Fig. 24. The dependence of PK(ω) against the angular frequency ω for trafˇc measure-
ments presented in Fig. 14: 0 � ω < 0.35 (see the text)
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library [40]. The ˇgure plots PK(ω) against the angular frequency ω = 2πf for
the frequency interval starting from 0 up to fc. The horizontal dashed and dotted
lines correspond (from bottom to top) to the signiˇcance levels 0.5, 0.1, 0.01,
0.001, respectively.

One can see (Fig. 24) three highly signiˇcant peaks at low frequencies: 0.06,
0.012, and 0.034. There are three other peaks at frequencies 0.186, 0.241, and
0.252, which also exceed the 50% signiˇcance level.

For frequencies higher ω > 0.35 together with the frequency increase, the
amplitude of peaks is very quickly decreasing (Fig. 23) and does not exceed the
value 5. This amplitude corresponds to the signiˇcance level α ≈ 1. This
may mean that the trafˇc components related to this high frequency part can be
interpreted as a stochastic Gaussian noise.

6. WAVELET FILTERING OF TRAFFIC MEASUREMENTS

The wavelet analysis is the most suitable approach to handle irregular time
series, such as trafˇc measurements, because it permits to focus on localized
signal structures along with a zooming procedure that progressively reduces the
scale parameter: see, for instance, [57,58].

The discrete wavelet transform (DWT) of the function f(t) ∈ L2(R) given in
the form of one-dimensional time series (6) can be represented by the following
expansion

f(t) =
∑

j,k∈Z

djkψ(2jt − k). (13)

Here the set of basis functions (wavelets) {ψjk(t) = ψ(2jt − k), j, k ∈ Z} is
obtained from a single ®mother¯ wavelet function ψ(t) ∈ L2(R) applying the
binary dilation 2j and the dyadic translation k/2j .

Following the multiresolution wavelet analysis, Eq. (13) can be rewritten in
a more convenient form

f(t) =
∑

k

sJ
kφ(2J t − k) +

∑
j�J

∑
k∈Z

dj
kψ(2jt − k), (14)

where φ(t) is the scaling function corresponding to the chosen wavelet function
ψ(t) (see, for example, [26]). In (14) the ˇrst term describes a smooth part of
series (14) restricted by level J , and the second term is related to details, or a
high-frequency part of the analyzed series. We use here the discrete Daubechies
wavelets [26,27], because they provide high-quality representation of both high-
and low-frequency components of the analyzed signal [40].

The coefˇcients sj
k and dj

k are usually determined with the help of the pyra-
midal scheme [47] of the fast wavelet transform (see, for instance, [40]) applying
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the following equations:

sj+1
k =

∑
m

hmsj
2k+m, dj+1

k =
∑
m

gmsj
2k+m, (15)

where hm and gm are the coefˇcients of low pass and high pass ˇlters, respec-
tively.

The wavelet ˇltering implies rejection or modiˇcation of a part of expansion
coefˇcients with absolute values less than a preassigned threshold value λ. There
exist several different wavelet ˇltering algorithms speciˇed as hard, soft, quan-
tile and universal thresholding (see, for example, [41, 42]). However, the most
widespread is the hard thresholding algorithm (see, for example, [40]). In this
scheme all coefˇcients with absolute values less than λ have to be rejected (set
to zero).

In all methods mentioned above the ˇltering procedure affects all coefˇcients,
without taking into account their belonging to some resolution level J . Therefore,
such a procedure may eliminate both the coefˇcients {dj

k} which correspond to the
high-frequency part of (14) and the coefˇcients {sJ

k} related to the low-frequency
part.

In this connection, it is impossible to apply the existing algorithms to our
case, because the ˇltering will affect not only a high-frequency, noisy part, but
also a regular part, which should not be touched.

To overcome this problem, we modiˇed the hard thresholding scheme in
such a way that the groups of coefˇcients corresponding to different levels of
wavelet decomposition are ˇltered in a successive order. The modiˇed algorithm
performs as follows. Suppose K is the number of elements in the analyzed
series and M < K/2. Then, the M smallest of K/2 ®detailed¯ coefˇcients
of series (14) has to be rejected. If K/2 < M < 3K/4, then we eliminate
all K/2 ®detailed¯ coefˇcients together with the M − K/2 smallest coefˇcients
corresponding to a lower level of accuracy (the whole number of such coefˇcients
is K/4), etc.

Compared to the traditional ˇltering procedure, the modiˇed scheme provides
more effective elimination of the high-frequency component from such highly
irregular time series as trafˇc measurements.

After the DWT, the selected M coefˇcients are set to zero, and then, using
the inverse wavelet transform, the regular part of the trafˇc series is reconstructed.
The difference between the original time series and the ˇltered signal, is consid-
ered as a noisy component.

The symmetry test based on the ω2
n statistics [43] has been used for estimation

of a possible number of wavelet coefˇcients related to the noisy part. The result
of the ω2

n test has been independently checked by analyzing the autocorrelation
function behavior for the rejected part.
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Fig. 25. The dependence of ω2
n values versus

the number of rejected wavelet coefˇcients

Figure 25 shows the dependence
of ω2

n values versus the number of re-
jected wavelet coefˇcients. This de-
pendence clearly shows the minimal
value of ω2

n at M = 768. One can
also see in Fig. 25 that a possible max-
imal number of coefˇcients that can
be eliminated without exceeding the
5% signiˇcance level is M = 1408.
This corresponds to approximately
70% of 2048 coefˇcients.

The autocorrelation function can
be also used as a criterion for evalua-
tion of the noisy part. The time series
corresponding to the noisy part must
be uncorrelated. Figure 26, a presents
the dependence of the auto-correlation
function for the noisy part correspond-
ing to different number of rejected coefˇcients M . This ˇgure shows that up to
M = 1408 the rejected part can be considered as noisy.

Based on estimations of these two criteria, we came to the conclusion that it
is reasonable to assume M = 1408. Figure 27 presents the original trafˇc series,
the ˇltered signal and the noisy part that may be rejected.

In order to monitor the in�uence of the rejected part on the main part of
trafˇc series (from the nonlinear analysis point of view), we also controlled the
behavior of the autocorrelation function of the smooth part of series (14) for
different number of rejected coefˇcients (see Fig. 26, b). One can clearly see

Fig. 26. Autocorrelation functions C(τ ) of noisy (a) and smooth (b) parts corresponding
to different number (from 512 to 1536) of rejected coefˇcients
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Fig. 27. Trafˇc measurements: a) original trafˇc series; b) ˇltered signal; c) noisy part

that the rejection of the smallest coefˇcients up to M = 1408 did not in�uence
seriously the form of the autocorrelation function.

It is also interesting to check the in�uence of the ˇltering procedure on
spectral characteristics of the analyzed series. Figure 28 shows the dependence of

Fig. 28. The dependence of PK(ω) against the angular frequency ω = 2πf for ˇltered
signal (1) and for original trafˇc measurements (2)
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PK(ω) against the angular frequency ω for ˇltered signal (curve 1) and original
(curve 2) trafˇc measurements.

This plot shows that the ˇltering procedure increased the power of all frequen-
cies contributing into low frequency region. At the same time, higher frequencies
starting approximately at ω = 1.1 have been signiˇcantly suppressed.

7. ANALYSIS OF STATISTICAL CHARACTERISTICS
OF FILTERED SERIES

In Fig. 29 we present the contribution of individual components into the ana-
lyzed series for trafˇc data after ˇltering out the high-frequency part corresponding
to M = 1408 smallest coefˇcients.

Fig. 29. Contributions of eigenvalues in percentages for the trafˇc data after ˇltering out
the high-frequency part. The results are presented for two cases of the caterpillar length:
CL = 12 (a) and 20 (b)

One can clearly see that the contribution of the residual components notice-
ably decreased compared to the original trafˇc data (Fig. 15). At the same time
the contribution of the leading components signiˇcantly increased.

This result may play a very important role for decreasing the dimension of the
system describing the information trafˇc, but this may be the case, if the ˇltering
procedure does not seriously disturb the statistical and dynamical characteristics
of trafˇc series.

Taking into account the results of Secs. 5 and 6, it is important to see how
the ˇltering procedure in�uences the statistical characteristics of trafˇc series,
namely,
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Fig. 30. The dependence of χ2/ν versus the
number of leading components for ˇltered series

1) if it disturbs seriously the
packet size distributions, correspon-
ding to leading components, and

2) how this procedure in�u-
ences the residual components,
whose contribution has been signif-
icantly suppressed by the ˇltering
procedure.

In order to check the in�uence
of the wavelet ˇltering on the packet
size distributions of leading compo-
nents, we applied the same proce-
dure as in Sec. 4, i. e., we tested
the correspondence of these distri-
butions to the log-normal form.

Fig. 31. Fitting the distribution corresponding
to three leading components by the log-normal
function (5)

Figure 30 shows the results of
ˇtting of the packet size distribu-
tions (for the ˇltered trafˇc series),
corresponding to the sum of a dif-
ferent number N of leading compo-
nents (the results presented here are
for CL = 20), by function (5).

Here the top and bottom lines
correspond to signiˇcance levels
α = 10% (χ2/ν = 1.247) and
α = 42.9% (χ2/ν = 1.023) for
ν = 47, correspondingly.

This dependence conˇrms the
result of Sec. 4 (Fig. 16) concerning
the number of leading components
that form the main part of infor-
mation trafˇc. One can clearly see
that three leading components form
the distribution that follows the null-
hypothesis (5) with a quite high cor-

respondence level (α = 39.2%) (see also Fig. 31).
The dependence of χ2/ν versus the number N of leading components in

Fig. 30 shows that
1) the maximal signiˇcance level of the χ2 test corresponds to the sum of

3Ä4 ˇrst leading components;
2) this dependence is compactly distributed around the corridor corresponding

to the admissible region for the χ2 test.
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Figure 32 shows the series reconstructed on the basis of the ˇrst, second and
third leading component, correspondingly, after the subtraction of the caterpillar
average value.

Fig. 32. Time series corresponding to three leading components (after the subtraction of
the caterpillar average value): the trend component and two ˇrst periodic components

Fig. 33. Trafˇc series reconstructed by the caterpillar method (CL = 20) on the basis of
the smallest component
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These series are very much similar to the series corresponding to the original
trafˇc data (see Fig. 8 in [5]). However, the ˇltered series are visually more
smooth if compared to the original data. Their summary contribution into the
analyzed time series is noticeably higher (∼ 54%) if compared to the original
data (∼ 40%) (see Figs. 15 and 29 for CL = 20).

Figure 33 shows the series reconstructed on the basis of the smallest resid-
ual component, namely, the component 20. It looks very similar to the same
component of the original trafˇc measurements (Fig. 19).

The statistical distribution corresponding to this series quite well follows the
Gaussian distribution (the same as Fig. 20).

At the same time, the amplitude dispersion and the standard deviation of this
series are signiˇcantly less if compared to the original data (see Figs. 19 and 20).

8. SELECTION OF FEATURE COMPONENTS

In order to estimate the number of residual components that can be eliminated
from the ˇltered time series without in�uence on its main part, we applied here
the statistical criterion of symmetry based on the ω2

n statistic (see Sec. 4).

Fig. 34. The dependences of the ω2
n values versus the number of the residual components

for the original (a) and ˇltered (b) trafˇc series and for the caterpillar length CL = 20

Figure 34 shows the dependences of the ω2
n value versus the number of

residual components for original (Fig. 34, a) and ˇltered (Fig. 34, b) trafˇc series
for the caterpillar length CL = 20. The horizontal line corresponds to the
signiˇcance level 0.05.
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Fig. 35. The dependence of PK(ω) against the angular frequency ω = 2πf for three
ˇrst leading components (curve 1) and for all components of the ˇltered signal (curve 2):
0 � ω < 0.35

Fig. 36. The dependence of PK(ω) against the angular frequency ω = 2πf for three
ˇrst leading components (curve 1) and for all components of the ˇltered signal (curve 2):
0.35 � ω < 0.8

It is clearly seen that the ω2
n value exceeds the reliable conˇdence level (corre-

sponding to the 5% signiˇcance level), when the number n of residual components
exceeds 10 for original trafˇc measurements and 17 for the ˇltered series. This
result demonstrates that after the wavelet ˇltering 17 smallest components can be
considered as noisy and can be eliminated from the whole set of principal com-
ponents. This conˇrms the result of Sec. 4 obtained by the χ2 test (see Fig. 30).
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Figure 35 shows the dependence of PK(ω) against the angular frequency
ω = 2πf for three leading components (curve 1) and for all components of
the ˇltered signal (curve 2). This dependence clearly demonstrates that the low
frequency region of trafˇc series is formed by three leading components. This
plot also shows that the powers of all frequencies contributing into this frequency
domain have been increased if compared to the powers of the series corresponding
to all components of the ˇltered signal. At the same time, in the case of three
leading components all frequencies higher ω > 0.35 are suppressed (see Fig. 36).

9. A. KOLMOGOROV'S SCHEME AND LOG-NORMAL DISTRIBUTION
OF NETWORK TRAFFIC

It has long been observed that in a large variety of physical phenomena,
where self-similar processes take place, the logarithms of dynamical variables
are normally distributed. This holds for grain sizes in crust fragmentation [48],
for energy released in seismic events [49,50], for the distribution of topographic
contours, tree rings, leaves, rivers (see, for example, [51,52]).

The theoretical explanation of appearance of the log-normal distribution in
nature was ˇrst given, to our knowledge, by Andrei N. Kolmogorov in 1941 in a
®small paper¯ [9] not well-known in the Western literature. Kolmogorov proposed
a general scheme of a random process of the homogeneous fragmentation of
grains.

A simpliˇed explanation of Kolmogorov's result ([49, p. 206]) is the fol-
lowing. Suppose that we have a big rock which crumbles into sand. If the
environmental stresses are the same whatever the size of the rock, the probability
that a given piece of rock is fragmented into ni smaller rocks is independent of
the stage i of the fragmentation process. Therefore, if we start out with a single
rock (n0 = 1), in the next stage we have n1 smaller rocks, in the next stage each
of these smaller rocks is fragmented into n2 still smaller rocks, and so on. As
the ni are independent random variables, the number of grains at the kth stage
of fragmentation must be

Nk =
k∏

i=1

ni = n1n2 · · ·nk, (16)

or

ln Nk =
k∑

i=1

ln ni. (17)

The grain sizes Sk are inversely proportional to the number of grains Nk. Apply-
ing a variant of the Central Limit Theorem, Kolmogorov found that the logarithms
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of the grain sizes were normally distributed [9], i.e., the distribution of grain sizes
was log-normal.

The basic feature of log-normality is the power law or self-similarity. Let X
and Y be two random variables. Then, if X is log-normal and if

Y = aXd, (18)

Y is also log-normal. The parameter a is called the scale factor and the exponent
d is the fractal dimension. Power laws such as (18) are known as self-similarity
relations. Conversely, if both X and Y are known to be log-normal, there must
exist a self-similarity relation, such as (18), between them. Kolmogorov invoked
this property to deduce that, if the distribution of grain sizes of sand is log-normal,
so are the grain volumes and the fractions by weight retained in sieves of different
mesh size.

In [53] the wavelet transform has been applied to the self-similar stochastic
processes, which Kolmogorov used in his theory of turbulence [9]. For such
processes, after suitable rescaling, the wavelet transform at predetermined position
becomes a stationary random function of the logarithm of the scale argument in
the transform [53]. The rescaling depends on the scaling component.

Unfortunately, the approach of Vergassola and Frisch [53] cannot be directly
applied to network trafˇc measurements, because they have signiˇcantly a more
complex structure [54Ä56].

However, the wavelet transform, being very powerful technique for extract-
ing speciˇc information from a given data [26, 27, 40], may provide additional
information necessary for understanding the log-normality of trafˇc measure-

Fig. 37. Shade plot of absolute values of W (a, b) coefˇcients of the CWT for trafˇc
measurements aggregated with 1 s window
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ments. It has been shown (see, for instance, [58]) that the local signal regularity
is characterized by the decay of the wavelet transform amplitude across scales.
Singularities and edges are identiˇed by following the wavelet transform local
maxima at ˇne scales. All these features appear in complex signals like multi-
fractals. The wavelet transform takes advantage of multifractal self-similarities,
in order to compute the distribution of the singularities of the signals.

In order to reveal the self-similarity of trafˇc measurements at different scales,
we applied the Continuous Wavelet Transform (CWT) to trafˇc measurements
(Fig. 6). Figure 37 shows the shade plot of the CWT, based on the biorthogo-
nal spline wavelets, of the time series analyzed. The self-similar, multifractal
character of trafˇc measurements is clearly shown in the tree-like fragmentation
structure.

Figure 37 clearly demonstrates the multiplicative character of trafˇc measure-
ments. This result is in agreement with formula (16) and conˇrms the applicability
of Kolmogorov's scheme to the description of network trafˇc.

CONCLUSION

Applying a nonlinear analysis to network trafˇc measurements and using
a layered neural network for identiˇcation and reconstruction of the underlying
dynamical system, we found that the trained neural network reproduced the sta-
tistical distribution of real data, which well ˇts the log-normal form [2]. Based
on detailed trafˇc measurements we demonstrated that this distribution is caused
by a simple aggregation of real data [4]. The ®Caterpillar¯-SSA approach [14,15]
and statistical analysis based on the joint utilization of χ2 and ω2 tests provided
the possibility of dividing the whole set of components into two classes [5]. The
ˇrst class includes the leading components responsible for the main contribution
to network trafˇc, and the second class involves residual components that can
be interpreted as a stochastic noise. A detailed analysis of the boundary region
between these two classes, based on the ®Caterpillar¯-SSA analysis, wavelet ˇl-
tering and statistical χ2 and ω2

n methods, demonstrated that the main part of the
network trafˇc can be described by a minimal number of feature components:
three leading components for CL = 20. We also found that the time series recon-
structed on the basis of these components preserves main spectral characteristics
of original trafˇc measurements. This may mean that all transformations realized
on the original trafˇc series did not disturb its dynamical characteristics.

We hope that such simpliˇcation of a very complicated structure of the
original trafˇc series may open additional possibilities for development of a more
realistic dynamical model of network trafˇc and serves as a basis for elaboration
of efˇcient Quality of Service (QoS) tools.
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