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The propagation of signals in space-time is considered on the basis of the notion of null
(isotropic) vector ˇeld in spaces with afˇne connections and metrics ((Ln, g) spaces) as models of
space or space-time. The Doppler effect is generalized for this type of spaces. The notions of the
aberration, standard (longitudinal) Doppler effect, and transversal Doppler effect are introduced. On
their grounds, the Hubble effect appears as the Doppler effect with explicit forms of the centrifugal
(centripetal) and Coriolis velocities and accelerations in spaces with afˇne connections and metrics.
The Doppler effect, Hubble effect and aberration could be used in mechanics of continuous media
and in other classical ˇeld theories in the same way as a standard Doppler effect is used in classical
and relativistic mechanics.

� ¸¸³ É·¨¢ ¥É¸Ö · ¸¶·µ¸É· ´¥´¨¥ ¸¨£´ ²µ¢ ¢ ¶·µ¸É· ´¸É¢¥-¢·¥³¥´¨ ´  µ¸´µ¢¥ ¶µ´ÖÉ¨Ö ´Ê-
²¥¢µ£µ (¨§µÉ·µ¶´µ£µ) ¢¥±Éµ·´µ£µ ¶µ²Ö ¢ ¶·µ¸É· ´¸É¢ Ì ¸  ËË¨´´Ò³¨ ¸¢Ö§´µ¸ÉÖ³¨ ¨ ³¥É·¨-
± ³¨ ((Ln, g)-¶·µ¸É· ´¸É¢ ), ¨¸¶µ²Ó§Ê¥³ÒÌ ¢ ± Î¥¸É¢¥ ³µ¤¥²¥° ¶·µ¸É· ´¸É¢  ¨²¨ ¶·µ¸É· ´¸É¢ -
¢·¥³¥´¨. �¡µ¡Ð ¥É¸Ö ÔËË¥±É „µ¶²¥·  ¤²Ö ÔÉ¨Ì É¨¶µ¢ ¶·µ¸É· ´¸É¢. ‚¢µ¤ÖÉ¸Ö ¶µ´ÖÉ¨Ö  ¡¥·· Í¨¨,
µ¡ÒÎ´µ£µ (¶·µ¤µ²Ó´µ£µ) ¨ ¶µ¶¥·¥Î´µ£µ ÔËË¥±Éµ¢ „µ¶²¥· . �  ¨Ì µ¸´µ¢¥ ÔËË¥±É • ¡¡²  ¢µ§´¨-
± ¥É ± ± ÔËË¥±É „µ¶²¥·  ¸ Ö¢´Ò³¨ ¢Ò· ¦¥´¨Ö³¨ ¤²Ö Í¥´É·µ¡¥¦´ÒÌ (Í¥´É·µ¸É·¥³¨É¥²Ó´ÒÌ) ¨
±µ·¨µ²¨¸µ¢ÒÌ ¸±µ·µ¸É¥° ¨ Ê¸±µ·¥´¨° ¢ ¶·µ¸É· ´¸É¢ Ì ¸  ËË¨´´Ò³¨ ¸¢Ö§´µ¸ÉÖ³¨ ¨ ³¥É·¨± ³¨.
�ËË¥±É „µ¶²¥· , ÔËË¥±É • ¡¡²  ¨  ¡¥·· Í¨Ö ³µ£ÊÉ ¡ÒÉÓ ¨¸¶µ²Ó§µ¢ ´Ò ¢ ³¥Ì ´¨±¥ ¸¶²µÏ´ÒÌ
¸·¥¤ ¨ ¤·Ê£¨Ì ±² ¸¸¨Î¥¸±¨Ì ¶µ²¥¢ÒÌ É¥µ·¨ÖÌ É ±¨³ ¦¥ µ¡· §µ³, ± ± µ¡ÒÎ´Ò° ÔËË¥±É „µ¶²¥· 
¨¸¶µ²Ó§Ê¥É¸Ö ¢ ±² ¸¸¨Î¥¸±µ° ¨ ·¥²ÖÉ¨¢¨¸É¸±µ° ³¥Ì ´¨± Ì.

INTRODUCTION

1. Modern problems of relativistic astrophysics as well as of relativis-
tic physics (dark matter, dark energy, evolution of the Universe, measurement
of velocities of moving objects, etc.) are related to the propagation of sig-
nals in space or in space-time. The basis of experimental data received as a
result of observations of the Doppler effect or of the Hubble effect as well
as the difˇculties in ˇnding out the correct deˇnitions of some basic notions
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such as radial (centripetal, centrifugal) velocity [1] give rise to theoretical con-
siderations about the theoretical status of effects related to detecting signals
from emitters moving relatively to observers carrying detectors in their labo-
ratories.

2. In classical physics, the Doppler effect is considered only as a longitudinal
effect in a continuous media or in vacuum. It is assumed that the reason for this
effect is the relative velocity between emitter and observer. In acoustics, the
signals are considered as propagating in a continuous media.

3. In relativistic physics, the Doppler effect is considered in special relativity
as a (standard) longitudinal and transversal effect caused by the motion of elec-
tromagnetic signals in vacuum with respect to an observer (detector). In general
relativity, the Doppler effect is related to the propagation of light in astrophysical
systems and to the existence of the red shift relation due to the Hubble effect
and Hubble law. The question arises whether the theoretical basis for the use
of the Doppler and Hubble effects as tools for check-up of theoretical models in
astrophysics and relativistic physics in sophisticated models of space-time such as
spaces with afˇne connections and metrics ((Ln, g) spaces) is sufˇciently worked
out. It has been recently shown that every classical (nonquantized) ˇeld theory
could be considered as a theory of continuous media [2Ä5]. On this basis, the
propagation of signals in different models of space or of space-time is worth
being investigated. From this point of view, questions arise as how the Doppler
effect is related to the Hubble effect from the point of view of the kinematic
characteristics of a continuous media and, especially, is there a relation between
the Doppler and Hubble effects and the relative accelerations between emitters
and detectors. In a previous paper [6] the Doppler and Hubble effects are consid-
ered on the basis of dimension preconditions with relations to the relative velocity
between an emitter and an observer. In this paper we will use the properties of
a covariant exponential operator for ˇnding out the change of a null (isotropic)
vector ˇeld along the world line of an observer (detector). It is assumed that the
null vector ˇeld is related to the propagation of a signal when at a given time
moment in the frame of the observer the emitter and the observer are at rest.
After that moment the observer could detect the relative motion of the emitter
and observe the frequency shifts of its signals.

4. The notion of null (isotropic) vector ˇeld is related to the light propaga-
tion described in relativistic electrodynamics on the basis of special and general
relativity theories [7Ä9]. On the other side, the notion of null (isotropic) vector
ˇeld could be considered in spaces with deˇnite or indeˇnite metric as a geomet-
ric object (contravariant vector ˇeld) with speciˇc properties making it useful in
the description of the propagation of signals in space or in space-time as well
as in geometrical optics based on different mathematical models. Usually, it is
assumed that a signal is propagating with limited velocity through a continuous
media or in vacuum. The velocity of propagation of signals could be a constant
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quantity or a nonconstant quantity depending on the properties of the space or
the space-time, where the signals are transmitted and propagated.

5. In the present paper the notion of contravariant null (isotropic) vector
ˇeld is introduced and considered in spaces with afˇne connections and metrics
((Ln, g) spaces). In Sec. 1 the properties of null vector ˇelds are considered on
the basis of (n − 1) + 1 representation of non-null (nonisotropic) vector ˇelds
orthogonal to each other. In Sec. 2 the notions of distance and space velocity
are discussed and their relations to null vector ˇelds are investigated. In Sec. 3
the kinematic effects (aberration, longitudinal and transversal Doppler effects,
and Hubble effect) related to the kinematic characteristics of the relative velocity
and the relative acceleration as well as their connections with null vector ˇelds
are considered, and the kinematic effects related to the relative velocity and the
relative acceleration are recalled. In Sec. 4 the aberration of signals is considered
as corollary of the change of a null vector ˇeld along the world line of an observer.
In Sec. 5 different types of the Doppler effect are introduced and investigated.
In Sec. 6 the Hubble effect as a Doppler effect with explicitly given forms of
the relative velocities and the relative accelerations is considered. It is shown
that the Hubble effect appears as a corollary of the standard (longitudinal) and
transversal Doppler effects. On the other side, the Hubble effect is closely related
to centrifugal (centripetal) and Coriolis velocities and accelerations. The results
discussed in the paper could be important from the point of view of the possible
applications of kinematic characteristics in continuous media mechanics as well
as in classical (nonquantum) ˇeld theories in spaces with afˇne connections and
metrics. Section 7 comprises concluding remarks.

The main results in the paper are given in detail (even in full detail) for those
readers who are not familiar with the considered problems. Almost all deˇnitions
and abbreviations are explained. The abbreviations and deˇnitions not determined
in the paper are identical to those used in [4, 5]. The reader is kindly asked to
refer to them for more details and explanations of the statements and results only
cited in this paper.

1. NULL (ISOTROPIC) VECTOR FIELDS.
DEFINITION AND PROPERTIES

1.1. Deˇnition of a Null (Isotropic) Vector Field. Let us now consider a
space with afˇne connections and metrics ((Ln, g) space) [10,11] as a model of a
space or of a space-time. In this space the length lv of a contravariant vector ˇeld
v ∈ T (M) is deˇned by the use of the covariant metric tensor ˇeld (covariant
metric) g ∈ ⊗2s(M) as

g(v, v) = ±l2v, l2v � 0. (1)
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Remark. The sign before l2v depends on the signature Sgn of the covariant
metric g. M is differentiable manifold, dim M = n. A (Ln, g) space is a differ-
entiable manifold M provided with contravariant and covariant afˇne connections
(whose components differ not only by sign) and metrics. T (M) = ∪x∈MTx(M).
Tx(M) is the tangent space at a point x ∈ M . ⊗2s(M) is the space of covariant
symmetric tensors g of second rank with det g �= 0 over M .

The contravariant vector ˇelds can be divided into two classes with respect
to their lengths:

• null or isotropic vector ˇelds with length lv = 0,
• non-null or nonisotropic vector ˇelds with length lv �= 0.
In the case of a positive deˇnite covariant metric g (Sgn g = ±n, dim M =

n) the null (isotropic) vector ˇeld is identically equal to zero, i.e., if lv = 0, then
v = viei ≡ 0 ∈ T (M), vi ≡ 0.

In the case of an indeˇnite covariant metric g (Sgn g < n or Sgn g >
−n, dim M = n) the null (isotropic) vector ˇeld with equal to zero length
lv = 0 can have different from zero components in an arbitrary given basis,
i.e., it is not identically equal to zero at the points, where it has been deˇned,
i.e., if lv = 0, then v �= 0 ∈ T (M), v = vi · ei ∈ T (M) and vi �= 0. In
a (Ln, g) space the components gij of a covariant metric tensor g could be
written in a local co-ordinate system at a given point of the space as gij =
(−1, −1, −1, . . . ,︸ ︷︷ ︸

k times

+1, +1, +1, . . .︸ ︷︷ ︸
l times

) with k + l = n.

The signature Sgn of g is deˇned as

Sgn g = −k + l = 2l − n = n − 2k, n, k, l ∈ N, (2)

where k = n − l, l = n − k.
In the relativistic physics for dim M = 4, the numbers l and k are chosen

as l = 1, k = 3 or l = 3, k = 1 so that Sgn g = −2 ∼ (−1, −1, −1, +1)
or Sgn g = +2 ∼ (+1, +1, +1, −1). In general, a (Ln, g) space could be
considered as a model of space-time with Sgn g < 0 and (k > l, l = 1) or with
Sgn g > 0 and (l > k, k = 1).

The non-null (nonisotropic) contravariant vector ˇelds are divided into two
classes.

1. For Sgn g < 0
(a) g(v, v) = +l2v > 0 := time-like vector ˇeld v ∈ T (M),

(b) g(v, v) = −l2v < 0 := space-like vector ˇeld v ∈ T (M).
2. For Sgn g > 0
(a) g(v, v) = −l2v < 0 := time-like vector ˇeld v ∈ T (M),

(b) g(v, v) = +l2v > 0 := space-like vector ˇeld v ∈ T (M).
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Therefore, if we do not ˇx a priory the signature of the space-time models,
we can distinguish a time-like vector ˇeld u with

g(u, u) = +l2u for Sgn g< 0,

= −l2u for Sgn g> 0,

or g(u, u) = ±l2u, and a space-like vector ˇeld ξ⊥ with

g(ξ⊥, ξ⊥) = −l2ξ⊥ for Sgn g< 0,

= +l2ξ⊥ for Sgn g> 0,

or g(ξ⊥, ξ⊥) = ∓l2ξ⊥ . This means that in symbols ±l2� or ∓l2� (� ∈ T (M)) the
sign above is related to Sgn g < 0 and the sign below is related to Sgn g > 0.

Remark. Since l� = ±
√

l2�, the signs in this case will be denoted as not related

to the signature of the metric g. Usually, it is assumed that l� = +
√

l2� � 0.
A non-null (nonisotropic) contravariant vector ˇeld v could be represented

by its length lv and its corresponding unit vector nv = v/lv as v = ±lvnv in

contrast to a null (isotropic) vector ˇeld k̃ with lk̃ = 0 (the signs here are not
related to the signature of the metric g)

v = ±lvnv, g(v, v) = l2vg(nv, nv) = ±l2v, g(nv, nv) = ±1,

for time-like unit vector ˇeld nv , or

v = ∓lvnv, g(v, v) = l2vg(nv, nv) = ∓l2v, g(nv, nv) = ∓1,

for space-like unit vector ˇeld nv.
Remark. In the experimental physics, the measurements are related to the

lengths and to the directions of a non-null (nonisotropic) vector ˇeld with respect
to a frame of reference. Since different types of co-ordinates could be used in a
frame of reference, the components of a vector ˇeld related to these co-ordinates
cannot be considered as invariant characteristics of the vector ˇeld and on this
grounds the components cannot be important characteristics for the vector ˇelds.

After these preliminary remarks, we can introduce the notion of a null
(isotropic) vector ˇeld

Deˇnition 1. A contravariant vector ˇeld k̃ with length zero is called null
(isotropic) vector ˇeld, i.e., k̃ := null (isotropic) vector ˇeld if

g(k̃, k̃) = ±l2
k̃

= 0, lk̃ = |g(k̃, k̃) |1/2 = 0. (3)

1.2. Properties of a Null (Isotropic) Vector Field. The properties of a null
(isotropic) contravariant vector ˇeld could be considered in a (n− 1) + 1 invari-
ant decomposition of a space-time by the use of two nonisotropic contravariant
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vector ˇelds u and ξ⊥, orthogonal to each other [10], i.e., g(u, ξ⊥) = 0. The
contravariant vectors u and ξ⊥ are essential elements of the structure of a frame
of reference [12] in a space-time.

1.2.1. Invariant Representation of a Null Vector Field by the Use of a Non-
Null Contravariant Vector Field.

(a) Invariant projections of a null vector ˇeld along and orthogonal to a
non-null (nonisotropic) contravariant vector ˇeld u.

Every contravariant vector ˇeld k̃ ∈ T (M) could be represented in the form

k̃ =
1
e
g(u, k̃)u + g[hu(k̃)] = k‖ + k⊥, (4)

where

e = g(u, u) = ±l2u,

g = gij∂i∂j , ∂i∂j =
1
2
(∂i ⊗ ∂j + ∂j ⊗ ∂i),

g = gijdxidxj , dxidxj =
1
2
(dxi ⊗ dxj + dxj ⊗ dxi),

hu = g − 1
e
g(u) ⊗ g(u), hu = g − 1

e
u ⊗ u,

g(u) = giju
jdxi,

g[hu(k̃)] = gijhjlk̃
l∂i := k⊥, k‖ :=

1
e
g(u, k̃)u.

(5)

g(k‖, k⊥) = 0, g(u, k⊥) = 0. (6)

Let us now take a closer look at the ˇrst term k‖ of the representation of k̃.

k‖ =
1
e
g(u, k̃)u = ± 1

l2u
g(u, k̃)u = ± 1

lu
g(u, k‖)

u

lu
. (7)

If we introduce the abbreviations

n‖ =
u

lu
, ω = g(u, k̃) = g(u, k‖), (8)

where

g(n‖, n‖) =
1
l2u

g(u, u) =
1
l2u

(±l2u) = ±1, (9)

ω = g(u, k̃) = g(u, k‖ + k⊥) = g(u, k‖) = lug(n‖, k‖) = lug(k‖, n‖), (10)

k‖ := ±lk‖n‖, (11)

g(k‖, k‖) = l2k‖
g(n‖, n‖) = l2k‖

(±1) = ±l2k‖
, (12)
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g(k‖, n‖) = ±lk‖g(n‖, n‖) = ±lk‖(±1) = lk‖ =
ω

lu
, (13)

then k‖ could be expressed as (the signs are not related to the signature of the
metric g)

k‖ = ± ω

lu
n‖ = ±lk‖n‖. (14)

The vector n‖ is a unit vector [g(n‖, n‖) = ±1] collinear to u and, therefore,
tangential to a curve with parameter τ if u = d/(dτ).

The scalar invariant ω = g(u, k̃) is usually interpreted as the frequency of the

radiation related to the null vector ˇeld k̃ and propagating with velocity u with
absolute value lu with respect to the trajectory xi(τ). In general relativity lu := c,
and it is assumed that the radiation is of electromagnetic nature propagating with
the velocity of light c in vacuum. We will come back to this interpretation in the
next considerations.

The contravariant vector ˇeld k⊥

k⊥ = g[hu(k̃)]

is orthogonal to u (and k‖, respectively) part of k̃. Since

g(k‖, k‖) = g

(
± ω

lu
n‖, ±

ω

lu
n‖

)
=

ω2

l2u
g(n‖, n‖) = ±ω2

l2u
= ±l2k‖

, (15)

lk‖ =
ω

lu
> 0, l2k‖

=
ω2

l2u
, (16)

and
g(k̃, k̃) = 0, g(k‖, k⊥) = 0,

we have for g(k⊥, k⊥)

g(k̃, k̃) = 0 = g(k‖ + k⊥, k‖ + k⊥) = g(k‖, k‖) + g(k⊥, k⊥) =

= ±ω2

l2u
+ g(k⊥, k⊥) = ±ω2

l2u
∓ l2k⊥

= 0, (17)

and, therefore,

l2k⊥ =
ω2

l2u
, lk⊥ =

ω

lu
= lk‖ . (18)

Remark. Since ω � 0 and lu > 0, and at the same time lk⊥ > 0, and lk‖ > 0,
we have

lk‖ =
ω

lu
= lk⊥ .
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If we introduce the unit contravariant vector ñ⊥ with g(ñ⊥, ñ⊥) = ∓1, then
the vector k⊥ could be written as

k⊥ := ∓ lk⊥ ñ⊥, (19)

where

g(k⊥, k⊥) = l2k⊥g(ñ⊥, ñ) = ∓l2k⊥ = ∓ω2

l2u
, l2k⊥ =

ω2

l2u
, lk⊥ =

ω

lu
. (20)

Therefore,

k⊥ = ∓ ω

lu
ñ⊥, k‖ = ± ω

lu
n‖, (21)

k̃ = k‖ + k⊥ = ± ω

lu
(n‖ − ñ⊥), (22)

where
g(n‖, ñ⊥) = 0, g(k‖, ξ⊥) = 0, g(u, k⊥) = 0, (23)

g(n‖, k‖) = ±lk‖g(n‖, n‖) = lk⊥ =
ω

lu
, (24)

g(ñ⊥, k⊥) = ∓lk⊥g(n⊥, n⊥) =
ω

lu
= lk‖ = lk⊥ , (25)

g(n‖, k‖) = g(ñ⊥, k⊥) =
ω

lu
= lk‖ = lk⊥ . (26)

Remark. The signs, not related to the metric g, are chosen to be the same
with the signs related to the metric g.

We have now the relations

ω = g(u, k̃) = lug(n‖, k‖) = lug(ñ⊥, k⊥). (27)

If ñ⊥ is interpreted as the unit vector in the direction of the propagation of
a signal in the subspace orthogonal to the contravariant vector ˇeld u, and lu is
interpreted as the absolute value of the velocity of the radiated signal, then luñ⊥
is the path along ñ⊥ propagated by the signal in a unit time interval. Then

ω = g(u⊥, k⊥), u⊥ := luñ⊥, g(u, u⊥) = 0. (28)

1.2.2. Explicit Form of the Vector Field k⊥ and Its Interpretation. Let us
now consider more closely the explicit form of k⊥

k⊥ = ∓lk⊥ñ⊥ = ∓ ω

lu
ñ⊥. (29)
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(a) In 3-dimensional Euclidean space (as the model of space-time of the
Newtonian mechanics) the wave vector k is deˇned as

k =
2π

λ
n, (30)

where n is the unit 3-vector in the direction of propagation of a signal with
absolute value of its velocity lu = λν. If we express λ by λ = lu/ν and put the
equivalent expression in this for k, we obtain the expression

k =
2πν

lu
n =

ω

lu
n, (31)

which (up to a sign depending on the signature of the metric g) is identical with
the expression for k⊥ for n = 3 if k⊥ = k, n = ñ⊥, and ω = 2πν.

(b) In 4-dimensional (pseudo) Riemannian space (as a model of space-time
of the Einstein theory of gravitation) lu is interpreted as the absolute value of the
velocity of light in vacuum (normalized by some authors to 1), i.e., lu = c, 1.
Then

k⊥ = ∓ω

c
ñ⊥ = ∓2πν

λν
ñ⊥ = ∓2π

λ
ñ⊥, (32)

and we obtain the expression for the wave vector of light propagation in general
relativity, where ñ⊥ is the unit vector along the propagation of light in the
corresponding 3-dimensional subspace of an observer with world line xi(τ) if

u =
d

dτ
= lun‖, n‖ =

1
lu

d

dτ
, (33)

lu is the velocity of light measured by the observer.
(c) In the general case for k⊥ as

k⊥ = ∓ ω

lu
ñ⊥, (34)

ω could also be interpreted as the frequency of a signal propagating with velocity
with absolute value lu in a frame of reference of an observer with world line
xi(τ). The unit vector ñ⊥ is the unit vector in the direction of the propagation
of the signal in the subspace orthogonal to the vector u. The velocity of the
observer is usually deˇned by the use of the parameter τ of the world line under
the assumption that ds = ludτ , where ds is the distance of the propagation of a
signal for the proper time interval dτ of the observer

u =
d

dτ
=

d

(1/lu)ds
= lu

d

ds
. (35)

Remark. Usually the velocity of a particle (observer) moving in space-time
is determined by its velocity vector ˇeld u = d/(dτ), where τ is the proper time
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of the observer. The parameter τ is considered as a parameter of the observer's
world line xi(τ). By the use of u and its corresponding projection metrics hu and
hu, a contravariant (non-null, nonisotropic) vector ˇeld ξ could be represented in
two parts: one part is collinear to u and the other part is orthogonal to u

ξ =
1
e
g(ξ, u)u + g[hu(ξ)] = ξ‖ + ξ⊥, (36)

where

ξ‖ =
1
e
g(ξ, u)u, g[hu(ξ)], g(ξ‖, ξ⊥) = 0. (37)

1. If an observer is moving with velocity v = d/(dτ ) on his world line
xi(τ ), then his velocity, considered with respect to the observer with velocity u
and world line xi(τ), will have two parts v‖ and v⊥, collinear and orthogonal to
u, respectively, at the cross point τ = τ of both the world lines xi(τ) and xi(τ )

v =
1
e
g(v, u)u + g[hu(v)] = v‖ + v⊥. (38)

The vector v‖ describes the motion of the observer with velocity v along
the world line of the ˇrst observer with velocity u. The vector v⊥ describes the
motion of the second observer with velocity v in direction orthogonal to the world
line of the ˇrst observer. The vector v⊥ is the velocity of the second observer in
the space of the ˇrst observer in contrast to the vector v‖ describing the change
of v in the time of the ˇrst observer.

2. If we consider the propagation of a signal, characterized by its null vector
ˇeld k̃, the interpretation of the vector ˇeld u, tangential to the world line of an
observer, changes. The vector ˇeld u = lun‖ is interpreted as the velocity vector
ˇeld of the signal, propagating in the space-time and measured by the observer
at its world line xi(τ) with proper time τ as a parameter of this world line. The
absolute value lu of u is the size of the velocity of the signal measured along
the unit vector ˇeld n‖ collinear to the tangent vector of the world line of the
observer.

3. In Einstein's theory of gravitation (ETG) both interpretations of the vector
ˇeld u are put together. On the one side, the vector ˇeld u is interpreted as
the velocity of an observer on his world line with parameter τ interpreted as the
proper time of the observer. On the other side, the length lu of the vector ˇeld u
is normalized either to ±1 or to ±c = const. The quantity c is interpreted as the
light velocity in vacuum. The basic reason for this normalization is the possibility
for normalization of every non-null (nonisotropic) vector ˇeld u in the form

nu =
u

lu
= n‖, where lu = |g(u, u) |1/2 �= 0, (39)
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by the use of its different from zero length (lu �= 0), deˇned by means of the
covariant metric tensor g.

Both the interpretations of the vector ˇeld u (as a velocity of an observer or as
velocity of a signal) should be considered separately from each other for avoiding
ambiguities. The identiˇcation of the interpretations should mean that we assume
the existence of an observer moving in space-time with velocity u and emitting
(or receiving) signals with the same velocity. Such assumption does not exist
in the Einstein theory of gravitation. This problem is worth being investigated,
and a clear difference between both interpretations should be found. It is related
to the notions of distance and of velocity in spaces with afˇne connections and
metrics.

2. DISTANCE AND VELOCITY IN A (Ln, g) SPACE

2.1. Distance in a (Ln, g) Space and Its Relations to the Notion of Velocity.
2.1.1. Distance in a (Ln, g) Space for World and Space Lines not Depending on
Each Other

1. The distance in a (Ln, g) space between a point P ∈ M with co-ordinates
xi and a point P ∈ M with co-ordinates xi = xi + dxi is determined by the
length of the ordinary differential d, considered as a contravariant vector ˇeld
d = dxi∂i [4]. If we denote the distance as ds between point P and point P ,
then the square ds2 of ds could be deˇned as the square of the length of the
ordinary differential d

ds2 = g(d, d) = ±l2d = gijdxidxj , l2d � 0. (40)

2. Let us now consider a two-parametric congruence of curves (a set of not
intersecting curves) in a (Ln, g) space

xi = xi(τ, r(τ, λ)) = xi(τ, λ), (41)

where the function r = r(τ, λ) ∈ Cr(M), r � 2, depends on the two parameters
τ and λ, τ, λ ∈ R. Then

dr =
∂r(τ, λ)

∂τ
dτ +

∂r(τ, λ)
∂λ

dλ (42)

and

dxi =
∂xi(τ, r(τ, λ))

∂τ
dτ +

∂xi(τ, r(τ, λ))
∂r

(
∂r(τ, λ)

∂τ
dτ +

∂r(τ, λ)
∂λ

dλ

)
=

=
[
∂xi(τ, r(τ, λ))

∂τ
+

∂xi(τ, r(τ, λ))
∂r

∂r(τ, λ)
∂τ

]
dτ+

+
∂xi(τ, r(τ, λ))

∂r

∂r(τ, λ)
∂λ

dλ, (43)



1196 MANOFF S.

or

dxi = (ui + ξ ilv)dτ + ξ
i ∂r

∂λ
dλ, (44)

where

ui =
∂xi(τ, r(τ, λ))

∂τ
, lv =

∂r(τ, λ)
∂τ

, ξ i =
∂xi(τ, r(τ, λ))

∂r
, (45)

and

d = dxi∂i = dτ(u + lvξ) + (∂r/∂λ)dλξ,
(46)

dλ

dτ
= 0,

dτ

dλ
= 0.

Remark. Here, the parameters τ and λ are assumed to be independent of
each of other functions.

If the necessary computations are fulˇlled (Appendix 1), the expression for
ds2 follows in the form

ds2 = ±dr2l2u ∓ dr2 = ±l2udτ2

(
1 − l2v

l2u

)
.

3. In the nonrelativistic ˇeld theories the distance between two points P ∈ M
and P ∈ M is deˇned as

ds2 = ∓dr2 (47)

and lu = 0. This means that the distance between two neighboring points P and
P is the space distance measured between them in the rest (proper) reference
frame of the observer (with absolute value lu of his velocity u equal to zero).
The time parameter τ is not considered as a co-ordinate in space-time, but as a
parameter, independent of the frame of reference of the observer.

4. In the relativistic ˇeld theories and especially in the Einstein theory of
gravitation dr is considered as the space distance between two neighboring points
P and P and ludτ is interpreted as the distance covered by a light signal in a
time interval dτ , measured by an observer in his proper frame of reference (when
the observer in it is at rest). The quantity lu is usually interpreted as the absolute
value c of a light signal in vacuum, i.e., lu = c, or lu is normalized to 1, i.e.,
lu = 1, if the proper time interval dτ is replaced with the proper distance interval
ds = cdτ , i.e., u = d/(dτ) is replaced with u′ = d/(cdτ) = d/(ds), ds = cdτ .

Therefore, there is a difference between the interpretation of the absolute
value lu of the velocity of an observer in classical and relativistic physics.

(a) In classical physics, from the above consideration, it follows that lu = 0
(the observer is at rest) and ds = dr is the distance as a space distance. The
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quantity lv is the absolute value of the velocity between the observer at rest and
a point P in his neighborhood.

(b) In relativistic physics lu = c, or lu = 1, and lu is not the absolute value
of the velocity of the observer but the velocity of the light propagation which the
observer could measure in his proper frame of reference. If we wish to interpret
lu as the absolute value of the velocity of the observer himself, we should assume
that lu �= c or 1 (if the observer is not moving with the speed of light).

• There is the possibility to identify lu with lv as the absolute value of the
velocity of the observer at a point P at his world line, measured with respect
to a neighboring point P with the same proper time as the point P . Under
this assumption, the ordinary differential becomes a null (isotropic) vector ˇeld
(g(d, d) = 0, ld = 0, lu = lv �= 0) in the proper frame of reference of the
observer.

• We could also interpret lu as the absolute value of the velocity of the
observer with respect to another frame of reference or

• we could consider lu as the absolute value of the velocity of a signal coming
to the observer with velocity, different from the velocity of light. On the basis of
the last assumption we can describe the propagation of signals with propagation
velocity different from the velocity of light (for instance, the propagation of sound
signals or (may be) gravitational signals).

If lv = 0, then u = u and u could be
• the velocity vector ˇeld u = d/(dτ) of an observer (lu �= 0, u = lun‖) in

his proper frame of reference along his world line. Since in his proper frame of
reference the observer is at rest, u could be interpreted as the velocity of a clock
measuring the length (proper time) of the world line by the use of the parameter
τ or

• the velocity of a signal detected or emitted by the observer.
There is another way for considering the ordinary differential as a contravari-

ant vector ˇeld with its relations to the notions of velocity and of space velocity.
2.1.2. Distance in a (Ln, g) Space for World and Space Lines Depending on

Each Other
1. Let us consider the ordinary differential d = dxi∂i as a contravariant

vector ˇeld over a two parameter congruence xi = xi(τ, λ). Then

dxi =
∂xi(τ, λ)

∂τ
dτ +

∂xi(τ, λ)
∂λ

dλ = uidτ + ξi
⊥dλ, (48)

where

ui =
∂xi(τ, λ)

∂τ
, ξi

⊥ =
∂xi(τ, λ)

∂λ
. (49)

The ordinary differential will have the form

d = dxi∂i = dτu + dλξ⊥, u = ui∂i, ξ⊥ = ξi
⊥∂i. (50)
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If we impose the additional condition

g(u, ξ⊥) = 0, (51)

we will have the relations

g(d, u) = dτg(u, u) = edτ = ±l2udτ, (52)

g(ξ⊥, d) = dλg(ξ⊥, ξ⊥) = ∓l2ξ⊥dλ. (53)

2. On the other side, if we consider the projections of d collinear and orthog-
onal to u, we obtain the relations

d =
1
e
g(u, d)u + g[hu(d)] = d‖ + d⊥, (54)

where

d‖ =
1
e
g(u, d)u, d⊥ = g[hu(d)]. (55)

For the explicit form of d as d = dτu + dλξ⊥, we have (under the condition
g(u, ξ⊥) = 0)

d‖ =
1
e
g(u, d)u =

1
e
edτu = dτu, (56)

d⊥ = g[hu(d)] = g[hu(dτu + dλξ⊥)] =
= g[hu(dλξ⊥)] = dλg[hu(ξ⊥)] = dλξ⊥. (57)

Therefore, the representation of d as d = dτu + dλξ⊥ is the representation
in its collinear and orthogonal to u parts.

3. Since

g(d, d) = ds2 = g(dτu + dλξ⊥, dτu + dλξ⊥) =

= dτ2g(u, u) + dλ2g(ξ⊥, ξ⊥) = ±l2udτ2 ∓ l2ξ⊥dλ2, (58)

it follows for the line element ds

ds2 = ±l2udτ2 ∓ l2ξ⊥dλ2 = ±l2udτ2

(
1 −

l2ξ⊥dλ2

l2udτ2

)
. (59)

If we chose the contravariant nonisotropic (non-null) vector ˇeld ξ⊥ as a unit
vector ˇeld, i.e., if lξ⊥ = 1, ξ⊥ = ñ⊥, g(ñ⊥, ñ⊥) = ∓1 = ∓l2ξ⊥ , then

ds2 = ±l2udτ2

(
1 − 1

l2u

dλ2

dτ2

)
. (60)
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If we, further, interpret dλ as a distance along a curve with a tangent vector
ξ⊥, orthogonal to u, we can deˇne and interpret the expression

dλ

dτ
= lv (61)

as the 3-dimensional space velocity of a material point along the curve xi(τ, λ)
with tangential vector ξ⊥ = ñ⊥ along the curve xi(τ0, λ). Then

ds2 = ±l2udτ2

(
1 − l2v

l2u

)
. (62)

Remark. Here, it is assumed that the parameter λ is depending on the
parameter τ , i.e., λ = λ(τ), τ = τ(λ), and dλ/dτ �= 0. In the opposite case,
where λ and τ are parameters independent of each other, dλ/dτ = 0.

The quantity lu is interpreted as the absolute value of the velocity of a signal
(in the relativity theory it is interpreted as the absolute value of the velocity of light
in vacuum). The parameter τ is interpreted as the proper time of an observer
moving on a trajectory xi(τ, λ0) interpreted as his world line xi(τ, λ0). The
quantity lv is interpreted as the absolute value of the velocity of a material point
moving along a space distance λ from the trajectory of the observer xi(τ, λ0).

4. If we now turn back to the general case, when lξ⊥ �= 1, ξ⊥ �= ñ⊥, we
have the relation

ds2 = ±l2udτ2

[
1 − 1

l2u

(
l2ξ⊥dλ2

dτ2

)]
. (63)

Then we can introduce the abbreviation

dl2 := l2ξ⊥dλ2, (64)

interpreted as the square of the space distance of a point in (n − 1)-dimensional
subspace of M (dim M = n), (n = 4) from the trajectory (world line) of the
observer with proper time τ and tangential vector u, orthogonal to ξ⊥ = lξ⊥ ñ⊥.
The square ds2 of the distance ds in the n-dimensional manifold M will have
the form

ds2 = ±l2udτ2

[
1 − 1

l2u

dl2

dτ2

]
. (65)

If we again denote
dl2

dτ2
:= l

2

v, (66)

we obtain

ds2 = ±l2udτ2

(
1 − l

2

v

l2u

)
, (67)



1200 MANOFF S.

where lv could be interpreted again as the absolute value of the space velocity of a
point moving at a space distance dl from the world line xi(τ, λ0) of the observer.
In this general case, the parameter λ is not interpreted as a space distance. Instead
of dλ the quantity dl = lξ⊥dλ has this interpretation.

In general, we do not need to search for interpretation of an expression as
a space velocity in the above considerations if we consider only the structure of
the square ds2 of the space-time distance ds

ds2 = ±(l2udτ2 − l2ξ⊥dλ2) = ±(l2udτ2 − dl2). (68)

If a signal with absolute value lu of its velocity is covering a space distance
dl with dl2 = l2ξ⊥dλ2 in the proper time interval dτ of the observer, then ds2 =
g(d, d) = 0 and the ordinary differential becomes a null (isotropic) vector ˇeld,
where

ds2 = 0, l2udτ2 = l2ξ⊥dλ2 = dl2, (69)

dl = ±lξ⊥dλ, ludτ = ±lξ⊥dλ = dl, (70)

dτ =
dl

lu
= ± lξ⊥

lu
dλ, lξ⊥dλ = ±dl, lu > 0, lξ⊥ > 0. (71)

2.2. Measuring a Distance in (Ln, g) Spaces
A. If the notion of distance is introduced in a space-time, modeled by the

(Ln, g) space, we have to decide what is the meaning of the vector ˇeld u as a
tangent vector to a trajectory interpreted as the world line of an observer. On
the basis of the above considerations, we have four possible interpretations for
the meaning of the vector ˇeld u as:

1. Velocity vector ˇeld of a propagating signal in space-time identiˇed with
the tangent vector ˇeld u at the world line of an observer. The signal is detected
or emitted by the observer on his world line and the absolute value lu of u is
identiˇed with the absolute value of the velocity of the signal in- or outcoming
to the observer.

2. Velocity vector ˇeld of an observer moving in space-time. In this case
lu �= 0 and the space-time should have a deˇnite metric, i.e., Sgn g = ±n,
dim M = n (for instance, motion of an observer in the Euclidean space con-
sidered as a model of space-time). The observer, moving in space-time, could
consider processes happened in its subspace orthogonal to his velocity. The ob-
server will move in a �ow and consider the characteristics of the �ow from his
own frame of reference.

3. Velocity of a clock moving in space-time and determining the proper time
by a periodical process in the frame of reference of an observer. The velocity u
of the periodical process in the clock in space-time is with ˇxed absolute value
lu, i.e., lu = const. The time interval dτ measured by the clock corresponds to
the length ds of its world line, i.e., dτ2 = ± constds2. Under the assumption
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for the constant velocity of the periodical process in the clock, we consider the
periodical process as indicator for the time interval dτ in the proper frame of
reference of the clock and of the observer, respectively.

4. Velocity u of an (n − 1)-dimensional subspace moving in time with
lu �= 0. If the subspace deforms in some way, the deformations re�ect on the
kinematic characteristics of the vector ˇeld u, and u is used as an indicator for
the changing properties of the subspace, considered as the space of an observer
(laboratory) where a physical system is investigated. This type of interpretation
requires not only the existence of the velocity vector ˇeld u with lu �= 0 but also
the existence of (at least one) orthogonal to u vector ˇeld ξ⊥, g(u, ξ⊥) = 0, lying
in the orthogonal to u subspace T⊥u(M).

All indicated interpretations could be used in solving different physical prob-
lems related to motions of physical systems in space-time.

B. After introducing the notion of distance, the question arises how a space
distance between two points in a space could be measured. We could distinguish
three types of measurements:

1. Direct measurements by using a measuring device (e.g., a roulette, a linear
(running) meter, yard-measure-stick, etc.)

2. Direct measurements by sending signals from a basic point to a ˇxed point
of space and detecting at the basic point the re�ected by the ˇxed point signal.

3. Indirect measurement by receiving signals from a ˇxed point of space
without sending a signal to it.

Let us now consider every type of measurements more closely.
1. Direct measurements by using a measuring device (Fig. 1).

Fig. 1. Direct measurement of space
distance by the use of a measuring de-
vice

The space distance between two points
A and B in a space could be measured
by a second observer moving from point A
(where the ˇrst observer is at rest) to point B
in space. At the same time, the second ob-
server moves in time from point B to point
B′. The space distance measured by the ob-
server with world line AA′ could be denoted
as 	r = AB and the time period passed as
	τ = AA′. This is a direct measurement
of the space distance AB = 	r from point
A to point B in the space during the time
AA′ = 	τ . It is assumed that point A
and point B are at rest during the measure-
ment. Instead of measuring the space dis-
tance AB, the observers measure the space
distance A′B′ which exists at the time τ + 	τ if the measurement has begun at
the time τ from the point of the ˇrst observer with world line AA′.
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Fig. 2. Direct measurement by sending sig-
nals from a basic point to a ˇxed point in
space and detecting the re�ected signals

2. Direct measurements by sending
signals from a basic point to a ˇxed
point of space and detecting at the ba-
sic point the re�ected by the ˇxed point
signal (Fig. 2).

The space distance between two
points A and B in a space could be mea-
sured by sending a signal with velocity
with absolute value lu �= 0. Then, AB of
the curve xi(τ = τ0, r) through point B
is the distance 	r at the time τ(A) = τ0

and τ(B) = τ0.
A′B′ of the curve xi(τ = τ0 +

	τ, r) is the space distance 	r′ at the
time τ(A′) = τ1. At this time the signal
is received at point B′ which is point B
at the time τ1, i.e., τ(B′) = τ1. B′A′ is
the space distance between B and A at

the time τ(A′) = τ1, where τ(B′) = τ1, τ(B′′) = τ2. At the time (τ2) the point
B(τ0) will be moved in the time to point B′′(τ2). The signal will be propagated

(a) for the time interval AA′ = τ1 − τ0 to the point B′ at the time τ1 at the
space distance 	r = lu(τ1 − τ0), where lu is the velocity of the signal measured
by the observer with world line AA′;

(b) for the time interval A′A′′ from point B′ at the time τ1 to the point A′′

at the time τ2 at a space distance lu(τ2 − τ1). The whole space distance covered
by the signal in the time interval AA′A′′ = 	τ = τ2 − τ0 is lu(τ2 − τ0) =
lu(τ2 − τ1) + lu(τ1 − τ0).

If we now assume that point A and point B are at rest to each other and the
space distance between them does not change in the time, then

lu(τ2 − τ1) = lu(τ1 − τ0) (72)

and
lu(τ2 − τ0) = 2lu(τ1 − τ0) = 2A′B′(τ1) = 2AB(τ0). (73)

Therefore, the space distance between point A and point B (at any time, if
both the points are at rest to each other) is

AB =
1
2
lu(τ2 − τ0), (74)

where 	τ = τ2 − τ0 is the time interval for the propagation of a signal from
point A to point B and from point B back to point A.

3. Indirect measurement by receiving signals from a ˇxed point of space
without sending a signal to it (Fig. 3).
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Fig. 3. Indirect measurement by receiv-
ing signals from a ˇxed point in space

If the space distance between point A
and point B is changing in the time and at
point B there is an emitter, then the fre-
quency of the emitter could change in the
time related to the centrifugal (centripetal)
or Coriolis' velocities and accelerations be-
tween both the points A and B. Therefore,
a criteria for no relative motion between two
(space) points (points with one and the same
proper time) could be the lack of change of
the frequency of the signals emitted from
the second point B to the basic point A.
(But there could be motions of an emitter which could change its frequency so
that the changes compensate each other and the observer at the basic point A
could come to the conclusion that there is no motions between points A and B.)

If an emitter at point B(τ0) emits a signal with velocity u and frequency ω,
then this signal will be received (detected) at the point A′(τ1) after a time interval
AA′ = 	τ = τ1 − τ0 by an observer (detector) moving in the time interval 	τ
from point A(τ0) to point A′(τ1) on his world line xi(τ). If the emitter is moving
relatively to point A with relative velocity relv and/or with relative acceleration

rela, then the detected at the point A′ frequency ω will differ from the emitted
frequency ω. If both the points A and B are at rest to each other, then ω = ω.

C. The question arises: How can we ˇnd the space distance between two
points A and B lying in such a way in the space that only signals emitted from
the one point (point B) could be detected at the basic point (point A), where an
observer detects the signal from point B? First of all, if we knew the propagation
velocity lu of a signal and the difference ω − ω between the emitted frequency
ω and the detected frequency ω, we can try to ˇnd out the relative velocity (and
acceleration) between the emitter (at a point B) and the observer (at a point A).
For doing that we will need relations between the difference ω−ω and the relative
velocity (and acceleration) between both the points. Such relations could be found
on the basis of the structures of the relative velocity and the relative acceleration
and their decompositions in centrifugal (centripetal) relative velocity and relative
acceleration and Coriolis relative velocity and relative acceleration [13].

3. KINEMATIC EFFECTS RELATED TO THE RELATIVE VELOCITY
AND TO THE RELATIVE ACCELERATION

1. Let us now consider the change of a null vector ˇeld k̃ under the in�uence
of the relative velocity and of the relative acceleration on the corresponding emit-
ter and its frequency with respect to an observer detecting the emitted radiation
by the emitter.
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Let k⊥ be the orthogonal to u part of the null vector ˇeld k corresponding
to the null vector ˇeld k̃ after the in�uence of the relative velocity relv and/or the
relative acceleration rela

k = k̃ + relk, k = k‖ + k⊥, k̃ = k‖ + k⊥, relk = relk‖ + relk⊥,
(75)

k⊥ = k⊥ + relk⊥,

where relk could depend on the relative velocity relv [4, Ch. 10] and on the relative
acceleration rela [4, Ch. 11, 12].

If k = k̃ + relk, then

g(k, k) = 0 = g(relk, relk) + 2g(k̃, relk),
(76)

g(relk, relk) = −2g(k̃, relk).

In the previous sections we have considered the representation of k̃ as k̃ =
k‖ + k⊥, where

k‖ = ±lk‖n‖ = ± ω

lu
n‖, lk‖ =

ω

lu
, (77)

k⊥ = ∓lk⊥ ñ⊥ = ∓ ω

lu
ñ⊥, lk⊥ =

ω

lu
= lk‖ . (78)

The unit vector ñ⊥ is orthogonal to the vector u, i.e., g(u, ñ⊥) = 0 because
of g(u, k⊥) = ∓lk⊥g(u, ñ⊥) = 0, lk⊥ �= 0, lu �= 0. Therefore, g(ñ⊥, ñ⊥) =
∓1 = ∓l2ñ⊥

, lñ⊥ �= 0.
We can represent the unit vector ñ⊥ (orthogonal to u) in two parts: one part

n⊥ collinear to the vector ˇeld ξ⊥ (orthogonal to u) and one part m⊥ orthogonal
to the vectors u and ξ⊥, i.e.,

ñ⊥ = αn⊥ + βm⊥, (79)

g(ñ⊥, ñ⊥) = ∓1 = ∓l2ñ⊥
, lñ⊥ > 0, lñ⊥ = 1, (80)

η⊥ := lξ⊥m⊥, m⊥ =
η⊥
lξ⊥

, g(m⊥, m⊥) = ∓1, (81)

g(η⊥, η⊥) = l2ξ⊥g(m⊥, m⊥) = ∓l2ξ⊥ = g(ξ⊥, ξ⊥), (82)

g(η⊥, ξ⊥) = 0, g(m⊥, n⊥) = 0, (83)

where

n⊥ =
ξ⊥
lξ⊥

, g(n⊥, u) = 0, g(n⊥, n⊥) = ∓1 = ∓l2n⊥
, (84)

ln⊥ > 0, ln⊥ = 1, (85)

m⊥ =
η⊥
lξ⊥

= ∓ vc

lvc

, g(m⊥, u) = 0, g(m⊥, ξ⊥) = 0. (86)
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The vector ˇeld vc is the Coriolis velocity vector ˇeld [13] orthogonal to u
and to the centrifugal (centripetal) velocity vz collinear to ξ⊥. Since

vc = ∓lvcm⊥, g(vc, vc) = ∓l2vc
, (87)

we also have

g(m⊥, m⊥) = ∓1 = ∓l2m⊥ , lm⊥ > 0, tlm⊥ = 1. (88)

The Coriolis velocity vc is related to the change of the vector ξ⊥ in direction
orthogonal to u and ξ⊥.

The functions α and β appear as direction cosines of n⊥ and m⊥ with respect
to the unit vector ñ⊥ (Appendix 2).

2. For the contravariant null vector ˇeld k we have analogous relations as for
the contravariant null vector ˇeld k̃ (just changing k̃ with k, ω with ω, and ñ⊥
with ñ′

⊥) (Appendix 2).

From k = k̃ + relk, k⊥ = k̃⊥ + relk⊥, and

∓ ω

lu
ñ′
⊥ = ∓ ω

lu
ñ⊥ + relk⊥, (89)

it follows that (Appendix 2)

∓ ω

lu
g(ñ′

⊥, ñ⊥) =
ω

lu
+ g(relk⊥, ñ⊥).

The vector ñ′
⊥ could be represented by the use of the vectors n⊥ and m⊥ in

the form
ñ′
⊥ = α′n⊥ + β′m⊥. (90)

The functions α′ and β′ appear as direction cosines of n⊥ and m⊥ with
respect to the unit vector ñ′

⊥ (Appendix 2).
If we denote the angle (ñ⊥, n⊥) between the vectors ñ⊥ and n⊥ as θ =

(ñ⊥, n⊥) and the angle (ñ′
⊥, n⊥) between the vectors ñ′

⊥ and n⊥ as θ′ =
(ñ′

⊥, n⊥), then by the use of the expressions for k⊥, k̃⊥, and relk⊥ (Appen-
dix 2) the relations follow

ω

ω
cos θ′ = cos θ +

1
ω

lug(relk⊥, n⊥) = cos θ +
g(relk⊥, n⊥)
g(ñ⊥, k⊥)

, (91)

ω

ω
sin θ′ = sin θ +

1
ω

lug(relk⊥, m⊥) = sin θ +
g(relk⊥, m⊥)
g(ñ⊥, k⊥)

. (92)

From the last (above) two relations, it follows for tg θ′

tg θ′ =
sin θ′

cos θ′
=

sin θ +
g(relk⊥, m⊥)
g(ñ⊥, k⊥)

cos θ +
g(relk⊥, n⊥)
g(ñ⊥, k⊥)

. (93)



1206 MANOFF S.

If we introduce the abbreviations

S :=
g(relk⊥, m⊥)
g(ñ⊥, k⊥)

, (94)

C :=
g(relk⊥, n⊥)
g(ñ⊥, k⊥)

, (95)

the expression for tg θ′ could be written in the form

tg θ′ =
sin θ′

cos θ′
=

sin θ + S

cos θ + C
. (96)

The relations for sin θ′ and cos θ′ will have the forms, respectively:

ω

ω
sin θ′ = sin θ + S, (97)

ω

ω
cos θ′ = cos θ + C. (98)

The angle θ′ describes the deviation of the direction of the vector k⊥ with
respect to the vector k⊥. This type of deviation is usually related to the aberration
of the wave vector k̃ during its motion in a time interval. As we will see below,
the aberration depends on the relative velocity and relative acceleration included
implicitly in the terms S and C .

From the expressions for sin θ′ and cos θ′ the relation between the emitted
frequency ω and the detected frequency ω follows in the forms

ω2

ω2
(sin2 θ ′ + cos2 θ ′) =

ω2

ω2
= (sin θ + S )2 + (cos θ + C)2, (99)

ω = [(sin θ + S)2 + (cos θ + C)2]1/2ω. (100)

Special case: S := 0, sin θ = 0, cos θ = 1, k⊥ = ∓lk⊥ñ⊥.

ω = (1 + C)ω, C =
ω − ω

ω
= z =

1
lk⊥

g(relk⊥, n⊥), (101)

g(relk⊥, n⊥) = lk⊥z. (102)

Special case: C := 0, cos θ = 0, sin θ = 1, k⊥ = ∓lk⊥ ñ⊥.

ω = (1 + S)ω, S =
ω − ω

ω
= zc =

1
lk⊥

g(relk⊥, m⊥), (103)

g(relk⊥, m⊥) = lk⊥zc. (104)
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The above relations describe the change of the frequency of the emitter during
the motion of the signal from the emitter to the receiver (detector, observer) and
is related to the description of the Doppler effect and the Hubble effect in spaces
with afˇne connections and metrics considered as models of space-time. It is
assumed that the emitter is at rest at a given time with respect to the frame of
reference of an observer moving in space-time and receiving signals from an
emitter. If at rest with respect to an observer, the emitter sends a signal with
frequency ω detected after a time interval as a frequency ω measured by the
observer in his proper frame of reference.

The task is now to ˇnd out the explicit form for relk⊥. For this purpose we
would consider the change of a vector ˇeld ξ⊥, orthogonal to the vector ˇeld u,
i.e., g(u, ξ⊥) = 0, transported along the vector ˇeld u.

3.1. Change of a Nonisotropic Vector Field ξ⊥ Along a Nonisotropic Vector
Field u, when g(u, ξ⊥) = 0. Let us now consider the change of the vector ˇeld
ξ⊥, g(u, ξ⊥) = 0, along the world line xi(τ, λ0) of an observer with tangent vector
u. The vector ξ⊥ could be expressed at a point A(τ0 − dτ, λ0) by means of the
vector ˇeld ξ⊥ at the point A′(τ0, λ0) by the use of the covariant exponential
operator [4, p. 82Ä85] up to the second order of dτ

ξ⊥(A) := ξ⊥(τ0−dτ, λ0) := ξ(τ0, λ0) =

= ξ⊥(τ0, λ0) − dτ∇uξ⊥|(τ0, λ0) +
1
2
dτ2∇u∇uξ⊥|(τ0, λ0). (105)

The vector ξ⊥(τ0, λ0) could not be, in general, collinear to ξ⊥(τ0, λ0) and

orthogonal to u(τ0, λ0). If we, further, consider the part of ξ(τ0, λ0), orthogonal to
u(τ0, λ0) at the point A′(τ0, λ0), we obtain

ξ⊥(τ0, λ0) := g[hu(ξ(τ0, λ0))] = g[hu(ξ⊥)](τ0, λ0)−

− dτg[hu(∇uξ⊥)](τ0, λ0) +
1
2
dτ2g[hu(∇u∇uξ⊥)](τ0, λ0). (106)

Since,

g[hu(ξ⊥)] = ξ⊥, (107)

g[hu(∇uξ⊥)] = relv, (108)

g[hu(∇u∇uξ⊥)] =rel a, (109)

we have the relation

ξ⊥(τ0, λ0) = ξ⊥(τ0, λ0) − dτ relv(τ0, λ0) +
1
2
dτ2

rela(τ0, λ0). (110)

Therefore, the vector ξ⊥(τ0−dτ, λ0) with g(ξ⊥, u)(τ0−dτ, λ0) = 0 could be

considered as the vector ξ⊥(τ0, λ0) with g(ξ⊥, u)(τ0, λ0) = 0 if transported from
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the point A(τ0 − dτ, λ0) ≡ A(τ0−dτ, λ0) to the point A′(τ0, λ0) ≡ A(τ0, λ0) at the
world line with parameter τ .

Remark. Analogous considerations could be made with the transport of the
vector ξ⊥ from the point A′′(τ0 + dτ, λ0) to the point A(τ0, λ0):

ξ⊥(τ0+dτ, λ0) := ξ⊥(τ0, λ0) = ξ⊥(τ0, λ0) + dτ relv(τ0, λ0) +
1
2
dτ2

rela(τ0, λ0). (111)

If we summarize the expressions for ξ⊥(τ0, λ0) and ξ⊥(τ0, λ0), we can ˇnd

a relation between the vectors ξ⊥(τ0, λ0), ξ⊥(τ0, λ0), ξ⊥(τ0, λ0), and the relative
acceleration rela(τ0, λ0)

ξ⊥(τ0, λ0) + ξ⊥(τ0, λ0) = 2ξ⊥(τ0, λ0) + dτ2
rela(τ0, λ0), (112)

or
dτ2

rela(τ0, λ0) = ξ⊥(τ0, λ0) + ξ⊥(τ0, λ0) − 2ξ⊥(τ0, λ0). (113)

If the proper time interval dτ is expressed by the use of the relations between
the proper time τ and the space distance dl, covered by a signal propagating with
a velocity with absolute value lu (from the point of view of the observer with the
world line xi(τ, λ0)), as

dτ = ± lξ⊥
lu

dλ =
dl

lu
, (114)

then the relation between ξ⊥(τ0, λ0) and ξ⊥(τ0, λ0) could be written in the form

ξ⊥(τ0, λ0) = ξ⊥(τ0, λ0) −
dl

lu
relv(τ0, λ0) +

1
2

(
dl

lu

)2

rela(τ0, λ0). (115)

For every point P ′(τ, λ0) of the world line of the observer xi(τ, λ0) the
above relation between P ′(τ, λ0) and another point P (τ − dτ, λ0) is valid. In
the further consideration we will omit the indications for the corresponding points:

ξ⊥ = ξ⊥ − dl

lu
relv +

1
2

(
dl

lu

)2

rela. (116)

The vector ξ⊥ is, in general, not collinear to the vector ξ⊥. It could be
represented by the use of the unit vectors n⊥ and m⊥ in the form

ξ⊥ = lξ⊥
ñ′
⊥ = lξ⊥

(α′n⊥ + β′m⊥) = ∓lξ⊥
[cos θ′n⊥ + sin θ′m⊥]. (117)

On the other side, the vector ξ⊥ has the form ξ⊥ = lξ⊥n⊥, where
g(ξ⊥, m⊥) = lξ⊥g(n⊥, m⊥) = 0. In the same way, we can express the rela-
tive velocity relv and the relative acceleration rela by means of their structures,
related to the vectors n⊥ and m⊥.
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If we project the expression for ξ⊥ along the unit vectors n⊥ and m⊥
correspondingly, we obtain

g(ξ⊥, n⊥) = lξ⊥
cos θ′ = g(ξ⊥, n⊥) − dl

lu
g(relv, n⊥) +

1
2

(
dl

lu

)2

g(rela, n⊥) =

= ∓lξ⊥ − dl

lu
g(relv, n⊥) +

1
2

(
dl

lu

)2

g(rela, n⊥), (118)

g(ξ⊥, m⊥) = lξ⊥
sin θ′ = g(ξ⊥, m⊥)−dl

lu
g(relv, m⊥)+

1
2

(
dl

lu

)2

g(rela, m⊥) =

= −dl

lu
g(relv, m⊥) +

1
2

(
dl

lu

)2

g(rela, m⊥). (119)

We can ˇnd now the explicit forms of g(relv, n⊥), g(relv, m⊥), g(rela, n⊥),
and g(rela, m⊥).

3.1.1. Explicit Form of lξ⊥
cos θ′ and lξ⊥

sin θ′. Let us recall the explicit form
of relv and rela with respect to their decompositions in centrifugal (centripetal)
and Coriolis velocities and accelerations, respectively [13].

The relative velocity relv could be represented in the form

relv = vz + vc, (120)

where

vz = ∓lvzn⊥ = Hlξ⊥n⊥ = Hξ⊥, n⊥ =
ξ⊥
lξ⊥

, (121)

vc = ∓lvcm⊥ = Hclξ⊥m⊥ = Hcη⊥, m⊥ =
η⊥
lξ⊥

=
vc

lvc

. (122)

The relative acceleration rela could be represented in the form

rela = az + ac, (123)

where

az = ∓lazn⊥ = qlξ⊥n⊥ = qξ⊥, (124)

ac = ∓lacm⊥ = qclξ⊥m⊥ = q cη⊥. (125)

For the expressions g(relv, n⊥) and g(relv, m⊥) we obtain, respectively,

g(relv, n⊥) = lvz = ∓Hlξ⊥ , (126)

g(relv, m⊥) = lvc = ∓Hclξ⊥ . (127)
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For the expressions g(rela, n⊥) and g(rela, m⊥) we obtain, respectively,

g(rela, n⊥) = laz = ∓qlξ⊥ , (128)

g(rela, m⊥) = lac = ∓qclξ⊥ . (129)

By means of the above relations, it follows for lξ⊥
cos θ′ and lξ⊥

sin θ′,
respectively,

lξ⊥
cos θ′ = ∓lξ⊥ − dl

lu
lvz +

1
2

(
dl

lu

)2

laz = ∓lξ⊥ ± dl

lu
Hlξ⊥ ∓ 1

2

(
dl

lu

)2

qlξ⊥ =

= ∓lξ⊥

[
1 − dl

lu
H +

1
2

(
dl

lu

)2

q

]
. (130)

lξ⊥
sin θ′ = −dl

lu
lvc +

1
2

(
dl

lu

)2

lac = ±dl

lu
Hclξ⊥ ∓ 1

2

(
dl

lu

)2

qclξ⊥ =

= ±lξ⊥

[
dl

lu
Hc −

1
2

(
dl

lu

)2

qc

]
= ∓lξ⊥

[
−dl

lu
Hc +

1
2

(
dl

lu

)2

qc

]
. (131)

If we introduce the abbreviations

C = −dl

lu
H +

1
2

(
dl

lu

)2

q, (132)

S = −dl

lu
Hc +

1
2

(
dl

lu

)2

qc, (133)

the expressions for lξ⊥
sin θ′ and lξ⊥

cos θ′ could also be written in the forms

lξ⊥
sin θ′ = ∓lξ⊥S, (134)

lξ⊥
cos θ′ = ∓lξ⊥(1 + C). (135)

The change of the direction of the vector ξ⊥ in the time interval dτ of the
proper time τ of the observer on his world line can now be represented as

tg θ′ =
S

1 + C
. (136)

The change of the length of the vector ξ⊥ in the time interval dτ could be
found in the form

l2
ξ⊥

= l2ξ⊥ [(1 + C)2 + S2], (137)

lξ⊥
= [(1 + C)2 + S2]1/2lξ⊥ , (138)

lξ⊥
> 0, lξ⊥ > 0. (139)
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Special case: The vector ξ⊥ is collinear to the vector ξ⊥. Then ñ′
⊥ = n⊥,

sin θ′ = 0, cos θ′ = ∓1, S = 0, and

lξ⊥
= (1 + C)lξ⊥ . (140)

Special case: The vector ξ⊥ is orthogonal to the vector ξ⊥. Then ñ′
⊥ = m⊥,

sin θ′ = ∓1, cos θ′ = 0, C = −1, and

lξ⊥
= Slξ⊥ . (141)

The change of the length of the vector ˇeld ξ⊥ along the world line of an
observer shows the role of the relative velocity and the relative acceleration for
the deformation of the vector ˇeld ξ⊥ along the world line. This deformation
is depending on the corresponding Hubble functions H and Hc and acceleration
parameters q and qc.

Since the deformation of the contravariant nonisotropic vector ˇeld k⊥ (or-
thogonal to the vector ˇeld u) characterizes uniquely the deformation of the wave
vector k̃, we could consider the change of k⊥ along the world line of the observer
in analogous way as it has been done for the vector ˇeld ξ⊥.

3.2. Change of the Vector k⊥ Along the World Line of an Observer.
Let us now consider the change of the vector ˇeld k⊥, g(u, k⊥) = 0, along the
world line xi(τ, λ0) of an observer with the tangent vector u. For this aim we

will consider ˇrst of all the wave vector ˇeld k̃ and then k̃ will be projected to
the direction orthogonal to the vector ˇeld u.

The vector ˇeld k̃ could be expressed at a point A(τ0 − dτ, λ0) by means of

the vector ˇeld k̃ at the point A′(τ0, λ0) by the use of the covariant exponential
operator ([4, p. 82Ä85]) up to the second order of dτ (Fig. 4)

Fig. 4. Signals receiving from a ˇxed point in space and their comparing with the signals
sent by an emitter at rest with respect to the basic trajectory of the observer
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k̃(A) := k̃(τ0−dτ, λ0) := k(τ0, λ0) =

= k̃(τ0, λ0) − dτ∇u k̃|(τ0, λ0) +
1
2
dτ2∇u∇uk̃|(τ0, λ0). (142)

Fig. 5. Projections of the null vectors k
and k̃ to a subspace orthogonal to the vec-
tor u

The orthogonal to u parts of k̃ and
k at the point A′(τ0, λ0) could be found
after projection of both the vectors by
means of the projection metric hu (Fig. 5)

g[hu(k̃)](τ0−dτ,λ0) :=

= g[hu(k)](τ0, λ0) = g[hu(k̃)](τ0, λ0)−
− dτg[hu(∇u k̃)]|(τ0, λ0)+

+
1
2
dτ2g[hu(∇u∇uk̃)]|(τ0, λ0). (143)

The vectors g[hu(∇uk̃)](τ0, λ0) and

g[hu(∇u∇uk̃)](τ0, λ0) could be repre-
sented by the use of the kinematic characteristics of the relative velocity and
relative acceleration [4] in the corresponding forms (Appendix 3).

Fig. 6. Interpretation of the projections of relk⊥
along and orthogonal to ξ⊥ . The quantity z is
the longitudinal Hubble shift parameter and zc is
the transversal Hubble shift parameter

4. ABERRATION

Aberration is the deviation of the direction of the vector ˇeld k⊥ from the
direction of the vector ˇeld k⊥. If k⊥ = ∓lk⊥

ñ′
⊥ and k⊥ = ∓lk⊥ ñ⊥, then the

difference between the angles θ′ for k⊥ and θ for k⊥ with respect to the direction
of the vector ˇeld ξ⊥ is given by the relations

ω

ω
cos θ′ = cos θ +

1
lk⊥

g(relk⊥, n⊥) = cos θ + C, (144)

ω

ω
sin θ′ = sin θ +

1
lk⊥

g(relk⊥, m⊥) = sin θ + S. (145)
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From the last (above) two relations, it follows for tg θ′

tg θ′ =
sin θ′

cos θ′
=

sin θ + (1/lk⊥)g(relk⊥, m⊥)
cos θ + (1/lk⊥)g(relk⊥, n⊥)

=
sin θ + S

cos θ + C
. (146)

If there is no relative velocities and no relative accelerations between the
emitter and the observer, then C = 0 and S = 0. Then

ω

ω
cos θ′ = cos θ, (147)

ω

ω
sin θ′ = sin θ, (148)

ω2

ω2
= 1, ω = ω. (149)

The frequency of the signal, emitted by the emitter, and the frequency of the
signal, detected by the observer, are the same and, at the same time, no aberration
occurs.

Special case: Autoparallel motion (∇uu = a = 0) of an observer detected a
signal with emitted frequency ω. Then

C = ± 1
lu

[(αlvz + β lvηz )] ∓ 1
2

dl

l2u
[(αlaz + β laηz )], (150)

S = ± 1
lu

[(αlvc + β lvηc)] ∓
1
2

dl

l2u
[(αl ac + β laηc)], (151)

ω sin θ′ =
{

sin θ ± 1
lu

[(αlvc + β lvηc)] ∓
1
2

dl

l2u
[(αl ac + β laηc)]

}
ω, (152)

ω cos θ′ =
{

cos θ ± 1
lu

[(αlvz + β lvηz )] ∓ 1
2

dl

l2u
[(αlaz + β laηz )]

}
ω, (153)

α = ∓ cos θ, β = ∓ sin θ. (154)

5. DOPPLER EFFECT

The Doppler effect (Doppler shift) is the shift of the signal's frequency caused
by the relative motion between the emitter and the observer.

1. Usually, in classical mechanics, and especially in acoustics, there is a
difference between the shift of the frequency when the observer is moving to or
out of the emitter and the shift of the frequency when the emitter is moving to
or out of the observer. In the ˇrst case, the signal is propagating in a medium at
rest with respect to the emitter, and in the second case, the signal is propagating
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in a medium moving with respect to the emitter. It is assumed that the signal is
propagating in a continuous media used as a carrier of the signal.

In relativistic physics, and especially in electrodynamics, there is no differ-
ence between the shifts of the frequency of a signal when the observer is moving
to or out of the emitter and when the emitter is moving to or out of the observer.
The relative motion is the only reason for the shift frequency.

2. If the shift of the frequency of a signal is considered from the point of
view of an observer, then only the relative motions with respect to the observer
could be taken into account. The observer detects the signals in his proper frame
of reference (laboratory) and could make a comparison between the signals sent
by the emitter at rest with respect to his proper frame of reference and by the
emitter moving relatively to the observer's proper frame of reference.

3. The observer could move in space-time where the space could be ˇlled
with a continuous media or with classical ˇelds with physical interpretation.
Since every classical ˇeld theory could be considered as a theory of a continuous
media [2, 3, 5], both types of theories could be used for dynamical description
of propagation of signals in space-time. An observer is interested in ˇnding out
how signals are propagating, how the emitters are moving with respect to the
observer, and how the signals are generated by an emitter. Only the ˇrst two
questions are subjects of consideration by the use of kinematic characteristics of
the relative velocity, the relative acceleration, and the properties of null (isotropic)
vector ˇelds. The last question is a matter of consideration of the corresponding
dynamical theory.

4. The Doppler effect could be described in spaces with afˇne connections
and metrics as models of space or space-time on the basis of the relations between
the emitted frequency ω and detected frequency ω of signals propagating in space
or space-time. The same relations are used for consideration of the aberration of
signals. As corollary of them, a relation between ω and ω follows in the form

ω = [(sin θ + S )2 + (cos θ + C)2]1/2ω (155)

appearing as a general formula for the generalized Doppler effect in spaces with
afˇne connections and metrics.

5.1. Standard (Longitudinal) Doppler Effect (Doppler Shift)
1. The standard (longitudinal) Doppler effect appears when all Coriolis ve-

locities and Coriolis accelerations compensate each other or do not exist in the
relative motion between emitter and detector (observer), i.e., if

S = 0, (156)

then

ω = [sin 2θ +(cos θ +C)2]1/2ω = [sin2 θ +cos2 θ +2C cos θ +C
2
]1/2ω, (157)
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ω = [1 + 2C cos θ + C
2
]1/2ω, (158)

where

C = ± 1
lu

[
(∓ cos θ lvz ∓ sin θ lvηz ) − lξ⊥

lu
l(a⊥)z

]
∓

∓ 1
2

dl

l2u

[
(∓ cos θ laz ∓ sin θ laηz ) − lξ⊥

lu
l(∇ua)⊥z

]
,

C =
1
lu

[
−(cos θ lvz + sin θ lvηz ) ∓ lξ⊥

lu
l(a⊥)z

]
+

+
1
2

dl

l2u

[
(cos θ laz + sin θ laηz ) ± lξ⊥

lu
l(∇ua)⊥z

]
. (159)

2. If the vector ˇeld k⊥ is collinear to the vector ˇeld ξ⊥ determining the
proper frame of reference, i.e., if

k⊥ = ∓lk⊥n⊥, cos θ = ±1, sin θ = 0, (160)

then

C =
1
lu

(
∓lvz ∓ lξ⊥

lu
l(a⊥)z

)
+

1
2

dl

l2u

(
± laz ± lξ⊥

lu
l(∇ua)⊥z

)
,

C = ∓
[

1
lu

(
lvz +

lξ⊥
lu

l(a⊥)z

)
− 1

2
dl

l2u

(
laz +

lξ⊥
lu

l(∇ua)⊥z

)]
,

(161)

ω = [1 ± 2C + C
2
]1/2ω = [(1 ± C)2]1/2ω = (1 ± C)ω, (162)

ω − ω

ω
= ±C = z, (163)

ω = ω

[
1 − 1

lu

(
lvz +

lξ⊥
lu

l(a⊥)z

)
+

1
2

dl

l2u

(
laz +

lξ⊥
lu

l(∇ua)⊥z

)]
=

= ω

[
1 − lvz

lu
− lξ⊥

l2u
l(a⊥)z

+
1
2

dl

l2u

(
laz +

lξ⊥
lu

l(∇ua)⊥z

)]
. (164)

Special case: Autoparallel motion of the observer: ∇uu = a = 0: l(a⊥)z
= 0,

l(∇ua)⊥z
= 0,

ω = ω

[
1 − lvz

lu
+

1
2

dl

l2u
laz

]
,

(165)
lvz � 0, laz � 0.
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If the world line of an observer is an autoparallel trajectory and k⊥ is collinear
to ξ⊥, then the change of the frequency ω of the emitter depends on the centrifugal
(centripetal) velocity lvz and the centrifugal (centripetal) acceleration laz .

Special case: ∇uu = a = 0, k⊥ = ∓lk⊥n⊥, laz = 0:

ω = ω

(
1 − lvz

lu

)
, lvz � 0. (166)

Therefore, if the world line of an observer is an autoparallel trajectory, k⊥
is collinear to ξ⊥, and no centrifugal (centripetal) acceleration laz exists between
the emitter and observer, then the above expression has the well-known form for
description of the standard Doppler effect in classical mechanics in 3-dimensional
Euclidean space. Here, the relation is valid in every (Ln, g) space considered as
a model of a space or a space-time under the given preconditions.

5.2. Transversal Doppler Effect
1. The transversal Doppler effect appears when all centrifugal (centripetal)

velocities and centrifugal (centripetal) accelerations compensate each other or do
not exist in the relative motion between emitter and detector (observer), i.e., if

C = 0, (167)

then

ω = [(sin θ + S )2 + cos2 θ]1/2ω = [sin2 θ + 2S sin θ + S
2
+ cos2 θ]1/2ω =

= [1 + 2S sin θ + S
2
]1/2ω, (168)

where

S := ± 1
lu

[
dl

lξ⊥
(αlvc + β lvηc) −

dl

lu
l(a⊥)c

]
∓

∓ 1
2

dl2

l2u

[
1

lξ⊥
(αlac + β laηc) −

1
lu

l(∇ua)⊥c

]
, (169)

α = ∓ cos θ, β = ∓ sin θ, (170)

S := ± 1
lu

[
dl

lξ⊥
(∓ cos θ lvc ∓ sin θ lvηc) −

dl

lu
l(a⊥)c

]
∓

∓ 1
2

dl2

l2u

[
1

lξ⊥
(∓ cos θ lac ∓ sin θ laηc) −

1
lu

l(∇ua)⊥c

]
, (171)
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S :=
1
lu

[
− dl

lξ⊥
(cos θ lvc + sin θ lvηc) ∓

dl

lu
l(a⊥)c

]
+

+
1
2

dl2

l2u

[
1

lξ⊥
(cos θ lac + sin θ laηc) ±

1
lu

l(∇ua)⊥c

]
. (172)

2. If the vector ˇeld k⊥ is orthogonal to the vector ˇeld ξ⊥ determining the
proper frame of reference, i.e., if

k⊥ = ∓lk⊥m⊥, sin θ = ±1, cos θ = 0, (173)

then

ω = [1 + 2S sin θ + S
2
]1/2ω = [1 ± 2S + S

2
]1/2ω = (1 ± S)ω, (174)

ω − ω

ω
= ±S = zc, (175)

S :=
1
lu

[
− dl

lξ⊥
(± lvηc) ∓

dl

lu
l(a⊥)c

]
+

1
2

dl2

l2u

(
1

lξ⊥
(± laηc) ±

1
lu

l(∇ua)⊥c

)
,

S :=
1
lu

(
∓ dl

lξ⊥
lvηc ∓

dl

lu
l(a⊥)c

)
+

1
2

dl2

l2u

(
± 1

lξ⊥
laηc ±

1
lu

l(∇ua)⊥c

)
, (176)

S := ∓ 1
lu

(
dl

lξ⊥
lvηc +

dl

lu
l(a⊥)c

)
± 1

2
dl2

l2u

(
1

lξ⊥
laηc +

1
lu

l(∇ua)⊥c

)
,

ω=ω

{
1− 1

lu

(
dl

lξ⊥
lvηc+

dl

lu
l(a⊥)c

)
+

1
2

dl2

l2u

(
1

lξ⊥
laηc+

1
lu

l(∇ua)⊥c

)}
. (177)

If we introduce the abbreviations

lvηc =
dl

lξ⊥
lvηc , l(a⊥)c

=
dl

lξ⊥
l(a⊥)c

, (178)

laηc =
dl

lξ⊥
laηc , l(∇ua)⊥c

=
dl

lξ⊥
l(∇ua)⊥c

, l� � 0, (179)

then the expressions for S and ω will have the forms (Appendix 3)

S = ∓ 1
lu

(
lvηc +

lξ⊥
lu

l(a⊥)c

)
± 1

2
dl

l2u

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)
=

= ∓
[

1
lu

(
lvηc +

lξ⊥
lu

l(a⊥)c

)
− 1

2
dl

l2u

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)]
,

(180)

±S = −
[

1
lu

(
lvηc +

lξ⊥
lu

l(a⊥)c

)
− 1

2
dl

l2u

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)]
=

= − 1
lu

(
lvηc +

lξ⊥
lu

l(a⊥)c

)
+

1
2

dl

l2u

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)
,
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ω = ω

[
1 − 1

lu

(
lvηc +

lξ⊥
lu

l(a⊥)c

)
+

1
2

dl

l2u

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)]
=

= ω

[
1 − 1

lu
lvηc −

lξ⊥
l2u

l(a⊥)c
+

1
2

dl

l2u

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)]
. (181)

Remark. The expression for S has the same form as the expression for C
under the change of lvz with lvηc, l(a⊥)z

with l(a⊥)c
, and l(∇ua)⊥z

with l(∇ua)⊥c
.

Special case: Autoparallel motion of the observer: ∇uu = a = 0: l(a⊥)c
= 0,

l(∇ua)⊥c
= 0,

ω = ω

[
1 − 1

lu
lvηc +

1
2

dl

l2u
laηc

]
. (182)

If the world line of an observer is an autoparallel trajectory and k⊥ is or-
thogonal to ξ⊥, then the change of the frequency ω of the emitter depends on the
Coriolis velocity lvηc and the Coriolis acceleration laηc .

Special case: ∇uu = a = 0, k⊥ = ∓lk⊥m⊥, laηc = 0:

ω = ω

(
1 −

lvηc

lu

)
, lvηc � 0. (183)

Therefore, if the world line of an observer is an autoparallel trajectory, k⊥
is orthogonal to ξ⊥, and no Coriolis acceleration laηc exists between emitter
and observer, then the above expression has analogous form for description of
the transversal Doppler effect as the standard (longitudinal) Doppler effect in
classical mechanics in 3-dimensional Euclidean space. Here, the relation for the
transversal Doppler effect is valid in every (Ln, g) space considered as a model
of a space or a space-time under the given preconditions.

6. HUBBLE EFFECT

The Hubble effect (Hubble shift) is the Doppler shift (Doppler effect) of
the signal's frequency caused by the relative motion between the emitter and
the observer when the explicit form of the relative velocities and of the relative
accelerations are given. The Hubble law (law of redshift) is deˇned as the linear
dependence of the distances to galaxies on their red shift. In more general sense,
the Hubble law is the statement that the relative velocity between an observer
and a particle (from the point of view of the proper frame of reference of the
observer) is proportional to the distance between the observer and the particle.
Usually, the Hubble effect is deˇned as the change of the frequency ω under
the motion of an emitter with centrifugal (centripetal) velocity vz relatively to an
observer.
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Usually, the Hubble effect is related only to the centrifugal velocity of an
emitter with respect to an observer on the basis of the Hubble distance-redshift
relation [14, 15] discovered in 1929 and interpreted as a result of the expansion
of the Universe. The explicit form of the kinematic characteristics of the cen-
trifugal (centripetal) and Coriolis velocities and accelerations determine uniquely
the Hubble effect [13].

6.1. Explicit Forms of the Centrifugal (Centripetal) and Coriolis Veloci-
ties and Accelerations. Let us now consider the explicit forms of the relative
velocities and relative accelerations determining a Doppler shift (Doppler effect).

The vector ˇelds generating a Doppler effect could be represented in two
groups with respect to their lengths l�:

(a) Vector ˇelds generating a standard (longitudinal) Doppler effect
• centrifugal (centripetal) part lvz of the relative centrifugal (centripetal) ve-

locity lv,
• centrifugal (centripetal) part lvηz of the relative velocity lrelvη

,

• centrifugal (centripetal) part l(a⊥)z
of the acceleration la⊥ ,

• centrifugal (centripetal) part laz of the relative acceleration lrela,
• centrifugal (centripetal) part laηz of the relative acceleration lrelaη

,

• centrifugal (centripetal) part l(∇ua)⊥z
of the change of the acceleration la⊥ .

(b) Vector ˇelds generating a transversal Doppler effect
• Coriolis part lvc of the relative velocity lv ,
• Coriolis part lvηc of the relative velocity lrelvη

,

• Coriolis part l(a⊥)c
of the acceleration la,

• Coriolis part lac of the relative acceleration lrela,
• Coriolis part laηc of the relative acceleration lrelaη

,

• Coriolis part l(∇ua)⊥c
of the change l(∇ua)⊥ of the acceleration la.

6.1.1. Explicit Form of the Relative Velocities and Accelerations Generating a
Standard (Longitudinal) Doppler Effect. The relative velocities have two essential
components: relv = vz + vc, relvη = vηz + vηc.

(a) Relative centrifugal (centripetal) velocity vz

vz =
g(relv, ξ⊥)
g(ξ⊥, ξ⊥)

ξ⊥, (184)

could be represented in its explicit form as

vz =
[

1
n − 1

θ ∓ σ(n⊥, n⊥)
]

ξ⊥, (185)

vz = ∓ lvzn⊥ = Hlξ⊥n⊥ = Hξ⊥, (186)
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where

H =
1

n − 1
θ ∓ σ(n⊥, n⊥), (187)

lvz = ∓Hlξ⊥ , lvz =
dl

lξ⊥
lvz = ∓Hdl. (188)

The last (above) expressions for lvz and for vz

lvz = ∓Hdl, vz =
dl

lξ⊥
vz = Hdln⊥ (189)

are the well-known relations called standard (longitudinal) Hubble law: the cen-
trifugal (centripetal) relative velocity vz is proportional to the distance dl between
an emitter and a detector (observer). This form of the Hubble law is a very spe-
cial form of the law for the case when only the centrifugal (centripetal) relative
velocity is taken into account.

(b) Centrifugal (centripetal) part lvηz of the relative velocity lrelvη

vηz = ∓g(relvη, n⊥)n⊥ = ∓lξ⊥d(n⊥, m⊥)n⊥ = ∓lvηz n⊥, (190)

d(n⊥, m⊥) = σ(n⊥, m⊥) + ω(n⊥, m⊥) +
1

n − 1
θhu(n⊥, m⊥) =

= σ(n⊥, m⊥) + ω(n⊥, m⊥), (191)

hu(n⊥, m⊥) = g(n⊥, m⊥) − 1
±l2u

g(u, n⊥)g(u, m⊥) =

= g(n⊥, m⊥) = 0, (192)

vηz = ∓lvηzn⊥ = Hηzlξ⊥n⊥ = ∓lξ⊥d(n⊥, m⊥)n⊥, (193)

Hηz = ∓d(n⊥, m⊥) = ∓[σ(n⊥, m⊥) + ω(n⊥, m⊥)] = Hc, (194)

Hηz = Hc, (195)

could be represented in its explicit form as

lvηz = ∓Hclξ⊥ , lvηz =
dl

lξ⊥
lvηz = ∓Hcdl, (196)

lvηz = ∓Hcdl, vηz =
dl

lξ⊥
vηz = Hcdln⊥. (197)
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(c) Centrifugal part (centripetal) l(a⊥)z
of the acceleration la⊥

a⊥ = ∓g(a⊥, n⊥)n⊥ + g[hξ⊥(a⊥)], (198)

(a⊥)z = ∓ l(a⊥)z
n⊥, (199)

g(a⊥, n⊥) = l(a⊥)z
= g(g[hu(a)], n⊥) = gijg

ikhkla
lnj

⊥ = gk
j hkla

lnj
⊥ =

= hjla
lnj

⊥ = hu(n⊥, a) = g(n⊥, a), (200)

l(a⊥)z
= g(a⊥, n⊥), l(a⊥)z

=
dl

lξ⊥
l(a⊥)z

=
dl

lξ⊥
g(a⊥, n⊥). (201)

(d) Centrifugal (centripetal) part laz of the relative acceleration lrela

az = ∓lξ⊥A(n⊥, n⊥)n⊥ = ∓A(n⊥, n⊥)ξ⊥ = ∓lazn⊥ = qξ⊥ = qlξ⊥n⊥, (202)

g(az, n⊥) = laz = lξ⊥A(n⊥, n⊥) = ∓qlξ⊥ , (203)

A(n⊥, n⊥) = ∓ q, (204)

q =
1

n − 1
U ∓ sD(n⊥, n⊥), (205)

az = qlξ⊥n⊥ = ∓lazn⊥, (206)

laz = ∓qlξ⊥ , (207)

laz = ∓q
dl

lξ⊥
lξ⊥ = ∓ qdl, (208)

az =
dl

lξ⊥
az = ∓laz n⊥ = qdln⊥. (209)

The last (above) two relations for az and laz represent the part of the Hubble
effect generated by the centrifugal (centripetal) part laz of the acceleration rela.
The centrifugal (centripetal) acceleration is proportional to the distance dl between
an emitter and a detector (observer).

(e) Centrifugal (centripetal) part laηz of the relative acceleration lrelaη

aηz = ∓g(relaη, n⊥)n⊥ = ∓lξ⊥A(m⊥, n⊥)n⊥ =
= ∓laηzn⊥ = qηlξ⊥n⊥ = qηξ⊥, (210)

g(aηz, n⊥) = laηz = lξ⊥A(m⊥, n⊥) = ∓qηlξ⊥ , (211)

A(n⊥, m⊥) = ∓qη, (212)

qη = ∓A(m⊥, n⊥) = ∓[sD(m⊥, n⊥) + W (m⊥, n⊥)] = qc, (213)
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laηz = ∓qc

dl

lξ⊥
lξ⊥ = ∓qcdl, (214)

aηz =
dl

lξ⊥
aηz = ∓laηz n⊥ = qcdln⊥. (215)

(f) Centrifugal (centripetal) part l(∇ua)⊥z
of the change of the acceleration la⊥

(∇ua)⊥z = ∓g((∇ua)⊥, n⊥)n⊥ = ∓ l(∇ua)⊥z
n⊥, (216)

l(∇ua)⊥z
= g((∇ua)⊥, n⊥) = g(g[hu(∇ua)], n⊥) = hu(n⊥,∇ua), (217)

l(∇ua)⊥z
=

dl

lξ⊥
l(∇ua)⊥z

=
dl

lξ⊥
g(∇ua⊥, n⊥). (218)

6.1.2. Explicit Form of the Relative Velocities and Accelerations Generating
a Transversal Doppler Effect

(a) Coriolis part lvc of relative Coriolis velocity lv

vc = g[hξ⊥(relv)] (219)

could be represented in its explicit form as

vc = g[σ(ξ⊥)] − σ(ξ⊥, ξ⊥)
g(ξ⊥, ξ⊥)

ξ⊥ = ∓lvcm⊥ = lξ⊥g[σ(n⊥)]±

± σ(n⊥, n⊥)lξ⊥n⊥ + lξ⊥g[ω(n⊥)] = Hclξ⊥m⊥. (220)

By the use of the relations

g(vc, m⊥) = ∓lvcg(m⊥, m⊥) = lvc , (221)

g(vc, m⊥) = lξ⊥g(g[σ(n⊥)], m⊥) + lξ⊥g(g[ω(n⊥)], m⊥) = lvc , (222)

g(g[σ(n⊥)], m⊥) = gijg
ikσkln

l
⊥mj

⊥ =

= gk
j σkln

l
⊥mj

⊥ = σjlm
j
⊥nl

⊥ = σ(m⊥, n⊥), (223)

g(g[ω(n⊥)], m⊥) = ω(m⊥, n⊥), (224)

we obtain the expressions for lvc and vc, respectively

lvc = [σ(m⊥, n⊥) + ω(m⊥, n⊥)]lξ⊥ , (225)

vc = ∓lvcm⊥ = Hclξ⊥m⊥ = ∓[σ(m⊥, n⊥) + ω(m⊥, n⊥)]lξ⊥m⊥, (226)

where
Hc = ∓[σ(m⊥, n⊥) + ω(m⊥, n⊥)]. (227)
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Then

lvc =
dl

lξ⊥
lvc = ∓Hcdl, (228)

lvc = ∓Hcdl. (229)

The last (above) expressions for lvc and for vc

lvc = ∓Hcdl, vc =
dl

lξ⊥
vc = Hcdlm⊥, (230)

are the relations describing the transversal Hubble law: the Coriolis relative
velocity vc is proportional to the distance dl between an emitter and a detector
(observer). This form of the Hubble law is a very special form of the law for the
case when only the Coriolis relative velocity is taken into account.

(b) Coriolis part lvηc of the relative velocity lrelvη

vηc = lξ⊥hn⊥ [d(m⊥)] = ∓lvηcm⊥ = Hclξ⊥m⊥, (231)

could be represented in its explicit form by the use of the relations

hn⊥ [d(m⊥)] =
(

g − 1
g(n⊥, n⊥)

n⊥ ⊗ n⊥

)
[d(m⊥)] =

= g[d(m⊥)] − 1
∓l

(n⊥)[d(m⊥)]n⊥ =

= g[d(m⊥)] ± (n⊥)[d(m⊥)]n⊥ = g[d(m⊥)] ± d(n⊥, m⊥)n⊥, (232)

g(vηc, m⊥) = lvηc = lξ⊥g(g[d(m⊥)], m⊥) = lξ⊥gijg
ikdklm

l
⊥mj

⊥ =

= lξ⊥gk
j dklm

l
⊥mj

⊥ = lξ⊥djlm
l
⊥mj

⊥ = lξ⊥d(m⊥, m⊥) =

= lξ⊥

{[
σ + ω +

1
n − 1

θhu

]
(m⊥)

}
(m⊥) =

= lξ⊥

[
σ(m⊥, m⊥) ∓ 1

n − 1
θ

]
= ∓lξ⊥

[
1

n − 1
θ ∓ σ(m⊥, m⊥)

]
, (233)

lvηc = ∓
[

1
n − 1

θ ∓ σ(m⊥, m⊥)
]

lξ⊥ = ∓Hclξ⊥ , (234)

Hc =
1

n − 1
θ ∓ σ(m⊥, m⊥), (235)

vηc = ∓lvηcm⊥ = Hclξ⊥m⊥, (236)
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lvηc =
dl

lξ⊥
lvηc = ∓Hcdl, vηc =

dl

lξ⊥
vηc = Hcdlm⊥. (237)

(c) Coriolis part l(a⊥)c
of acceleration la. From the relations

(a⊥)c = g[hξ⊥(a⊥)], (238)

g(ξ⊥, (a⊥)c) = 0, (a⊥)c = ∓ l(a⊥)c
m⊥, (239)

l(a⊥)c
= g((a⊥)c, m⊥) == g(g[hξ⊥(a⊥)], m⊥) = gijg

ik(hξ⊥)kla
l
⊥mj

⊥ =

= hξ⊥(m⊥, a⊥) = hn⊥(m⊥, a⊥) = g(m⊥, a⊥), (240)

hn⊥(m⊥, a⊥) = [g ± g(n⊥) ⊗ g(n⊥)](m⊥, a⊥) =
= g(m⊥, a⊥) ± g(n⊥, m⊥)g(n⊥, a⊥) = g(m⊥, a⊥), (241)

it follows the form of l(a⊥)c

l(a⊥)c
= g(m⊥, a⊥), (242)

(a⊥)c = ∓l(a⊥)c
m⊥ = ∓g(m⊥, a⊥)m⊥, (243)

l(a⊥)c
=

dl

lξ⊥
l(a⊥)c

, (244)

(a⊥)c =
dl

lξ⊥
(a⊥)c = ∓l(a⊥)c

m⊥. (245)

(d) Coriolis part lac of the relative acceleration lrela. By means of the
expressions

ac = g[hξ⊥(rela)] = g[hn⊥(rela)] = lξ⊥g(hξ⊥)(g)[A(n⊥)] =

= lξ⊥hn⊥ [A(n⊥)] = ∓lacm⊥ = q clξ⊥m⊥,

ac = lξ⊥{g[sD(n⊥)] ∓ sD(n⊥, n⊥)n⊥ + g[W (n⊥)]} = ∓lacm⊥, (246)

g(ac, m⊥) = lac = lξ⊥{g(g[sD(n⊥)], m⊥) + g(g[W (n⊥)], m⊥)},
g(g[sD(n⊥)], m⊥) = gijg

ik
sDkln

l
⊥mj

⊥ = sDjlm
j
⊥nl

⊥ = sD(m⊥, n⊥), (247)

g(g[W (n⊥)], m⊥) = W (m⊥, n⊥), (248)

the explicit form of lac follows

lac = lξ⊥ [sD(m⊥, n⊥) + W (m⊥, n⊥) ] = ∓lξ⊥qc, (249)

ac = ∓lacm⊥ = qclξ⊥m⊥, (250)

qc = ∓[sD(m⊥, n⊥) + W (m⊥, n⊥)], (251)

lac =
dl

lξ⊥
lac = ∓qcdl, ac =

dl

lξ⊥
ac = qcdlm⊥. (252)
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(e) Coriolis part laηc of the relative acceleration lrelaη
. By the use of the

relations

aηc = g[hξ⊥(relaη)] = g[hn⊥(relaη)] = lξ⊥hn⊥ [A(m⊥)] = ∓laηcm⊥, (253)

aηc = lξ⊥hn⊥ [A(m⊥)] = ∓laηcm⊥, (254)

hn⊥ [A(m⊥)] = (g ± n⊥ ⊗ n⊥)
[

sD(m⊥) + W (m⊥) +
1

n − 1
Uhu(m⊥)

]
=

= g[sD(m⊥)] + g[W (m⊥)] ± (n⊥)sD(m⊥)n⊥ ± (n⊥)[W (m⊥)]n⊥, (255)

g(aηc, m⊥) = laηc = lξ⊥g(g[sD(m⊥)], m⊥) + g(g[W (m⊥)], m⊥) =
= lξ⊥ [sD(m⊥, m⊥) + W (m⊥, m⊥)] = lξ⊥ sD(m⊥, m⊥), (256)

aηc = ∓laηcm⊥ = qηclξ⊥m⊥, (257)

qηc = ∓ sD(m⊥, m⊥), laηc = ∓ qηclξ⊥ , (258)

the form of laηc follows

laηc =
dl

lξ⊥
laηc = ∓ qηcdl, aηc =

dl

lξ⊥
aηc = qηcdlm⊥. (259)

(f) Coriolis part l(∇ua)⊥c
of the change l(∇ua)⊥ of the acceleration la. By

means of the expressions

(∇ua)⊥c = g[hξ⊥(∇ua)⊥] = ∓l(∇ua)⊥c
m⊥, (260)

g(ξ⊥, (∇ua)⊥c) = 0, (261)

g[hξ⊥(∇ua)⊥] = g[hn⊥(∇ua)⊥] = ∓l(∇ua)⊥c
m⊥, (262)

g((∇ua)⊥c, m⊥) = l(∇ua)⊥c
= g(g[hn⊥(∇ua)⊥], m⊥) =

= g(g[hn⊥g[hu(∇ua)]], m⊥) = g(g[hn⊥g[hn‖(∇ua)]], m⊥) =

= gijg
ik(hn⊥)klg

lm(hn‖)mnan
;ru

rmj
⊥ = (hn⊥)jlm

j
⊥glm(hn‖)mnan

;ru
r =

= gjlg
lmmj

⊥(hn‖)mnan
;ru

r = (hn‖)jnmj
⊥an

;ru
r =

= hn‖(m⊥,∇ua) = hu (m⊥,∇ua) = g(m⊥,∇ua), (263)

l(∇ua)⊥c
= hn⊥(m⊥,∇ua) = g(m⊥,∇ua), (264)

(∇ua)⊥c = ∓l(∇ua)⊥c
m⊥ = ∓hn⊥(m⊥,∇ua)m⊥ = ∓g(m⊥,∇ua), (265)

the form of l(∇ua)⊥c
follows

l(∇ua)⊥c
=

dl

lξ⊥
l(∇ua)⊥c

, (∇ua)⊥ =
dl

lξ⊥
(∇ua)⊥c. (266)
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6.2. Standard (Longitudinal) Hubble Effect (Hubble Shift). The standard
(longitudinal) Hubble effect (Hubble shift) corresponds to the standard (longi-
tudinal) Doppler effect (Doppler shift). Only the different types of velocities
and accelerations generating the standard Doppler effect are given in their ex-
plicit form by means of the corresponding Hubble functions and acceleration
parameters.

If the vector ˇeld k⊥ is collinear to the vector ˇeld ξ⊥ determining the proper
frame of reference, i.e., if

k⊥ = ∓lk⊥n⊥, cos θ = ±1 sin θ = 0, (267)

the frequency of the emitter ω and the frequency ω detected by the observer are
related to each other by the expression

ω = ω

[
1 − lvz

lu
− lξ⊥

l2u
l(a⊥)z

+
1
2

dl

l2u

(
laz +

lξ⊥
lu

l(∇ua)⊥z

)]
. (268)

If we now replace the velocity lvz and the accelerations l(a⊥)z
, laz , and

l(∇ua)⊥z
with their corresponding explicit forms

lvz = ∓Hdl, (269)

laz = ∓ qdl, (270)

l(a⊥)z
=

dl

lξ⊥
g(a⊥, n⊥), (271)

l(∇ua)⊥z
=

dl

lξ⊥
g(∇ua⊥, n⊥), (272)

then we obtain the relation between ω and ω in the form

ω = ω

[
1 − lvz

lu
− lξ⊥

l2u
l(a⊥)z

+
1
2

dl

l2u

(
laz +

lξ⊥
lu

l(∇ua)⊥z

)]
=

= ω

{
1 − 1

lu

[
lvz +

lξ⊥
lu

l(a⊥)z
− 1

2
dl

lu

(
laz +

lξ⊥
lu

l(∇ua)⊥z

)]}
=

= ω

{
1 − 1

lu

[
∓Hdl +

lξ⊥
lu

dl

lξ⊥
g(a⊥, n⊥)−

−1
2

dl

lu

(
∓qdl +

lξ⊥
lu

dl

lξ⊥
g(∇ua⊥, n⊥)

)]}
, (273)

ω = ω

{
1 − 1

lu

[
∓Hdl +

dl

lu
g(a⊥, n⊥)−

−1
2

dl

lu

(
∓qdl +

dl

lu
g(∇ua⊥, n⊥)

)]}
, (274)
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ω = ω

{
1 +

1
lu

[
±Hdl − dl

lu
g(a⊥, n⊥)−

−1
2

dl

lu

(
±qdl − dl

lu
g(∇ua⊥, n⊥)

)]}
, (275)

ω = ω

{
1 ± 1

lu

[
Hdl ∓ dl

lu
g(a⊥, n⊥)−

−1
2

dl

lu

(
qdl ∓ dl

lu
g(∇ua⊥, n⊥)

)]}
. (276)

Special case: Autoparallel motion of the observer: ∇uu = a = 0: l(a⊥)z
= 0,

l(∇ua)⊥z
= 0,

ω = ω

[
1 − lvz

lu
+

1
2

dl

l2u
laz

]
,

(277)

ω = ω

[
1 ± 1

lu

(
Hdl − 1

2
dl

lu
qdl

)]
= ω

[
1 ± 1

lu

(
H − 1

2
dl

lu
q

)
dl

]
.

If the world line of an observer is an autoparallel trajectory and k⊥ is collinear
to ξ⊥, then the change of the frequency of the emitter ω depends on the Hubble
function H and the acceleration parameter q.

Special case: ∇uu = a = 0, k⊥ = ∓lk⊥n⊥, laz = 0:

ω = ω

(
1 − lvz

lu

)
, lvz � 0.

(278)

ω = ω

(
1 ± 1

lu
Hdl

)
.

Therefore, if the world line of an observer is an autoparallel trajectory, k⊥
is collinear to ξ⊥, and no centrifugal (centripetal) acceleration laz exists between
emitter and observer, then the above expression has the well-known form for
description of the standard Hubble effect in relativistic astrophysics. Here, this
relation is valid in every (Ln, g) space considered as a model of a space or a
space-time under the given preconditions.

6.2.1. Standard (Longitudinal) Hubble Shift Frequency Parameter z. The
relative difference between both the frequencies (emitted ω and detected ω)

ω − ω

ω
:= z = ±C, (279)
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under the condition k⊥ = ∓lk⊥n⊥ appears in the form

ω − ω

ω
:= z = ±C = ± 1

lu

[
Hdl ∓ dl

lu
g(a⊥, n⊥)−

−1
2

dl

lu

(
qdl ∓ dl

lu
g(∇ua⊥, n⊥)

)]
, (280)

where
ω = (1 + z)ω, (281)

z = ± 1
lu

[
Hdl ∓ dl

lu
g(a⊥, n⊥) − 1

2
dl

lu

(
qdl ∓ dl

lu
g(∇ua⊥, n⊥)

)]
. (282)

The quantity z could be denoted as an observed standard (longitudinal) Hub-
ble shift frequency parameter. If z = 0, then there will be no difference between
the emitted and the detected frequencies, i.e., ω = ω. This will be the case when
the emitter and observer (detector) are at rest to each other, i.e., when no relative
velocities and relative accelerations occur, when centrifugal (centripetal) relative
velocities and accelerations do not exist, or when the centripetal (centrifugal)
velocities and accelerations compensate each other under the condition

H ∓ 1
lu

g(a⊥, n⊥) − 1
2

1
lu

(
q ∓ 1

lu
g(∇ua⊥, n⊥)

)
dl = 0. (283)

If z > 0, the observed Hubble shift frequency parameter is called longitudinal
Hubble red shift. If z < 0, the observed Hubble shift frequency parameter is
called longitudinal Hubble blue shift. If ω and ω are known, the observed Hubble
shift frequency parameter z could be found. If ω and z are given, then the
corresponding ω could be estimated.

On the other side, from the explicit form of z

z = ± 1
lu

[
Hdl ∓ dl

lu
g(a⊥, n⊥) − 1

2
dl

lu

(
qdl ∓ dl

lu
g(∇ua⊥, n⊥)

)]
, (284)

if we consider the explicit form of the Hubble function H and of the acceleration
parameter q, we could ˇnd the relation between the observed shift frequency
parameter z and the kinematic characteristics of the relative velocity such as
expansion and shear velocities and accelerations.

Special case: Autoparallel motion of the observer: ∇uu = a = 0: l(a⊥)z
= 0,

l(∇ua)⊥z
= 0,

ω = ω

[
1 − lvz

lu
+

1
2

dl

l2u
laz

]
,

(285)

z = ± 1
lu

(
Hdl − 1

2
dl

lu
qdl

)
= ± 1

lu

(
H − 1

2
dl

lu
q

)
dl.
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If the world line of an observer is an autoparallel trajectory and k⊥ is collinear
to ξ⊥, then the observed Hubble shift frequency parameter z depends on the
Hubble function H and on the acceleration parameter q as well as on the absolute
value lu of the velocity of the signal and on the space distance dl propagated by
the signal.

Special case: ∇uu = a = 0, k⊥ = ∓lk⊥n⊥, laz = 0:

ω = ω

(
1 − lvz

lu

)
, lvz � 0.

(286)

z = ± 1
lu

Hdl.

Remark. In relativistic physics (lu = c, 1) the last (above) relation is also
called Hubble law.

If we express in this special case the observed longitudinal Hubble shift
frequency parameter z in its inˇnitesimal form

z =
ω − ω

ω
=

dω

ω
= ± 1

lu
Hdl, (287)

then we can ˇnd the change of the frequency ω for a global distance l propagated
by a signal for ˇnite proper time interval of an observer∫

dω

ω
= ±

∫
1
lu

Hdl,

log ω = ±
∫

1
lu

Hdl + const,

(288)

ω = ω0 exp
(
±

∫
1
lu

Hdl

)
, ω0 = const.

In the relativistic astrophysics, it is assumed that lu = const = c or 1. The
Hubble function is also assumed to be a constant function H = H0 = const.

Then

ω = ω0 exp
(
± 1

lu
H0l

)
= ω0 exp

(
±H0

l

lu

)
= ω0 exp (±H0τ ), (289)

where lu is the absolute value of the velocity of a signal; τ is the proper time
interval of the observer for which a signal propagates from the emitter to the
observer, and l is the space distance covered by the signal from the emitter to the
observer.
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Therefore, if the world line of an observer is an autoparallel trajectory, k⊥
is collinear to ξ⊥, and no centrifugal (centripetal) acceleration laz exists between
an emitter and an observer, then the above expression has the well-known form
for description of the standard Hubble effect in relativistic astrophysics. Here,
the relation is valid in every (Ln, g) space considered as a model of a space or a
space-time under the given preconditions.

6.3. Transversal Hubble Effect (Hubble Shift). The transversal Hubble
effect (Hubble shift) corresponds to the transversal Doppler effect (Doppler shift).
Only the different types of velocities and accelerations generating the transversal
Doppler effect are given in their explicit form by means of the corresponding
Hubble functions and acceleration parameters.

If the vector ˇeld k⊥ is collinear to the vector ˇeld ξ⊥ determining the proper
frame of reference, i.e., if

k⊥ = ∓lk⊥n⊥, cos θ = ±1, sin θ = 0, (290)

the frequency of the emitter ω and the frequency ω detected by the observer are
related to each other by the expression

ω = ω

[
1 − 1

lu
lvηc −

lξ⊥
l2u

l(a⊥)c
+

1
2

dl

l2u

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)]
=

= ω

{
1 − 1

lu

[
lvηc +

lξ⊥
lu

l(a⊥)c
− 1

2
dl

lu

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)]}
. (291)

If we now replace the velocity lvηc and the accelerations l(a⊥)c
, laηc , and

l(∇ua)⊥c
with their corresponding explicit forms

lvηc = ∓Hcdl, (292)

l(a⊥)c
=

dl

lξ⊥
l(a⊥)c

=
dl

lξ⊥
g(m⊥, a⊥), (293)

laηc = ∓qηcdl, (294)

l(∇ua)⊥c
=

dl

lξ⊥
l(∇ua)⊥c

=
dl

lξ⊥
g(m⊥,∇ua), (295)

then we obtain the relation between ω and ω in the form

ω = ω

{
1 − 1

lu

[
lvηc +

lξ⊥
lu

l(a⊥)c
− 1

2
dl

lu

(
laηc +

lξ⊥
lu

l(∇ua)⊥c

)]}
=

= ω

{
1 − 1

lu

[
∓Hcdl +

lξ⊥
lu

dl

lξ⊥
g(m⊥, a⊥)

]
−

−1
2

dl

lu

[
∓qηcdl +

lξ⊥
lu

dl

lξ⊥
g(m⊥,∇ua)

]}
, (296)
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ω = ω

{
1 ± 1

lu

[
Hcdl ∓ dl

lu
g(m⊥, a⊥)−

−1
2

dl

lu

(
qηcdl ∓ dl

lu
g(m⊥,∇ua)

)]}
, (297)

compared with the case of the standard (longitudinal) Hubble effect

ω = ω

{
1 ± 1

lu

[
Hdl ∓ dl

lu
g(a⊥, n⊥) − 1

2
dl

lu

(
qdl ∓ dl

lu
g(∇ua⊥, n⊥)

)]}
.

Special case: Autoparallel motion of the observer: ∇uu = a = 0: l(a⊥)c
= 0,

l(∇ua)⊥c
= 0,

ω = ω

[
1 − 1

lu
lvηc +

1
2

dl

l2u
laηc

]
,

(298)

ω = ω

[
1 ± 1

lu

(
Hcdl − 1

2
dl

lu
qηcdl

)]
= ω

[
1 ± 1

lu

(
Hc −

1
2

dl

lu
qηc

)
dl

]
.

If the world line of an observer is an autoparallel trajectory and k⊥ is or-
thogonal to ξ⊥, then the change of the frequency of the emitter ω depends on the
Coriolis velocity lvηc and the Coriolis acceleration laηc .

Special case: ∇uu = a = 0, k⊥ = ∓lk⊥m⊥, laηc = 0:

ω = ω

(
1 −

lvηc

lu

)
, lvηz � 0,

(299)

ω = ω

(
1 ± 1

lu
Hcdl

)
.

Therefore, if the world line of an observer is an autoparallel trajectory, k⊥
is orthogonal to ξ⊥, and no Coriolis acceleration laηc exists between emitter and
observer, then the above expression has analogous form for description of the
transversal Hubble effect as the standard (longitudinal) Hubble effect in relativistic
astrophysics. Here, this relation for the transversal Hubble effect is valid in every
(Ln, g) space considered as a model of a space or a space-time under the given
preconditions.

6.3.1. Transversal Hubble Shift Frequency Parameter zc. The relative differ-
ence between both the frequencies (emitted ω and detected ω) when a transversal
Doppler effect and a transversal Hubble effect correspondingly occur could be
written as

ω − ω

ω
:= zc = ±S (300)
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and under the condition k⊥ = ∓lk⊥n⊥ appears in the form

ω − ω

ω
:= zc = ± 1

lu

[
Hcdl ∓ dl

lu
g(m⊥, a⊥)−

−1
2

dl

lu
qηcdl ∓ dl

lu
g(m⊥,∇ua)

]
, (301)

where
ω = (1 + zc)ω, (302)

zc = ± 1
lu

[
Hcdl ∓ dl

lu
g(m⊥, a⊥) − 1

2
dl

lu

(
qηcdl ∓ dl

lu
g(m⊥,∇ua)

)]
. (303)

The quantity zc could be denoted as an observed transversal Hubble shift
frequency parameter. If zc = 0, then there will be no difference between the
emitted and the detected frequencies, i.e., ω = ω. This will be the case when
the emitter and observer (detector) are at rest to each other, i.e., when no rela-
tive velocities and relative accelerations occur, when Coriolis relative velocities
and Coriolis relative accelerations do not exist, or when the Coriolis centripetal
velocities and accelerations compensate each other under the condition

Hc ∓
1
lu

g(m⊥, a⊥) − 1
2

1
lu

(
qηc ∓

1
lu

g(m⊥,∇ua)
)

dl = 0. (304)

If zc > 0, the observed transversal Hubble shift frequency parameter is called
transversal Hubble red shift. If zc < 0, the observed transversal Hubble shift
frequency parameter is called transversal Hubble's blue shift. If ω and ω are
known the observed transversal Hubble shift frequency parameter zc could be
found. If ω and z are given, then the corresponding ω could be estimated.

On the other side, from the explicit form of zc

zc = ± 1
lu

[
Hcdl ∓ dl

lu
g(m⊥, a⊥) − 1

2
dl

lu

(
qηcdl ∓ dl

lu
g(m⊥,∇ua)

)]
(305)

if we consider the explicit form of the Hubble function Hc and of the acceleration
parameter qηc, we could ˇnd the relation between the observed shift frequency
parameter zc and the kinematic characteristics of the relative velocity such as
expansion and shear velocities and accelerations.

Special case: Autoparallel motion of the observer: ∇uu = a = 0: l(a⊥)z
= 0,

l(∇ua)⊥z
= 0,

ω = ω

[
1 − 1

lu
lvηc +

1
2

dl

l2u
laηc

]
,

(306)

zc = ± 1
lu

(
Hc −

1
2

dl

lu
qηc

)
dl.
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If the world line of an observer is an autoparallel trajectory and k⊥ is collinear
to ξ⊥, then the observed transversal Hubble shift frequency parameter zc depends
on the Hubble function Hc and of the acceleration parameter qηc as well as on
the absolute value lu of the velocity of the signal and on the space distance dl
propagated by the signal.

Special case: ∇uu = a = 0, k⊥ = ∓lk⊥n⊥, laz = 0:

ω = ω

(
1 −

lvηc

lu

)
, lvηz � 0,

(307)

zc = ± 1
lu

Hcdl.

If we express in this special case the observed transversal Hubble shift fre-
quency parameter zc in its inˇnitesimal form

zc =
ω − ω

ω
=

dω

ω
= ± 1

lu
Hcdl, (308)

then we can ˇnd the change of the frequency ω for a global distance l propagated
by a signal for ˇnite proper time interval of an observer∫

dω

ω
= ±

∫
1
lu

Hcdl,

log ω = ±
∫

1
lu

Hcdl + const, (309)

ω = ω0 exp
(
±

∫
1
lu

Hcdl

)
, ω0 = const.

In the relativistic astrophysics, it is assumed that lu = const = c or 1; if the
Hubble function is also assumed to be a constant function Hc = Hc0 = const,
then

ω = ω0 exp
(
± 1

lu
Hc0l

)
= ω0 exp

(
±Hc0

l

lu

)
= ω0 exp (±Hc0τ), (310)

where lu is the absolute value of the velocity of a signal; τ is the proper time
interval of the observer for which a signal propagates from the emitter to the
observer, and l is the space distance covered by the signal from the emitter to the
observer. If l = const, then the ω will change by a constant quantity

ω = K0ω, K0 = exp
(
±Hc0

l

lu

)
= exp (±Hc0τ) = const, (311)
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and we will observe a constant shift of the emitted frequency with respect to the
observer (detector) during a time interval. If we further write K0 in the form

K0 = 1 ± K0, K0 = const,

the change of the frequency ω could be represented in the forms

ω = (1 ± K0)ω, (312)

zc = ±K0 = const. (313)

If the space distance between an emitter and an observer does not change
but there is a Coriolis velocity lvηc between them, then there will be a constant
difference zc = ±K0 = const between the emitted frequency ω and the detected
frequency ω. This could be the case when an emitter sends signals to a detector
and rotates along the detector at a constant space distance from it. At the same
time the detector moves at an autoparallel world line.

Therefore, if the world line of an observer is an autoparallel trajectory,
k⊥ is collinear to ξ⊥, and no Coriolis acceleration laηc exists between emitter
and observer, then the above expression could be used for description of the
transversal Hubble effect in relativistic astrophysics. Here, the relation is valid in
every (Ln, g) space considered as a model of a space or of a space-time under
the given preconditions.

7. COMMENTS

1. It has been shown that the propagation of signals in a space or in a space-
time is in close relations to the kinematic characteristics of the velocity of the
signals, considered as the tangent vector of the world line of an observer detecting
the signals. The absolute value of this velocity is exactly equal to the absolute
value of the length of the tangent vector to the world line of the observer. A null
(isotropic) vector (called also wave vector) describes the propagation of signals
and characterizes the direction and the frequency of the signals. The velocity of
the signals is usually assumed to be preliminary given for an observer. The wave
vector does not determine the velocity of a signal because it contains the notion
of velocity in its deˇnition.

2. The relative velocity and the relative acceleration between the emitter and
the observer are the reasons for the change of the wave vector determining the
direction of the propagation of the signals and their frequencies. A wave vector
ˇeld is identiˇed in a space-time as a null (isotropic) vector ˇeld. The null vector
ˇeld could be represented by the use of (n − 1) + 1 projective formalism into
two parts: a time-like part and a space-like part. The space-like part describes
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uniquely a null vector ˇeld because the properties of a null vector ˇeld are reduced
to these of its space-like part. On these grounds, the change of the wave vector in
a time period is considered from the point of view of an observer. The observer
detects the signal at his world line and compares it with a signal emitted by an
emitter who is at rest with respect to the proper frame of reference of the observer.

3. The observations of the change of the wave vector and the frequency of
a signal have begun at a time point as a starting point where the emitter and the
observer are at rest to each other in the proper frame of reference of the observer.
Furthermore, the process of the propagation of the signal is considered by the
observer in his proper frame of reference. The propagation of the signal in a time
interval is identiˇed with the propagation of the signal in space. The covered
space distance is then found as the product of the velocity of the signal and the
time interval passed for covering the space distance (both measured in the proper
frame of reference of the observer).

4. The relative velocity and the relative acceleration are related to the motion
between a point lying at the world line of an observer and points of a subspace
orthogonal to the world line and having one and the same proper time measured
by the observer for the point at his world line, i.e., the relative velocity and the
relative acceleration are related to the motion between a point at the world line of
an observer and the corresponding points lying at a cross section orthogonal to
the world line. As kinematic characteristics of a relative motion between particles
(mass elements) the notions of relative velocity and of relative acceleration could
be applied to description of relative motions of particles (mass elements) in a
continuous media or to description of relative motions between single particles
moving in space-time. The considerations are made from the point of view of
the one particle identiˇed as an observer (detector). The representation of the
relative velocity and the relative acceleration in their corresponding centrifugal
(centripetal) and Coriolis parts allow an observer to investigate the changes of
the direction of a wave vector and of the corresponding frequency during a
time interval in his proper frame of reference. On this basis the observer could
consider the change of the direction and of the frequency of a signal emitted by
an emitter moving relatively to the observer. The results of the considerations are
related to the well-known notions of aberration, Doppler effect, and Hubble effect.
All notions are proved to be closely related to each other and to the kinematic
characteristics of the relative motion, such as shear velocity and acceleration,
expansion velocity and acceleration, and rotation velocity and acceleration.

5. The theoretical considerations and results leading to the existence of two
types (longitudinal and transversal) of the Doppler effect and their corresponding
two types (longitudinal and transversal) of the Hubble effect are a well deˇned
ground for an experimental check-up of the applications of these effects for
description of propagation of signals in spaces with afˇne connections and metrics
considered as models of space or of space-time.
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CONCLUSION

In the present paper we have considered the notion of null (isotropic) vector
ˇeld in spaces with afˇne connections and metrics for describing effects caused
by the relative motion between emitters and detectors in spaces with afˇne con-
nections and metrics used as models of space or of space-time. On the basis of the
notions of centrifugal (centripetal) and Coriolis velocities and accelerations the
notions of aberration, standard (longitudinal) and transversal Doppler effects, and
standard and transversal Hubble effects are introduced and considered. It is shown
that the reasons for aberration, the Doppler effect, and Hubble effect could be not
only relative velocities between an emitter and a detector but also relative accel-
erations between them. It is shown that the Hubble effect is nothing more than
the Doppler effect with explicitly given structures of the relative velocities and
relative accelerations. By the use of the Hubble law, leading to the introduction
of the Hubble effect, some connections between the kinematic characteristics of
the relative velocity and the relative acceleration, on the one side, and the Doppler
effects, the Hubble effects, and the aberration, on the other side, are investigated.

The aberration, the Doppler effects, and the Hubble effects are considered
on the grounds of purely kinematic considerations. It should be stressed that the
Hubble functions H and Hc are introduced on a purely kinematic basis related
to the notions of relative centrifugal (centripetal) velocity and to the notions of
Coriolis velocities, respectively. Their dynamic interpretations in a theory of
gravitation depend on the structures of the theory and the relations between the
ˇeld equations and on both the functions. In this paper it is shown that notions the
specialists use to apply in theories of gravitation and cosmological models could
have a good kinematic grounds independent of any concrete classical ˇeld theory.
The aberration, the Doppler and Hubble effects could be used in mechanics of
continuous media and in other classical ˇeld theories in the same way as the
standard Doppler effect is used in classical and relativistic mechanics.

APPENDIX 1

The change of the contravariant vector ˇeld d under the change dτ of the
parameter τ could be expressed in the form

d

dτ
=

dxi

dτ
∂i = u + lvξ = u i∂i = u, ui =

dxi

dτ
, (314)

where the relations are valid

g(u, u) = g(u, u) + lvg(ξ, u),

g(u, ξ) = g(u, ξ) + lvg(ξ, ξ), (315)

g(u, u) = g(u + lvξ, u + lvξ) = g(u, u) + 2lvg(u, ξ) + l2vg(ξ, ξ).
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The contravariant vector ˇeld u = ui∂i is usually interpreted as the velocity
of an observer moving in a space-time described by a (Ln, g) space as its model.
The contravariant vector u is a tangent vector ˇeld to the curve xi(τ, r(τ, λ) =
r0 = const) = xi(τ, λ = λ0 = const)

u = ui∂i =
∂xi

∂τ
∂i,

(316)

u =
1

g(u, u)
g(u, u)u + g[hu(u)].

The contravariant vector ξ is a collinear vector to the tangent vector ξ to the
curve xi(τ = τ0 = const, r(τ0, λ)) = xi(τ = τ0 = const, λ). This is so because
of the relations

ξ = ξ i∂i =
∂xi

∂r
∂i, (317)

∂xi

∂r
=

∂xi(τ, r(τ, λ))
∂r

=
∂xi(τ, λ(r, τ))

∂r
=

∂xi

∂λ

∂λ

∂r
= ξi ∂λ

∂r
= ξ

i
, (318)

where

r = r(λ, τ), λ = λ(τ, r),
(319)

ξ = ξ i∂i =
∂λ

∂r
ξi∂i =

∂λ

∂r
ξ, ξ =

∂xi

∂λ
∂i.

3. Further, since we wish to consider the vector ˇeld u as the velocity vector
ˇeld of an observer moving at the curve xi(τ, λ = λ0 = const), interpreted as
his world line, the vector ˇeld ξ (and ξ, respectively) could be chosen to lie in
the subspace orthogonal to u, i.e., u and ξ could obey the condition g(u, ξ) = 0
and, therefore, g(u, ξ) = 0, ξ = ξ⊥ = g[hu(ξ)], and ξ = ξ⊥.

4. In the next step, we could consider the vector ˇeld ξ as a unit vector ˇeld
in direction of the vector ˇeld ξ, i.e.,

ξ⊥ = n⊥ =
ξ⊥
lξ⊥

, g(u, n⊥) = 0, (320)

g(ξ⊥, ξ⊥) = g(n⊥, n⊥) =
1

l2ξ⊥
g(ξ⊥, ξ⊥) = ∓ 1

l2ξ⊥
l2ξ⊥ = ∓1, (321)

g(ξ⊥, ξ⊥)=g

(
∂λ

∂r
ξ⊥,

∂λ

∂r
ξ⊥

)
=

(
∂λ

∂r

)2

g(ξ⊥, ξ⊥)= ∓
(

∂λ

∂r

)2

l2ξ⊥= ∓ 1, (322)(
∂λ

∂r

)2

l2ξ⊥ = 1, l2ξ⊥ =
(

∂λ

∂r

)−2

, lξ⊥ = ±
(

∂λ

∂r

)−1

. (323)
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After all above considerations for ξ⊥ and ξ⊥ we obtain the relations

g(u, u) = g(u, u),

g(u, ξ⊥) = lvg(ξ⊥, ξ⊥) = lvg(n⊥, n⊥) = ∓lv, (324)

g(u, u) = g(u, u) + l2vg(n⊥, n⊥) = ±l2u ∓ l2v =
ds2

dτ2
,

ds2

dτ2
= g

(
d

dτ
,

d

dτ

)
= ±l2u ∓ l2v = ±l2u

(
1 − l2v

l2u

)
. (325)

Moreover,

dxi = (ui + lvni
⊥)dτ +

∂r

∂λ
dλni

⊥, (326)

d = dτ(u + lvn⊥) +
∂r

∂λ
dλn⊥ =

= dτu +
(

dτlv +
∂r

∂λ
dλ

)
n⊥ = dτu + drn⊥, (327)

dr = dτlv +
∂r

∂λ
dλ, (328)

dr(τ, λ)
dτ

= lv,
dλ

dτ
= 0, (329)

u = u + lvn⊥, g(u, u) = g(u, u), (330)

n⊥ = g[hu(n⊥)]. (331)

Remark. If lv �= 0, then the vector u would have a part lvn⊥ orthogonal to u.

ds2 = g(d, d) = dτ2g(u, u) +
(

dτlv +
∂r

∂λ
dλ

)2

g(n⊥, n⊥) =

= ±dτ2l2u ∓
(

dτlv +
∂r

∂λ
dλ

)2

= ±dτ2l2u ∓ dτ2l2v =

= ±dτ2l2u ∓ dr2 = ±(l2udτ2 − dr2) = ±dτ2

(
l2u − dr2

dτ2

)
= ±dτ2(l2u − l2v).

Therefore,

ds2 = g(d, d) = ±dτ2(l2u − l2v), (332)

ds2

dτ2
= g

(
d

dτ
,

d

dτ

)
= g(u, u) = ±l2u

(
1 − l2v

l2u

)
, (333)

ds2 = ±l2udτ2

(
1 − l2v

l2u

)
. (334)
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APPENDIX 2

Since ñ⊥ is a unit vector as well as the vectors n⊥ and m⊥, and, further,
g(n⊥, m⊥) = 0, we obtain

g(ñ⊥, ñ⊥) = ∓1 = g(αn⊥ + βm⊥, αn⊥ + βm⊥) =

= α2g(n⊥, n⊥) + β2g(m⊥, m⊥) = ∓α2 ∓ β2. (335)

Therefore,
α2 + β2 = 1. (336)

On the other side,

g(ñ⊥, n⊥) = g(αn⊥ + βm⊥, n⊥) = αg(n⊥, n⊥) = ∓α, (337)

g(ñ⊥, m⊥) = g(αn⊥ + βm⊥, m⊥) = βg(n⊥, n⊥) = ∓β, (338)

i.e.,

α = ∓g(ñ⊥, n⊥) = ∓lñ⊥ ln⊥ cos (ñ⊥, n⊥) = ∓ cos (ñ⊥, n⊥), (339)

β = ∓g(ñ⊥, m⊥) = ∓lñ⊥ lm⊥ cos (ñ⊥, m⊥) = ∓ cos (ñ⊥, m⊥). (340)

Therefore, α and β appear as direction cosines of n⊥ and m⊥ with respect
to the unit vector ñ⊥. Since

cos2 (ñ⊥, n⊥) + cos2 (ñ⊥, m⊥) = 1, (341)

it follows that

cos2 (ñ⊥, m⊥) = 1 − cos2 (ñ⊥, n⊥) = 1 − sin2 (ñ⊥, m⊥) = sin2 (ñ⊥, n⊥),

sin2 (ñ⊥, m⊥) = cos2 (ñ⊥, n⊥),
cos (ñ⊥, m⊥) = ± sin (ñ⊥, n⊥),

α = ∓ cos (ñ⊥, n⊥), (342)

β = ∓ sin (ñ⊥, n⊥), (343)

ñ⊥ = αn⊥ + βm⊥ = ∓[cos (ñ⊥, n⊥)n⊥ + sin (ñ⊥, n⊥)m⊥]. (344)

If we denote the angle (ñ⊥, n⊥) between the vectors ñ⊥ and n⊥ as θ =
(ñ⊥, n⊥), then the above relations could be written in the form

cos2 (ñ⊥, m⊥) = sin2 θ,

sin2 (ñ⊥, m⊥) = cos2 θ,

α = ∓ cos θ, (345)

β = ∓ sin θ, (346)
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ñ⊥ = αn⊥ + βm⊥ = ∓[cos θn⊥ + sin θm⊥]. (347)

Further, since k⊥ = ∓lk⊥ ñ⊥, then (see above)

g(k⊥, k⊥) = l2k⊥
g(ñ⊥, ñ⊥) = ∓l2k⊥

, g(ñ⊥, ñ⊥) = ∓1, (348)

k⊥ = ∓ ω

lu
ñ⊥, k‖ = ± ω

lu
n‖, lk⊥ =

ω

lu
= lk‖ , (349)

g(ñ⊥, k⊥) = ∓lk⊥g(ñ⊥, ñ⊥) =
ω

lu
= lk‖ = lk⊥ . (350)

2. For the contravariant null vector ˇeld k we have analogous relations as
for the contravariant null vector ˇeld k̃ (just changing k̃ with k, ω with ω, and
ñ⊥ with ñ′

⊥)
k = k‖ + k⊥, ω = g(u, k), (351)

k‖ = ± ω

lu
n‖, lk‖

=
ω

lu
, (352)

k⊥ = ∓ ω

lu
ñ′
⊥, lk⊥

=
ω

lu
= lk‖

, (353)

g(k⊥, k⊥) =
ω2

l2u
g(ñ′

⊥, ñ′
⊥) = ∓l2

k⊥
= ∓ω2

l2u
, (354)

g(ñ′
⊥, ñ′

⊥) = ∓1, (355)

g(ñ′
⊥, k⊥) = ∓lk⊥

g(ñ′
⊥, ñ′

⊥) =
ω

lu
= lk‖

= lk⊥
. (356)

From k = k̃ + relk, k⊥ = k̃⊥ + relk⊥, and

∓ ω

lu
ñ′
⊥ = ∓ ω

lu
ñ⊥ + relk⊥, (357)

it follows that

g(ñ⊥, k) = g(ñ⊥, k) + g(ñ⊥, relk),

g(ñ⊥, k⊥) = g(ñ⊥, k⊥) + g(ñ⊥, relk⊥), (358)

∓ ω

lu
g(ñ′

⊥, ñ⊥) =
ω

lu
+ g(relk⊥, ñ⊥). (359)

The vector ñ′
⊥ could be represented by the use of the vectors n⊥ and m⊥ in

the form
ñ′
⊥ = α′n⊥ + β′m⊥, (360)

where

g(ñ′
⊥, ñ′

⊥) = ∓1 = g(α′n⊥ + β′m⊥, α′n⊥ + β′m⊥) =

= α′2g(n⊥, n⊥) + β′2g(m⊥, m⊥) = ∓α′2 ∓ β′2. (361)
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Therefore,

α′2 + β′2 = 1. (362)

On the other side, we have analogous relations as in the case of the vector ñ⊥:

g(ñ′
⊥, n⊥) = g(α′n⊥ + β′m⊥, n⊥) = α′g(n⊥, n⊥) = ∓α′, (363)

g(ñ′
⊥, m⊥) = g(α′n⊥ + β′m⊥, m⊥) = β′g(n⊥, n⊥) = ∓β′. (364)

i.e.,

α′ = ∓g(ñ′
⊥, n⊥) = ∓lñ′

⊥
ln⊥ cos (ñ′

⊥, n⊥) = ∓ cos (ñ′
⊥, n⊥), (365)

β′ = ∓g(ñ′
⊥, m⊥) = ∓lñ′

⊥
lm⊥ cos (ñ′

⊥, m⊥) = ∓ cos (ñ′
⊥, m⊥). (366)

Therefore, α′ and β′ appear as direction cosines of n⊥ and m⊥ with respect
to the unit vector ñ′

⊥. Since

cos2 (ñ′
⊥, n⊥) + cos2 (ñ′

⊥, m⊥) = 1, (367)

it follows that

cos2 (ñ′
⊥, m⊥) = 1 − cos2 (ñ′

⊥, n⊥) = 1 − sin2 (ñ′
⊥, m⊥) = sin2 (ñ′

⊥, n⊥),

sin2 (ñ′
⊥, m⊥) = cos2 (ñ′

⊥, n⊥),
cos (ñ′

⊥, m⊥) = ± sin (ñ′
⊥, n⊥),

α′ = ∓ cos (ñ′
⊥, n⊥), (368)

β′ = ∓ sin (ñ′
⊥, n⊥), (369)

ñ′
⊥ = α′n⊥ + β′m⊥ = ∓[cos (ñ′

⊥, n⊥)n⊥ + sin (ñ′
⊥, n⊥)m⊥]. (370)

If we denote the angle (ñ′
⊥, n⊥) between the vectors ñ′

⊥ and n⊥ as θ′ =
(ñ′

⊥, n⊥), then the above relations could be written in the form

cos2 (ñ′
⊥, m⊥) = sin2 θ′,

sin2 (ñ′
⊥, m⊥) = cos2 θ′,

α′ = ∓ cos θ ′, (371)

β′ = ∓ sin θ′, (372)

ñ⊥ = αn⊥ + βm⊥ = ∓[cos θn⊥ + sin θm⊥]. (373)

From the relation

∓ ω

lu
ñ′
⊥ = ∓ ω

lu
ñ⊥ + relk⊥ (374)
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the relations for relk⊥ follow

∓ ω

lu
g(ñ′

⊥, n⊥) = ∓ ω

lu
g(ñ⊥, n⊥) + g(relk⊥, n⊥), (375)

∓α′ ω

lu
= ∓α

ω

lu
+ g(relk⊥, n⊥), (376)

ω

lu
cos θ ′ =

ω

lu
cos θ + g(relk⊥, n⊥), (377)

ω cos θ ′ = ω cos θ + lug(relk⊥, n⊥), (378)

∓ ω

lu
g(ñ′

⊥, m⊥) = ∓ ω

lu
g(ñ⊥, m⊥) + g(relk⊥, m⊥), (379)

∓β′ ω

lu
= ∓β

ω

lu
+ g(relk⊥, m⊥), (380)

ω

lu
sin θ ′ =

ω

lu
sin θ + g(relk⊥, m⊥), (381)

ω sin θ ′ = ω sin θ + lug(relk⊥, m⊥), (382)

ω = lug(ñ⊥, k⊥), (383)

ω

ω
cos θ′ = cos θ +

1
ω

lug(relk⊥, n⊥) = cos θ +
g(relk⊥, n⊥)
g(ñ⊥, k⊥)

, (384)

ω

ω
sin θ′ = sin θ +

1
ω

lug(relk⊥, m⊥) = sin θ +
g(relk⊥, m⊥)
g(ñ⊥, k⊥)

. (385)

From the last (above) two relations, it follows for tg θ′

tg θ′ =
sin θ′

cos θ′
=

sin θ +
g(relk⊥, m⊥)
g(ñ⊥, k⊥)

cos θ +
g(relk⊥, n⊥)
g(ñ⊥, k⊥)

. (386)

APPENDIX 3

The orthogonal to u parts of k̃ and k at the point A′(τ0, λ0) could be found
after projection of both the vectors by means of the projection metric hu

g[hu(k̃)](τ0−dτ, λ0) := g[hu(k)](τ0, λ0) =

= g[hu(k̃)](τ0, λ0) − dτg[hu(∇u k̃)]|(τ0, λ0)+

+
1
2
dτ2g[hu(∇u∇uk̃)]|(τ0, λ0). (387)
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The vectors g[hu(∇uk̃)](τ0, λ0) and g[hu(∇u∇uk̃)](τ0, λ0) could be repre-
sented by the use of the kinematic characteristics of the relative velocity and
relative acceleration [4].

Since,

g[hu(k)](τ0, λ0) = k⊥(τ0, λ0), (388)

g[hu(k̃)](τ0, λ0) = k⊥(τ0, λ0), (389)

g[hu(∇u k̃)]|(τ0, λ0) = (∇u k̃)⊥|(τ0, λ0), (390)

g[hu(∇u∇uk̃)]|(τ0, λ0) = (∇u∇uk̃)⊥|(τ0, λ0), (391)

ω(τ0, λ0) = g(k, u)(τ0, λ0), ω(τ0, λ0) = g(k̃, u)(τ0, λ0), (392)

we have the relation

k⊥(τ0, λ0) = k⊥(τ0, λ0) − dτg[hu(∇u k̃)]|(τ0, λ0)+

+
1
2
dτ2g[hu(∇u∇uk̃)]|(τ0, λ0). (393)

The vectors g[hu(∇uk̃)](τ0, λ0) and g[hu(∇u∇uk̃)](τ0, λ0) could be repre-
sented by the use of the kinematic characteristics of the relative velocity and
relative acceleration [4] in the form

g[hu(∇uk̃)] = g

[
hu

(
g(u, k̃)

e
a + £u k̃

)
+ d(k̃)

]
=

= g

[
hu

(
± ω

l2u
a + £u k̃

)
+ d(k̃)

]
=

= g

[
± ω

l2u
hu(a) + hu(£u k̃) + d(k̃)

]
, (394)

g[hu(∇u∇uk̃)] =

= g

{
hu

[
g(u, k̃)

e
∇ua + k(g)(£u k̃) + ∇u(£u k̃)

]
+ A(k̃)

}
=

= g

{
± ω

l2u
hu(∇ua) + hu[k(g)(£u k̃)] + hu [∇u(£u k̃)] + A(k̃ )

}
. (395)

If we assume that £uk̃ = 0, we obtain the relations

g[hu(∇uk̃)] = g

[
± ω

l2u
hu(a) + d(k̃)

]
=

= ± ω

l2u
g[hu(a)] + g[d(k⊥)] = ± ω

l2u
a⊥ + g[d(k⊥)], (396)
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g[hu(∇u∇uk̃)] = ± ω

l2u
g[hu(∇ua)] + g[A(k⊥)] =

= ± ω

l2u
(∇ua)⊥ + g[A(k⊥)], (397)

where

g(u, k̃)
e

=
ω

±l2u
= ± ω

l2u
, (398)

a⊥ = g[hu(a)], (399)

(∇ua)⊥ = g[hu(∇ua)], (400)

g[d(k̃)] = g[d(k⊥)], (401)

g[A(k̃)] = g[A(k⊥)]. (402)

Remark. The condition £uk̃ = 0 assures the possibility for introducing
co-ordinates with tangent vectors u and k̃, respectively.

On the other side, the vector k⊥ could be represented in its projections along
the vectors n⊥ and m⊥ in the form

k⊥ = ∓lk⊥ ñ⊥ = ∓ ω

lu
ñ⊥, (403)

ñ⊥ = αn⊥ + βm⊥ = ∓[cos θ n⊥ + sin θ m⊥]. (404)

Then
k⊥ =

ω

lu
[cos θn⊥ + sin θm⊥]. (405)

In analogous way, the vector k⊥ could be represented in the form

k⊥ = ∓lk⊥
ñ′
⊥ = ∓ ω

lu
ñ′
⊥, (406)

ñ′
⊥ = α′n⊥ + β′m⊥ = ∓[cos θ′n⊥ + sin θ′m⊥], (407)

k⊥ =
ω

lu
[cos θ′n⊥ + sin θ′m⊥]. (408)

The representation of k⊥ in the form k⊥ = k⊥ + relk⊥ will be given now in
the form

k⊥ = k⊥ + relk⊥ = k⊥ − dτg[hu(∇uk̃)] +
1
2
dτ2g[hu(∇u∇uk̃)], (409)

where

relk⊥ = −dτ(∇uk̃)⊥ +
1
2
dτ2(∇u∇uk̃)⊥ = −dτ

{
± ω

l2u
a⊥ + g[d(k⊥)]

}
+

+
1
2
dτ2

{
± ω

l2u
(∇ua)⊥ + g[A(k⊥)]

}
, (410)
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(∇uk̃)⊥ = g[hu(∇uk̃)], (411)

(∇u∇uk̃)⊥ = g[hu(∇u∇uk̃)]. (412)

The terms in relk⊥ could be further represented by means of the structures of
the relative velocity and the relative acceleration corresponding to the centrifugal
(centripetal) and Coriolis velocities and accelerations.

Representation of relk⊥ by Means of the Centrifugal (Centripetal) and
Coriolis Velocities and Accelerations

1. The orthogonal to u acceleration a⊥ could be found after projection by
the use of the projective metrics

hξ⊥ = g − 1
g(ξ⊥, ξ⊥)

g(ξ⊥) ⊗ g(ξ⊥), (413)

hξ⊥ = g − 1
g(ξ⊥, ξ⊥)

ξ⊥ ⊗ ξ⊥, (414)

in parts collinear to the vector ˇeld ξ⊥ and orthogonal to ξ⊥. At the same time
both the parts are orthogonal to the vector ˇeld u

a⊥ =
g(a⊥, ξ⊥)
g(ξ⊥, ξ⊥)

ξ⊥ + g[hξ⊥(a⊥)] =
l2ξ⊥
∓l2ξ⊥

g(a⊥, n⊥)n⊥ + g[hξ⊥(a⊥)] =

= ∓g(a⊥, n⊥)n⊥ + g[hξ⊥(a⊥)] = (a⊥)z + (a⊥)c, (415)

where

(a⊥)z = ∓g(a⊥, n⊥)n⊥, (416)

(a⊥)c = g[hξ⊥(a⊥)], (417)

g(ξ⊥, (a⊥)c) = 0, (418)

(a⊥)z = ∓l(a⊥)z
n⊥, (419)

(a⊥)c = ∓l(a⊥)c
m⊥. (420)

2. The orthogonal to u change (∇ua)⊥ of the acceleration a along u could
be found after projection by the use of the projective metrics hξ⊥ and hξ⊥ in parts
collinear to the vector ˇeld ξ⊥ and orthogonal to ξ⊥. At the same time both the
parts are orthogonal to the vector ˇeld u

(∇ua)⊥ =
g((∇ua)⊥, ξ⊥)

g(ξ⊥, ξ⊥)
ξ⊥ + g[hξ⊥(∇ua)⊥] =

= ∓g((∇ua)⊥, n⊥)n⊥ + g[hξ⊥(∇ua)⊥] = (∇ua)⊥z + (∇ua)⊥c, (421)
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where

(∇ua)⊥z = ∓g((∇ua)⊥, n⊥)n⊥, (422)

(∇ua)⊥c = g[hξ⊥(∇ua)⊥], (423)

g(ξ⊥, (∇ua)⊥c) = 0, (424)

(∇ua)⊥z = ∓l(∇ua)⊥z
n⊥, (425)

(∇ua)⊥c = ∓l(∇ua)⊥c
m⊥. (426)

3. The orthogonal to u deformation velocity vector g[d(k⊥)] could be found
after projection by the use of the projective metrics hξ⊥ and hξ⊥ in parts collinear
to the vector ˇeld ξ⊥ and orthogonal to ξ⊥. At the same time both the parts are
orthogonal to the vector ˇeld u. Since k⊥ = ∓lk⊥ ñ⊥, we have the relations

d(k⊥) = d(∓lk⊥ ñ⊥) = ∓lk⊥d(ñ⊥) = ∓lk⊥d(αn⊥ + βm⊥) =
= ∓lk⊥ [αd(n⊥) + βd(m⊥)], (427)

g[d(n⊥)] =
g(g[d(n⊥)], ξ⊥)

g(ξ⊥, ξ⊥)
ξ⊥ + g[hξ⊥(g[d(n⊥)])], (428)

g[d(n⊥)] =
g(g[d(n⊥)], n⊥)

∓l2ξ⊥
l2ξ⊥n⊥ + g[hξ⊥(g[d(n⊥)])] =

= ∓g(g[d(n⊥)], n⊥)n⊥ + g[hξ⊥(g[d(n⊥)])], (429)

g(g[d(n⊥)], n⊥) = gijg
ikdkln

l
⊥nj

⊥ = djln
j
⊥nl

⊥ = d(n⊥, n⊥), (430)

∓g(g[d(n⊥)], n⊥)n⊥ = ∓d(n⊥, n⊥)n⊥. (431)

On the other side, the following relations can be proved:

hξ⊥ = g − 1
g(ξ⊥, ξ⊥)

ξ⊥ ⊗ ξ⊥ = g − 1
∓l2ξ⊥

lξ⊥ lξ⊥n⊥ ⊗ n⊥ =

= g ± n⊥ ⊗ n⊥ = g − 1
g(n⊥, n⊥)

n⊥ ⊗ n⊥ = hn⊥ , (432)

hu = g − 1
g(u, u)

u ⊗ u = g − 1
±l2u

lulun‖ ⊗ n‖ =

= g ∓ n‖ ⊗ n‖ = g − 1
g(n‖, n‖)

n‖ ⊗ n‖ = hn‖ , (433)
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hξ⊥ = g − 1
g(ξ⊥, ξ⊥)

g(ξ⊥) ⊗ g(ξ⊥) = g − 1
∓l2ξ⊥

lξ⊥ lξ⊥g(n⊥) ⊗ (n⊥) =

= g − 1
g(n⊥, n⊥)

g(n⊥) ⊗ (n⊥) = hn⊥ , (434)

hu = g − 1
g(u, u)

g(u) ⊗ g(u) = g − 1
±l2u

lulug(n‖) ⊗ g(n‖) =

= g − 1
g(n‖, n‖)

g(n‖) ⊗ g(n‖) = hn‖ . (435)

By the use of the above expressions we can ˇnd the explicit form of the term
g[hξ⊥(g[d(n⊥)])]:

g[hξ⊥(g[d(n⊥)])] = gij(hξ⊥)jkgkldlmnm
⊥∂i =

= gij

(
gjk − 1

g(ξ⊥, ξ⊥)
gjlξ

l
⊥gkrξ

r
⊥

)
gkldlmnm

⊥∂i =

=
(

gi
k − 1

g(ξ⊥, ξ⊥)
gi

lξ
l
⊥gkrξ

r
⊥

)
gkldlmnm

⊥∂i =

=
(

gil − 1
g(ξ⊥, ξ⊥)

ξi
⊥gl

rξ
r
⊥

)
dlmnm

⊥∂i =

=
(

gil − 1
g(ξ⊥, ξ⊥)

ξi
⊥ξl

⊥

)
dlmnm

⊥∂i = hξ⊥ [d(n⊥)] = hn⊥ [d(n⊥)]. (436)

Therefore,

g[d(n⊥)] = ∓g(g[d(n⊥)], n⊥)n⊥ + g[hξ⊥(g[d(n⊥)])] =
= ∓d(n⊥, n⊥)n⊥ + hn⊥ [d(n⊥)]. (437)

On the other side, the term g[d(m⊥)] could be projected in an analogous way

g[d(m⊥)] = ∓g(g[d(m⊥)], n⊥)n⊥ + g[hξ⊥(g[d(m⊥)])]. (438)

The terms at the right side of the expression could be found in the corre-
sponding forms by the use of the relations

g(g[d(m⊥)], n⊥) = gijg
ikdklm

l
⊥nj

⊥ = djlm
l
⊥nj

⊥ = d(n⊥, m⊥), (439)

∓g(g[d(n⊥)], n⊥)n⊥ = ∓d(n⊥, m⊥)n⊥, (440)

g[hξ⊥(g[d(m⊥)])] = gij(hξ⊥)jkgkldlrm
r
⊥∂i = g(hξ⊥)(g)[d(m⊥)], (441)

g(hξ⊥)(g) = hξ⊥ = hn⊥ , (442)
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g[hξ⊥(g[d(m⊥)])] = hn⊥ [d(m⊥)]. (443)

Therefore,

g[d(m⊥)] = ∓d(n⊥, m⊥)n⊥ + hn⊥ [d(m⊥)]. (444)

For g[d(ñ⊥)] the expressions follow

g[d(ñ⊥)] = αg[d(n⊥)] + βg[d(m⊥)] = ∓αd(n⊥, n⊥)n⊥ + αhn⊥ [d(n⊥)]∓
∓ βd(n⊥, m⊥)n⊥ + βhn⊥ [d(m⊥)], (445)

g[d(ñ⊥)] = ∓[αd(n⊥, n⊥) + βd(n⊥, m⊥)]n⊥+

+ αhn⊥ [d(n⊥)] + βhn⊥ [d(m⊥)]. (446)

On the other side, the structures of relv = vz + vc could be represented under
the condition £uξ⊥ = 0 in the forms

relv = lξ⊥g[d(n⊥)], (447)

vz = ∓lξ⊥d(n⊥, n⊥)n⊥, (448)

vc = g[hξ⊥(relv)] = lξ⊥g(hξ⊥)(g)[d(n⊥)] = lξ⊥hn⊥ [d(n⊥)], (449)

g(vc, n⊥) = 0,

relv = vz + vc = lξ⊥g[d(n⊥)] = ∓lξ⊥d(n⊥, n⊥)n⊥ + lξ⊥hn⊥ [d(n⊥)]. (450)

Let us introduce now a vector ˇeld η⊥ = lξ⊥m⊥, orthogonal to the vector
ˇeld ξ⊥ = lξ⊥n⊥ and u, but with the same length as ξ⊥, i.e.,

g(η⊥, ξ⊥) = l2ξ⊥g(m⊥, n⊥) = 0, g(η⊥, η⊥) = ∓l2ξ⊥ . (451)

The corresponding to η⊥ relative velocity relvη and relative acceleration relaη

have analogous forms as relv and rela

relvη = g[d(η⊥)] = lξ⊥g[d(m⊥)], (452)

relaη = g[A(η⊥)] = lξ⊥g[A(m⊥)]. (453)

The decomposition of relvη has the form

relvη = vηz + vηc, (454)

relvη =
1

g(ξ⊥, ξ⊥)
g(relvη, ξ⊥)ξ⊥ + g[hξ⊥(relvη)] = vηz + vηc =

= ∓g(relvη, n⊥)n⊥ + g[hξ⊥(relvη)], (455)
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where

vηz = ∓g(relvη, n⊥)n⊥, (456)

vηc = g[hξ⊥(relvη)]. (457)

The explicit form of vηz and vηc could be found by the use of the relations
under the condition £uη⊥ = 0

g(relvη, n⊥) = g(g[d(η⊥)], n⊥) = gijg
ikdkllξ⊥ml

⊥nj
⊥ =

= lξ⊥djln
j
⊥ml

⊥ = lξ⊥d(n⊥, m⊥), (458)

g[hξ⊥(relvη)] = lξ⊥g[hξ⊥(g[d(m⊥)])] = lξ⊥hn⊥ [d(m⊥)], (459)

as

vηz = ∓g(relvη, n⊥)n⊥ = ∓lξ⊥d(n⊥, m⊥)n⊥, (460)

vηc = g[hξ⊥(relvη)] = lξ⊥hn⊥ [d(m⊥)]. (461)

Now we can ˇnd the relations between the relative velocities relv, relvη, and
the expression for g[d(ñ⊥)]

g[d(ñ⊥)] = αg[d(n⊥)] + βg[d(m⊥)] = ∓αd(n⊥, n⊥)n⊥ + αhn⊥ [d(n⊥)]∓
∓ βd(n⊥, m⊥)n⊥ + βhn⊥ [d(m⊥)], (462)

g[d(ñ⊥)] = ∓α

(
∓ 1

lξ⊥
vz

)
+ α

1
lξ⊥

vc ∓ β

(
∓ 1

lξ⊥
vηz

)
+ β

1
lξ⊥

vηc, (463)

g[d(ñ⊥)] = α
1

lξ⊥
vz + α

1
lξ⊥

vc + β
1

lξ⊥
vηz + β

1
lξ⊥

vηc, (464)

g[d(ñ⊥)] =
1

lξ⊥
[α(vz + vc) + β(vηz + vηc)] =

1
lξ⊥

(α relv + β relvη). (465)

4. The orthogonal to u deformation acceleration vector g[A(k⊥)] could be
found after projection by the use of the projective metrics hξ⊥ and hξ⊥ in parts
collinear to the vector ˇeld ξ⊥ and orthogonal to ξ⊥. At the same time both the
parts are orthogonal to the vector ˇeld u. Since k⊥ = ∓lk⊥ ñ⊥, we have the
relations

A(k⊥) = A(∓lk⊥ ñ⊥) = ∓lk⊥A(ñ⊥) =
= ∓lk⊥A(αn⊥ + βm⊥) = ∓lk⊥ [αA(n⊥) + βA(m⊥)], (466)

g[A(n⊥)] =
g(g[A(n⊥)], ξ⊥)

g(ξ⊥, ξ⊥)
ξ⊥ + g[hξ⊥(g[A(n⊥)])], (467)
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g[A(n⊥)] =
g(g[A(n⊥)], n⊥)

∓l2ξ⊥
l2ξ⊥n⊥ + g[hξ⊥(g[A(n⊥)])] =

= ∓g(g[A(n⊥)], n⊥)n⊥ + g[hξ⊥(g[A(n⊥)])], (468)

g(g[A(n⊥)], n⊥) = gijg
ikAkln

l
⊥nj

⊥ = Ajln
j
⊥nl

⊥ = A(n⊥, n⊥), (469)

∓g(g[A(n⊥)], n⊥)n⊥ = ∓A(n⊥, n⊥)n⊥. (470)

Therefore,

g[A(n⊥)] = ∓g(g[A(n⊥)], n⊥)n⊥ + g[hξ⊥(g[A(n⊥)])] =
= ∓A(n⊥, n⊥)n⊥ + hn⊥ [A(n⊥)]. (471)

On the other side, the term g[A(m⊥)] could be projected in an analogous
way

g[A(m⊥)] = ∓g(g[A(m⊥)], n⊥)n⊥ + g[hξ⊥(g[A(m⊥)])]. (472)

The terms at the left side of the expression could be found in the correspond-
ing forms by the use of the relations

g(g[A(m⊥)], n⊥) = gijg
ikAklm

l
⊥nj

⊥ = Ajlm
l
⊥nj

⊥ = A(n⊥, m⊥), (473)

∓g(g[A(n⊥)], n⊥)n⊥ = ∓A(n⊥, m⊥)n⊥, (474)

g[hξ⊥(g[A(m⊥)])] = gij(hξ⊥)jkgklAlrm
r
⊥∂i = g(hξ⊥)(g)[A(m⊥)], (475)

g(hξ⊥)(g) = hξ⊥ = hn⊥ , (476)

g[hξ⊥(g[A(m⊥)])] = hn⊥ [A(m⊥)]. (477)

Therefore,

g[A(m⊥)] = ∓A(n⊥, m⊥)n⊥ + hn⊥ [A(m⊥)]. (478)

For g[A(ñ⊥)] the expressions follow

g[A(ñ⊥)] = αg[A(n⊥)] + βg[A(m⊥)] = ∓αA(n⊥, n⊥)n⊥ + αhn⊥ [A(n⊥)]∓
∓ βA(n⊥, m⊥)n⊥ + βhn⊥ [A(m⊥)], (479)

g[A(ñ⊥)] = ∓[αA(n⊥, n⊥) + βA(n⊥, m⊥)]n⊥+
+ αhn⊥ [A(n⊥)] + βhn⊥ [A(m⊥)]. (480)

On the other side, the structures of rela = az +ac could be represented under
the condition £uξ⊥ = 0 in the forms

rela = lξ⊥g[A(n⊥)], (481)

az = ∓lξ⊥A(n⊥, n⊥)n⊥, (482)

ac = g[hξ⊥(rela)] = lξ⊥g(hξ⊥)(g)[A(n⊥)] = lξ⊥hn⊥ [A(n⊥)], (483)

g(ac, n⊥) = 0,
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rela = az + ac = lξ⊥g[A(n⊥)] = ∓lξ⊥A(n⊥, n⊥)n⊥ + lξ⊥hn⊥ [A(n⊥)]. (484)

Let us introduce now a vector ˇeld η⊥ = lξ⊥m⊥, orthogonal to the vector
ˇeld ξ⊥ = lξ⊥n⊥ and u, but with the same length as ξ⊥, i.e.,

g(η⊥, ξ⊥) = l2ξ⊥g(m⊥, n⊥) = 0, g(η⊥, η⊥) = ∓l2ξ⊥ . (485)

The corresponding to η⊥ relative velocity relvη and relative acceleration relaη

have analogous forms as relv and rela

relvη = g[d(η⊥)] = lξ⊥g[d(m⊥)], (486)

relaη = g[A(η⊥)] = lξ⊥g[A(m⊥)]. (487)

The decomposition of relaη has the form

relaη = aηz + aηc, (488)

relaη =
1

g(ξ⊥, ξ⊥)
g(relaη, ξ⊥)ξ⊥ + g[hξ⊥(relaη)] = aηz + aηc =

= ∓g(relaη, n⊥)n⊥ + g[hξ⊥(relaη)], (489)

where

aηz = ∓g(relaη, n⊥)n⊥, (490)

aηc = g[hξ⊥(relaη)]. (491)

The explicit form of aηz and aηc could be found by the use of the relations
under the condition £uη⊥ = 0

g(relaη, n⊥) = g(g[A(η⊥)], n⊥) = gijg
ikAkllξ⊥ml

⊥nj
⊥ =

= lξ⊥Ajln
j
⊥ml

⊥ = lξ⊥A(n⊥, m⊥), (492)

g[hξ⊥(relaη)] = lξ⊥g[hξ⊥(g[A(m⊥)])] = lξ⊥hn⊥ [A(m⊥)], (493)

as

aηz = ∓g(relaη, n⊥)n⊥ = ∓lξ⊥A(n⊥, m⊥)n⊥, (494)

aηc = g[hξ⊥(relaη)] = lξ⊥hn⊥ [A(m⊥)]. (495)

Now we can ˇnd the relations between the relative velocities rela, relaη, and
the expression for g[A(ñ⊥)]

g[A(ñ⊥)] = αg[A(n⊥)] + βg[A(m⊥)] = ∓αA(n⊥, n⊥)n⊥ + αhn⊥ [A(n⊥)]∓
∓ βA(n⊥, m⊥)n⊥ + βhn⊥ [A(m⊥)], (496)



1252 MANOFF S.

g[A(ñ⊥)] = ∓α

(
∓ 1

lξ⊥
az

)
+ α

1
lξ⊥

ac ∓ β

(
∓ 1

lξ⊥
aηz

)
+ β

1
lξ⊥

aηc, (497)

g[A(ñ⊥)] = α
1

lξ⊥
az + α

1
lξ⊥

ac + β
1

lξ⊥
aηz + β

1
lξ⊥

aηc, (498)

g[A(ñ⊥)] =
1

lξ⊥
[α(az + ac) + β(aηz + aηc)] =

1
lξ⊥

(α rela + β relaη). (499)

5. After the consideration and ˇnding out of the explicit forms of the terms
in relk⊥

relk⊥ = −dτ(∇uk̃)⊥ +
1
2
dτ2(∇u∇uk̃)⊥ =

= −dτ

{
± ω

l2u
a⊥ + g[d(k⊥)]

}
+

1
2
dτ2

{
± ω

l2u
(∇ua)⊥ + g[A(k⊥)]

}
, (500)

we can ˇnd the explicit forms of the change relk⊥ of the vector k⊥along the
world line of the observer

relk⊥ = −dτ

{
± ω

l2u
[(a⊥)z + (a⊥)c] ∓ lk⊥g[d(ñ⊥)]

}
+

+
1
2
dτ2

{
± ω

l2u
[(∇ua)⊥z + (∇ua)⊥c] ∓ lk⊥g[A(ñ⊥)]

}
, (501)

relk⊥ = −dτ

{
± ω

l2u
[(a⊥)z + (a⊥)c] ∓ lk⊥

[
1

lξ⊥
(α relv + β relvη)

]}
+

+
1
2
dτ2

{
± ω

l2u
[(∇ua)⊥z + (∇ua)⊥c] ∓ lk⊥

[
1

lξ⊥
(α rela + β relaη)

]}
, (502)

relk⊥ = −dτ

{
± ω

l2u
[(a⊥)z + (a⊥)c] ∓

lk⊥

lξ⊥
(α relv + β relvη)

}
+

+
1
2
dτ2

{
± ω

l2u
[(∇ua)⊥z + (∇ua)⊥c] ∓

lk⊥

lξ⊥
(α rela + β relaη)

}
. (503)

Since
lk⊥ =

ω

lu
= lk‖ , (504)

we obtain the ˇnal form of relk⊥ with respect to the relative velocity and relative
acceleration

relk⊥ = ∓dτlk⊥

{
1
lu

[(a⊥)z + (a⊥)c] −
1

lξ⊥
(α relv + β relvη)

}
±

± 1
2
dτ2lk⊥

{
1
lu

[(∇ua)⊥z + (∇ua)⊥c] −
1

lξ⊥
(α rela + β relaη)

}
. (505)
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If we, further, express the time interval dτ by its equivalent relations

dτ = ∓ lξ⊥dλ

lu
=

dl

lu
(506)

the relation of relk⊥ to the relative velocity and relative acceleration could also
be written in the forms

relk⊥ =
lk⊥

lu

{
lξ⊥dλ

lu
[(a⊥)z + (a⊥)c] − dλ(α relv + β relvη)

}
±

± 1
2

l2ξ⊥dλ2

l2u
lk⊥

{
1
lu

[(∇ua)⊥z + (∇ua)⊥c] −
1

lξ⊥
(α rela + β relaη)

}
. (507)

relk⊥ =
lk⊥

lu

{
∓dl

lu
[(a⊥)z + (a⊥)c] ±

dl

lξ⊥
(α relv + β relvη)

}
±

± 1
2

dl2

l2u
lk⊥

{
1
lu

[(∇ua)⊥z + (∇ua)⊥c] −
1

lξ⊥
(α rela + β relaη)

}
. (508)

By the use of the explicit forms of k⊥ and k⊥

k⊥ = ∓lk⊥
ñ′
⊥ = ∓ ω

lu
ñ′
⊥, (509)

k⊥ = ∓lk⊥ ñ⊥ = ∓ ω

lu
ñ⊥, (510)

we can ˇnd the explicit forms of the expressions

S :=
g(relk⊥, m⊥)
g(ñ⊥, k⊥)

=
1

lk⊥

g(relk⊥, m⊥), (511)

C :=
g(relk⊥, n⊥)
g(ñ⊥, k⊥)

=
1

lk⊥

g(relk⊥, n⊥), (512)

because of the relation

g(ñ⊥, k⊥) = g(ñ⊥, ∓lk⊥ ñ⊥) = ∓lk⊥g( ñ⊥, ñ⊥) = lk⊥ . (513)

6. By the use of the relations

g((a⊥)z + (a⊥)c, n⊥) = g((a⊥)z , n⊥), g((a⊥)c, n⊥) = 0, (514)

g(relv, n⊥) = g(vz , n⊥), g(relvη, n⊥) = g(vηz , n⊥), (515)

g((∇ua)⊥z + (∇ua)⊥c, n⊥) = g((∇ua)⊥z , n⊥), (516)
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g(rela, n⊥) = g(az, n⊥), g(relaη, n⊥) = g(aηz, n⊥), (517)

g(relk⊥, n⊥) =
lk⊥

lu

{
∓dl

lu
g((a⊥)z, n⊥) ± dl

lξ⊥
[αg(vz , n⊥) + β g(vηz , n⊥)]

}
±

± 1
2

dl2

l2u
lk⊥

{
1
lu

g((∇ua)⊥z , n⊥) − 1
lξ⊥

[αg(az , n⊥) + β g(aηz , n⊥)]
}

, (518)

we can ˇnd the explicit form of the quantity C .
On the other side, we can use the relations

(a⊥)z = ∓l(a⊥)z
n⊥, (519)

g((a⊥)z, n⊥) = ∓l(a⊥)z
g(n⊥, n⊥) = l(a⊥)z

, (520)

vz = ∓lvzn⊥, (521)

g(vz, n⊥) = ∓lvzg(n⊥, n⊥) = lvz , (522)

vηz = ∓lvηz n⊥, (523)

g(vηz , n⊥) = ∓lvηz g(n⊥, n⊥) = lvηz , (524)

(∇ua)⊥z = ∓l(∇ua)⊥z
n⊥, (525)

g((∇ua)⊥z, n⊥) = ∓l(∇ua)⊥z
g(n⊥, n⊥) = l(∇ua)⊥z

, (526)

g((∇ua)⊥z, m⊥) = ∓l(∇ua)⊥z
g(n⊥, m⊥) = 0, (527)

az = ∓lazn⊥, (528)

g(az, n⊥) = ∓lazg(n⊥, n⊥) = laz , (529)

g(az, m⊥) = ∓lazg(n⊥, m⊥) = 0, (530)

aηz = ∓laηzn⊥, (531)

g(aηz, n⊥) = ∓laηzg(n⊥, n⊥) = laηz , (532)

g(aηz, m⊥) = ∓laηzg(n⊥, m⊥) = 0 (533)

for ˇnding out the explicit form of g(relk⊥, n⊥) and g(relk⊥, m⊥)

g(relk⊥, n⊥) =
lk⊥

lu

{
∓dl

lu
l(a⊥)z

± dl

lξ⊥
[αlvz + β lvηz ]

}
±

± 1
2

dl2

l2u
lk⊥

{
1
lu

l(∇ua)⊥z
− 1

lξ⊥
[αlaz + β laηz ]

}
, (534)



PROPAGATION OF SIGNALS IN SPACES 1255

or the form

g(relk⊥, n⊥) =
lk⊥

lu

{
± dl

lξ⊥
[αlvz + β lvηz ] ∓ dl

lu
l(a⊥)z

}
∓

∓ 1
2

dl2

l2u
lk⊥

{
1

lξ⊥
[αlaz + β laηz ] − 1

lu
l(∇ua)⊥z

}
. (535)

The explicit form of C could now be found as

C =
1

lk⊥

g(relk⊥, n⊥) = ± 1
lu

{
dl

lξ⊥
[αlvz + β lvηz ] − dl

lu
l(a⊥)z

}
∓

∓ 1
2

dl2

l2u

{
1

lξ⊥
[αlaz + β laηz ] − 1

lu
l(∇ua)⊥z

}
. (536)

If we introduce the abbreviations

lvz =
dl

lξ⊥
lvz , lvηz =

dl

lξ⊥
lvηz , l(a⊥)z

=
dl

lξ⊥
l(a⊥)z

, (537)

laz =
dl

lξ⊥
laz , laηz =

dl

lξ⊥
laηz , l(∇ua)⊥z

=
dl

lξ⊥
l(∇ua)⊥z

, (538)

then C could be represented in the form

C = ± 1
lu

[
(αlvz + β lvηz ) − lξ⊥

lu
l(a⊥)z

]
∓

∓ 1
2

dl

l2u

[
(αlaz + β laηz ) − lξ⊥

lu
l(∇ua)⊥z

]
. (539)

In analogous way, we can ˇnd the explicit form of S.
7. By the use of the relations

g(relk⊥, m⊥) =
lk⊥

lu

{
∓dl

lu
[g((a⊥)z, m⊥) + g((a⊥)c, m⊥)]±

± dl

lξ⊥
[αg( relv, m⊥) + β g(relvη, m⊥)]

}
±

± 1
2

dl2

l2u
lk⊥

{
1
lu

[g((∇ua)⊥z, m⊥) + g((∇ua)⊥c, m⊥)]−

− 1
lξ⊥

[αg( rela, m⊥) + β g(relaη, m⊥)]
}

, (540)
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g(relk⊥, m⊥) =
lk⊥

lu

{
∓dl

lu
g((a⊥)c, m⊥)±

± dl

lξ⊥
[αg( relv, m⊥) + β g(relvη, m⊥)]

}
± 1

2
dl2

l2u
lk⊥

{
1
lu

g((∇ua)⊥c, m⊥)−

− 1
lξ⊥

[αg(rela, m⊥) + β g(relaη, m⊥)]
}

, (541)

(a⊥)c = ∓l(a⊥)c
m⊥, (542)

g((a⊥)c, m⊥) = ∓l(a⊥)c
g(m⊥, m⊥) = l(a⊥)c

, (543)

vc = ∓lvcm⊥, (544)

g(relv, m⊥) = g(vz + vc, m⊥) = g(vc, m⊥) = ∓lvcg(m⊥, m⊥) = lvc , (545)

vηc = ∓lvηcm⊥, (546)

g(relvη, m⊥) = g(vηz + vηc, m⊥) = g(vηc, m⊥) =
= ∓lvηcg(m⊥, m⊥) = lvηc , (547)

(∇ua)⊥c = ∓l(∇ua)⊥c
m⊥, (548)

g((∇ua)⊥c, m⊥) = ∓l(∇ua)⊥c
g(m⊥, m⊥) = l(∇ua)⊥c

, (549)

rela = az + ac, az = ∓lazn⊥, ac = ∓lacm⊥, (550)

g(rela, m⊥) = g(az + ac, m⊥) = g(ac, m⊥) = ∓lacg(m⊥, m⊥) = lac , (551)

relaη = aηz + aηc, aηz = ∓laηzn⊥, aηc = ∓laηcm⊥, (552)

g(relaη, m⊥) = g(aηc, m⊥) = ∓laηcg(m⊥, m⊥) = laηc , (553)

we can ˇnd the explicit forms of g(relvη, m⊥) related to the centrifugal (cen-
tripetal) and Coriolis velocities and accelerations:

g(relk⊥, m⊥) =
lk⊥

lu

{
∓dl

lu
l(a⊥)c

± dl

lξ⊥
[αlvc + β lvηc ]

}
±

± 1
2

dl2

l2u
lk⊥

{
1
lu

l(∇ua)⊥c
− 1

lξ⊥
[αlac + β laηc ]

}
, (554)

g(relk⊥, m⊥) = ± lk⊥

lu

[
dl

lξ⊥
(αlvc + β lvηc) −

dl

lu
l(a⊥)c

]
∓

∓ 1
2

dl2

l2u
lk⊥

[
1

lξ⊥
(αlac + β laηc) −

1
lu

l(∇ua)⊥c

]
. (555)



PROPAGATION OF SIGNALS IN SPACES 1257

The explicit form of S could be found as

S :=
1

lk⊥

g(relk⊥, m⊥) = ± 1
lu

[
dl

lξ⊥
(αlvc + β lvηc) −

dl

lu
l(a⊥)c

]
∓

∓ 1
2

dl2

l2u

[
1

lξ⊥
(αlac + β laηc) −

1
lu

l(∇ua)⊥c

]
. (556)

If we introduce the abbreviations

lvc =
dl

lξ⊥
lvc , lvηc =

dl

lξ⊥
lvηc , l(a⊥)c =

dl

lξ⊥
l(a⊥)c

, (557)

lac =
dl

lξ⊥
lac , laηc =

dl

lξ⊥
laηc , l(∇ua)⊥c

=
dl

lξ⊥
l(∇ua)⊥c

, (558)

l� � 0, (559)

then S could be represented in the form

S = ± 1
lu

[
(αlvc + β lvηc) −

lξ⊥
lu

l(a⊥)c

]
∓

∓ 1
2

dl

l2u

[
(αlac + β laηc) −

lξ⊥
lu

l(∇ua)⊥c

]
. (560)

The explicit forms of C and S determine the relations describing the aberra-
tion, the Doppler effect, and the Hubble effect in spaces with afˇne connections
and metrics.
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