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In a series of papers a two-dimensional dual model, combining resonance-Regge and quarkÄ
hadron duality was developed. Here we present ˇts to the recently measured inclusive electronÄproton
cross section in the nucleon resonance region, performed with the CLAS detector at the JLAB. The
helicity structure of the scattering amplitudes is discussed.
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In this paper we report on our previous study [1], where a two-dimensionally
dual model, combining resonance-Regge and quarkÄhadron duality is constructed
and ˇtted to the recently measured electronÄproton cross section at JLAB.

The main idea behind the model (for details we address the reader to
Refs. 2, 1) is the use of a dual amplitude with Mandelstam analyticity contin-
ued off the mass shell, which incorporates complex, nonlinear Regge trajectories
with a limited number of resonances on each trajectory. Two-component duality
is implied: resonances are dual to ordinary (or ®secondary¯) Regge exchanges,
while the direct-channel, nonresonant background is dual to a Pomeron exchange
in the t channel. This second, ®diffractive¯ component is of special interest,
since the separation of the resonances from the background is not unique. To
be speciˇc, in most of the models describing low-energy inclusive ep scattering,
including those recent from the CLAS collaboration at JLAB (see [3]), the back-
ground is modeled empirically by a smooth function with the parameters ˇtted to
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the data. The advantage of our approach to the background is that the background
is treated on the same ground as the nondiffractive component [4, 5].

The difference between the two components is quantitative rather than qual-
itative. The real part of the exotic trajectories, providing for the nonresonant
background was constrained by an upper limit set below the appearance of any
physical resonance. Now, as the existence of exotic resonances cannot be ex-
cluded any more, the parameters of the relevant trajectories may require revision
with the account for the spectroscopy of the newly discovered (and expected)
exotic states (see, e.g., [6] for a recent review on this subject). The reparameteri-
zation of the trajectories will not change the model, however the possible existence
of exotic trajectories can be interpreted in terms of the quark model: contrary
to the ®traditional¯ interpretation of the exotic trajectories and the Pomeron as
made of gluons only and the ordinary trajectories made of quarks, all trajectories
correspond to mixtures of quarks and gluons.

Regge-Dual Structure Function. The inclusive, inelastic ep cross section is
related to the unpolarized structure function (SF), F2(x, Q2), by

F2(x, Q2) =
Q2(1 − x)

4πα(1 + 4m2x2/Q2)
σγ∗p

t , (1)

where the total cross section, σγ∗p
t , includes, by unitarity, all possible intermediate

states allowed by energy and quantum number conservation. We follow the norm

σγ∗p
t (s) = Im A(s, Q2) (2)

used in Refs. 2, 1. The centre-of-mass energy of the γ∗p system, the negative
squared photon virtuality Q2, and the Bjorken variable x are related by

s = W 2 = Q2(1 − x)/x + m2. (3)

In a Regge-dual model we write the scattering amplitude as a pole decompo-
sition of the dual amplitude:

[
A(s, Q2)

]
t=0

= N

{∑
r,n

f
2(n−nmin

r +1)
r (Q2)

n − αr(s)
+ [A(s, Q2)]BG

t=0

}
, (4)

where N is an overall normalization coefˇcient; r runs over all trajectories al-
lowed by quantum number conservation (in our case r = N∗

1 , N∗
2 , ∆) while n

runs from nmin
r (spin of the ˇrst resonance) to nmax

r (spin of the last resonance),
and [A(s, Q2)]BG

t=0 is the contribution from the background. The functions fr(Q2)
and αr(s) are respectively form factor and Regge trajectory corresponding to the
rth term∗.

∗Note that only for the ˇrst resonance at each trajectory we have squared form factor, while for
the recurrences the powers of form factors are growing, according to the properties of DAMA [1, 2].
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Helicity Structure. The form factors can be written as a sum of three
terms [7,8], G+(Q2), G0(Q2), and G−(Q2), corresponding to γ∗N → R helicity
transition amplitudes in the rest frame of the resonance R:

Gλγ =
〈R, λR = λN − λγ |J(0)|N, λN 〉

m
, (5)

where λR, λN , and λγ are the resonance, nucleon, and photon helicities; J(0)
is the current operator; λγ takes the values −1, 0 and +1. The explicit form
of these form factors is known only near their thresholds |q| → 0, while their
large-Q2 behaviour is constrained by the quark counting rules. According to the
quark counting rules, the large-Q2 behavior of G's is assumed to be

G+ ∼ Q−3, G0 ∼ Q−4, G− ∼ Q−5. (6)

Let us note that while this is reasonable (modulo logarithmic factors) for elastic
form factors, it may not be true any more for inelastic (transition) form factors.
Our Regge-dual model, Eq. (4), predicts that the powers of the form factors
increase with increasing excitation (resonance spin). The experimental data [9]
seem to conˇrm this trend.

The authors of Ref. 8, combining threshold and asymptotic behavior, suggest
the following expressions:

|G±|2 = |G±(0)|2q2J−3c2J−3(Q′
0)c

m±(Q0), (7)

|G0|2 = C2 q2
0

|q|2 q2J−1c2a+m0(Q0)c2J−1(Q′
0) (8)

for the normal transitions and

|G±|2 = |G±(0)|2q2J−1c2J−1(Q′
0)c

m±(Q0), (9)

|G0|2 = C2

(
q2
0

|q|2

)2J−1

c2a+m0(Q0)c2J+1(Q′
0), (10)

for the anomalous ones. Here m+ = 3, m0 = 4, m− = 5 and

|q| =

√
(M2 − m2 − Q2)2 + 4M2Q2

2M
, q0 =

M2 − m2 − Q2

2M
, (11)

where M is a resonance mass; C and a are free parameters. For notation
convenience we have introduced the functions

q =
|q|

|q|Q=0
, c(z) =

z2

Q2 + z2
. (12)
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Finally, the form factors at Q2 = 0 are related to the helicity photoproduction
amplitudes A1/2 and A3/2 by

|G+,−(0)| =
1√
4πα

√
M

M − m
|A1/2,3/2|. (13)

Regge Trajectories. The use of (s channel) Regge trajectories, including all
possible intermediate states in the resonance region and appearing as recurrences
on the trajectories, allows us to deal with the large number of resonances to be
taken into account. The form of the Regge trajectories is constrained by analyt-
icity, requiring the presence of threshold singularities, and by their asymptotic
behaviour, imposing an upper bound on their real part. Here, based on [10], we
consider a simple model based on a sum of square root thresholds, according to
which the trajectory takes the form

α(s) = α0 + α1s + α2(
√

s0 −
√

s0 − s), (14)

where s0 = (mπ + mp)2.
Apart from the resonances, lying on the N∗'s and ∆ s-channel trajectories,

dual to an effective bosonic (f -)trajectory in the t channel, one has to consider the
contribution from a smooth background. Following our previous arguments [1,2],
we model it by nonresonance pole terms with exotic trajectories, dual to the
Pomeron, leading to

[
A(s, Q2)

]
BG

=
∑

b=E,E′

Gb
c4(Qb)

nb − αb(s)
(15)

with dipole form factors, given by c2(Qb). The exotic trajectories are chosen in
the form

αb(s) = αb(0) + α1b(
√

s0 −
√

s0 − s), (16)

where the coefˇcients αb(0), α1b, and the Q2
b are the free parameters. To prevent

any physical resonance, they are constrained in such a way that the real part of
the trajectory terminates before reaching the ˇrst resonance on the physical sheet.
An inˇnite sequence of poles, saturating duality, appears on the nonphysical sheet
in the amplitude; they do not interfere in the smooth behaviour of the background
(for more details see [4]).

Comparison with the CLAS Data. With the above model at hand, we have
ˇtted the CLAS data for the F2(Q2, s) [3]. A few representative plots are shown
in the Figure and the ˇtted parameters presented in the table.

To start with, we made a ˇt keeping the parameters of the Regge trajectories
and the photoproduction amplitudes ˇxed, close to their physical values. Also, a
single-term background was used. As a result we obtain ˇt 1 shown in the Table.
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Structure function F2(x) for Q2 = 0.425−3.375 GeV2. Data are from [3], and the lines

show results of three different ˇts (see text for details). 1 Å ˇt 1; 2 Å ˇt 2; 3 Å ˇt 3

Parameters of the ˇts (see text)

Parameters Fit 1 Fit 2 Fit 3

α0 Ä0.8377∗ Ä0.8377∗ Ä0.8377∗

α1, GeV−2 0.9500∗ 0.9551 0.9825
N∗

1 α2, GeV−1 0.1473∗ 0.1500 0.0920
A2(1/2), GeV−1 0.0484EÄ2∗ 0.0031 0.8647EÄ2
A2(3/2), GeV−1 0.2789EÄ1∗ 0.0216 0.9634EÄ2

α0 Ä0.3700∗ Ä0.3700∗ Ä0.3700∗

α1, GeV−2 0.9500∗ 0.9646 0.9551
N∗

2 α2, GeV−1 0.1471∗ 0.0699 0.0949
A2(1/2), GeV−1 0.0289EÄ2∗ 0.0156 0.9724EÄ2
A2(3/2), GeV−1 0.1613∗ 9.5363EÄ07 5.1973EÄ11

α0 0.0038∗ 0.0038∗ 0.0038∗

α1, GeV−2 0.8500∗ 0.8815 0.8605
∆ α2, GeV−1 0.1969∗ 0.1622 0.2005

A2(1/2), GeV−1 0.0199∗ 0.0033 5.3432EÄ08
A2(3/2), GeV−1 0.0666∗ 0.1023 0.0866
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End of Table

Parameters Fit 1 Fit 2 Fit 3

GE1 6.5488 2.8001 3.6049
α0 0.3635 0.7499 0.3883

α2, GeV−1 0.1699 0.1575 0.3246
E1 Q2

E1 , GeV2 5.2645 4.300 3.9774
sE1 , GeV2 1.14∗ 1.1740 1.14∗

GE2 Å Å Ä0.6520
α0 Å Å Ä0.8929

E2 α2, GeV−1 Å Å 1.7729
Q2

E2 , GeV2 Å Å 2.4634
sE2 , GeV2 Å Å 1.14∗

s0, GeV2 1.14∗ 1.14∗ 1.14∗

Q
′2
0 , GeV2 0.4089 0.4699 0.9998

Q2
0, GeV2 3.1709 2.5499 1.8926

N , GeV−2 0.0408 0.0559 0.0567

χ2
d.o.f. 12.92 2.8824 1.3005

∗Fixed parameters.

For the next ˇt (ˇt 2) some of these parameters were varied. Consequently
the χ2 has signiˇcantly improved, although still remains unsatisfactory. Finally,
we added the second term in the background, what led to the best ˇt with
χd.o.f. = 1.30 (ˇt 3). More details can be found in [1].

To conclude, let us remind that although our ˇts concern only the resonance
region, typical of the CLAS experiment, the model is potentially applicable in
all kinematical regions, in particular in the Regge domain, where many data
from HERA are available. To proceed further along these lines we intend to
use more realistic baryonic trajectories, study alternative parameterizations of the
background, study in detail the behavior of the transition form factors as well as
the spin structure functions.
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