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We derive generic formulas for the polarization density matrix of leptons produced in vN and
UN collisions and briefly consider some important particular cases. Next we employ the general
formalism in order to include the final lepton mass and spin into the Rein-Sehgal model for single
pion neutrino production.

IMonyyens! obmme HOPMyNbl A7Is MOMSPU3 LUOHHOW M TPHILbI JIENTOHOB, 0Op 30B HHBIX B VN-
u UN-coyn peHUSIX, U Kp TKO P CCM TPUB IOTCS B JXHbIe U CTHBIE CIIyd H. [l Jiee MBI HCIIONb3yeM
o0umii hopM JH3M [T BKITIOYEHHS M CChI M CIIMH JIENTOH B Momeib Rein—Sehgal ms o6p 308 Hus
OJIMHOYHOTO ITHOH .

INTRODUCTION

Polarization of leptons generated in ¥/N and N collisions is important for
studying neutrino oscillations and relevant phenomena in experiments with at-
mospheric and accelerator neutrino beams. Let us shortly touch upon a few
illustrative examples.

e Contained 7-lepton events provide the primary signature for v, — v,
oscillations. Besides they are a source of unavoidable background to the future
proton decay experiments. But a low or intermediate energy 7 lepton generated
inside a water Cherenkov detector is unobservable in itself and may only be
identified through the 7-decay secondaries whose momentum configuration is
determined by the 7-lepton helicity.

e In case of v, — v; mixing, the leptonic decays of 7’s generated inside
the Earth yield an extra contribution into the flux of through-going upward-going
muons (TUM) and stopping muons (SM) which is absent in case of v, — v or
v, — V. mixing. The absolute value and energy spectrum of the «7,3 muons»
are affected by the 7-beam polarization. The contribution is evidently small but
measurable in future large-scale experiments, particularly those with magnetized
tracking calorimeters (like in the experiments NuMI-MINOS and MONOLITH).
Note that the energy and angular distributions of the charge ratio for the «7,3
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muons» considerably differ from those for the «direct> TUM and SM since the
longitudinal polarizations of 7+ and 7~ have opposite signs.

o Decay of v, or 7, induced muons with energy below the detection threshold
may produce detectable electrons whose energy distributions are affected by the
muon polarization. Such events, being classified as «e-like» (for a water detector)
or «showering» (for an iron detector), mimic the v, or 7, induced events.

In this paper, we derive general formulas for the lepton polarization density
matrix by applying a covariant method (Sec. 1) and briefly consider their appli-
cations to deep inelastic, quasi-elastic and resonance neutrino interactions. We
explicitly demonstrate that the perpendicular and transverse polarizations depend
on an intrinsically indeterminate phase and thus are unobservable in contrast with
the longitudinal polarization and degree of polarization. In Sec.2 we discuss a
generalization of the Rein—Sehgal model for single pion production which takes
into account the final lepton mass and spin.

1. POLARIZATION DENSITY MATRIX

The lepton polarization vector P = (Pp,Pr,Pr) is defined through the
1
polarization density matrix p = 3 (1 + oP) whose matrix elements are given by

contracting the leptonic tensor Lif, with the spin-averaged hadronic tensor W3.
The leptonic tensor is given by

* 1-—
I (jf,) with j; =u(k',s)y* ( 275) u(k) for vy,
Lif, = (1

- [— * . -« 1—
Jx (jf/) with j, Zﬁ(k)'y(’( 275> v(k',s) for 7y,

where k and &k’ are the 4-momenta of v, or 7, and lepton £~ or T (£ = e, u, T);
X and X are the lepton helicities; s is the axial 4-vector of the lepton spin.
It can be shown that the weak leptonic currents j ;‘ and j ; are given by

Jy = Nx [mk® + K% (ks) — s*(kk') — ie*?°szk k] and
Ty = =A%)

Here m is the lepton mass and the normalization constant Ny is expressed in
terms of the kinematic variables and of two intrinsically indeterminate phases ¢
and p_:

)

1 i 1— P
Ny AEN AN P (ks) =
2./vx

m2E, (1 F Acosf)
Eg F )\Pg ’
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where F,, Ey, and P, denote the neutrino energy, lepton energy and momentum,
respectively; 6 is the scattering angle in lab. frame; the upper (lower) signs are
for vy (D).

We use the generally accepted representation of the hadronic tensor (see, e.g.,
Ref. 1)

o Pa P 1 €afpo pPq°
Wag = —gap Wi + 2 Wy — 202 W3+
da 48 Pa 48 + qa Pg . Padp — qaPp
w. 1% ————= W 3
top Vet e 5+ 1 W s (3)

which includes 6 nucleon structure functions, W,,, whose explicit form is defined
by the particular subprocess (QE, RES or DIS). Here p and M are the nucleon
4-momentum and mass, respectively; ¢ = k — k' is the W boson 4-momentum.
By applying Egs. (1), (2), and (3), we obtain

6
pax o< LS Wag = EZm*NAN3, >~ ARy W,

n=1

M =2y, Ty ) s
A?\)\,=4(77 n ,sin4Q+77 n /cos4g)i77 ,sin% 6,
EDNEDY 2 ESNESN 2 —AX
E, — P E,+ P E,
Malax =37 T lsn — 37 T n—AAfM) ’
A;l\x =4 [ni/\niN(EV]\_Zisz)Q sin* 3 + 77%\77%\,@”]\}72&)2 cost g] +

m2

e

Ai)\, = +sin%0 (

sin’ 6,

El/ + PE
UES SV €os 3

E, — P, 0
45 _ v 4 4
AN 4 |: :F)\n:F)\' M 2]

sin4Q+
5 n

E, .

o\
A?\/\,:i(/\ QA)%sm?e,

where 7y, = (1+A)/2. Taking into account that Tr p = 1, we can find the explicit
formulas for the elements of the polarization density matrix in terms of variables
E,, P, and 6:

_EcF B

P++ (E,,,Pg,e) = p—— (ElM_Peaﬂ-_ 9) - IMR Z7

(X —iY) e,

msin 6
4AMR

Py (E,,,Pg,e) = pt_,_ (EV,Pg,H) =
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Here we have introduced the following notation:

m2 Eg Ey PZ
X:F<2W1_W2_WW4+MW5> _MW?” y——MWfi,
E,FP 1F cos 0
Z=(1x + —
(1 + cos0) (W1 i Wg) 5
Ey+P (E;+ P
X [W2+ KM ‘ ( KM €W4—W5>}7
Ey— Pycos 0 m? Ey+ Pycos 0
= _— _ - - j:
R ( i )(W1+2M2W4 + Wi W
E,+ E, Ey;— Pycos 0 m? m?2
+ — -
K M ) ( 2M o |V T e
and ¢ = ¢4 — ¢_. Finally the projections of the lepton polarization vector are
given by
Pp\ _msinb [ cosp sinp) (X (4a)
Pr) 2MR \—sing cosg)\Y)’

m? oM E,— P, 0
=Fl+ + (= 2
PL=7% MQR{KEg—i—Pg)WI <E4+PZ>W3] cosTg

M Ey+ Py . 90
[ — —r. (4
+[(E4+P4>W2+( i >W4 W5}sm 5 (4b)

By putting ¢ = 0%, the formulas for Pp and P;, exactly coincide with those of
Ref. 2 (obtained within a noncovariant approach under assumption Ws = 0).

Several simple conclusions immediately follow from Eqgs.(4). First, the
perpendicular and transverse projections are unobservable quantities in contrast
with the longitudinal projection of P and the degree of polarization |P|. Second,
supposing that Wg = 0 (as is probably the case) one can force the polarization
vector to lie in the production plane. Third, a massless lepton is fully polarized,
P = (0,0,F1). In particular, at the energies of our interest, electron is always
fully polarized while, in general, this is not the case for muon and 7 lepton.

We end this section with a short description of the structure functions relevant
to the three fundamental subprocesses, DIS, QE, and RES.

1.1. Deep Inelastic Scattering (DIS). In this case the relation between the
structure functions WP (z,Q?) and measurable quantities F,, (z,Q?) is ob-
tained in a straightforward manner:

Wl(DIS) (vaQ) =5 ((E, QQ) ) W;LDIS) ((E, QQ) = wian ((L’,QQ) yn=2,...,6.

*We adopt this convention from here on. Therefore, according to Eq. (4a), Pp o X and
Pr < ).
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Here Q2 = —¢?%, = Q?/2(pq) is the Bjorken scaling variable and w = (pq)/M?2.
The generally accepted relations between the functions Fy, F», Fy, and Fj

e F2 .132 1 F2
E:%:ZHTEO+?) ﬂ:@(g‘E)
where R is the ratio of longitudinal to transverse cross sections in DIS and
2 = Q?/(4M?).
1.2. Quasielastic Scattering (QE). The charged currents (p, p’ |fgj |n, p) =
u(p")To u(p) and (n, p’|j; Ip, p) = w(p')T o u(p) for the QE reactions are defined
through 6 (in general complex) form factors. The vertex is

Iy =cos 0c | Vo Fv + ia(yg;—;\}}’—}u + q—aFS—I-

M

Pa + DL o
gt Foap,  dop ,
+ (’Y A+ Vi T+ Vi P) 75]

where ¢ is the Cabibbo mixing angle and p’ = p + ¢q. A standard calculation
yields

W (x, QQ) = cos? Ocw twy, (QQ) 0(l—z), n=1,...,6.
The functions w,, are the bilinear combinations of the form factors:

wi = |Fal® +2' (|FA|2 +|Fy + FM|2) ,

wy = |Fy* + |Fal + o' (|Ful +4|Frl).

w3 = —QRG[FZ (Fv+FM)],

1
w4 = Re |:F{; (FS—EFM) —FZ (FT+FP):| +

1 1 1
+ 2 (5 |Far—Fs|” + |FT+Fp|2> = (142') |Fa|* + <1+§x’) |Fs|?,
ws = 2Re [Fg«k (FV - :L'IF]w) - Frzt (FA - 2$/Fp)] + wa,
we = 2Im [F§ (Fv — o' Fa) + Ff (Fa — 22/ Fp)).

The only difference between this result and that from Ref. 1 is in the sign of the

term o< F'f in wg™. Assuming all the form factors to be real we have wg = 0 and
thus Ppr = 0.

*According to Ref. 1, the functions wg = ws — w2 and wg are, respectively, the real and
imaginary parts of a unique function. Our examination does not confirm this claim for the general
case (Fp # 0).
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1.3. Single Resonance Production (RES). Let us now consider the case of
single A resonance neutrino production,

ve+n(p) — 07+ AT(ATY), T+ n(p) — 7+ A(A).

Assuming the isospin symmetry and applying the Wigner—Eckart theorem, the
hadronic weak current matrix elements are given by [2]

(AF, p'[Jaln, p) = (A°, p'|Jalp, p) = ¥ 7 (') Tap u(p),
(AT ' Jalp, p) = (A7, P Jaln, p) = V37 (9) Tap u(p).
Here ¢“ (p') is the Rarita—Schwinger spin-vector for A resonance, u(p) is the
Dirac spinor for neutron or proton, and the vertex tensor I',g is expressed in

terms of the 8 weak transition form factors CX’A (QQ), n = 3,4,5,6 (assumed,
for simplicity, to be real) [3]:

~ N _
Loy = [Cvgaﬁq Yads | v 9B (9P') = Pads | v Gap (9P) ~Pads

3 M 4 M2 5 M2

49080 — Yalp A Ges (qp') — Plygs

4045
75 +C3 M 4 M2

v 4a4p
+ Cﬁ M2 '

M2

+C?ga5+C64

After accounting for the explicit form of a spin-3/2 projection operator (see,
e.g., Ref.3) and computing the proper convolutions, we arrive at the following
expressions for WRES):

WRES = kcos® 0cMMaDa Y (VIFCYCY + AFCPCY) | n=1,2,4,5,
j,k=3106
Wi = 2kcos” )c MMaADA Y KJFCY Cff and W = 0.
j,k=3106

Here = 2/3 for At and A production or x = 2 for A** and A~ production;

1 WT(W) w2 my)
27 (e <W>] andF(W)_FA%(Mi,M%mw) ©

are the Breit-Wigner factor and the running width of A, respectively*. The
coefficients V7%, AJ% and KJ* are found to be cubic polynomials in invariant
dimensionless variables x, w and parameter ( = M /Ma. Only 70 among the total
144 coefficients are nonzero; their expressions are however rather cumbersome
and we omit them from this short paper.

*The running width I" (W) is as usually estimated by the S-wave A — N decay; in Eq. (5),
W = |p'|, Ma, b, c) = a® + b2+ c2 — 2(ab+bc+ ca), Ma and T'a are, correspondingly, the mass
and width of A.
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2. SINGLE PION PRODUCTION IN REIN-SEHGAL MODEL

In this section, we briefly describe a generalization of the famous model [4]
for the neutrino induced single pion production (RS model from here on) in order
to take account for the final lepton mass and polarization. The charged hadronic
current in the RS approach has been derived in terms of the FKR relativistic
quark model [5] and its explicit form has been written in the resonance rest frame
(RRF); below we will mark this frame with asterisk (*). In RRF, the energy
of the incoming neutrino, outgoing lepton, target nucleon, and the 3-momentum
transfer are, respectively,

L1 E,

E} =57 (2ME, — Q* —m?) = 7 (M = (Ee = Preosf)] (6a)
L1 1

E; = T (2ME; + Q* —m?) = W [ME; —m?+ E, (E; — Py cosb)]

(6b)
M

E]*V:W—(E;—EZ*):W(M—FE,,—EZ) and (6¢)
. LM M

Q" = |’ = -0 = W\/Eg — 2B, P, cosf + P?. (6d)

It is convenient to direct the spatial axes of RRF in such a way that p* =
(0,0,—Q*) and k; = k,* = 0. These conditions lead to the following system of
equations:

K== (B - (k)% k- k=0,

x

1 ) s (N
A (A O
By using Eqgs. (6) and (7) we find the components of the lepton spin 4-vector:
1 EE;
sp = o [MP,+ E, (P, — Egcos®)], sy= er sinf, sy =0,
1
st = W [(Eycosf — Pp)(ME; —m?® + E,E;) — E, P, (E, — Pycos0)].

Then, by applying general equation (2), the components of the leptonic current
in RRF with the lepton helicity A measured in lab. frame, are expressed as

E,

b= NAmW (M — Ey — AP)(1 — Xcos 6),
E, .

Jr = NAmE (Py — AE,) sin 6,

j; = 1tANymE, sin 0,

Jr = NAmQE—;V [(E,+M\Pp)(M — E¢) + Py (AE,+2E,, cos 0—P;)] (1—Acos 0).
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On the other hand, in the spirit of the RS model, the leptonic current may be
decomposed into three polarization 4-vectors corresponding to left-handed, right-
handed and scalar polarization of the intermediate W boson:

1
5= g et + b+ ety |
«@ 1 . « 1 : (e 1 * *
7 = 500 Oh = 500,160 fy = T (O 000 )

Here the vectors e, and e are the same as in Ref. 4 while e{}) has been modified
to include the lepton mass effect. The remaining notation is

C v C . . .
Cizﬁ(h"‘”y)’ R =~ \/Q(Jx_wy)7 cs = C\/1(36)* = G221,

o ~OV@ . VB 0

vy = , = — .
VTG T OVETe
Within the generalized RS model, the elements of the polarization dens1ty
matrix may be written as the superpositions of the partial cross sections 0'2/\
O';\{\ , and O')V\ *:
dUA)\/ G%‘ COS2 90 (WQ2> AN N 2
2 = 2 2 Z e ot (Q% W),
dQ?*dw 7r MQ T s
oW / r wMQ? / ;
EAR o (A +A AL) , o = WO (A())‘+A())‘+ + AS‘_A(’}_) ,
=V3 ) al (MY,
(I=3/2)
2
A 0\ _ *_;,_
2= T 2wy} X aw
(I=3/2) (I=1/2)
1
A +\ - *+ *+
A (nrt) = \/; S ad (A \[ S W
(I=3/2) (I=1/2)

Here »c = 43, +1, 0; only those resonances are allowed to interfere which have
the same spin and 0rb1tal angular momentum. Any amplitude a2, (N;*T) referring
to a single resonance consists of two factors which describe the production and

*Here and below, we use the same definitions and (almost) similar notations as in Ref. 4.
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subsequent decay of the resonance N;**: al (N7*) = f2 (WN — NJ) n(NF —
Nr) = f;\f(z) n™. The resonance production amplitudes, f;\f(i) , are collected in
Table II of Ref.4. The corresponding decay amplitudes, ("), can be split into
three factors, 7(*) = sign (A}") \/Eng%,V(W), irrespective of isospin, charge or
helicity. Here sign (V") is the pure sign (Table III of Ref.4), x, is the elasticity
of the resonance taking care of the branching ratio into the N7 final state,

1 r 1/2

(2) _ 7

UBW(W) - [QWNz (W—Mz)Q ¥ F%/4] )

=5x /Oo dw L and 10 [ AOV2 AL ma) ) 22
C 2 W (W = M,)? 4172 /4 CLAME, M2 ) '

In the generalized RS model, the structure of the vector efy, has been changed
by including the lepton spin dependence. Thus we have to recalculate the inner
products JY 7’462’)\), where JY4 are the vector and axial hadronic currents in the
FKR model. The new definitions for the structures SV, B4, and C4 involved
into the model are the following:

2 V()2
vV _ * * * * Q 3w G (Q )
= (v = 0@ (1+ 57 - 57 ) S

Q Q* \ ZGM(@QY)
A * *
B = \/;(Q()\)‘f'V(A)ngQ) 3WQ* B

1 v*
A * * * *
or- [fener ) b2
L (2, @ NeY]zeAy
T <§W  2mg? * 6mg2> 2WQ*
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