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The calculation of spin-dependent matrix elements relevant to scattering of weakly interacting
massive particles (WIMP) on nuclei is reviewed. A comprehensive list, to our knowledge, of the
proton and neutron total spin expectation values (〈Sp〉 and 〈Sn〉) calculated within different nuclear
models is presented. These values allow a conclusion about the event rate expected in direct dark
matter search experiments due to spin-dependent neutralinoÄnucleon interaction, provided neutralino
is a dark matter particle.

„ ´ µ¡§µ· ¸¶¨´µ¢ÒÌ Ö¤¥·´ÒÌ ³ É·¨Î´ÒÌ Ô²¥³¥´Éµ¢, ´¥µ¡Ìµ¤¨³ÒÌ ¤²Ö ¢ÒÎ¨¸²¥´¨Ö · ¸¸¥Ö-
´¨Ö ¸² ¡µ¢§ ¨³µ¤¥°¸É¢ÊÕÐ¨Ì ³ ¸¸¨¢´ÒÌ Î ¸É¨Í ´  Ö¤· Ì. �·¨¢¥¤¥´ ´ ¨¡µ²¥¥ ¶µ²´Ò° ¸¶¨¸µ±
Ê¸·¥¤´¥´´ÒÌ ¶µ Ö¤·Ê §´ Î¥´¨° ¶·µÉµ´´µ£µ (〈Sp〉) ¨ ´¥°É·µ´´µ£µ ¸¶¨´  (〈Sn〉), ±µÉµ·Ò¥ ¢Ò-
Î¨¸²¥´Ò ¢ · ³± Ì ·Ö¤  Ö¤¥·´ÒÌ ³µ¤¥²¥°. �É¨ ¢¥²¨Î¨´Ò ¶µ§¢µ²ÖÕÉ ¶µ²ÊÎ¨ÉÓ µÍ¥´±¨ ¢¥·µÖÉ´µ-
¸É¨ ·¥£¨¸É· Í¨¨ Î ¸É¨Í É¥³´µ° ³ É¥·¨¨ §  ¸Î¥É ¸¶¨´-§ ¢¨¸¨³µ£µ ¢§ ¨³µ¤¥°¸É¢¨Ö ´¥°É· ²¨´µ ¸
Ö¤· ³¨ ¢ · §²¨Î´ÒÌ Ô±¸¶¥·¨³¥´É Ì. �·¨ ÔÉµ³ ¶·¥¤¶µ² £ ¥É¸Ö, ÎÉµ ´¥°É· ²¨´µ, ¡Ê¤ÊÎ¨ ²¥£Î °-
Ï¨³¨ ¸Ê¶¥·¸¨³³¥É·¨Î´Ò³¨ Î ¸É¨Í ³¨, ¶·¥¤¸É ¢²ÖÕÉ ¸µ¡µ° Î ¸É¨ÍÒ É¥³´µ° ³ É¥·¨¨.

INTRODUCTION

Historically, the spin-1/2 weakly interacting massive particles (WIMP) were
considered as the ˇrst cold dark-matter (DM) candidates. They interact with
ordinary matter predominantly by means of axial vector (spin-dependent) and
vector (spin-independent) couplings.

Nowadays, the main effort in the direct dark matter search experiments is
concentrated on the study of the spin-independent (or scalar) interaction of the
dark-matter particles with nuclei. It is due to a strong (proportional to the squared
mass of the target nucleus) coherent enhancement of the dark-matter particle scalar
interaction with nuclei. The results obtained in the ˇeld are presented in the form
of the exclusion curves for the total event rate as a function of the mass of
the dark-matter particles. The values of the cross section associated with the
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elastic scattering of WIMP due to scalar-nucleon interaction, which lie above
these curves, are excluded. There is also the so-called DAMA contour which
corresponds to the ˇrst claim for evidence of the dark-matter signal [1].

The main goal of this review is to attract attention back to the spin-dependent
(or axial-vector) interaction of dark-matter particles with nuclei. The importance
of this type of interaction of the DM particles is due to the reasons as follows:
i) The spin-dependent interaction of the DM particles provides us with twice
stronger constraints on the SUSY parameter space in comparison with the spin-
independent interaction. ii) In the case of spin-dependent interaction of heavy
WIMPs with heavy target nuclei the so-called long q-tail behavior of the relevant
form factor allows detection of large nuclear recoil energy due to some nuclear
structure effects. iii) It is worthwhile to note that by relying only upon the scalar
interaction of the DM particles, which seems to be strongly suppressed, one might
miss a DM signal [2]. However, by a simultaneous study of both spin-dependent
and spin-independent interactions of the DM particles with nuclei the chance for
observing the DM signal is signiˇcantly increased.

There are many different nuclear structure calculations (including the case
of nonzero momentum transfer) for spin-dependent neutralino interaction with
various nuclei, in particular with helium 3He [3], 	uorine 19F [3Ä5], sodium
23Na [3Ä6], aluminium 27Al [7], silicon 29Si [4, 5, 8], chlorine 35Cl [8], potas-
sium 39K [7], germanium 73Ge [8, 9], niobium 93Nd [10], iodine 127I [6],
xenon 129Xe [6], 131Xe [6, 11, 12], tellurium 123Te [11], tellurium 125Te [6],
lead 208Pb [3, 13]. The zero-momentum transfer limits (mostly quenching) were
investigated for the target nuclei Cd, Cs, Ba, and La in [11,14,15].

A dark matter event is an elastic scattering of a relic neutralino χ (or χ̃)
on the target nucleus (A, Z), which results in a nuclear recoil with energy ER

detected by a proper detector. The differential event rate in respect to the nuclear
recoil energy is a subject of experimental measurements. It depends on the
distribution of the relic neutralinos in the solar vicinity f(v) and the cross section
of neutralinoÄnucleus elastic scattering [16Ä23]. The differential event rate per
unit mass of the target material takes the form

dR

dER
= N

ρχ

mχ

vmax∫
vmin

dvf(v)v
dσ

dq2
(v, q2). (1)

Here, N = N/A, N and A stand for the Avogadro number and the atomic
mass in AMU, respectively. The typical value of the nuclear recoil energy
ER = q2/(2MA) is about 10−6mχ. MA denotes the nuclear mass.

The neutralinoÄnucleus elastic scattering cross section for spin-nonzero (J �=
0) nuclei is a sum of the coherent (spin-independent, or SI) and axial (spin-



NUCLEAR SPIN STRUCTURE IN DARK-MATTER SEARCH 259

dependent, or SD) terms [8,12,24]:

dσA

dq2
(v, q2) =

∑
|M|2

π v2(2J + 1)
=

SA
SD(q2)

v2(2J + 1)
+

SA
SI(q

2)
v2(2J + 1)

=

=
σA

SD(0)
4µ2

Av2
F 2

SD(q2) +
σA

SI(0)
4µ2

Av2
F 2

SI(q
2). (2)

The normalized-to-unity (F 2
SD,SI(0) = 1) nonzero-momentum-transfer nuclear

form factors

F 2
SD,SI(q

2) =
SA

SD,SI(q
2)

SA
SD,SI(0)

(3)

can be expressed through the nuclear structure functions as follows [8,12,24]:

SA
SI(q) =

∑
L even

|〈J ||CL(q)||J〉|2 � |〈J ||C0(q)||J〉|2,

SA
SD(q) =

∑
L odd

(
|〈N ||T el5

L (q)||N〉|2 + |〈N ||L5
L(q)||N〉|2

)
.

(4)

Here, the double vertical lines denote the reduced matrix element. The explicit
form of the transverse electric T el5(q) and longitudinal L5(q) multipole projec-
tions of the axial vector current operator, scalar function CL(q) and SA

SI,SD(q) at
zero momentum transfer can be found in the Appendix. For q = 0 the nuclear
SD and SI cross sections (in (2)) take the forms

σA
SI(0) =

4µ2
A SSI(0)

(2J + 1)
=

µ2
A

µ2
p

A2σp
SI(0), (5)

σA
SD(0) =

4µ2
ASSD(0)

(2J + 1)
=

4µ2
A

π

(J + 1)
J

{
ap〈SA

p 〉 + an〈SA
n 〉

}2
= (6)

=
µ2

A

µ2
p,n

(J + 1)
3 J

{√
σp

SD(0)〈SA
p 〉 + sign (apan)

√
σn

SD(0)〈SA
n 〉

}2

. (7)

Here, µA =
mχMA

mχ + MA
is the reduced mass of the neutralino and the nucleus

and it is assumed that µ2
n = µ2

p. The dependence on effective neutralinoÄquark
couplings Cq and Aq in the underlying (SUSY) theory (see the Appendix)

Leff =
∑

q

(Aqχ̄γµγ5χq̄γµγ5q + Cqχ̄χq̄q) + . . . (8)
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and on the spin (∆(p,n)
q ) and the mass (f (p,n)

q ) structure of nucleons enter into
these formulas via the zero-momentum-transfer proton and neutron SI and SD
cross sections:

σp
SI(0) = 4

µ2
p

π
c2
0, cp,n

0 =
∑

q

Cqf
(p,n)
q ; (9)

σp,n
SD (0) = 12

µ2
p,n

π
a2

p,n, ap =
∑

q

Aq∆(p)
q , an =

∑
q

Aq∆(n)
q . (10)

The factors ∆(p,n)
q , which parameterize the quark spin content of the nucleon, are

deˇned as 2∆(n,p)
q sµ ≡ 〈p, s|ψ̄qγ

µγ5ψq|p, s〉(p,n). The total nuclear spin (proton,
neutron) operator is given by

Sp,n =
A∑
i

sp,n(i), (11)

where the index i runs over all nucleons.
The expectation values of the spin and angular operators are evaluated, as a

rule, in their z projection by assuming the state with the maximal value of the
angular momentum projection MJ = J :

〈S〉 ≡ 〈N |S|N〉 ≡ 〈J, MJ = J |Sz|J, MJ = J〉. (12)

Thus 〈Sp(n)〉 is the total spin of protons (neutrons) averaged over all nucleons of
the nucleus (A, Z).

The mean velocity 〈v〉 of the relic neutralinos of our Galaxy is about
300 km/s = 10−3c. Assuming qmaxR � 1, where R is the nuclear radius
and qmax = 2µAv is the maximum of the momentum transfer in the process of
the χA scattering, the spin-dependent matrix element takes a simple form (zero
momentum transfer limit) [6, 7]:

M = C〈N |apSp + anSn|N〉sχ = CΛ〈N |J|N〉sχ. (13)

Here, sχ denotes the spin of the neutralino, and

Λ =
〈N |apSp + anSn|N〉

〈N |J|N〉 =
〈N |(apSp + anSn)J|N〉

J(J + 1)
. (14)

Note a coupling of the spin of χ to the spin carried by the protons and the
neutrons. The uncertainties arising from the electroweak and QCD scale physics
are incorporated in the factors ap and an. The normalization factor C involves the
coupling constants, the masses of the exchanged bosons and the mixing parameters
relevant to the lightest supersymmetric particle (LSP), i.e., it is not related to the
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associated nuclear matrix elements [25]. The above conclusions concerning the
spin-dependent part of the neutralinoÄnucleus scattering amplitude are also valid
for the amplitude of any Majorana WIMP-nucleus scattering process. In the limit
of zero momentum transfer q = 0 the spin structure function in Eq. (4) reduces
to the form

SA
SD(0) =

2J + 1
π

Λ2J(J + 1). (15)

The nuclear matrix element M in Eq. (13) is often related to the matrix element
of the nuclear magnetic moment, which also consists of the matrix elements of
the total proton and neutron spin operators:

µ = 〈N |gs
nSn + gl

nLn + gs
pSp + gl

pLp|N〉. (16)

The free particle g factors (gyromagnetic ratios) are given (in nuclear magnetons)
by:

gs
n = −3.826, gl

n = 0, gs
p = 5.586, gl

p = 1. (17)

The nuclear magnetic moment µ is often used as a benchmark for the accuracy
of the calculation of Sp and Sn [6, 8].

If the neutralino mass mχ is larger than few tens of GeV, the value of the
product qR is no longer negligible and the so-called ˇnite momentum transfer limit
has to be considered in the case of the neutralino scattering on medium-heavy and
heavy nuclei. The corresponding formalism is a generalization of that used for the
description of weak and electromagnetic semileptonic interactions in nuclei. We
shall follow the conventions of [6, 8]. There is an advantage to use the isospin
instead of the protonÄneutron representation when discussing χA scattering at
ˇnite momentum transfer. By rewriting the isoscalar and isovector coupling
constants as a0 = an + ap and a1 = ap − an, respectively, the spin-dependent
cross section SA

SD(q) decouples into the isoscalar term S00, the isovector term
S11, and the interference term S01 as follows:

SA
SD(q) = a2

0S00(q) + a2
1S11(q) + a0a1S01(q). (18)

The structure functions in Eq. (18) consist of the expectation values of operators
jL(qr)[YLσ]L±1 (L even), which depend on spin and spatial coordinates. Using
the decomposition of SA

SD(q) in (18) one can obtain structure functions for χ of
arbitrary composition.

The cross section of neutralinoÄnucleus scattering at zero momentum transfer
exhibits a strong dependence on the details of the nuclear ground state [5]. The
goal of this review is to collect the results of different calculations and discuss
their spread and relevance.
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1. THE ZERO MOMENTUM TRANSFER LIMIT

Only nuclei with odd number of either protons or neutrons possess nonzero
total nuclear spin. At ˇrst, the independent single-particle shell model (ISPSM)
was employed by Goodman and Witten [26] and later by others [18, 27, 28] to
estimate the spin content of the nucleus for the detection of dark matter. This
model utilizes the shell structure of the nucleus, in particular the fact that if certain
magic numbers of nucleons occur in the nucleus, it exhibits remarkable stability
properties, and the ground state expectation values of the total spin J and the
parity of the nucleus can be described by those of the extra nucleon.

For nuclei whose angular momentum J is given by a single neutron (proton)
with spin s and the orbital momentum L, J = L+s (the even number of nucleons
which remain from pairs with the opposite angular momentum projection and zero
spin, i.e., they do not contribute to J), we have [28]:

〈SA
n(p)〉 =

J(J + 1) − L(L + 1) + 3/4
2J + 2

, 〈SA
p(n)〉 = 0. (19)

In the ISPSM the entire angular momentum J and the parity of the oddÄodd
nucleus (A, Z) are identiˇed with a single proton (Z-odd) or neutron (Z-even)
state. Then the spin matrix elements are given by Eq. (19).

The ISPSM offers only a rough estimate of the spin matrix elements. From
Tables 1Ä13 it follows that the ISPSM predictions signiˇcantly overestimate the
values obtained in realistic calculations. The ISPSM results are qualitatively good
only for light nuclei with the single nucleon outside the closed shell (e.g., 17O);
however, they become increasingly poor for heavier isotopes, especially for those
with many particles outside the closed shells. The realistic calculations take into
account the complex structure of the nuclear wave functions, the fact that the
contributions to spin matrix elements both from paired nucleons and unpaired
ones cannot be neglected and the phenomenon that the free nucleon structure
coefˇcients are renormalized when nuclear medium effects are relevant. These
effects are known to play an important role in the calculation of the matrix
elements of the magnetic dipole moment, too (see, for example, [15]).

There are several elaborated nuclear structure approaches which lead to more
accurate predictions of spin matrix elements associated with the dark matter
detection on nuclei in comparison with the ISPSM. A full list of these models,
to our knowledge, includes the Odd Group Model (OGM) [29] and the extended
OGM (EOGM) [24, 29] of Engel and Vogel, the Interacting Boson Fermion
Model (IBFM) of Iachello, Krauss, and Maino [15], the theory of Finite Fermi
Systems (TFFS) of Nikolaev and Klapdor-Kleingrothaus [30], the Quasi TammÄ
Dancoff Approximation (QTDA) of Engel [12], the nuclear shell model (SM)
applied by Pacheco and Strottman [14], Engel, Pittel, Ormand and Vogel [10],
Engel, Ressell, Towner and Ormand [7], Ressell et al. [8], Ressell and Dean [6];
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Table 1. Zero momentum spin structure of light nuclei (A < 13) in different models

1H (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 1/2 0 2.793
OGM, EllisÄFlores [28, 39] 0.5 0 (2.793)exp

3He (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.56 (−2.128)exp

EOGM (gA/gV = 1), EngelÄVogel [29] −0.081 0.552 (−2.128)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] −0.021 0.462 (−2.128)exp

7Li (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 1/2 0 3.793
OGM, EngelÄVogel [29] 0.38 0 (3.256)exp

SM, PachecoÄStrottman [14] 0.497 0.004 Å

9Be (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.31 (−1.178)exp

SM, PachecoÄStrottman [14] 0.007 0.415 Å

11B (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 1/2 0 3.793
OGM, EngelÄVogel [29] 0.264 0 (2.689)exp

EOGM (gA/gV = 1), EngelÄVogel [29] 0.292 0.006 (2.689)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.264 0.034 (2.689)exp

SM, PachecoÄStrottman [14] 0.292 0.008 Å

Note. The measured magnetic moments used as input are enclosed in parentheses.

and by Kosmas, Vergados et al. [3, 5, 13] to different nuclear systems, the so-
called ®hybrid¯ model of Dimitrov, Engel and Pittel [9] and the perturbation
theory (PT) based on calculations of Engel et al. [7].

The ISPSM predictions are fairly accurate for near-closed-shell nuclei, but
further away they tend to overestimate the spin contribution to the magnetic mo-
ment. In an open-shell nucleus, the last odd particle polarizes the other nucleons
in the direction opposite to its own spin, which results in a spin-quenching effect
entirely absent in the single-particle picture. Denying the idea about importance of
only the last odd nucleon Engel and Vogel arrived at the ®odd-group¯ model [29]
by assuming that the nuclear spin is carried by the ®odd¯ unpaired group of
protons or neutrons and only one of either 〈SA

n 〉 or 〈SA
p 〉 is nonzero. The odd-

group spin matrix elements are expressed with the measured nuclear magnetic
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Table 2. Zero momentum spin structure of light nuclei (11 < A < 21) in different
models

13C (LJ = P1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM 0 −0.167 0.638
OGM 0 −0.183 (0.702)exp

EOGM (gA/gV = 1), EngelÄVogel [29] −0.009 −0.172 (0.702)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] −0.026 −0.155 (0.702)exp

15N (LJ = P1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EngelÄVogel [29] −0.167 0 −0.264
OGM, EngelÄVogel [29] −0.167 0 (−0.283)exp

EOGM (gA/gV = 1), EngelÄVogel [29] −0.145 0.037 (−0.283)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] −0.127 0.019 (−0.283)exp

17O (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.49 (−1.894)exp

EOGM (gA/gV = 1), EngelÄVogel [29] −0.036 0.508 (−1.894)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.019 0.453 (−1.894)exp

SM, PachecoÄStrottman [14] 0 0.5 Å

19F (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 1/2 0 2.793
OGM, EngelÄVogel [29] 0.46 0 (2.629)exp

EOGM (gA/gV = 1), EngelÄVogel [29] 0.415 −0.047 (2.629)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.368 −0.001 (2.629)exp

SM, PachecoÄStrottman [14] 0.441 −0.109 Å
SM, Divari et al. [5] 0.4751 −0.0087 2.91

moment µ as

〈SA
p 〉 =

µ − gl
pJ

gs
p − gl

p

=
µ − J

4.586
, 〈SA

n 〉 =
µ − gl

nJ

gs
n − gl

n

=
−µ

3.826
, (20)

where g denote gyromagnetic factors of the free nucleon (see (17)). The OGM
has been found successful, e.g., in the case of 29Si with J = 1/2 and unpaired
neutrons. The experimental value of the nuclear magnetic moment µ = −0.555
implies 〈S29

p 〉 ≈ 0, and 〈S29
n 〉 ≈ 0.15, which is [16] in good agreement with the

shell-model calculation of Ressell et al. [8]. The results of OGM calculations are
collected in Tables 1Ä13. We note that for 73Ge with a complex nuclear structure
the odd-group model prediction disagrees with the realistic calculation of [8, 9].

The odd-group model is a signiˇcant improvement in comparison with the
ISPSM. The weak points of this approach are the facts that the roles of small but
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Table 3. Zero momentum spin structure of light nuclei (19 < A < 29) in different
models

21Ne (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM 0 1/2 −1.913
OGM 0 0.173 (−0.662)exp

EOGM (gA/gV = 1), EngelÄVogel [29] 0.020 0.294 (−0.662)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.047 0.2646 (−0.662)exp

23Na (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM 1/2 0 3.793
SM, RessellÄDean [6] 0.2477 0.0198 2.2196
OGM, RessellÄDean [6] 0.1566 0.0 (2.218)exp

SM, Divari et al. [5] 0.2477 0.0199 2.22

25Mg (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM 0 1/2 −1.913
OGM 0 0.223 (−0.855)exp

EOGM (gA/gV = 1), EngelÄVogel [29] 0.040 0.376 (−0.855)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.073 0.343 (−0.855)exp

27Al (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 1/2 0 4.793
OGM, EngelÄVogel [29] 0.25 0 (3.642)exp

EOGM (gA/gV = 1), EngelÄVogel [29] 0.333 0.043 (3.642)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.304 0.072 (3.642)exp

SM, Engel et al. [7] 0.3430 0.0296 3.584

not vanishing angular momenta of the even system and of the meson-exchange
currents, which can renormalize the g factors in Eq. (20), are ignored. Engel and
Vogel improved the OGM [29] by using additional information about β-decay
ft values and measured magnetic momenta of ®mirror pairs¯ for nuclear systems
with (A < 50). For these nuclei they proposed to use two relations [29]:

(
gA

gV

)2

(〈Sodd〉 − 〈Seven〉)2 =
(

6170
ft

− 1
)

J

J + 1
,

(21)
µIS = J + 0.76 (〈Sodd〉 + 〈Seven〉) + µx.

Here, gA and gV are the axial vector and vector coupling constants, respectively;
µx is a small correction induced by heavy meson exchange and µIS is a sum of
two mirror magnetic moments (isoscalar moment). For free nucleons we have
gA = 1.25 and gV = 1.0. However, in the nuclear matter due to the effect of
renormalization the value gA/gV = 1.00 ± 0.02 is often considered. For light
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Table 4. Zero momentum spin structure of light nuclei (29 < A < 41) in different
models

29Si (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.15 (−0.555)exp

EOGM (gA/gV = 1), EngelÄVogel [29] 0.054 0.204 (−0.555)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.069 0.189 (−0.555)exp

SM, Ressell et al. [8] −0.002 0.13 −0.50
SM, Divari et al. [5] −0.0019 0.1334 −0.50

31P (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM 0.5 0 2.793
OGM 0.138 0 (1.132)exp

EOGM (gA/gV = 1), EngelÄVogel [29] 0.181 0.032 (1.132)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] 0.166 0.047 (1.132)exp

35Cl (LJ = D3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.3 0 0.13
OGM, EngelÄVogel [29] −0.15 0 (0.822)exp

EOGM, EngelÄVogel [29] −0.094 0.014 (0.822)exp

SM, PachecoÄStrottman [14] −0.059 −0.011 Å
SM, Ressell et al. [8] −0.051 −0.0088 Å

39K (LJ = D3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM −0.3 0 0.324
OGM −0.242 0 (0.391)exp

EOGM (gA/gV = 1.0), EngelÄVogel [29] −0.196 0.055 (0.391)exp

EOGM (gA/gV = 1.25), EngelÄVogel [29] −0.171 0.030 (0.391)exp

PT with Force I, Engel et al. [7] −0.197 0.051 0.420
PT with Force II, Engel et al. [7] −0.184 0.054 0.181

nuclei the spin matrix elements 〈SA
p 〉 and 〈SA

n 〉 evaluated within the extended
odd group model (EOGM) [29] are listed in Tables 1Ä4. We see that there is
quite good agreement between the EOGM (with gA/gV = 1.00) and the more
sophisticated shell-model calculations for light oddÄeven isotopes performed by
Pacheco and Strottman [14]. Their calculations for A < 16 nuclei assumed the
CohenÄKurath interaction [31] and a complete basis within the p-shell model
space. For A > 16 the Reid interaction was considered and the basis consisted
of all allowed states within the 1s-0d shell-model space. The results of [14] are
given in Tables 1Ä4. For heavier mirror nuclei with A close to 50, the shell-model
calculations are difˇcult due to a large amount of conˇgurations which have to
be taken into account.
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Table 5. Zero momentum spin structure of light nuclei (45 < A < 73) in different
models

47Ti (LJ = F5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 −0.357 1.367
OGM, EngelÄVogel [29] 0 0.21 (−0.788)exp

49Ti (LJ = F7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.29 (−1.104)exp

51V (LJ = F7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 1/2 0 5.79
OGM, EngelÄVogel [29] 0.36 0 (5.149)exp

55Mn (LJ = F5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] −0.357 0 5.79
OGM, EllisÄFlores [39, 40] 0.264 0 (3.453)exp

59Co (LJ = F7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 1/2 0 5.79
OGM, EllisÄFlores [39, 40] 0.25 0 (4.627)exp

67Zn (LJ = F5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 −0.357 1.367
OGM, EngelÄVogel [29] 0 −0.23 (0.875)exp

69Ga (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.5 0 3.793
OGM, EngelÄVogel [29] 0.11 0 (2.017)exp

71Ga (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.5 0 3.793
OGM, EngelÄVogel [29] 0.23 0 (2.562)exp

The light nucleus 27Al is one of the active ingredients of a very high-
resolution and low-threshold sapphire-crystal (Al2O3)-based detector for dark
matter search. Engel, Ressell, Towner, and Ormand [7] performed calculation
of proton and neutron spin expectation values for this isotope with the help of
the Lanczos m-scheme shell-model code CRUNCHER [32]. The nucleus 27Al
lies in the middle of the sd shell and the m-scheme basis for 27Al contains
80115 Slater determinants. Good agreement between the calculated and measured
spectroscopy of excited states was achieved for this nucleus. In addition, the
experimental value of the magnetic moment µexp = 3.6415µN (µN = e�/2mp is
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Table 6. Zero momentum spin structure of light nuclei (71 < A < 95) in different
models

73Ge (LJ = G9/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 0.5 −1.913
OGM, EngelÄVogel [29] 0 0.23 (−0.879)exp

IBFM, Iachello et al. [8, 15] −0.009 0.469 −1.785
IBFM (quenched), Iachello et al. [8, 15] −0.005 0.245 (−0.879)exp

TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0 0.34 Å
SM (small), Ressell et al. [8] 0.005 0.496 −1.468
SM (large), Ressell et al. [8] 0.011 0.468 −1.239
SM (large, quenched), Ressell et al. [8] 0.009 0.372 (−0.879)exp

®Hybrid¯ SM, Dimitrov et al. [9] 0.030 0.378 −0.920

75As (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.5 0 3.793
OGM, EngelÄVogel [29] −0.01 0 (1.439)exp

79Br (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.5 0 3.793
OGM, EngelÄVogel [29] 0.13 0 (2.106)exp

81Br (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.5 0 3.793
OGM, EngelÄVogel [29] 0.17 0 (2.271)exp

91Zr (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 0.5 −1.913
OGM, EngelÄVogel [29] 0 0.34 (−1.304)exp

93Nb (LJ = G9/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.5 0 6.793
OGM, EngelÄVogel [29] 0.36 0 (6.171)exp

SM (large), Engel et al. [10] 0.48 0.04 6.36
SM (small), Engel et al. [10] 0.46 0.08 5.88

the nuclear magneton) was reproduced in calculation well. The theoretical value
µ = 3.584µN was obtained with the help of the free-particle g factors [7]. We
recall that calculation of the magnetic moment requires evaluation of the same
spin matrix elements needed to determine the WIMP structure functions at q2 = 0.
The corresponding values of 〈S27

p 〉 and 〈S27
n 〉 are given in Table 3. We note that

the authors calculated structure functions S(q) of 27Al at q �= 0 as well [7].
In the case of 39K the shell-model diagonalization needed for the calculation

of the nuclear spin matrix elements requires severe truncations to the active model
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Table 7. Zero momentum spin structure of light nuclei (95 < A < 115) in different
models

99Ru (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 0 1/2 −1.913
OGM, EllisÄFlores [39, 40] 0 0.17 (−0.6381)exp

101Ru (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 0 1/2 −1.913
OGM, EllisÄFlores [39, 40] 0 0.19 (−0.719)exp

107Ag (LJ = P1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.167 0 −0.264[−0.07]
OGM, EngelÄVogel [29] −0.13 0 (−0.114)exp

109Ag (LJ = P1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.167 0 −0.264[−0.07]
OGM, EllisÄFlores [39, 40] −0.14 0 (−0.131)exp

111Cd (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.16 (−0.595)exp

113Cd (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.16 (−0.622)exp

IBFM, Iachello et al. [15] −0.001 0.488 Å
IBFM (quenched), Iachello et al. [15] −0.0 0.162 Å
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0 0.175 Å

115Cd (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, NikolaevÄKlapdor-Kleingrothaus [30] 0 1/2 Å
IBFM, Iachello et al. [15] −0.001 0.488 Å
IBFM (quenched), Iachello et al. [15] −0.0 0.168 Å
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0 0.195 Å
OGM 0 0.169 (−0.6388)exp

space. The problem is that 39K is so near the boundary between the sd and pf
shells and excitations of particles into higher shells can have signiˇcant effects
that are often not well simulated by effective operators. Thus, for this nucleus
Engel, Ressell, Towner, and Ormand [7] used an alternative scheme based on
perturbation theory (PT) for the evaluation of spin matrix elements. It was
successfully implemented in calculations of several spin-dependent observables
in closed-shell-plus (or minus)-one nuclei [33]. The details of the method and
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Table 8. Zero momentum spin structure of heavy nuclei (114 < A < 125) in different
models

115Sn (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.24 (−0.919)exp

117Sn (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0 0.126 (−1.001)exp

121Sb (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.5 0 4.793
OGM, EllisÄFlores [39, 40] 0.188 0 (3.363)exp

123Sb (LJ = G7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.389 0 1.717
OGM, EllisÄFlores [39, 40] −0.207 0 (2.550)exp

123Te (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
IBFM, Iachello et al. [15] −0.000 0.491 Å
IBFM (quenched), Iachello et al. [15] −0.000 0.192 Å
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0.21 Å
OGM 0 0.192 (−0.737)exp

125Te (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0.0 0.23 (−0.889)exp

IBFM, Iachello et al. [15] −0.0008 0.499 (−0.889)exp

IBFM (quenched), Iachello et al. [15] −0.0004 0.231 (−0.889)exp

TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0.22 Å
SM (Bonn A), RessellÄDean [6] 0.001 0.287 −1.015 {−0.749}eff

SM (Nijmegen II), RessellÄDean [6] −0.0003 0.323 −1.134 {−0.824}eff

Note. Calculations of the magnetic moment using effective g factors are given in curly
brackets.

the calculations can be found in Ref. 7. The authors considered two different
residual interactions. One (denoted as I in Table 4) is related to the one-boson-
exchange potential of the Bonn type, but it is limited only to four or ˇve important
meson exchanges. The resulting interaction has a weak tensor-force component
typical of Bonn potentials. The other (denoted as II in Table 4) is represented
by full G-matrix elements of the Paris potential parameterized in terms of sums
over Yukawa functions of various ranges and strengths. Interaction II exhibits a
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Table 9. Zero momentum spin structure of heavy nuclei (125 < A < 127) in different
models

125I (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EngelÄVogel [29] 1/2 0 4.793
IBFM, Iachello et al. [15] 0.460 0.005
IBFM (quenched), Iachello et al. [15] 0.159 0.002
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0.18
OGM 0.07 0 (2.821)exp

127I (LJ = D5/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 1/2 0 4.793
OGM, EngelÄVogel [29] 0.07 0 (2.813)exp

IBFM, Iachello et al. [15] 0.464 0.010 (2.813)exp

IBFM (quenched), Iachello et al. [15] 0.154 0.003 (2.813)exp

TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0.15 0 Å
SM (Bonn A), RessellÄDean [6] 0.309 0.075 2.775 {2.470}eff

SM (Nijmegen II), RessellÄDean [6] 0.354 0.064 3.150 {2.7930}eff

Note. Calculations of the magnetic moment using effective g factors are given in curly
brackets.

strong tensor force. The quality of the wave functions obtained was judged in
terms of magnetic moments and GamowÄTeller matrix elements, including meson-
exchange currents, isobar currents, and other relativistic effects. The results were
presented for both isoscalar and isovector magnetic moments and their sum, i.e.,
for the magnetic moment of 39K, whose value is given in Table 4. The magnetic
moments calculated with the help of both interactions differ only slightly from
each other and showed good agreement with corresponding experimental values.
The same nuclear wave functions of 39K were also used for the calculation of
〈S39

p 〉 and 〈S39
n 〉 (Table 4) and the structure function S(q) [7]. It is worthwhile

to notice that for both types of interactions the zero-momentum transfer spin
matrix elements coincide well with those obtained within the phenomenological
EOGM [29].

For dark matter targets constructed of heavy nuclei, in particular, Ge, I, and
Xe, the ˇrst elaborated calculation of spin-dependent matrix elements relevant to
WIMP scattering was performed by Iachello, Krauss, and Maino within the In-
teracting Boson Fermion Model (IBFM) [15]. The applied IBFM wave functions
were tested in a comprehensive analysis of excitation energies, electromagnetic
transition rates and intensities of transfer reactions [15]. In this model the total
spin operator has the form S =

∑
sπ

p +
∑

sν
n + sp,n, where s

π(ν)
p(n) are the paired

proton (neutron) spins, and sp(n) is the remaining unpaired proton (neutron) spin.
To estimate the matrix elements of the paired nucleons one should know the struc-
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Table 10. Zero momentum spin structure of heavy nuclei (128 < A < 133) in different
models

129Xe (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 1/2 −1.913
OGM, EngelÄVogel [29] 0.0 0.2 (−0.778)exp

IBFM, Iachello et al. [15] −0.000 0.430 (−0.778)exp

IBFM (quenched), Iachello et al. [15] −0.000 0.200 (−0.788)exp

TFFS, NikolaevÄKlapdor-Kleingrothaus [30] 0.25 Å
SM (Bonn A), RessellÄDean [6] 0.028 0.359 −0.983 {−0.634}eff

SM (Nijmegen II), RessellÄDean [6] 0.0128 0.300 −0.701{−0.379}eff

131Xe (LJ = D3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 −0.3 1.148
OGM, EngelÄVogel [29] 0.0 −0.18 (0.692)exp

IBFM, Iachello et al. [15] 0.000 −0.280 (0.692)exp

IBFM (quenched), Iachello et al. [15] 0.000 −0.168 (0.692)exp

TFFS, NikolaevÄKlapdor-Kleingrothaus [30] −0.186 Å
SM (Bonn A), RessellÄDean [6] −0.009 −0.227 0.980 {0.637}eff

SM (Nijmegen II), RessellÄDean [6] −0.012 −0.217 0.979 {0.347}eff

QTDA, Engel [12] −0.041 −0.236 0.70

133Xe (LJ = D3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 −0.3 1.148
IBFM, Iachello et al. [15] 0.000 −0.257
IBFM (quenched), Iachello et al. [15] 0.000 −0.176
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] −0.201
OGM 0.0 −0.213 (0.813)exp

Note. Calculations of the magnetic moment using effective g factors are given in curly
brackets.

ture of Cooper pairs (bosons), which were incorporated in the model by ˇtting
the matrix elements of the magnetic moments. The authors end with the conclu-
sion that the ISPSM predictions are generally within 15% of their results for the
nucleon spin matrix elements [15]. If quenching of free-particle coefˇcients in
the nuclear environment is considered, the value of the spin matrix elements is
reduced by an additional factor not exceeding 60%. The results obtained are listed
in Tables 6Ä11. We note that the spin-dependent WIMP-nucleus cross section
associated with the IBFM spin matrix elements is always smaller than the ISPSM
prediction but not more than a factor of 5 [15]. While the IBFM can incorporate
the dominant collective effects, it has some difˇculty in including the spin polar-
ization, which plays a crucial role in axial vector scattering. Unfortunately, this
approach cannot be readily applied to the case of nonzero momentum transfer [5].
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Table 11. Zero momentum spin structure of heavy nuclei (133 < A < 141) in different
models

133Cs (LJ = G7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.389 0 1.717
OGM, EngelÄVogel [29] −0.20 0 (2.582)exp

IBFM, Iachello et al. [15] −0.370 0.003
IBFM (quenched), Iachello et al. [15] −0.225 0.002
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] −0.230

135Cs (LJ = G7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.389 0 1.717
OGM −0.167 0 (2.734)exp

IBFM, Iachello et al. [15] −0.373 0.002
IBFM (quenched), Iachello et al. [15] −0.201 0.001
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] −0.199

135Ba (LJ = D3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 −0.30 1.148
OGM 0 −0.219 (0.838)exp

IBFM, Iachello et al. [15] −0.007 −0.226
IBFM (quenched), Iachello et al. [15] −0.004 −0.145
TFFS, NikolaevÄKlapdor-Kleingrothaus [30] −0.18

137La (LJ = G7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.389 0 1.717
OGM −0.176 0 (2.695)exp

IBFM, Iachello et al. [15] −0.386 0.0006
IBFM (quenched), Iachello et al. [15] −0.212 0.0003

139La (LJ = G7/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] −0.389 0 1.717
OGM, EngelÄVogel [29] −0.16 0 (2.783)exp

In [5], Vergados with coauthors investigated the spin-dependent elastic neu-
tralino scattering with light nuclei 19F, 23Na, and 29Si. The spin contribution
to the differential cross section was obtained by the shell-model calculations in
the sd shell using the Wildenthal interaction, which was developed and tested
over many years. This interaction is known to reproduce accurately many nuclear
observables for sd shell nuclei. The Wildenthal two-body matrix elements as
well as the single-particle energies are determined by ˇts to experimental data
in nuclei from A = 17 to A = 39. The shell-model wave functions used by
the authors were tested in the calculation of the low-energy spectra and ground
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Table 12. Zero momentum spin structure of heavy nuclei (143 < A < 205) in different
models

155Gd (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 0 0.5 −1.913
OGM, EllisÄFlores [39, 40] 0 0.07 (−0.259)exp

157Gd (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 0 0.5 −1.913
OGM, EllisÄFlores [39, 40] 0 0.09 (−0.340)exp

183W (LJ = P1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 0 −0.17 0.638
OGM, EllisÄFlores [39, 40] 0 −0.03 (0.118)exp

191Ir (LJ = D3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] −0.30 0 0.148
OGM, EllisÄFlores [39, 40] −0.295 0 (0.151)exp

193Ir (LJ = D3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] −0.30 0 0.148
OGM, EllisÄFlores [39, 40] −0.292 0 (0.164)exp

199Hg (LJ = P1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 −0.17 0.638
OGM, EngelÄVogel [29] 0 −0.13 (0.506)exp

201Hg (LJ = P3/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] 0 0.5 −1.913
OGM, EllisÄFlores [39, 40] 0 0.146 (−0.560)exp

203Tl (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.50 0 2.793
OGM, EngelÄVogel [29] 0.24 0 (1.662)exp

205Tl (LJ = S1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0.50 0 2.793
OGM, EngelÄVogel [29] 0.25 0 (1.638)exp

state magnetic moment. Rather good agreement between theoretical results and
experimental data was achieved. This fact increases the conˇdence level of the
calculated spin matrix elements which are listed in Tables 2Ä4. It is worth
mentioning that these spin matrix elements are in good agreement with those of
previous calculations [8]. The authors of Ref. 5 found 19F to be the most favor-
able target for dark matter search via spin-dependent interaction of relatively light
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Table 13. Zero momentum spin structure of heavy nuclei (A < 209) in different models

207Pb (LJ = P1/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [28, 39] 0 −0.17 0.638
OGM, EngelÄVogel [29] 0 −0.15 (0.593)exp

SM, KosmasÄVergados [3, 13] −0.010 −0.149

209Bi (LJ = H9/2) 〈Sp〉 〈Sn〉 µ (in µN )

ISPSM, EllisÄFlores [39, 40] −0.41 0 2.63
OGM, EllisÄFlores [39, 40] −0.085 0 (4.111)exp

dark matter particles. It is favored due to the fact that the corresponding spin
matrix element is not quenched and that various isospin channels add coherently.
Further, it was demonstrated that the effect of the nuclear structure on the elastic
scattering cross section of LSP with light nuclei (including q �= 0 behavior) is
well understood, both for coherent and spin modes [4, 5].

The Theory of Finite Fermi Systems (TFFS) was used by Nikolaev and
Klapdor-Kleingrothaus [30] to describe spin matrix elements in the nuclear me-
dium and to evaluate quenching of zero-momentum nuclear spin matrix elements
of heavy nuclei due to residual interactions. Contrary to the OGM and the
IFBM studies the TFFS calculation of spin matrix elements is not related with
the experimental value of the associated magnetic moment. The TFFS proton and
neutron spin averages 〈Sp(n)〉 are suppressed in comparison with the correspond-
ing ISPSM predictions and in some cases they differ signiˇcantly from the OGM
values, too [29]. However, they agree well (with exception of the case of 73Ge)
with the results obtained by Pacheco and Strottman [14] in a completely different
IFBM approach (Tables 6Ä11).

The momentum transfer dependence of the structure function S(q) associated
with scattering of dark-matter particles from 131Xe, a promising heavy target
for the dark-matter search experiment, was investigated by Engel [12] by using
the conˇguration-mixing quasiparticle TammÄDancoff approximation (QTDA). In
the zeroth order the ground state of 131Xe was represented as the 1d3/2 quasi-
neutron excitation of the evenÄeven core |0〉 treated in the BCS approximation
(BCS-based model of the Fermi surface). In the case of odd-multipole op-
erators (4) the one-quasiparticle approximation corresponds to the ISPSM ap-
proach of [28]. In order to incorporate nuclear structure corrections originat-
ing from the residual interaction, three-quasiparticle conˇgurations of the form
[ν†

d3/2[ν
†
kν†

l ]K ]3/2|0〉 and [ν†
d3/2[π

†
kπ†

l ]
K ]3/2|0〉 were admixed. Here π† and ν†

represent the proton and neutron quasiparticle creation operators, K is an arbi-
trary intermediate angular momentum, and k, l run over a valence space consisting
of the 2s, 1d, 0g, and 0h harmonic oscillator levels [12]. Despite the fact that the
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amplitudes associated with the admixed three-quasiparticle states are small (less
than 5%), these admixtures can lead to a substantial effect. The experimental
value of the magnetic moment of 131Xe, which is about 0.69µN , was reproduced
with an accuracy of 2% in the QTDA (note that the ISPSM value is almost
twice larger). The same approximation scheme results in 〈S131

p 〉 = −0.041 and
〈S131

n 〉 = −0.236 (Table 10).
The neutralinoÄnucleus cross section associated with the spin-dependent in-

teraction is determined by the distribution of the spin in the nucleus. This
observable is difˇcult to describe accurately as the lowest order nucleons create
pairs with zero spin. The spin-dependent scattering mostly takes place near the
nuclear Fermi surface and it is affected by the behavior of relatively few nucle-
ons. The silicon nucleus is relatively light. Thus, shell-model calculations or
arguments based on existing data of magnetic moments (OGM and EOGM) allow
a reliable prediction of deviations from the simple ISPSM picture. A different
type isotope is germanium with a complex nuclear structure. For this nucleus the
reliable calculation of spin expectation values is rather difˇcult. Niobium isotope
93Nb is something in between the above two special cases. It is a heavy nucleus,
which can be represented by a basic shell-model space corresponding to three
protons in the 1p1/2 or 0g9/2 levels and two neutrons in the 1d5/2 level [10].
This model space was considered by Engel, Pittel, Ormand, and Vogel [10] in
the calculation of the magnetic moment for this isotope. They found µ to be
equal to 6.36µN , which exceeds the experimental value µ = 6.17µN . In order
to obtain better agreement with the experiment the authors considered a ®large¯
model space which included all basis states in which one proton or one neutron
is excited from the small model space. Then, they ended up with the magnetic
moment equal to 5.88µN , a value that is smaller. The explanation could be that
meson-exchange currents renormalize orbital proton g factors upwards by about
10%, increasing the µ without altering the values of the nuclear spin matrix el-
ements. The discrepancy between the 〈S93

p,n〉 results obtained within the small
and large model spaces (Table 6) provides an indication of uncertainty of the
nuclear-structure calculation [10].

Germanium isotopes (especially large-spin 73Ge) are considered to be the
most promising material for the direct dark matter search experiment. How-
ever, there are fundamental difˇculties in describing, e.g., the spin content of
73Ge due to its complicated collective structure. Several studies were devoted to
nuclear structure aspects of spin-dependent scattering of neutralinos from 73Ge.
Engel and Vogel (OGM) [29] used measured magnetic moments to estimate
the quenching of the nucleon spin in several heavy nuclei, including germanium.
Iachello, Krauss, and Maino [15] employed the IBFM, and Nikolaev and Klapdor-
Kleingrothaus [30] used the TFFS to calculate the same quantities. There are two
most comprehensive spin structure analyses for 73Ge. A large-basis shell-model
study was performed by Ressell et al. [8], who calculated the full spin-dependent
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neutralino response including q dependence of form factors. An equally compre-
hensive calculation was realized by Dimitrov, Engel, and Pittel [9]. The authors
obtained signiˇcantly different results in comparison with other studies and they
argue that their results are more reliable than the previous ones.

By using a reasonable two-body interaction Hamiltonian and appropriate large
model spaces, Ressell et al. [8] calculated the ground state wave functions for 29Si
and 73Ge. In particular, the universal sd shell interaction of Wildenthal was used
for calculation of the wave functions for silicon. The nuclear wave functions ob-
tained were tested in the analysis of energy pattern of excited states and magnetic
moments. Once reasonable agreement among theoretical results and experimental
data was obtained, the ground-state wave functions were used to calculate the
neutralinoÄnucleus nuclear matrix elements. In addition, ˇnite momentum trans-
fer matrix elements and cross sections for the spin-dependent elastic scattering
of neutralinos from 29Si and 73Ge [8] were evaluated. The computations were
performed by using the Lanczos method m-scheme nuclear shell model (code
CRUNCHER) [32]. The m-scheme basis for 29Si had a dimension of 80115
Slater determinants. In the limit of zero momentum transfer the scattering matrix
elements for 29Si are in general agreement with previous estimates (Table 4).

For the study of 73Ge, Ressell et al. [8] chose the PetrovichÄMcManusÄ
MadsenÄAtkinson interaction [34], which is a reasonable approximation to a
full G-matrix calculation. This interaction proved to be both adequate and
tractable in shell-model applications. Two different model spaces were con-
sidered. The ®small¯ space was determined by an m-scheme basis dimension of
24731 Slater determinants. The ®large¯ space allowed much more excitations with
an m-scheme basis dimension of 117137 Slater determinants. Despite fairly large
size of the bases, rather severe truncations in the space were enacted. The small
space is the smallest one in which it is possible to obtain agreement with the ex-
perimental spectrum energy levels. The dimension of the large basis was limited
by the computer time and the memory storing constraints [8]. No phenomenolog-
ical interaction has been developed for Ge-like nuclei and fairly severe truncations
to the model space have to be imposed to obtain manageable dimensions. Despite
these obstacles, the ground state wave function for 73Ge allowed good description
of the low-lying excited states and the ground state to ground-state spectroscopic
factor. The large model space wave function of 73Ge led to an improved de-
scription of the ground state expectation values, in particular of the value of the
magnetic moment, in comparison with the ISPSM and IBFM estimates. The
calculated magnetic moment µ from [8] exceeds the experiment value, but the
authors stressed that the same quenching of both µ and the GammovÄTeller (GT)
spin matrix elements was almost universally required in shell-model calculations
of all heavy nuclei. Assuming the isovector spin quenching factor to be 0.833,
agreement with the measured µ is obtained. In principle, it is not obvious that
quenching is really needed in neutralino-71Ge scattering but if so, Ressell et al.
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believed that the correct answer might be in the range between the quenched
and unquenched values. It was found (Table 6) that the zero-momentum-transfer
spin-neutron matrix element 〈S73

n 〉 of 73Ge was a factor of 2 larger than the pre-
vious predictions (except, obviously, the ISPSM value). Thus, even if quenching
is assumed, the calculated scattering rate is about twice as large as any of the
estimates made before [8].

A different sophisticated approach for evaluation of the spin structure of 73Ge
was considered by Dimitrov, Engel, and Pittel. It relies on the idea of mixing
variationally determined Slater determinants, in which symmetries are broken but
restored either before or after variation. This approach is described in detail
in [35]. In the calculation of [9] the symmetries broken in the intrinsic states are
those associated with rotational invariance, parity, and axial shape. The hybrid
procedure used restores axial symmetry, parity invariance, and approximate rota-
tional invariance prior to the variation of each intrinsic state. Subsequently, before
mixing the intrinsic states the rotational invariance is fully restored. The proce-
dure allows fully triaxial Slater determinants at the expense of particle-number
breaking. The results of [35] indicate that the trading of number nonconservation
for triaxiality is a good idea, despite the apparent loss of pairing correlations
traditionally associated with the former. Pairing forces evidently induce effective
triaxiality. The numerical results [35] show that the approach is accurate and efˇ-
cient for describing evenÄeven systems while also providing reliable reproduction
of the collective dynamics of odd-mass systems [9].

For 73Ge the calculations were performed by assuming, both for protons
and neutrons, a single-particle model consisting of the full 0f, 1p shell and the
0g9/2 and 0g7/2 levels. The main idea was to include all the single-particle
orbits that could play an important role in reproducing low-energy properties of
the 73Ge [9]. It is well known that a crucial ingredient in any realistic nuclear-
structure calculation is the appropriate form of the nuclear Hamiltonian. The one-
and two-body parts of the Hamiltonian have to be compatible with each other as
well as with the model space. This is difˇcult to achieve because microscopic two-
body interactions, derived for example from a G-matrix, include monopole pieces
that are unable to describe the movement of spherical single-particle levels as one
passes from the beginning to the end of a shell. A proposed procedure for avoiding
this problem consists basically in removing all monopole components from the
two-body interaction and shifting their effects to the single-particle energies. This
procedure was used by Dimitrov, Engel, and Pittel [9] Å their two-body force
was a ˇt to Paris-potential G matrix modiˇed as just described above. The
calculated ground-state magnetic dipole moment is in good agreement with the
experimental value. Ressell et al. [8] in their large space shell-model calculation
were able to reduce µ signiˇcantly to −1.24µN (without direct quenching) but
could not account for the remaining difference. On the contrary, the calculation of
Dimitrov, Engel, and Pittel, despite the small number of intrinsic states, contains
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the full quenching required by experiment [9]. By making a comparison with
the results of Ressell et al. again [8], signiˇcant disagreement is found for the
neutron spin. The calculated value of Dimitrov, Engel, and Pittel is signiˇcantly
smaller (Table 6). The large and negative neutron spin g factor (gs

n = −3.826) is
favored by the correct µ value. The differences in the spins, unlike those in the
orbital angular momenta, carry over into WIMP scattering cross sections. Thus,
following Ressell et al. [8], no signiˇcant increase is expected in the neutralino-
73Ge scattering rate.

The advantage of Dimitrov, Engel, and Pittel's approach for calculation of
neutralino cross sections is that it correctly represents the spin structure, requires
neither quenching at q = 0 nor arbitrary assumptions about the form factor
behavior at q �= 0 [9]. The spin matrix elements depend in general rather
sensitively on the details of the nuclear structure. Since the matrix elements at
q = 0 are often quenched, the momentum dependence of the matrix elements
was more important than it was naively expected. As a matter of fact, one has
to include a lot of conˇgurations to accommodate all multipoles, which result
in very large Hilbert spaces in complex nuclei like 29Si and 73Ge. It will be
therefore a very hard task to substantially improve the calculations of Ressell et
al. [8] and Dimitrov, Engel, and Pittel [9] for these elements.

For evaluations of the spin matrix elements in the heaviest possible nuclei
relevant to dark matter search, Kosmas, and Vergados have chosen 207Pb [3,13].
Among the targets which were considered for direct neutralino detection, 207Pb
stands out as an important candidate. The spin matrix element of this nucleus
has not been evaluated quite accurately, since one expected that the neutralino
spin interaction is important only with light nuclei. But the spin matrix element
in the light systems is quenched. On the other hand, the spin matrix element of
207Pb, especially the isoscalar one, does not suffer unusually large quenching, as
is known from the study of the magnetic moment. It is believed that 207Pb has a
quite simple structure, its ground state can be described as a 2p1/2 neutron hole
outside the doubly magic (closed-shell) nucleus 208Pb. Due to its low angular
momentum, only two multipoles L = 0 and L = 2 can contribute even at large
momentum transfers. One can thus view the information obtained from this
simple nucleus as complementary to that of 73Ge, which has a very complex
nuclear structure [3, 13]. In the q = 0 limit Vergados and Kosmas gave the spin
matrix element in the simple form |J|2 = |f0

AΩ0(0) + f1
AΩ1(0)|2, and found that

Ω0(0) = −0.95659/
√

3, and Ω1(0) = 0.83296/
√

3 [3, 13]. These values were
recalculated in the form of spin variables 〈Sp(n)〉 given in Table 13.

Ressell and Dean [6] have performed most accurate nuclear shell-model calcu-
lations of the neutralinoÄnucleus spin-dependent or axial cross section for several
nuclei in the A = 127 region, which are important for dark matter search. Their
set of structure functions S(q) is valid for all relevant values of the momentum
transfer. Conventional nuclear shell model of Wildenthal [36] quite accurately
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represents spin-dependent neutralinoÄnucleus matrix elements when a reasonable
nuclear Hamiltonian is used in a sufˇciently large model space [6]. Until recently,
both of these ingredients have been absent for nuclei in the 3s2d1g7/21h11/2 shell.
Ressell and Dean considered two residual nuclear interactions based upon recently
developed realistic nucleonÄnucleon Bonn A [37] and Nijmegen II [38] poten-
tials. These two nucleonÄnucleon potentials were used in order to investigate the
sensitivity of the results to the particular nuclear Hamiltonian.

The Bonn-A-based Hamiltonian has been derived for the model space con-
sisting of the 1g7/2, 2d5/2, 3s1/2, 2d3/2, and 1h11/2 orbitals, allowing one to
include all relevant correlations. In order to get good agreement with observables
for nuclei with A ≈ 130, the single-particle energies (SPEs) were adjusted. The
SPEs were varied until reasonable agreement between calculation and experiment
was found for the magnetic moment, the low-lying excited state energy spectrum,
and the quadrupole moment of 127I. Once the SPEs are speciˇed, a reasonable
Hamiltonian can be used for the nuclei under investigation.

To perform a full basis calculation of the 127I ground state properties in
the space consisting of the 1g7/2, 2d5/2, 3s1/2, 2d3/2, and 1h11/2 orbitals, one
would need basis states consisting of roughly 1.3 ·109 Slater Determinants (SDs).
Current calculations can diagonalize matrices with basis dimensions in the range
1−2 · 107 SDs. Therefore clearly severe truncations of the model space are
needed [6]. Fortunately, given the size of the model spaces that can be treated,
a truncation scheme that includes the majority of relevant conˇgurations can be
devised. Finally (after relevant truncations, see details in [6]) the m-scheme
dimension of the 127I model space is about 3 million SDs. The calculated
observables agree well with experiment. These interactions do not seem to prefer
excitation of more than one extra neutron pair to the 1h11/2. Most conˇgurations
have six neutrons in that orbital, while eight are allowed. Hence, this model
space is more than adequate. It is this truncation scheme that was used for the
two Xenon isotopes considered (A = 129 and 131).

In almost every instance, the results of [6] (Tables 8Ä10) show that the spin
〈Si〉 (i = p, n) carried by the unpaired nucleon is greater than that found in the
other nuclear models (except for the ISPSM, where 〈Si〉 is maximal). Despite
these larger values for 〈Si〉, these calculations have signiˇcant quenching of the
magnetic moment and are in good agreement with experiment in all cases. The
larger values of 〈Si〉 are due to the fact that more excitations of the even group
of the nuclei were allowed [6]. The differences in the response due to the two
forces is clearly visible in Tables 8Ä10. In all cases reasonable agreement between
calculation and experiment for the magnetic moment (using free particle g factors)
is achieved. It is obvious that the differences between the two calculations are
nontrivial but they are quite a bit smaller than the differences coming from the
use of alternate nuclear models. This shows that the interaction is not the primary
uncertainty in calculations of the neutralinoÄnucleus spin cross sections [6].



NUCLEAR SPIN STRUCTURE IN DARK-MATTER SEARCH 281

The results obtained by Ressell and Dean give a factor of 20 increase in
the iodine's sensitivity to spin-dependent scattering over that previously assumed.
Due to the form factor suppression the sodium iodide detector's spin response
is still dominated by 23Na but not to the extent previously thought. For the
remainder of the nuclei considered, Tables 8Ä10 also reveal increased scattering
sensitivity, though much more modest [6].

Before ˇnishing this section we, following Ressell and Dean [6], discuss the
quenching problem and some related uncertainties. As is already noted above,
the comparison of the computed magnetic moment and its experimental value has
been used as the primary indicator of the calculation's reliability. This seems quite
reasonable in the light of the similarities between the matrix elements in Eqs. (13)
and (16). This prescription is not free of several potential problems [7, 8]. Not
only does µ depend upon the orbital angular momentum Li, but the spin angular
momentum Si is subtly different. The neutalinoÄnucleus matrix element (13)
results from the nonrelativistic reduction of the axial-vector current. Because of
this, it is not strongly affected by meson exchange currents (MECs). The magnetic
moment's spin operators, Si, are a result of the nonrelativistic reduction of the
vector current. They can be strongly affected by MECs [7]. The effects of MECs
upon µ are typically lumped together with several other effects to give effective g
factors. Unfortunately, there is no hard and fast rule as to what effective g factors
are the best. One usually chooses to remain with the free particle g factors. As
an example of the potential uncertainties this ambiguity leads to, the calculated
magnetic moments for these nuclei based on a reasonable set of effective g factors
were also included in Tables 8Ä10. The ®quenched¯ magnetic moments are the
values in curled parentheses and the effective g factors used are: gs

n = −2.87,
gl

n = −0.1, gs
p = 4.18, and gl

p = 1.1. The tables show that these g factors
do little to improve the concordance between calculation and experiment [6]. A
related concern involves the quenching of the (isovector) GamowÄTeller (GT) g
factor, gA [7, 8]. The spin term of the GT operator also comes from the axial
vector current and thus is closely related to the spin operators in Eq. (16). It
is well established that most nuclear model calculations of GT strength require
a reduction of the order of 20% in gA [36]. Whether this quenching of gA

should also be applied to a1 (the isovector neutralinoÄnucleon coupling constant)
is unknown. Since there is no real guidance and magnetic moments obtained by
Ressell and Dean agree well with experiment, it is very doubtful that any extra
quenching of the spin matrix elements (or equivalently the coupling constants
a0 and a1) is desirable for these nuclei in the calculation of neutralinoÄnucleus
scattering rates. Nonetheless, it is useful to keep these potential uncertainties in
mind when calculating scattering rates [6Ä8].

Tables 1Ä13 contain the fullest possible list of calculations of the nuclear
zero-momentum spin properties considered in the literature for detection of spin-
coupled WIMPs. The tables are obtained on the basis of relevant tables for 〈SA

n 〉
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and 〈SA
p 〉 from [5Ä12,14Ä16,24,29]. The OGM results of Ellis and Flores given

in [28, 39, 40] in the form of λ2J(J +1) were recalculated into 〈Si〉 and checked.

2. SUMMARY AND CONCLUSIONS

There is continuous theoretical and experimental interest in existence of dark-
matter of the Universe. The best motivated nonbaryonic dark-matter candidates
is the neutralino, the lightest supersymmetric particle. The motivation for super-
symmetry arises naturally in modern theories of particle physics. In this work
we discussed the spin-dependent interaction of neutralinos with odd mass nuclei.
The nuclear structure plays an important role in determining the strength of the
neutralinoÄnucleus cross section for this type of interaction. In the limit of zero
momentum transfer the relevant physical quantities are the proton and neutron
spin averages 〈Sp(n)〉, which have to be evaluated within a proper nuclear model.
These values determine the event rate expected in a direct dark-matter search
experiment due to spin-dependent neutralinoÄnucleus interaction. In this work
the calculation of spin-dependent matrix elements is reviewed. To our knowl-
edge, a complete list of calculated spin matrix elements is presented for nuclei
throughout the periodic table. We recall that only nuclei with an odd number of
either protons or neutrons can have nonzero spin.

As is manifested in this review, practically every known nuclear model has
been employed for evaluation of the spin matrix elements. The results show
that spin matrix elements depend in general rather sensitively on the details of
the nuclear structure. The phenomenological ISPSM (independent single-particle
shell model) is fairly accurate only for light nuclei with near-closed shells, but
in general it tends to overestimate the spin matrix elements and is inadequate.
It was conˇrmed by the calculations within the OGM (odd group model) and
the EOGM (extended OGM) utilizing magnetic moments and mirror β decays.
However, detailed shell-model calculations found these phenomenological mod-
els to be inadequate. The odd-group model and shell-model treatments yielded
good agreement for light nuclei, but as the atomic mass increases, there arouses
a signiˇcant amount of conˇguration mixing not considered in the OGM. Un-
fortunately, the shell-model calculations are difˇcult for most medium-heavy and
heavy isotopes because of the size of the matrices involved. The situation is
improving due to advances in computer power and storage. There is a hope to
construct model spaces that contain most of the nuclear conˇgurations that are
likely to dominate the spin response of nuclei. For open-shell medium-heavy
and heavy nuclei the methods of choice for calculation of spin matrix elements
are the Interacting BosonÄFermion Model, the Theory of Finite Fermion Sys-
tems and the Quasi TammÄDancoff Approximation. The most reliable values of
〈Sp(n)〉 are considered to be those of the approach which reproduces well the



NUCLEAR SPIN STRUCTURE IN DARK-MATTER SEARCH 283

experimental value of the magnetic moment for a given isotope. The magnetic
moment is extremely important, as it is the observable most closely related to the
neutralinoÄnucleus scattering matrix element and has traditionally been used as a
benchmark for the calculation accuracy.

There is an additional complication arising from the fact that the neutralino
appears to be quite massive, perhaps heavier than 100 GeV. For such a heavy
light supersymmetric particle and sufˇciently heavy nuclei, the dependence of
the nuclear matrix elements on the momentum transfer cannot be ignored. This
affects the spin matrix elements. The calculations of the structure functions in the
ˇnite momentum approximation and the level of accuracy of these calculations
are beyond the scope of this review.

This work was supported in part by the VEGA Grant Agency of the Slovac
Republic under contract No. 1/0249/03 and by the Russian Foundation for Basic
Research (grant No. 02-02-04009).

APPENDIX

A1. Elements of Nuclear Structure Calculations. The transverse electric
T el5(q) and longitudinal L5(q) multipole projections of the axial vector current
operator as well as the scalar function CL(q) are given in [8, 12,24]:

T el5
L (q) =

1√
2L + 1

∑
i

a0 + a1τ
i
3

2

[
−
√

LML,L+1(qri) +
√

L + 1ML,L−1(qri)
]
,

L5
L(q) =

1√
2L + 1

∑
i

(a0

2
+

a1m
2
πτ i

3

2(q2 + m2
π)

)
× (22)

×
[√

L + 1ML,L+1(qri) +
√

LML,L−1(qri)
]
,

CL(q) =
∑

i, nucleons

CE
0 jL(qri)YL(r̂i), C0(q) =

∑
i

CE
0 j0(qri)Y0(r̂i),

where ML,L′(qri) = jL′(qri)[YL′(r̂i)σi]L. In the limit of zero momentum trans-
fer, SA

SD(q) reduces to

SA
SD(0) =

1
4π

∣∣∣∣∣〈N ||
∑

i

1
2
(a0 + a1τ

i
3)σi||N〉

∣∣∣∣∣
2

=

=
1
4π

|(a0 + a1)〈N ||Sp||N〉 + (a0 − a1)〈N ||Sn||N〉|2 = (23)

=
1
π

(2J + 1)(J + 1)
J

|ap〈N |Sp|N〉 + an〈N |Sn|N〉|2 =

=
2J + 1

π
J(J + 1)Λ2, (24)
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with

Λ =
〈N |apSp + anSn|N〉

J
=

ap〈Sp〉
J

+
an〈Sn〉

J
.

In accordance with convention the Z components of the angular momentum
and spin operators are evaluated in the maximal MJ state, e.g., 〈S〉 ≡ 〈N |S|N〉 =
〈J, MJ = J |Sz|J, MJ = J〉.

In the ISPSM only the last odd nucleon contributes to the spin and the angular
momentum of the nucleus. In this limit

〈SA
n 〉 =

JA(JA + 1) − LA(LA + 1) + 3/4
2JA + 2

, (25)

where JA and LA are the single-particle total and angular momenta. They are
deduced from the measured nuclear angular momentum and the parity.

A2. Nucleon Spin Structure. To evaluate the spin content of the nucleon one
needs the matrix element of the effective quark axial-vector current Jµ = q̄γµγ5q
in the nucleon [16]. These matrix elements

〈(p, n)|q̄γµγ5q|(p, n)〉 = 2s(p,n)
µ ∆q(p,n) (26)

are proportional to the spin of the neutron (proton or neutron), s
(p,n)
µ . The

quantities ∆q(p,n) are usually extracted from the data obtained in polarized leptonÄ
nucleon deep inelastic scattering. Uncertainties in the experimentally determined
values for the quantities ∆q can lead to signiˇcant variations in the WIMP-
nucleon axial-vector coupling, and therefore to the predicted rates for detection
of WIMPs which have primarily spin couplings to nuclei [16]. With deˇnition
(26) the effective spin-dependent interaction of neutralinos with the nucleon has
the form

Lspin = 2χ̄γµγ5χ n̄sµn
∑

q=u,d,s

Aq ∆q(n). (27)

Recent global QCD analysis for the g1-structure functions [41], including O(α3
s)

corrections, corresponds to the following values of spin nucleon parameters [42]:

∆(p)
u = ∆(n)

d = 0.78 ± 0.02,

∆(p)
d = ∆(n)

u = −0.48 ± 0.02,

∆(p)
s = ∆(n)

s = −0.15 ± 0.02.

A3. Effective NeutralinoÄQuark Lagrangian. The axial-vector and scalar
interaction of a neutralino with a quark q is given by

Leff = Aqχ̄γµγ5χq̄γµγ5q + Cqχ̄χq̄q + O(1/m4
q̃).
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Fig. 1. Spin-dependent elastic scattering of neutralinos from quarks

The terms with vector and pseudoscalar quark currents are omitted being negli-
gible in the case of nonrelativistic DM neutralinos with typical velocities vχ ≈
10−3c. The Feynman diagrams which give rise to the effective neutralinoÄquark
axial-vector couplings

Aq = − g2
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[
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×
(

1
m2

q̃1 − (mχ + mq)2
− 1

m2
q̃2 − (mχ + mq)2

)]

are shown in Fig. 1. The ˇrst term in Aq comes from Z0 exchange, and the other
terms come from squark exchanges. The Feynman diagrams which give rise to
the effective neutralinoÄquark scalar couplings

Cq = − mq

MW

g2

4

[
Fh

m2
h

hq +
FH

m2
H

Hq +
(

mq

4MW
P 2

q − MW

mq
φqL φqR

)
×

×
(

sin 2θq

m2
q̃1 − (mχ + mq)2

− sin 2θq

m2
q̃2 − (mχ + mq)2

)
+

+ Pq

(
cos2 θq φqL − sin2 θq φqR

m2
q̃1 − (mχ + mq)2

− cos2 θq φqR − sin2 θq φqL

m2
q̃2 − (mχ + mq)2

)]
,
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Fig. 2. Spin-independent or scalar (tree level) elastic scattering of neutralinos from quarks

where

Fh = (N12 −N11 tan θW )(N14 cosαH + N13 sin αH),
FH = (N12 −N11 tan θW )(N14 sin αH −N13 cosαH),

hq =
(

1
2

+ T3

)
cosαH

sin β
−

(
1
2
− T3

)
sin αH

cosβ
,

Hq =
(

1
2

+ T3

)
sin αH

sinβ
+

(
1
2
− T3

)
cosαH

cosβ
,

φqL = N12T3 + N11(Q − T3) tan θW , φqR = tan θW Q N11,

Pq =
(

1
2

+ T3

)
N14

sin β
+

(
1
2
− T3

)
N13

cosβ
,

are shown in Fig. 2. The importance of these scalar spin-independent contribution
was found by K. Griest in [43].

A4. SUSY Particle Spectrum. For completeness, we collect here formulas
for masses of the SUSY particles in the MSSM. There are four Higgs bosons
Å neutral CP -odd (A), CP -even (H, h), charged (H±). The CP -even Higgs
boson mass matrix has the form:(

H11 H12

H12 H22

)
=

1
2

(
tanβ −1
−1 cotβ

)
M2

A sin 2β +

+
1
2

(
cotβ −1
−1 tanβ

)
m2

Z sin 2β + ω

(
∆11 ∆12

∆12 ∆22

)
,

H11 =
sin 2β

2

(
m2

Z

tan β
+ M2

A tan β

)
+ ω∆11,

H22 =
sin 2β

2

(
m2

Z tan β +
M2

A

tan β

)
+ ω∆22,

H12 = H2
21 = − sin 2β

2
(
m2

Z + M2
A

)
+ ω∆12.
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For example, ∆11 which includes loop corrections is

∆11 =
m4

b

c2
β

(
ln

m2
b̃1

m2
b̃2

m4
b

+
2Ab(Ab − µ tan β)

m2
b̃1

− m2
b̃2

ln
m2

b̃1

m2
b̃2

)
+

+
m4

b

c2
β

(
Ab(Ab − µ tanβ)

m2
b̃1

− m2
b̃2

)2

g(m2
b̃1

, m2
b̃2

)+

+
m4

t

s2
β




µ

(
At −

µ

tan β

)
m2

t̃1
− m2

t̃2




2

g(m2
t̃1

, m2
t̃2

),

where ω =
3g2

2

16π2m2
W

, c2
β = cos2β, s2

β = sin2β, g(m2
1, m

2
2) = 2−m2

1+m2
2

m2
1−m2

2

ln
m2

1

m2
2

.

The diagonalization of the above matrix gives the Higgs boson masses:

m2
H,h =

1
2

{
H11 + H22 ±

√
(H11 + H22)2 − 4(H11H22 − H2

12)
}

,

m2
H± = m2

W + M2
A + ω∆ch.

Here mH± is the charged Higgs boson mass in the one-loop approximation. The
mixing angle αH is obtained from

sin 2αH =
2H2

12

m2
H0

1
− m2

H0
2

, cos 2αH =
H2

11 − H2
22

m2
H0

1
− m2

H0
2

.

The neutralino mass matrix in the basis (B̃, W̃ 3, H̃0
1 , H̃0

2 ) has the form:

Mχ=




M1 0 −MZ cos β sin θW MZ sinβ sin θW

0 M2 MZ cos β cos θW −MZ sin β cos θW

−MZ cos β sin θW MZ cos β cos θW 0 −µ

MZ sinβ sin θW −MZ sinβ cos θW −µ 0




.

The diagonalization gives mass eigenstates (4 neutralinos):

χi(mχi) = Ni1B̃ + Ni2W̃
3 + Ni3H̃

0
1 + Ni4H̃

0
2 .

The lightest (LSP) χ = χ1 is the best DM candidate. The chargino mass term is

(
W̃−, H̃−

1

)(
M2

√
2MW sin β√

2MW cosβ µ

) (
W̃+

H̃+
2

)
+ h.c.
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The diagonalization U∗Mχ̃±V † = diag (Mχ̃±
1
, Mχ̃±

2
) gives charged mass eigen-

states
χ̃− = Ui1W̃

− + Ui2H̃
−, χ̃+ = Vi1W̃

+ + Vi2H̃
+

with masses

M2
χ̃±

1,2
=

1
2

[
M2

2 + µ2 + 2M2
W ∓

∓
√

(M2
2−µ2)2 + 4M4

W cos2 2β + 4M2
W (M2

2 +µ2 + 2M2µ sin 2β)
]
.

The sfermion mass matrices M2
t̃
, M2

b̃
, and M2

τ̃ have the form:

M2
t̃

=




m2
Q̃

+ m2
t +

1

6
(4M2

W − M2
Z) cos 2β mt(At − µ cot β)

mt(At − µ cot β) m2
Ũ

+ m2
t − 2

3
(M2

W − M2
Z ) cos 2β


 ,

M2
b̃

=




m2
Q̃

+ m2
b − 1

6
(2M2

W + M2
Z) cos 2β mb(Ab − µ tan β)

mb(Ab − µ tan β) m2
D̃

+ m2
b +

1

3
(M2

W − M2
Z) cos 2β


 ,

M2
τ̃ =


 m2

L̃
+ m2

τ − 1

2
(2M2

W − M2
Z ) cos 2β mτ (Aτ − µ tan β)

mτ (Aτ − µ tan β) m2
Ẽ

+ m2
τ + (M2

W − M2
Z) cos 2β


 .

It is worth noting that these masses as well as the above-mentioned couplings
of neutralinoÄquark interactions Aq and Cq are functions of the common set of
SUSY parameters like, for example, tanβ, MA, µ, Aq , etc. The set of parameters
allows one to describe observables at the highest and lowest energies coherently
and simultaneously.
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