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Finite oscillator models obey the same dynamics as the classical and quantum oscillators, but the
operators corresponding to position, momentum, Hamiltonian, and angular momentum are generators
of the compact Lie group SO(D), and form the Lie algebra so(D). One-dimensional ˇnite oscillators,
shallow planar optical waveguides, and ˇnite data sets are so(3) systems; and two-dimensional ˇnite
oscillators, shallow cylindrical waveguides, and pixellated screens are governed by so(4). The
physical reinterpretation of the generators of these algebras as observables that take a ˇnite number
of values, ˇts in a coherent picture of their phase space.

Œµ¤¥²¨ ±µ´¥Î´µ£µ (Ë¨´¨É´µ£µ) µ¸Í¨²²ÖÉµ· , µ¡² ¤ ÕÐ¨¥ Éµ° ¦¥ ¤¨´ ³¨±µ°, ÎÉµ ¨ ±² ¸-
¸¨Î¥¸±¨° ¨ ±¢ ´Éµ¢Ò° µ¸Í¨²²ÖÉµ·Ò, Ì · ±É¥·¨§ÊÕÉ¸Ö É¥³, ÎÉµ µ¶¥· Éµ·Ò ±µµ·¤¨´ ÉÒ, ¨³¶Ê²Ó¸ ,
£ ³¨²ÓÉµ´¨ ´  ¨ Ê£²µ¢µ£µ ³µ³¥´É  ¢ ÔÉ¨Ì ³µ¤¥²ÖÌ Ö¢²ÖÕÉ¸Ö £¥´¥· Éµ· ³¨ ±µ³¶ ±É´µ° £·Ê¶¶Ò ‹¨
SO(D), µ¡· §ÊÕÐ¨³¨  ²£¥¡·Ê ‹¨ so(D). �¤´µ³¥·´Ò¥ Ë¨´¨É´Ò¥ µ¸Í¨²²ÖÉµ·Ò, ¶²µ¸±¨¥ µ¶É¨-
Î¥¸±¨¥ ¢µ²´µ¢µ¤Ò ¨ ±µ´¥Î´Ò¥ ´ ¡µ·Ò ¤ ´´ÒÌ Ö¢²ÖÕÉ¸Ö ¶·¨³¥· ³¨ so(3)-¸¨¸É¥³; ¤¢Ê³¥·´Ò¥ Ë¨-
´¨É´Ò¥ µ¸Í¨²²ÖÉµ·Ò, ¶²µ¸±¨¥ Í¨²¨´¤·¨Î¥¸±¨¥ ¢µ²´µ¢µ¤Ò ¨ ¶¨±¸¥²¨·µ¢ ´´Ò¥ Ô±· ´Ò µ¶¨¸Ò¢ -
ÕÉ¸Ö so(4)-¸¨¸É¥³ ³¨. ”¨§¨Î¥¸± Ö ·¥¨´É¥·¶·¥É Í¨Ö £¥´¥· Éµ·µ¢ ÔÉ¨Ì  ²£¥¡· ± ± ´ ¡²Õ¤ ¥³ÒÌ,
¶·¨´¨³ ÕÐ¨Ì Éµ²Ó±µ ±µ´¥Î´µ¥ Î¨¸²µ §´ Î¥´¨°, Ìµ·µÏµ ¸µ£² ¸Ê¥É¸Ö ¸ ±µ£¥·¥´É´µ° ¸É·Ê±ÉÊ·µ°
¨Ì Ë §µ¢µ£µ ¶·µ¸É· ´¸É¢ .

1. INTRODUCTION: WIGNER'S FREEDOM

The question of whether or not the statement that the quantum mechanical
operators obey the classical equations of motion, uniquely determines the quan-
tization rule, [q̂, p̂] = i�, was posed by Wigner more than 50 years ago [1].
It was answered in the negative with a mild counterexample: A harmonic

oscillator with the standard Hamiltonian ĥ(p, q) =
1
2
(p̂2 + q̂2), that satisˇes

[ĥ, q̂] = −ip̂ and [ĥ, p̂] = iq̂, but with a displaced energy spectrum En = E0 +n�

(n = 0, 1, . . ., and E0 arbitrary), implies that the basic commutator will satisfy

([q̂, p̂] − i�)2 = −(2E0 − �)2. We call this case mild because for E0 �= 1
2

�, it

amounts to little more than a change of scale in �, although it opens the possibility
that [q̂, p̂] − i� be any operator whose square is unity.
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Indeed, one has a larger Å but well-deˇned Å freedom in the choice of
what the commutator between the position and momentum operators can be [2].
The realization that the quantum oscillator equations of motion are consistent
with commutators other than [q̂, p̂] = i�, came from optical image processing, in
particular from the early applications of the fractional Fourier transform [3, Ch. X]
to signal analysis on a ˇnite number of discrete sensors or data points [4Ä6].
The physical model that realizes the simplest one-dimensional ˇnite oscillator, is
the shallow planar multimodal waveguide shown in Fig. 1: a light signal is a
waveform ψ(q), which is injected at the z = 0 line, and contains a distribution

of space frequencies over this line, ψ̃(p). This waveform is then sensed at any

Fig. 1. The ˇnite oscillator can be construed as a shallow, planar multimodal waveguide,
which can carry only a ˇnite number of modes (the rest are lost to the surrounding
medium), and therefore cannot carry more information than that number of data values, at
the same number of sensor points

other z = constant ®screen¯ line. (In paraxial optics, space frequencies are the
momenta, and in the geometric picture they are related to the inclinations of rays.)
Light travelling near to the axis z will evolve as a wavefunction in a quantum
mechanical oscillator [7], with a Green function which is (a phase time) the
fractional Fourier transform kernel [6]; but large space frequencies will leak out
from the waveguide into the surrounding medium. There can be thus only a ˇnite
number of eigenmodes {φn}N

n=0 that the guide can propagate. And if only N +1
modes can exist in the guide, the transmitted signal itself cannot contain more
than N +1 complex numbers; and not more than N +1 point-sensors are needed.

In Sec. 2 we introduce the postulates leading to the (N+1)-point ˇnite os-
cillator model in D dimensions [5, 8, 9]. The ˇnite model of the oscillator
(or, for brevity, ˇnite oscillator) by deˇnition obeys the same dynamics as its
classical, quantum and optical counterparts, but the operators of position q, mo-
mentum p and the Hamiltonian h are made to close into the Lie algebra so(D) of
the compact Lie group SO(D), rather than the traditional oscillator Lie algebra
oscD = span (q,p, ĥ, 1̂ ), which is noncompact. The spectra and eigenfunctions
of all operators in our model will be therefore necessarily ˇnite in number.
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In Sec. 3 we detail the one-dimensional case. There will be a ground state of
the least energy, as well as a state of the highest energy, beyond which a shallow
optical waveguide does not transmit. We essentially use a realization for the
generators of the algebra so(D) in terms of the difference operators. Then, raising
and lowering operators within the algebra so(D) provide a discrete Schréodinger
difference equation, and the wavefunctions turn out to be the Kravchuk functions,
long known as the small-d Wigner functions for su(2). Although the difference
equation does not manifestly separate into kinetic and potential energy summands,
one can deˇne an equivalent potential in terms of the ˇnite oscillator ground state.
Questions of analyticity of the solutions are addressed to give discrete systems
a continuum aspect as well [4]. Lastly, we verify that the contraction limit
N → ∞ of the ˇnite oscillator, when the interval and density of sensor points
increases without limit, returns us to the ordinary quantum harmonic oscillator
model.

In dimension D = 1, with the 3 operators q, p, h, there is but a single
choice for the Lie dynamical algebra describing a ˇnite linear oscillator, pla-
nar waveguide, or ˇnite data set. For the case of dimension D = 2, in
Sec. 4 we examine the oscillator model which is built as the direct product
of two one-dimensional oscillators along Cartesian axes x and y. The alge-
bra has then 6 generators that close into su(2)(x) ⊕ su(2)(y) = so(4), and
describes a ˇnite plane oscillator, a cylindrical waveguide, or a screen pixel-
lated in Cartesian coordinates, with (N+1)2 data points. Working with two-
dimensional models we must expect further nonstandard commutators between
position and momentum operators. Indeed, this can happen in more than one
way when different subalgebra chains exist, i.e., when the original system yields
to separation of variables in distinct coordinate systems [10]. We use the chains
so(2) ⊕ so(2) ⊂ so(4) ⊃ so(3) ⊃ so(2), to describe the ˇnite two-dimensional
oscillator in polar coordinates, which is a discrete version for separation of vari-
ables with (N+1)2 points [8, 9]. The ˇnite radial wavefunctions turn out to
be the ClebschÄGordan coefˇcients Å Hahn functions, and their recursion rela-
tions provide their ˇnite radial Schréodinger equations. The equivalent potential
of the radial oscillator presents a centrifugal barrier aspect. At the end of the
section we again verify that when N → ∞, and the interval and density of
points grow jointly, in the contraction limit one recovers the ordinary quantum
system with its Lie algebra, radial Schréodinger differential equation and wave-
functions.

These developments are aimed at elucidating the nature of phase space in
ˇnite Hamiltonian systems. In the concluding Sec. 5, we broach the question
of fractional Fourier transformation of discrete, ˇnite data sets which, as Fig. 1
suggests, are a string of data points between 0 and N , which are at the extremes
of the set Å and not periodic signals, as the traditional ˇnite Fourier transform
that engineering practitioners generally assume [11Ä14]. This Section adds some
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considerations on the phase space of discrete, ˇnite Hamiltonian systems, based
on work which builds corresponding Wigner functions over sui generis phase
spaces [15,49].

In this paper we hope to show some of the deˇnite advantages in proposing
precontracted compact, ˇnite models to quantum mechanics and wave optics, and
unitary transformations of pixellated images, within a Lie-theoretic framework,
because of the wealth of emerging results.

2. THE OSCILLATOR GEOMETRIC AND DYNAMICAL POSTULATES

The time evolution of a classical particle in a harmonic oscillator poten-

tial
1
2
ω|q |2 is given by its Newton equation, or equivalently, its two Hamilton

equations (using Poisson brackets)

q̈ = −ω2q ⇔
{

{h,q} = −p,
{h,p} = q,

(1)

with the Hamiltonian function h =
1
2
(p2 + ω2q2). The ˇrst Hamilton equation

is geometric (it deˇnes the momentum vector as tangent to the trajectory), while
the second embodies the dynamics of the oscillator system. At little extra cost
we can work in D dimensions, where the second-rank skew-symmetric tensor of
angular momentum is m̂ = q×p. Since the Poisson bracket deˇnes a derivation, it
follows that {h, m̂} = 0, so the components of angular momentum are conserved.
They generate joint rotations of q space and p space, namely

mj,k = qjpk − qkpj

j, k = 1, 2, . . . , D

{
{mj,k, q�} = δj,�qk − δk,�qj ,

{mj,k, p�} = δj,�pk − δk,�pj.
(2)

And ˇnally, the components of angular momentum close under Poisson brackets
into the Lie algebra so(D) of rotations, which we specify below.

Schréodinger quantization replaces Poisson brackets of quadratic functions of
phase space, by commutators of operators in a Hilbert space (indicated by capital
letters), times −i. For the harmonic oscillator, the resulting quantum Newton and
Hamilton equations are

[H, [H,Q]] = ω2Q ⇔
{

[H,Q] = −iP,
[H,P] = iQ.

(3)

The two Hamilton equations again display the separation between geometry and
dynamics in oscillator systems. The Schréodinger quantization of m̂ correctly



FINITE MODELS OF THE OSCILLATOR 477

produces the quantum angular momentum tensor operator, with Lie brackets

[H, Mj,k] = 0,
[Mj,k, Q�] = i(δj,�Qk − δk,�Qj),

[Mj,k, P�] = i(δj,�Pk − δk,�Pj).
(4)

Between these
1
2
D(D + 1) components of angular momentum, the commutators

of the operators Mj,k = −Mk,j are

[Mj,k, M�,n] = i(δj,�Mk,n + δk,nMj,� + δn,jM�,k + δ�,kMn,j), (5)

and this deˇnes the Lie algebra so(D), Å independently of the realization of the
generators.

Now we observe that the commutators [Qj , Pk] are thus far unspeciˇed, and
herein lies our choice:

If we require that the operators, Qj , Pk , Ml,m and H Å and also the unity
operator 1̂ Å close into an associative algebra, then they must satisfy the Jacobi
identity,

[X, [Y, Z]] + [Y, [Z, X ]] + [Z, [X, Y ]] = 0. (6)

In view of Eqs. (3), the Jacobi identity for X = H and {Y, Z} = {Qj, Pk},
requires that

[H, [Qj , Qk]] = 0, [H, [Pj , Pk]] = 0, [H, [Qj , Pk]] = 0. (7)

These heretofore unspeciˇed commutators, [Qj , Qk], [Pj , Pk], and [Qj , Pk], con-
sistently close into the same algebra when we choose

[Qj , Qk] = iMj,k, [Pj , Pk] = iMj,k, [Qj, Pk] = iδj,kf(H, C), (8)

where f is a linear function of the Hamiltonian H and Casimir operator C of the
resulting algebra. The Jacobi identity is rather restrictive; it does not allow us,
for example, to add a term ∼ Mj,k to the last commutator in (8), nor to consider
nonlinear functions f(H) when D > 1. Additional comments for a nonlinear
function f in the case D = 1 will be presented in the concluding Section.

3. FINITE ONE-DIMENSIONAL OSCILLATOR

In the one-dimensional ˇnite oscillator model there is a single position opera-
tor Q, its corresponding momentum P , and the Hamiltonian H . Their eigenvalues
will be the observables of position, momentum, and energy, respectively.
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3.1. The Finite Oscillator Dynamical Algebra u(2). The Lie algebra into
which we shall ˇt the ˇnite oscillator dynamical observables will be so(3) =
su(2). Its generators are commonly associated to quantum angular momentum
and realized as

Jj := −i

(
xk

∂

∂xl
− xl

∂

∂xk

)
, j, k, l cyclic permutations of 1, 2, 3, (9)

on the space A3 of analytic functions of {xk} ∈ 
3; they present the Lie brackets

[Jj , Jk] = iJl, j, k, l cyclic permutations of 1, 2, 3. (10)

There is a fourth, central ®number¯ operator

EJ :=
3∑

k=1

xk
∂

∂xk
, [EJ , Jk] = 0, (11)

whose eigenvalues in A3 are j ∈ {0, 1, 2, . . .}, which separate this space into
ˇnite-dimensional irreducible representations of so(3), of dimensions 2j+1. This
completes the algebra to u(1)⊕ su(2) = u(2), and binds the Casimir operator of
su(2) to be

C := |J|2 =
3∑

k=1

J2
k = EJ (EJ + 1), (12)

with eigenvalues j(j+1) on the space of harmonic functions on the sphere. In
every 
2j+1, the spectrum of each su(2) generator Jk is

m ∈ {−j,−j + 1, . . . , j}. (13)

Half-integer values j ∈
{

1
2
,
3
2
,
5
2
, . . .

}
occur in spin spaces that we can handle

abstractly.
We now introduce [4Ä6] a new physical interpretation for the generators of

su(2) and their eigenvalues, to satisfy the postulates (3) of the harmonic oscillator
on every ˇnite-dimensional irreducible representation space 
2j+1 labelled by

j =
1
2
N :

Q = J1 ←→ position q ∈ {−j,−j + 1, . . . , j}, (14)

−P = J2 ←→−momentum p ∈ {−j,−j + 1, . . . , j}, (15)

H = J3 + j +
1
2

←→ Hamiltonian h ∈
{

1
2
,
3
2
, . . . , 2j +

1
2

}
, (16)
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where

H − 1
2

= J3 + j is the mode number n ∈ {0, 1, . . . , N}, N := 2j. (17)

These asignments ˇt in a diagram [17] where the generators for su(2) = so(3),
Λj,k, 1 � j < k � 3, are placed in the jÄk box as follows:

Λ1,2 Λ1,3

Λ2,3
=

J3 −J2

J1

=
H−j−1/2 P

Q
(18)

The basic commutator between position and momentum in the ˇnite oscillator
model on 
2j+1 is thus

[Q, P ] = i

(
H − EJ − 1

2
1̂
)

= iH − i

(
j +

1
2

)
1̂, (19)

and this system will have therefore intrinsically discrete and ˇnite positions and
momenta.

3.2. Position and Mode Eigenbases. Within the su(2) representation j =
1
2
N , the ˇnite oscillator consists of N+1 equidistant points

{
−1

2
N,−1

2
N + 1,

. . . ,
1
2
N

}
, there are N+1 Kronecker eigenstates of Q = J1. We use the familiar

labeled-ket notation to characterize them by

Q |N, q〉1 = q |N, q〉1, q|N/2
−N/2,

J2 |N, q〉1 =
1
2
N

(
1
2
N + 1

)
|N, q〉1.

(20)

A ˇnite oscillator of N+1 points has also N+1 energy eigenstates of the Hamil-
tonian H = J3, which has a ground state and the highest state in the system.
This is the second eigenbasis:

H |N, n〉H =
(

n +
1
2

)
|N, n〉H , n|N0 ,

J2 |N, n〉H =
1
2
N

(
1
2
N + 1

)
|N, n〉H .

(21)

Mode number n|N0 is related to the J3 eigenvalues µ|j−j , through n = j + µ and

µ = n − 1
2
N .
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It is useful to denote the abstract su(2) ⊃ u(1)1 and su(2) ⊃ u(1)3 kets with
round brackets:

|j, µ)3 := |2j, j + µ〉H , J3 |j, µ)3 = µ |j, µ)3, µ|j−j ,

|N, n〉H :=
∣∣∣∣12N, n − j

)
3

, J2 |j, µ)3 = j(j + 1) |j, µ)3.
(22)

They are related by a rotation to each other, through

e−i 1
2 πJ2 J3 = J1 e−i 1

2 πJ2 ⇒ |N, q〉1 = e−i 1
2 πJ2 |N, j + q〉H . (23)

Their overlap is thus a ®small-d¯ Wigner function [18],

dj
m,m′(β) := 3(j, m| e−iβJ2 |j, m′)3 = dj

m′,m(−β) = (24)

=
√

(j + m)! (j − m)! (j + m′)! (j − m′)! ×

×
∑

k

(−1)k

(
cos

1
2
β

)2j−2k+m−m′ (
sin

1
2
β

)2k−m+m′

k! (j + m − k)! (j − m′ − k)! (m′ − m + k)!
. (25)

3.3. Kravchuk Functions of the Finite Oscillator. The wavefunctions of
the ˇnite oscillator are the overlaps between the position Q-basis and the energy
H-basis vectors. From (22), (23), and (24), they are

Φ(N)
n (q) := 1〈N, q|N, n〉H = H〈N, j + q| e+i π

2 J2 |N, n〉H = (26)

= dj
q,n−j

(
−1

2
π

)
= dj

n−j,q

(
1
2
π

)
= (27)

=
(−1)n

2j

√(
2j

n

) (
2j

j + q

)
Kn

(
j+q;

1
2
, 2j

)
(28)

for N = 2j, n|N0 , q|j−j . The last line is the explicit expression, which is written
with the square root of two binomial distributions and a symmetric Kravchuk
polynomial [19] in j+q:

Kn

(
x;

1
2
, N

)
:= 2F1(−n,−x;−N ; 2). (29)

We observe the self-duality of the Kravchuk polynomials, namely

Kn

(
x;

1
2
, N

)
= Kx

(
n;

1
2
, N

)
, (30)

when both x and n are integers in the interval [0, N ].
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The ˇnite oscillator wavefunctions Φ(N)
n (q) in (28) are thus called Kravchuk

functions. These wavefunctions satisfy no differential equation, but a Schréodinger
difference equation (see (33) below), which relates the values of the functions on
three not necessarily integer points, separated by one unit [20]. From the differ-
ence equation for Kravchuk polynomials [21], which follows from the familiar
raising and lowering relations between su(2) states, results the Schréodinger dif-
ference operator

Hj(q) = −1
2
[αj(q) e−∂q − (2j + 1) + αj

(−q) e+∂q ], (31)

αj(q) :=
√

(j + q + 1)(j − q) = αj
( − q − 1), (32)

Hj(q)Φ(N)
n (q) = En Φ(N)

n (q), where En = n +
1
2
, n|N0 . (33)

The (real) discrete orthogonality and completeness relations satisˇed by the N+1
ˇnite oscillator states are

j= 1
2 N∑

q=−j

Φ(N)
n (q)Φ(N)

n′ (q) = δn,n′ ,

N=2j∑
n=0

Φ(N)
n (q)Φ(N)

n (q′) = δq,q′ . (34)

In Fig. 2 we show the bottom, middle and top wavefunctions of the ˇnite oscil-
lator.

3.4. Finite Oscillator Equivalent Potential. We should note that the differ-
ence Hamiltonian (31) does not separate into a sum of a kinetic plus potential
energy terms. However, one can introduce [22] a discrete equivalent potential,
based on the continuous model of a system with a potential V (q) and energy
E0 > −∞, whose ground state Ψ0(q) has no zeros and determines the potential
energy from the Schréodinger equation:(

−1
2

d2

dq2
+ V (q) − E0

)
Ψ0(q) = 0 ⇒ V (q) − E0 =

1
2

d2

dq2
Ψ0(q)

/
Ψ0(q). (35)

In the case of the harmonic oscillator, Ψ0(q) ∼ e−
1
2 q2

, so that
d2

dq2
Ψ0(q) =

(q2 − 1)Ψ0(q), and (35) yields correctly V (q) − E0 =
1
2
q2 − 1

2
.

In the discrete case of the equidistant points q ∈ {−j, −j+1, . . . , j}, the
ground state of the eigenfunction set (26)Ä(28) is

Φ(N)
0 (q) = dj

−j,q

(
1
2
π

)
=

1
2j

√
(2j)!

(j + q)! (j − q)!
, (36)
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Fig. 2. The ˇnite oscillator Kravchuk wavefunctions for j = 32, so there are
2j + 1 = 65 points along the q axis (joined by straight lines for visibility) for
n = 0, 1, 2, . . . , 32, . . . , 62, 63, 64, from bottom to top
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since K0(x; p, 2j) = 1. The second difference operator yields explicitly the
following equivalent potential V (q):

V (q) − E0 + 1 =
Φ(N)

0 (q + 1) + Φ(N)
0 (q − 1)

2Φ(N)
0 (q)

= (37)

=

√
(j + q)(j + q + 1) +

√
(j − q)(j − q + 1)

2
√

(j + 1)2 − q2
, (38)

which is shown in Fig. 3 for various values of N = 2j. In the ˇnite oscillator, the

ground state Φ(N)
0 (q) can be analytically continued in q everywhere in the complex

plane, except for branch-point zeros at q = ±(j+1), which are due to the square
root of the binomial distribution. The wavefunctions themselves are thus well
deˇned and ®continuous¯ for any real value of q within the interval −(j+1) �
q � j+1, which is one unit beyond their natural orthogonality endpoints in (34).

Fig. 3. The ˇnite oscillator equivalent po-
tential for j = 2, 8, 16 (i.e., for 5, 17 and
33 points). We have added

√
j/(j+1) so

that all potentials coincide for the centre
point q = 0

3.5. Contraction of the Algebra u(2) → osc. The ˇnite oscillator model
described in the previous Section, contracts to the standard quantum harmonic
oscillator, on the level of the algebra, the Schréodinger equation, and the solution
wavefunctions [23]. While the three generators of su(2) in u(2) are equivalent,
since they can be rotated one onto the other, the contraction process breaks this
symmetry to distinguish one axis Å that of the Hamiltonian Å which retains its
discrete spectrum, from the other two axes of position and momentum, whose
spectrum ®becomes¯ continuous. The quotes indicate the usual distinction be-
tween a sequence of Hilbert spaces of increasing ˇnite dimension and its limit,
the space of Lebesgue square-integrable functions on the real line.

The WignerÄTalman [24] contraction of su(2) representations of increasing
dimension 2j+1 as j → ∞ to the representations of the HeisenbergÄWeyl algebra
HW1 = span {Q̂, P̂ , 1̂}, for � = 1, is well known (see, e.g., [25Ä27]). The present
contraction of the ˇnite oscillator is different [23]: as the number of points
and interval increases as j → ∞, and their spacing in position and momentum
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decreases appropriately, all four generators of its dynamical algebra contract to
the oscillator algebra,

lim
j→∞

u(2) −→ osc1 = {Ĥ, Q̂, P̂ , 1̂} ⊃ HW1 = {Q̂, P̂ , 1̂}. (39)

We introduce a new basis for the four generators of u(2) = span {EJ ,J}
(see (14)Ä(17)), within the (2j+1)-dimensional representation j,

Q(j)

P (j)

H(j)

1̂

 =


j−1/2 0 0 0

0 j−1/2 0 0
0 0 1 1 + 1/2j
0 0 0 j−1




J1

J2

J3

EJ

 , (40)

whose nonzero commutators are then

[H(j), Q(j)] = iP (j), [H(j), P (j)] = −iQ(j), [Q(j), P (j)] = i1̂+ij−1H(j). (41)

As j → ∞, these become those of H4, namely

[H(∞), Q(∞)] = iP (∞), [H(∞), P (∞)] = −iQ(∞), [Q(∞), P (∞)] = i1̂, (42)

while from (14)Ä(16) and the Casimir eigenvalue one has

j(j + 1) = j(Q(j)2 + P (j)2) +
[
H(j) −

(
j +

1
2

)
E(j)

]2
⇒

⇒ H(∞) =
1
2
(P (∞)2 + Q(∞)2). (43)

In this way the Hamiltonian generator acquires the standard form of a quantum
harmonic oscillator, a quadratic function of the HeisenbergÄWeyl generators.

In the (2j+1)-dimensional representation j, the rescaled operators (40) act
on functions F (ξ) := Φ(q) of position ξ := q/

√
j by shift operators through

1/
√

j as follows:

Q(j)F (ξ) =
1√
j
Q Φ(q) =

q√
j

Φ(q) = ξF (ξ), (44)

P (j)F (ξ) = − i

2
√

j

[
αj(−

√
j ξ)F

(
ξ+

1√
j

)
− αj(

√
j ξ)F

(
ξ− 1√

j

)]
, (45)

H(j)F (ξ) = − 1
2j

[
αj(−

√
j ξ)F

(
ξ+

1√
j

)
+ αj(

√
j ξ)F

(
ξ− 1√

j

)]
. (46)



FINITE MODELS OF THE OSCILLATOR 485

When j → ∞ with ξ remaining ˇnite, (44) takes the standard form; assuming

that F (ξ + ε) = F (ξ) + ε F ′(ξ) +
1
2
ε2 F ′′(ξ) + . . . holds for all ®continuous¯

functions involved, then the limit of (45) is the usual derivative

lim
j→∞

P (j)F (ξ) = − lim
j→∞

i
√

j

2

√
1 − ξ2 − 1

j
×

×
[
F

(
ξ +

1√
j

)
− F

(
ξ − 1√

j

)]
= −i

∂

∂ξ
F (ξ), (47)

and for (46) the limit involves second derivatives (cf. (43)), so that we obtain
the standard realization of position and momentum, and the quantum harmonic
oscillator Schréodinger equation.

3.6. Contraction of the Finite Oscillator Wavefunctions. It is well known
that the binomial distribution becomes the Gaussian function when the number of
points N grows while their separation decreases by N−1/2. So the contraction
of the u(2) algebra should imply the j → ∞ limit of the Kravchuk functions
(26) to the well-known Hermite wavefunctions of the ordinary quantum oscillator.
In fact, the original argument [19] for the contraction of Kravchuk to Hermite
polynomials was phrased in terms of the limit of the point orthogonality measures.
But to our knowledge, the limit of the functions has not yet been proven directly.
This may be due to the fact that the usual representation of Kravchuk polynomials
in terms of Gauss hypergeometric functions, Eq. (29), is ineligible to serve in this
limit.

To prove directly that the Kravchuk functions (26) contract to the quantum
harmonic oscillator wavefunctions when j → ∞ and n = m + j are kept ˇnite
(so m → −∞), instead of using limit relations for the 2F1 functions, we use the
expression in [28] for the d functions in terms of hypergeometric 3F2 functions,
which are valid for q integer,

Φ(N)
n (q) =

(−1)n/2+q

√
π j!

√
(j + q)! (j − q)!×

×



√
Γ
(

n+1
2

)
Γ
(
j − n−1

2

)
Γ
(

n
2 + 1

)
Γ
(
j − n

2 + 1
) 3F2

(
−q, q, n+1

2
1
2 , j + 1

∣∣∣∣∣ 1
)

, n even,

2iq

j + 1

√
Γ
(

n
2 + 1

)
Γ
(
j − n

2 + 1
)

Γ
(

n+1
2

)
Γ
(
j − n−1

2

) 3F2

(
−q, q, n

2 + 1
3
2 , j + 2

∣∣∣∣∣ 1
)

, n odd.

(48)

With the mode number n = j + m ˇxed and ˇnite, and q =
√

j ξ (so that the
points ξ are integers divided by

√
j), the contraction limit j → ∞ is
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lim
j→∞

(−1)q j1/4 Φ(N)
n (q) =

(−2)n/2√√
π n!

eξ2×

×


Γ
(

n+1
2

)
Γ(1

2 ) 1F1

(
n + 1

2
;
1
2
; −ξ2

)
, n even,

2iξ
Γ
(

n
2 + 1

)
Γ(1

2 ) 1F1

(
n

2
+ 1;

3
2
; −ξ2

)
, n odd.

(49)

Using the relation 1F1(α; γ, z) = ez
1F1(γ − α; γ,−z) between two con�uent

hypergeometric functions, and comparing with a standard expression for Hermite
polynomials in [29], when q =

√
j ξ, we obtain

lim
j→∞

(−1)q j1/4 Φ(N)
n (q) = lim

j→∞
(−1)n+j j1/4 dj

n−j,q

(
1
2
π

)
=

=
e−ξ2/2√√

π2n n!
Hn(ξ) =: Ψn(ξ). (50)

The Ψn(ξ) are of course the wavefunctions of the one-dimensional quantum
oscillator, for n|∞0 , and ξ ∈ 
.

4. FINITE TWO-DIMENSIONAL OSCILLATOR

The simplest two-dimensional generalization of the one-dimensional ˇnite
oscillator of the previous Section, is a square grid of (N+1) × (N+1) points,
with the algebra u(1) ⊕ su(2)(x) ⊕ su(2)(y) of two independent and mutually
commuting subalgebras (14)Ä(17) for the x and y directions and the same central

algebra u(1) of generator E
(x)
J = E

(y)
J =

1
2
N 1̂; this Cartesian pattern can

be generalized straightforwardly to any dimension D, as we remark in the ˇrst
Subsection. But dimension D = 2 is special because su(2)(x)⊕su(2)(y) = so(4),
and the generators of the two su(2)'s (see (18)) combine into so(4) generators
Λj,k, now for 1 � j < k � 4, as follows:

J
(x)
3 −J

(x)
2

J
(x)
1

⊕
J

(y)
3 −J

(y)
2

J
(y)
1

=

J
(x)
3 +J

(y)
3 −J

(x)
2 −J

(y)
2 J

(x)
1 −J

(y)
1

J
(x)
1 + J

(y)
1 J

(x)
2 −J

(y)
2

J
(x)
3 −J

(y)
3

(51)
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We work here with the further restriction that the representation of so(4) be of
the symmetric (or most degenerate) kind, whose two commuting so(3) Casimir
operators are bound by

(J(x))2 = EJ(EJ + 1̂) = (J(y))2. (52)

As we saw in Sec. 2, Eqs. (4), (5), angular momentum can be placed naturally
in algebra chain so(4) ⊃ so(3) ⊃ so(2). After the ˇrst Subsection, we shall return
to this Gel'fandÄTsetlin chain, that corresponds to a ˇnite oscillator with sensor-
points placed along radial and angular coordinates.

4.1. Cartesian Positions, Modes and Wavefunctions. We can build the
Kronecker eigenbasis of positions (20) for a ˇnite two-dimensional oscillator
arranged in an xÄy square Cartesian grid, straightforwardly:

Qx |N ; qx, qy〉1 = qx |N ; qx, qy〉1, qx|N/2
−N/2, (53)

Qy |N ; qx, qy〉1 = qy |N ; qx, qy〉1, qy|N/2
−N/2, (54)

(J(x))2 |N ; qx, qy〉1 =
1
2
N

(
1
2
N + 1

)
|N ; qx, qy〉1 = (J(y))2 |N ; qx, qy〉1. (55)

These (N+1)2 positions are shown in Fig. 4 (left).

Fig. 4. a) The positions of sensor-points in the Cartesian ˇnite oscillator. b) States classiˇed
by total number and difference of quanta along the x and y axes

Similarly, we can build the Cartesian modes of the ˇnite two-dimensional
oscillator as direct products |N ; nx, ny〉H = |N, nx〉Hx |N, ny〉Hy ,

Hx |N ; nx, ny〉H =
(

nx +
1
2

)
|N ; nx, ny〉H , nx|N0 ,

Hy |N ; nx, ny〉H =
(

ny +
1
2

)
|N ; nx, ny〉H , ny|N0 .

(56)
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They can be arranged into a rhombus pattern, vertical axis counts the total number
of quanta,

n := nx+ny, H |N ; nx, ny〉H = (n+1) |N ; nx, ny〉H , H := Hx+Hy, (57)

and the horizontal axis counts their difference. These (N+1)2 points are shown
in Fig. 4, a.

The Cartesian mode wavefunctions of the two-dimensional ˇnite oscillator
are then the product of two one-dimensional ones,

Φ(N)
nx,ny

(qx, qy) := 1〈N ; qx, qy|N ; nx, ny〉H = Φ(N)
nx

(qx) Φ(N)
ny

(qy). (58)

Returning to the pattern of so(4) states in Fig. 4, b, we may be tempted to think
that the energy degeneracy of the states{

|N ; 0, n〉H , |N ; 1, n − 1〉H , . . . , |N ; n, 0〉H
}
, n|N0 , (59)

{
|N ; n−N, N〉H , |N ; n−N+1, N−1〉H , . . . , |N ; N, n−N〉H

}
, n|2N

N (60)

indicates some higher symmetry for the ˇnite oscillator, as it does for the ®contin-
uous¯ two-dimensional quantum oscillator which has the larger symmetry group
U(2). There, the centre U(1)c ⊂ U(2) is generated by the total number-of-quanta
operator. But within SO(4), the states with the same energy are not connected
into multiplets by a subalgebra of generators.

The continuum model includes continuous rotations of the oscillator position
plane around its origin [31], but the ˇnite oscillator does not. Yet, one can intro-
duce imported symmetries [32] into the ˇnite oscillator model through linear com-
binations with coefˇcients taken from the continuous model states |N ; nx, ny) that
rotate under the orbital angular momentum operator 2L3 := (QxPy−QyPx) [31].
This was done in [8] to produce ˇnite analogues of states with deˇnite angular
momentum, and unitary transformations R(θ) of the ˇnite wavefunction set,

R(θ) |N ; nx, ny〉H :=
∑

n′
x+n′

y=n

|N ; n′
x, n′

y〉H R
(n)
1
2 (n′

y−n′
x), 12 (nx−ny)

(θ), (61)

R
(n)
κ′,κ(θ) := (N ; n′

x, n′
y| e−2iθL3 |N ; nx, ny) = (−i)κ′−κ d

n/2
κ′,κ(2θ), (62)

n =
{

nx + ny, when 0 � nx + ny � N,
2N − nx − ny, when N � nx + ny � 2N.

(63)

These ®rotations¯ acting on ˇnite oscillator wavefunctions |N ; nx, ny〉H 's, are
thus block-diagonal in n.
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4.2. The so(4) Algebra of the Finite Radial Oscillator. Besides Cartesian
coordinates, the harmonic oscillator separates also in polar coordinates [30]. To
describe this coordinate set on the group-theoretical basis of the so(4) algebra for
the ˇnite oscillator, we return to the notation and box diagram for the orthogonal
algebra generators in (18) and (51), Λj,k, again for 1 � j < k � 4, with
commutation relations (5) and the new asignments for the physical observables to
the so(4) generators [9]:

Λ1,2 Λ1,3 Λ1,4

Λ2,3 Λ2,4

Λ3,4

=

J Px Py

Qx Qy

M

,
J := H − EJ − 1̂ mode,

M Å angular momentum.

(64)

In this pattern we see the following desirable properties: angular momentum
M and mode (shifted energy) J commute; position (Qx, Qy) and momentum
(Px, Py) transform as 2-vectors under angular momentum M ; and x-phase space
(Qx, Px) and y-phase space (Qy, Py) rotate similarly under the Hamiltonian and
J . On the other hand, there are also new nonstandard commutators [Qx, Qy] and
[Px, Py], anticipated in Eqs. (8), that generalize (19) to two dimensions. Finally,
as in the Cartesian case of the previous Subsection, the model is restricted to
the symmetric so(4) representations, where the two independent second-degree
Casimir operators are

C =
∑
j,k

Λj,k Λj,k = N(N + 2), where N := 2j, (65)

D =
∑
j,k,l

Λj,kΛl,4 = 0. (66)

Hence the value of N = 2j ∈ {0, 1, 2, . . .} is sufˇcient to characterize the
symmetric so(4) irreps, whose dimension is (N+1)2.

4.3. States of Mode and Angular Momentum. The eigenbasis of the two
commuting so(4) generators

J = Λ1,2 = J
(x)
3 + J

(y)
3 , M = Λ3,4 = J

(x)
3 − J

(y)
3 , (67)

(see (51) and (64)) is the set of ˇnite radial oscillator states classiˇed by
(displaced) energy and angular momentum by the subalgebra chains so(4) ⊃
so(2)J ⊕ so(2)M � u(1)(x) ⊕ u(1)(y). When J

(x)
3 and J

(y)
3 have eigenvalues

mx|j−j and my|j−j , respectively, the eigenstates will be denoted
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J |N ; ν, m〉JM = ν |N ; ν, m〉JM , (68)

ν = mx + my ∈ {−N,−N + 1, . . . , N}, (69)

M |N ; ν, m〉JM = m |N ; ν, m〉JM , (70)

m = mx−my ∈ {−N+|ν|,−N+|ν|+2, . . . , N−|ν|} (71)

for a ˇxed value of (displaced) energy ν. These states have

energy Eν = N + ν + 1 = 2n + |m| + 1, where

radial mode number n :=
1
2
(N + ν − |m|) ∈ {0, 1, . . . , 2N}.

(72)

Fig. 5. a) States of the ˇnite radial oscillator classiˇed by angular momentum m and
displaced energy ν for j = 2 (N = 4 with a total of 25 states). b) The same set of
states classiˇed by angular momentum m and radial position ρ; the boxes joined by the
arrow represent states which are linear combinations of the others. c) The same states,
where for each radius ρ a ˇnite Fourier transform is performed between its 2ρ+1 angular
momentum states to produce states of deˇnite radius and angle (up to independent rotation
of the circles)

In Fig. 5, a we arrange these states in a rhombus pattern, which is the same
as of Fig. 4, b for the energy and angular momentum states of the ˇnite Cartesian
oscillator. Figure 5, b, c will be explained below.
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4.4. States of Deˇnite Radius and Angular Momentum. The so(4) oscilla-
tor model can be Cartesian or radial, depending on our choice of the eigenbasis
associated to operators of position. We use the box patterns to deˇne two subal-
gebras:

S3 −S2 S1

R1 R2

R3

=

J Px Py

Qx Qy

M

=

L3 −L2 K1

L1 K2

K3

(73)

We characterize the ˇnite radial oscillator model by the subalgebras

so(4) ⊃ so(3)R = span {R1, R2, R3} of position, (74)

so(4) ⊃ so(3)GT = span {L1, L2, L3} Gel'fandÄTsetlin (75)

with the commutation relations:

[Rj , Rk] = iεjklRl, [Rj , Sk] = iεjklSl, [Sj , Sk] = iεjklRl, (76)

[Lj , Lk] = iεjklLl, [Lj, Kk] = iεjklKl, [Kj, Kk] = iεjklLl. (77)

Since L = J(x) + J(y), the Gel'fandÄTsetlin chain containing so(3)GT con-
forms to the direct sum decomposition (51), so its irreducible representations �
in the symmetric representation N of so(4) are the coupling of two angular mo-

menta j =
1
2
N to the total angular momentum � ∈ {0, 1, . . . , N}. On the other

hand, the radial subalgebra chain so(4) ⊃ so(3)R ⊃ so(2)M is characterized by
the eigenvalues of

(R)2 := R2
1 + R2

2 + R2
3, spectrum: ρ(ρ + 1), ρ ∈ {0, 1, . . . , N}, (78)

and in each irrep ρ, R3, spectrum: m ∈ {−ρ,−ρ + 1, . . . , ρ}. (79)

4.5. The Finite Oscillator Radial Wavefunctions. The total number of
independent states in (79) is

∑N
ρ=0(2ρ+1) = (N+1)2, matching the dimension of

the so(4) representation space N = 2j. We denote the ˇnite oscillator eigenstates
of (R)2 and R3 by |N ; ρ, m〉R, and in Fig. 5, b we show them rearranged with
respect to the radius ρ and angular momentum m, as we now proceed to detail.

We now build ˇnite oscillator radial wavefunctions as the overlaps between
the mode basis (68)Ä(71) and the radial basis of (78), (79). In the canonical
Gel'fandÄTsetlin basis, this is

L2 |N ; �, µ〉GT = (J(x) + J(y))2 |N ; �, µ〉GT = �(� + 1) |N ; �, µ〉GT , �|N0 , (80)

L3 |N ; �, µ〉GT = (J (x)
3 + J

(y)
3 ) |N ; �, µ〉GT = µ |N ; �, µ〉GT , µ|�−�. (81)
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The overlaps between the JM - and the Gel'fandÄTsetlin kets are thus the ordinary
su(2) = so(3) ClebschÄGordan coefˇcients [18,33,34],

C
1
2 N, 12 N,�
1
2 (ν+m), 1

2 (ν−m),µ
= GT 〈N ; �, µ|N ; ν, m〉JM . (82)

We must now relate the Gel'fandÄTsetlin chain to the chain containing the
radial position subalgebra of Eqs. (78), (79), exchanging the indices 1 ↔ 4 and
2 ↔ 3 in the pattern (73) by means of the SO(4) transformation

T (χ) := e−iχ(Λ2,3−Λ1,4) = e−2iχJ
(b)
1 , for χ = ±1

2
π. (83)

This intertwines the generators as

T

(
1
2
π

)(
L1, L2, L3

K1, K2, K3

)
T

(
1
2
π

)−1

=

=
(

L1, K2, K3

K1, L2, L3

)
=
(

R1, R2, R3

S1, S2, S3,

)
, (84)

T

(
1
2
π

)(
J

(x)
1 , J

(x)
2 , J

(x)
3

J
(y)
1 , J

(y)
2 , J

(y)
3

)
T

(
1
2
π

)−1

=

=

(
J

(x)
1 , J

(x)
2 , J

(x)
3

J
(y)
1 , −J

(y)
2 , −J

(y)
3

)
, (85)

and the Gel'fandÄTsetlin and mode bases as

T

(
1
2
π

)
|N ; �, µ〉GT = |N ; �, µ〉R, T

(
1
2
π

)
|N ; ν, m〉JM = |N ; m, ν〉JM . (86)

The ˇnite radial oscillator wavefunctions, being the overlap between the radial
position and angular momentum bases with the same energy, are thus given by a
ClebschÄGordan coefˇcient:

(−1)ρΦ(N)
ν,m(ρ) := R〈N ; ρ, m|N ; mx+my, mx−my〉JM = (87)

= GT 〈N ; ρ, m|N ; mx−my, mx+my〉JM = (88)

= Cj,j,ρ
mx,−my,m = Cj,j,ρ

1
2 (m+ν), 12 (m−ν),m

, (89)

where we use as before N = 2j, ν = mx+my and m = mx−my, where
|m| � ρ � N are integers, and where their ranges are determined by the nonzero
values of these coefˇcients, viz.,

for ν |N−N ˇxed, m ∈ {−N+|ν|,−N+|ν|+2, . . . , N−|ν|}; (90)

for m|N−N ˇxed, ν ∈ {−N+|m|,−N+|m|+2, . . . , N−|m|}. (91)
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We note that the sign (−1)ρ in (91) appears because the standard su(2) ClebschÄ
Gordan coefˇcients have been traditionally deˇned from the requirement that the
highest state have no changes of sign between neighboring values of ρ, while
here we are asking for the same condition for the ground state of the oscillator.

4.6. Discrete Radii and Discrete Angles. As we can see in Fig. 5, a, for
ˇxed angular momentum m, there are N − |m| independent wavefunctions (89),
distinguished by ν ∈ {−N + |m|,−N + |m|+2, . . . , N − |m|}; these are functions
of the same number N−|m| of radii ρ|N|m|. For each m, the wavefunctions are real
and form an orthonormal and complete set, corresponding to the known bilinear
sums of ClebschÄGordan coefˇcients [18, Sec. 8.7.2]:

N−|m|∑
ν=−N+|m|: (+2)

Φ(N)
ν,m(ρ)Φ(N)

ν,m(ρ′) = δρ,ρ′ ,

N∑
ρ=|m|

Φ(N)
ν,m(ρ)Φ(N)

ν′,m(ρ) = δν,ν′ . (92)

The sum notation ®: (+2)¯ indicates that the values of ν are spaced by 2.
Having formed the linear combinations of states of deˇnite radius in Fig. 5, b,

we see that for a ˇxed value of the radius ρ|N0 , the angular momenta can have
the 2ρ + 1 values m ∈ {−ρ,−ρ + 1, . . . , ρ}. Because of (70) and (79), for each
ρ the set of angular momentum states will be orthogonal and complete:

R〈N ; ρ, m|N ; ρ, m′〉R = δm,m′ ,

ρ∑
m=−ρ

|N ; ρ, m〉RR〈N ; ρ, m| = 1̂ρ, (93)

where 1̂ρ is the unit operator in each space of deˇnite ρ. Now, for every one,
ˇxed radius, the natural Hilbert space is that of functions on the circle or, since
there are a ˇnite number of m's, 2ρ + 1 points equidistant on a circle, as deˇned
by the common discrete Fourier transform [35, Part I]. Now, for each ρ we
introduce the discrete angles (to be also used as labels),

θk =
2πk

2ρ + 1
, k ∈ {−ρ,−ρ + 1, . . . , ρ}, (94)

and thus deˇne new radius-and-angle kets by

|N ; ρ, θk〉◦ :=
1√

2ρ + 1

ρ∑
m=−ρ

eimθk |N ; ρ, m〉R, (95)

|N ; ρ, m〉R =
1√

2ρ + 1

ρ∑
k=−ρ

e−imθk |N ; ρ, θk〉◦. (96)

This basis of states for the circle of radius ρ is also orthogonal and complete in
the index k of θk; they are cyclic functions of θk modulo 2π (or of k modulo N ).
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We interpret θ straightforwardly as the angle coordinate in the point array shown
in Fig. 5, c. This we call the ˇnite polar array; the ˇnite radial oscillator wave-
functions will be assumed to be measured by discrete sensors on the points of
this set.

At the centre ρ = 0 of the ˇnite polar array of Fig. 5, c, there is only one state
m = 0, and one irrelevant angle θ0; its only state is |N ; 0, θ0〉◦ = |N ; 0, 0〉R.
On the ˇrst circle ρ = 1, there can be three states, m = 0 and m = ±1;
correspondingly in the ˇgure there are three points on the circle, of angles θ0 = 0

and θ±1 = ±2
3
π. On the following circles, of radii ρ = 2, 3, . . ., there will be

2ρ+1 points, sensors or pixels around each circle. And ˇnally, there is a maximal
circle ρ = N with the maximal number 2N+1 of angular momentum states and
of points around that circle.

It should be remarked that the ˇnite polar array presents an Å almost Å
homogeneous density of points. The discrete surface element in polar coordinates
is measured by ∆2r := ρ ∆ρ ∆θk. The polar array has ∆ρ = 1 and ∆θk =
θk − θk−1 = 2π/(2ρ + 1), so it will have a density πρ/(ρ + 1/2) which, as ρ
grows, rather quickly becomes π.

4.7. ClebschÄGordan Coefˇcients and Dual Hahn Polynomials. ClebschÄ
Gordan coefˇcients can be written in terms of the 3F2 hypergeometric function
(see [18, Eq. 8.5.2(21)]), with the equivalent notation Cj,j,ρ

mx,−my,m ≡ Cρ,m
j,mx;j,−my

,

and as usual j =
1
2
N ,

Φ(N)
ν,m(ρ) =

(−1)ρ ρ!(
ρ − j +

ν + m

2

)
!
(

ρ − j +
ν − m

2

)
!
×

×

√√√√√√√
(

j +
ν + m

2

)
!
(

j +
ν − m

2

)
! (ρ + m)! (ρ − m)! (2ρ + 1)(

j − ν + m

2

)
!
(

j − ν − m

2

)
! (2j − ρ)! (2j + ρ + 1)!

×

× 3F2

 −2j+ρ, −j+
ν + m

2
, −j+

ν − m

2

−j+
ν − m

2
+ρ+1, −j+

ν + m

2
+ρ+1

∣∣∣∣∣∣∣ 1
 , (97)

= (−1)2j−n (2j)!
m!

√
(2ρ+1) (n+m)! (2j−n−m)! (ρ+m)!

n! (2j−n)! (ρ−m)! (2j−ρ)! (2j+ρ+1)!
×

× 3F2

(
−n, −ρ, ρ + 1

m + 1, −2j

∣∣∣∣ 1) , (98)
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where the radial mode number n =
1
2
(N +ν−m) = j+my determines the degree

of the 3F2 function of unit argument, which is a dual Hahn polynomial [29,36Ä38]
in the variable ρ(ρ + 1),

Rn (λ(ρ); m, m′, N) := 3F2

(
−n, −ρ, ρ + m + m′ + 1

m + 1, −N

∣∣∣∣1
)

, (99)

λ(ρ) = ρ(ρ + m + m′ + 1). (100)

The factor in front of this polynomial in the wave function (97) is the square root
of the dual-Hahn orthogonality measure.

The polynomial factor of (97), (98) allows a natural analytic continuation
to the ρ-complex plane; the orthogonality measure is also analytic; it is positive
within the orthogonality interval, becomes zero one unit beyond, and is negative
thereafter. The wavefunctions are thus analytic in the radius ρ on the open interval

max (|m| − 1,−1/2) < ρ < N+1, (101)

with branch zeros at the endpoints. Hence, ˇnite systems can be asigned with a
®continuous¯ position coordinate that permits the dynamical algebra to be real-
ized by difference operators that bind any three points of the position variable
separated by units, within (and one unit outside) the interval. Hence there exists
a Schréodinger difference equation to rule over ˇnite systems [5,20,39].

In the previous expressions it is manifested that the oscillator states Φ(N)
ν,m(ρ)

are even functions of angular momentum m, namely Φ(N)
ν,m(ρ) = Φ(N)

ν,−m(ρ),
corresponding to the symmetry relation of the ClebschÄGordan coefˇcients
Cj,j,ρ

mx,−my,m = Cj,j,ρ
my,−mx,−m. In what follows we will consider only positive

values of m. In Fig. 5, b we showed the linear combinations of ˇnite oscilla-
tor states that map between the mode and the radius bases, for ˇxed angular

momentum m. The ˇnite radial oscillator wavefunctions Φ(N)
ν,m(ρ) in (87)Ä(97)

are shown in Fig. 6, where we plot the lowest-, middle-, and highest-energy
states. The lowest ones (ν ≈ −N ) do resemble the ordinary quantum radial
wavefunctions, multiplied by the root of the radial measure

√
r. The highest

ones (ν ≈ N ) have the same envolvent as the lowest ones, but alternate sign be-
tween every two points (due to Cj,j,ρ

mx,my,m = (−1)ρCj,j,ρ
my,mx,m, relating ±ν). The

middle radial states ν = 0 resemble the right half of the middle 1-dim oscillator
Kravchuk function in Fig. 2 and highlight that the wavefunctions exist only for
radii ρ � |m|.

4.8. Finite-Difference Radial Schréodinger Equation. The three-term recur-
rence relation Cj,j,ρ

mx,−my,m for the ClebschÄGordan coefˇcient and its neighbour-

ing Cj,j,ρ±1
mx,−my,m [18, Eq. 8.6.5(27)] (or the difference equation satisˇed by the
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Fig. 6. Finite radial oscillator wavefunctions for j = 8 (N = 16 and hence 17 points).
From bottom to top, for increasing energy ν = 2n + |m| + 1 ∈ {0, 1, 2, 3, . . . , 7, 8}. The
wavefunctions exist in the range |m| � ρ � N . We interpolate points by lines for better
visibility

Hahn polynomials [38, Eq. (1.6.5)]), imply that

(mx + my)Cj,j,ρ
mx,−my,m =

=

√
(ρ + m + 1)(ρ − m + 1)(2j − ρ)(2j + ρ + 2)

(2ρ + 1)(2ρ + 3)
Cj,j,ρ−1

mx,−my,m+

+

√
(ρ + m)(ρ − m)(2j − ρ + 1)(2j + ρ + 1)

(2ρ + 1)(2ρ − 1)
Cj,j,ρ+1

mx,−my,m. (102)
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From here results the ˇnite (N = 2j) radial oscillator Hamiltonian and ˇnite-
difference radial Schréodinger equation for the interval max (|m|−1,−1/2) < ρ <
N+1, as determined in (101):

Hj
m(ρ) = −1

2
[αj

m(ρ) e−∂ρ + (2j+1) + e+∂ραj
m(ρ)], (103)

αj
m(ρ) :=

√
(ρ2 − m2)[(N + 1)2 − ρ2]

(ρ2 − 1/4)
= αj

m(−ρ) = αj
−m(ρ), (104)

Hj
m(ρ)Φ(N)

ν,m(ρ) = EνΦ(N)
ν,m(ρ), where Eν = N + ν + 1 = 2n + |m| + 1 (105)

are the energies of the two-dimensional ˇnite oscillator states Φ(N)
ν,m(ρ), which de-

pend on the displaced principal quantum number ν (cf. (31)Ä(33)). Orthogonality
and completeness relations stem from the bilinear sum rules for the ClebschÄ
Gordan coupling coefˇcients.

4.9. Finite Radial Oscillator Equivalent Potential. In continuum quan-
tum mechanics, the Schréodinger equation and wavefunctions of the two-dimensi-
onal oscillator separate in polar coordinates (r, φ) into an angular part ∼ eimφ

with integer eigenvalues m and having |m| nodal diameters, and a radial part

∼ L
(m)
n (r2) having n nodal circles; the energy is then Eν = 2n + |m| + 1. The

angular part contributes with a ®centrifugal potential¯ summand |m|/r2 to the ra-
dial Schréodinger equation. The ˇnite radial oscillator Hamiltonian (103) does not
obviously separate into a kinetic and potential energy parts, so again we search
for an equivalent potential with the particular aim of recognizing this centrifugal
term.

We can apply again the reconstruction of the potential out of nodeless so-
lutions to the Schréodinger equation as in (35)Ä(38). The functions of radial
mode number n = 0 have a dual-Hahn polynomial factor which is unity, while
the factor of (98) with the lowest allowed energy for angular momentum m,
νm := −2j + |m| at the boundary diagonals of Fig. 5, a is (for ρ and m integer)

Φ(N)
νm,m(ρ) = (−1)2j

√
(2ρ+1) (2j)! (2j−m)! (ρ+m)!
m! (2j−ρ)! (2j+ρ+1)! (ρ−m)!

. (106)

As in (37), the equivalent potential V|m|(ρ) for angular momentum m is found
from the second difference of the previous functions within the analyticity inter-
val (101),

V (ρ) − Eνm + 1 =
Φ(N)

νm,m(ρ + 1) + Φ(N)
νm,m(ρ − 1)

2Φ(N)
νm,m(ρ)

= (107)
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=
1
2

(√
(2ρ + 3)(ρ + |m| + 1)(2j − ρ)

(2ρ + 1 )(ρ − |m| + 1)(2j + ρ + 2)
+

+

√
(2ρ − 1)(ρ − |m|)(2j + ρ + 1)
(2ρ + 1)(ρ + |m|)(2j − ρ + 1)

)
, (108)

max (|m| − 1,−1/2) < ρ < 2j+1.

Radial equivalent potentials are shown in Fig. 7 for various values of angular
momentum m.

Fig. 7. Finite radial oscillator equivalent potentials for j = 16 (N = 32 and hence
33 points), for m = 0, 1 (a, b) and m = 4, 10 (c, d). The wavefunctions exist for
|m| � ρ � N , so in the case m = 0 we have omitted the ˇrst point ρ = 0 because the
second difference of the wavefunction addresses the nonexistent point ρ = −1

4.10. Contraction of the Finite Radial Oscillator Algebra. The ˇnite radial
oscillator model has a well-deˇned contraction limit to the ordinary quantum radial
oscillator when the number and density of radial circles in position space increase
without bound [40]. This was proven on the level of the algebras, u(1)⊕so(4) →
osc2 = span {Q,P, 1̂, Ĥ, M̂} in [9] (see the pattern (64)). Essentially, one lets
2j = N → ∞ after changing the scale of position and momentum, while leaving
intact energy and angular momentum,

Q(j) = Q/
√

j, P(j) = P/
√

j, (109)

E
(j)
J = j1̂, H(j) = J + (2j + 1)1̂, M (j) = M. (110)

There are N + 1 points in the symmetric interval of length 2
√

j with separation
1/

√
j, while the energy levels remain separated by unity, and the rhombus of

Fig. 5, a becomes the usual two-dimensional oscillator spectrum.
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The noncanonical so(4) commutators, Eqs. (8), become the usual ones of the
HeisenbergÄWeyl algebra. From the Casimir operators (65) and (66) we ˇnd the
limit forms

H =
1
2
(P2 + Q2), M = QxPy − QyPx, C = |Q |2, (111)

as expected.
4.11. Contraction of the Wavefunctions. To ˇnd the limit of the ˇnite

radial oscillator wavefunctions when N → ∞, we let the so(4) multiplet grow,

but keep the energy and angular momentum indices of Φ(N)
ν,m(ρ) ˇnite. That is,

n =
1
2
(N + ν − |m|) = j + my and m = mx − my remain ˇnite. As in (109),

(110), the integer radii 0 � ρ � N are to be replaced by a coordinate scaled as
Q in (109). We use Stirling's asymptotic formula for the Γ functions to write

r := ρ/
√

j ∈ {0, 1/
√

j, . . . , 2
√

j → ∞}, (112)

lim
N→∞

(
left factor

in (98)

)
=

√
2(n + m)!

n!
rm+1/2, (113)

lim
N→∞

3F2

(
−n, −ρ, ρ + 1

m + 1, −N

∣∣∣∣ 1) = 1F1

(
−n, m + 1; r2

)
=

=
m! n!

(n + m)!
Lm

n (r2). (114)

Thus we obtain the limit of the wavefunctions to be

lim
N→∞

N1/4 (−1)N Φ(N)
ν,m(ρ) =

= (−1)n

√
2 n!

(n + m)!
r|m|+1/2 e−

1
2 r2

L|m|
n (r2). (115)

The factor r1/2 is the square root of the continuum radial integration measure
r dr.

4.12. Contraction of the Schréodinger Equation. We rescale the integer
radii ρ to the dimensionless variable r as in (112), keeping the Taylor series of
exp (j−1/2∂r) to terms of second-order, and divide by r2. In the limit N → ∞,
the difference Eq. (105) becomes the following differential equation:

1
2

[
− d2

dr2
− 1

r

d

dr
+ r2 +

m2

r2

]
ϕn,m(r) = (2n + m + 1)ϕn,m(r), (116)

for
√

r ϕn,m(r) = lim
N→∞

Φ(N)
ν,m(ρ), (117)
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with N +ν = 2n+ |m|, and corresponding to the energies E = �ω(2n+ |m|+1).
This is easily recognized as the Schréodinger equation for the two-dimensional
radial oscillator of angular momentum m [41].

5. CONCLUSION: DISCRETE AND FINITE FOURIER TRANSFORMS

The original motivation to introduce ˇnite oscillator models was to use their
dynamical evolution to deˇne Fourier-like transforms between position and mo-
mentum representations of discrete and ˇnite, but nonperiodic data sets [5]. Such
transforms are the basis for a deeper understanding of the compact phase space
of ˇnite Hamiltonian systems through their Wigner function.

5.1. Why Not the Ordinary Finite Fourier Transform? The well-known
ˇnite Fourier transform F between N+1 ®position¯ values f = {fq}N

q=0 and

their conjugate ®momentum¯ values f̃ = {f̃p}N
p=0 = F : f is deˇned by

f̃p : =
1√

N+1

N∑
q=0

fq e−2πiqp/(N+1),

fq =
1√

N+1

N∑
p=0

f̃p e+2πiqp/(N+1).

(118)

It intertwines discrete, ˇnite position space 
N+1 with a similar wavenumber
space, where points 0 and N are ˇrst neighbors, as for example elongations of a
vibrating collection of masses joined by springs [35, Part I], forming a circle of
N+1 discrete points, S1

(N+1).
When the position and wavenumber circles are joined in direct product to

build a phase space, one obtains a discrete torus, T 2
((N+1)2) = S1

(N+1) ⊗ S1
(N+1),

of (N+1)2 points [13,14]. There, the ˇnite Fourier transform exchanges the two
circles. Now, in contradistinction to the Fourier integral transform between L2(
)
Hilbert spaces, which can be fractionalized to rotations of the phase plane 
2 [3],
corresponding to harmonic oscillator evolution, there is no continuous group of
transformations of the surface of the torus T 2 that will connect the identity to
the Fourier transform of exchanged circles. Here we collect the results of [5,6,9]
that provide proper one-parameter groups of fractional FourierÄKravchuk and
HankelÄHahn transforms between the data sets of Secs. 3 and 4, respectively.

5.2. Fractional FourierÄKravchuk Transforms. The time evolution of the
ˇnite oscillator is generated by the Hamiltonian H which rotates the QÄP plane.
This is an inner automorphism of the su(2) algebra,

e−iφH

(
Q
P

)
eiφH =

(
cosφ sin φ
− sinφ cosφ

)(
Q
P

)
. (119)
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In this context, the FourierÄKravchuk transform K, and its group of fractional
powers, acting on N+1 data points f = {fq}N

q=0, where the points 0 and N are
literally poles apart, is deˇned in terms of the oscillator evolution by the operator

Kα := exp
(
−i

1
2
πα

(
J3 +

1
2
N

))
= exp

(
+i

1
4
πα

)
exp
(
−i

1
2
παH

)
, (120)

where the su(2) generator J3 and the oscillator Hamiltonian H relate as in
(16), and the angle φ|2π

0 is replaced by the power α = 2φ/π of K. Evidently
Kα1 Kα2 = Kα1+α2 and K0 = 1̂ = K4, so they form an SO(2) group. The

®phase correction¯ by
1
4
πα =

1
2
φ in (120) implies that in both the ˇnite and

continuous cases, the fractional Fourier (ÄKravchuk) transform multiplies the nth
oscillator state by the same phase

KαΦ(N)
n (q) = e−i 1

2 πnαΦ(N)
n (q), n|N0 . (121)

Functions Ψ(N)(q) on the N+1 points of the discrete position q|N/2
−N/2 can be

arranged as a column vector, on which the FourierÄKravchuk transform will act
through a matrix. This matrix represents so(3) rotations around the 3-axis in the
eigenbasis of the 1-axis of positions, and its kernel is given through a Wigner
little-d function,

Kα : Ψ(N)(q) �→ Ψ(N,α)(q)=
N/2∑

q′=−N/2

K
(N,α)
q,q′ Ψ(q′), Ψ(N,0)(q) = Ψ(N)(q), (122)

K
(N,α)
q,q′ := 1〈N, q| e−i 1

2 πα(J3+j) |N, q′〉1 =

= e−i 1
4 πNα (−i)q−q′

d
N/2
q,q′

(
1
2
πα

)
= (123)

=
N∑

n=0

Φ(N)
n (q) e−i 1

2 πnα Φ(N)
n (q′), (124)

see [18, Eq. 4.7(5)]. The kernel is unitary: K
(N,−α)
q,q′ = (K(N,α)

q′,q )∗, and represents
the group SO(2) with α modulo 4.

When N → ∞, we expect the FourierÄKravchuk transform summation kernel
(123), (124) to become the Fourier transform integral kernel. To prove this,
we use (50) and a particular case of Mehler's formula for Hermite functions
Ψn(x) [23,29,42], namely

∞∑
n=0

inΨn(x1)Ψn(x2) =
1√
2π

exp (ix1x2). (125)
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The contraction limit of the kernel (124), when N = 2j → ∞ and m → −∞
such that j +m = n is ˇxed and ˇnite, rescaling as before q = x

√
j, q′ = x′ √j,

results now in

lim
N→∞

√
j K

(N,1)
q,q′ = lim

N→∞

√
j dj

q′,q

(
1
2
π

)
=

1√
2π

eix′x, (126)

namely the Fourier integral transform kernel.
5.3. Fractional HankelÄHahn Transforms. In two dimensions, the symmetry

group of the quantum oscillator is the group of U(2)-Fourier transforms [43].
The integral kernel of the U(1) centre of this group can be decomposed into
a series Hankel transforms of integer order m, times Fourier series transforms
in the angle [35, Ch. 9]. For each angular momentum subspace ±m, the in-
tegral transform kernel is a Bessel function Jm(k2r′r) in the (continuous) radial
coordinate r|∞0 .

Now, in the two-dimensional ˇnite radial oscillator model, the operator of
mode number is H−1 = J +EJ , EJ = j1̂, as in (64). As in the one-dimensional
case (120), the fractional Fourier operator is:

Fα = exp
(
−i

1
2
πα(J + EJ)

)
, (127)

of power α modulo 4. In the basis of the mode and angular momentum eigen-

functions of J and M , Φ(N)
ν,m (see (68)Ä(71) and (87)Ä(89)), the Fourier operator

(127) is represented by the diagonal matrix

Fα
JM (ν, m; ν′, m′) = JM〈N ; ν, m|Fα |N ; ν′, m′〉JM =

= δν,ν′ δm,m′ e−i 1
2 π(ν+j)α. (128)

On the other hand, in the Gel'fandÄTsetlin basis of the radius and angular mo-

mentum eigenfunctions of (R)2 and M , Φ(N)
·,m (ρ) (see (78), (79)), the Fourier

operator (127) is represented by [42]

F
(N,α)
R (ρ, m; ρ′, m′) = R〈N ; ρ, m|Fα |N ; ρ′, m′〉R =

= δm,m′ H(N,α)
m (ρ, ρ′), (129)

where, recalling T (χ) from (83),

H(N,α)
m (ρ, ρ′) = R〈N ; ρ, m|Fα |N ; ρ′, m〉R = (130)

=
N−|m|∑

ν=−N+|m|:(+2)

R〈N ; ρ, m|N ; ν, m〉JM×

× e−i 1
2 π(ν+j)α

R〈N ; ν, m|N ; ρ′, m〉R = (131)
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=
N−|m|∑

ν=−N+|m|:(+2)

(−1)ρ+ρ′
Cj,j,ρ

1
2 (m+ν), 1

2 (m−ν),m
×

× e−i 1
2 π(ν+j)α Cj,j,ρ′

1
2 (m+ν), 1

2 (m−ν),m
= (132)

= GT 〈N ; ρ, m|T
(

1
2
π

)−1

e−i 1
2 παΛ1,2 T

(
1
2
π

)
|N ; ρ′, m〉GT = (133)

= GT 〈N ; ρ, m| e−i 1
2 παΛ3,4 |N ; ρ′, m〉GT =: dN,0

ρ,m,ρ′

(
1
2
πα

)
. (134)

In the last expression, dN1,N2
�,m,�′ (θ) is the SO(4)-analogue of the SO(3)-Wigner

little-d's [44,45], i.e., the matrix elements of the so(4) rotation out of the canoni-
cal so(3), in the generic representation (N1, N2), where N1 � �, �′ � |N2| and
�, �′ � |m|.

The matrices (129) are block-diagonal in m, because angular momentum
M commutes with the generator of the Fourier transform, J + EJ . These
are (N − |m|) × (N − |m|) submatrices, with rows and columns numbered by
ρ, ρ′ ∈ {|m|, |m| + 1, . . . , N}. Since the wavefunction basis involves dual Hahn
polynomials, we have christened these matrices as fractional HankelÄHahn trans-
forms [9].

The HankelÄHahn transforms are unitary, ˇnite-N approximations to the
Hankel integral transforms. Indeed, we have shown that, for N → ∞, the sum-
mation kernel (132) of the former becomes the integral kernel of the latter [40].
Indeed, when ρ = r

√
N and ρ′ = r′

√
N , while radial mode number n = ν+j and

angular momentum m remain ˇnite, the HankelÄHahn transform matrix kernel
contracts to the Hankel transform integral kernel:

lim
N→∞

H(N,1)
m (ρ, ρ′) = (135)

=
∞∑

n=0

(−1)n 2 n!
(n + |m|)! (rr

′)|m|+1/2 e−1/2(r2+r′2)L|m|
n (r2)L|m|

n (r′2) = (136)

= im
√

rr′ Jm(rr′). (137)

We note that for |m| > 0, HankelÄHahn transforms are deˇned only on the
N − |m| points inside the interval (101), i.e., |m| � ρ � N . This is the ˇnite
counterpart of the ordinary Hankel integral transform kernel Jm(r′r) to have an
|m|-fold zero at the origin.

5.4. Phase Space for Finite Systems. Hamiltonian systems naturally call
for a phase space with coordinates of position and momentum and a Wigner
quasiprobability distribution function. In Ref. 15 we introduced such a function
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on the 
3 space of the Lie algebra su(2). In the one-dimensional oscillator
case of Sec. 3, the Casimir operator (12) essentially restricts this space to a
sphere of radius

√
j(j+1), which becomes the phase space for a (2j+1)-point

ˇnite oscillator. Under Hamiltonian evolution this sphere rotates around its J3

axis, carrying with it that Wigner function; a
1
2
π turn is the FourierÄKravchuk

transform. Under appropriate projections on the position or momentum axes,
we can follow the waveˇeld evolution in the modelled ˇnite oscillator, shallow
optical guide, or data set, where the ground state is invariant. From this ground
state, through rotations out of the J3 axis, one can deˇne ˇnite coherent states;
these will slightly change their aspect in the cycle though, since they are the
parallel projection of the Wigner function on the surface of a rotating sphere.
This Wigner function has been shown to reduce [47] to the commonly used
Wigner function over a sphere for spin systems [48] and is amenable to be used
in nonlinear optical systems [46]. In [49], this Wigner function was generalized
to any Lie algebra and related to wavelet transforms.

There are also generalizations of these constructions to other Lie algebras,
including so(2, 1) for discrete but inˇnite systems, which involve Meixner poly-
nomials and Bargmann d functions [39, 50, 51], and iso(2) with Bessel func-
tions [52]. Finally, not only Lie algebras but q algebras satisfy the ˇnite oscillator
postulates [22], with a nonlinear function f in the basic commutator (8) deˇning
a ˇnite q oscillator. In this case, the ®sensor¯ set of points concentrates towards
the centre of the symmetric interval, while the energy spectrum remains equally
spaced, and its eigenfunctions are dual q-Kravchuk functions. Since the invariant
Casimir operator is now nonquadratic in all generators, the corresponding phase
space is not a sphere, but a q-dependent pear-shaped spheroid, tip-up for q < 1
and tip-down for q > 1. The q-harmonic oscillator evolution (i.e., a phase times
the so-deˇned fractional q-FourierÄKravchuk transform) will rotate this space
around the J3 symmetry axis of the spheroid. The appropriate deˇnition of a
Wigner function is still lacking.

5.5. Unitary Precontraction of Integral Transforms. It has not been satis-
factorily explained why the symmetry groups of discrete systems can enlarge in
the continuum limit. Some authors [53] have forced the states of a system into
multiplets of an extraneous group by writing algebras of ®operators¯ that con-
tain square roots of the Casimir operators, which do not belong to the universal
enveloping algebra. Other authors working with ˇnite models, especially those
based on the very important Harper functions [32], whose energy spectrum is not
equally spaced, import the oscillator periodic motion.

We should stress the convenience of approximating integral transforms by
unitary matrix kernels on a ˇnite set of points, with the same oscillator dynamics
and with guaranteed convergence under contraction. The one-dimensional ˇnite
oscillator and its FourierÄKravchuk transform provides such a precontracted for
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the Fourier transform. The two-dimensional model solves the problem of deˇning
unitary, invertible rotations of square pixellated images. Although this problem
has been mentioned in the literature [54], it has not been subject to a thorough
search outside the standard (and highly reˇned) numerical methods (in sonar
acoustics [55], for example) to evaluate the Hankel transform on a ˇnite polar
array. Also, there is a clear avenue to the problem of unitarily transforming
pixellated images between Cartesian and polar arrays.

From the point of view of special function theory, the host of known prop-
erties of the Wigner so(3) and so(4) little-d and ClebschÄGordan functions,
such as unitarity, parities, bilinear composition, etc., can be used well for ˇnite
transforms. Previously, we only knew that eigenfunctions of the PéoschlÄTeller
potential (used for scattering [56]) were the coupling coefˇcients of so(2, 1) [57].
Finite polynomials of a discrete variable are thus being incorporated to the list of
physically important functions, and a tool for image analysis and computation.
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