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Essentials of relativistic mean ˇeld (RMF) theory and some of its recent applications are pre-
sented. The explicit calculations are carried out for a few selected isotopic, isotonic, and isobaric
chains of nuclei covering the entire periodic table. The calculated ground-state properties are found
to be in good agreement with the corresponding experiment: the binding energies are reproduced,
on the average, within 0.25%, and the charge radii differ only in the second decimal place of fermi.
The relativistic origin of the pseudospin symmetry is brie�y discussed. The density distributions
obtained are found to be in good agreement with the experiment (where available). The peripheral
factor Å the ratio of the neutron and the proton densities at the nuclear periphery, extracted in the
antiproton annihilation experiments Å is well reproduced. The RMF densities are used to calculate
the reaction (σR) and charge-changing (σcc) cross sections in the Glauber model as well as the α
(cluster)-daughter interaction energy. The energy in turn is employed to estimate the decay half-lives
of superheavy (transactinide) nuclei in the WKB approximation. The calculations are found to agree
well with the experiment. This success of the RMF in accurately describing the nuclear properties
with only a few ˇxed parameters is indeed remarkable.

ˆ§²μ¦¥´  ¸ÊÉÓ É¥μ·¨¨ ·¥²ÖÉ¨¢¨¸É¸±μ£μ ¸·¥¤´¥£μ ¶μ²Ö (�‘�) ¨ ¶·¥¤¸É ¢²¥´Ò ´¥±μÉμ·Ò¥ ¨§
¥¥ ´¥¤ ¢´¨Ì ¶·¨³¥´¥´¨°. �·μ¢¥¤¥´Ò ÉμÎ´Ò¥ · ¸Î¥ÉÒ ¤²Ö ´¥¸±μ²Ó±¨Ì ¢Ò¡· ´´ÒÌ ¨§μÉμ¶¨Î¥¸±¨Ì,
¨§μÉμ´¨Î¥¸±¨Ì ¨ ¨§μ¡ ·¨Î¥¸±¨Ì ± ´ ²μ¢ Ö¤¥·, ¶μ²´μ¸ÉÓÕ μÌ¢ ÉÒ¢ ÕÐ¨¥ É ¡²¨ÍÊ ¶¥·¨μ¤¨Î¥¸±¨Ì
Ô²¥³¥´Éμ¢. �¥§Ê²ÓÉ ÉÒ ¢ÒÎ¨¸²¥´¨° ¸¢μ°¸É¢ μ¸´μ¢´μ£μ ¸μ¸ÉμÖ´¨Ö ´ Ìμ¤ÖÉ¸Ö ¢ Ìμ·μÏ¥³ ¸μ£² ¸¨¨ ¸
¸μμÉ¢¥É¸É¢ÊÕÐ¨³ Ô±¸¶¥·¨³¥´Éμ³: Ô´¥·£¨¨ ¸¢Ö§¨ ¢μ¸¶·μ¨§¢μ¤ÖÉ¸Ö, ¢ ¸·¥¤´¥³, ¢ ¶·¥¤¥² Ì 0,25 %,
  § ·Ö¤μ¢Ò¥ · ¤¨Ê¸Ò μÉ²¨Î ÕÉ¸Ö Éμ²Ó±μ ¢μ ¢Éμ·μ³ §´ ±¥ ¶μ¸²¥ § ¶ÖÉμ° ¢ ¥¤¨´¨Í Ì Ë¥·³¨.
Šμ·μÉ±μ μ¡¸Ê¦¤ ¥É¸Ö ·¥²ÖÉ¨¢¨¸É¸±μ¥ ¶·μ¨¸Ìμ¦¤¥´¨¥ ¶¸¥¢¤μ¸¶¨´μ¢μ° ¸¨³³¥É·¨¨. �μ²ÊÎ¥´´Ò¥
· ¸¶·¥¤¥²¥´¨Ö ¶²μÉ´μ¸É¥° ´ Ìμ¤ÖÉ¸Ö ¢ Ìμ·μÏ¥³ ¸μ£² ¸¨¨ ¸ Ô±¸¶¥·¨³¥´Éμ³ (£¤¥ ¢μ§³μ¦¥´ ¨Ì
· ¸Î¥É). •μ·μÏμ ¢μ¸¶·μ¨§¢μ¤¨É¸Ö ¶¥·¨Ë¥·¨°´Ò° Ë ±Éμ· Å μÉ´μÏ¥´¨¥ ¶²μÉ´μ¸É¨ ´¥°É·μ´μ¢ ±
¶²μÉ´μ¸É¨ ¶·μÉμ´μ¢ ´  ¶¥·¨Ë¥·¨¨ Ö¤· , ¨§¢²¥± ¥³μ¥ ¢ Ô±¸¶¥·¨³¥´É Ì ¶μ ¶·μÉμ´- ´É¨¶·μÉμ´´μ°
 ´´¨£¨²ÖÍ¨¨. �²μÉ´μ¸É¨ �‘� ¨¸¶μ²Ó§ÊÕÉ¸Ö ¤²Ö ¢ÒÎ¨¸²¥´¨Ö ¸¥Î¥´¨° ·¥ ±Í¨¨ (σR) ¨ ¶¥·¥§ ·Ö¤±¨
(σcc) ¢ ³μ¤¥²¨ ƒ² Ê¡¥· ,   É ±¦¥ Ô´¥·£¨¨ α (±² ¸É¥·´μ£μ)-¤μÎ¥·´¥£μ ¢§ ¨³μ¤¥°¸É¢¨Ö. �´¥·£¨Ö, ¢
¸¢μÕ μÎ¥·¥¤Ó, ³μ¦¥É ¡ÒÉÓ ¨¸¶μ²Ó§μ¢ ´  ¤²Ö μÍ¥´±¨ ¶¥·¨μ¤μ¢ ¶μ²Ê· ¸¶ ¤  ¸¢¥·ÌÉÖ¦¥²ÒÌ (É· ´¸-
 ±É¨´¨¤´ÒÌ) Ö¤¥· ¢ · ³± Ì ‚Š
-¶·¨¡²¨¦¥´¨Ö. � ¸Î¥ÉÒ ´ Ìμ¤ÖÉ¸Ö ¢ Ìμ·μÏ¥³ ¸μ£² ¸¨¨ ¸ Ô±¸¶¥-
·¨³¥´Éμ³. ’¥μ·¨Ö �‘� Ê¸¶¥Ï´μ μ¶¨¸Ò¢ ¥É ¸¢μ°¸É¢  Ö¤¥· ¶·¨ ¨¸¶μ²Ó§μ¢ ´¨¨ ¢¸¥£μ ´¥¸±μ²Ó±¨Ì
Ë¨±¸¨·μ¢ ´´ÒÌ ¶ · ³¥É·μ¢.
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INTRODUCTION

The formulation and application of the relativistic mean ˇeld (RMF) theory
has been the most striking development in the ˇeld of nuclear structure. The
RMF [1Ä8] is now established to be one of the most successful and satisfactory
theory for the description of the nuclear structure properties. The RMF still works
at the level of nucleons and mesons. It starts with a Lagrangian density describing
Dirac spinor nucleons interacting via meson and photon ˇelds. The classical
EulerÄLagrange variational principle yields the equations of motion. At this stage,
the mean ˇeld approximation is introduced, i.e., the ˇelds are not quantized, but
instead, are replaced by their expectation values or c numbers. This leads then
to the Dirac equation with the potential terms describing the nucleon dynamics
and the KleinÄGordon-type equations involving nucleonic currents and densities as
source terms for mesons and the photon. This set of coupled, nonlinear differential
equations, known as the RMF equations, is required to be solved self-consistently.
The vacuum polarization effects are not included (no sea approximation) and the
Fock exchange terms are ignored. The parameters of the effective Lagrangian
of this relativistic Hartree RMF theory, are ˇtted and are expected to include
phenomenologically the vacuum polarization and the exchange contributions.

The pairing correlations are important for the open shell nuclei. These can
be incorporated either by using the simple constant gap approximation [6,8,9] or
the Bogoliubov transformation [9]. The latter approach which treats the pairing
correlations self-consistently, leads to the relativistic HartreeÄBogoliubov (RHB)
equations [10].

The RMF/RHB equations are solved in practice either by using the con-
ventional basis expansion technique (spherical or axially symmetric deformed
harmonic oscillator basis) or in the coordinate space. The solution obtained in the
coordinate space is considered to be more reliable especially for the cases where
the asymptotics is expected to play a crucial role. This is due to the fact that the
required boundary conditions are correctly incorporated in the coordinate space
solution, thereby ensuring the correct asymptotics.

Several variants of this formulation, like the effective ˇeld theory (EFT) [11Ä
14] and the point coupling approach (PCA) [15Ä17] exist. All these start with
an appropriate interaction Lagrangian. The conventional RMF has σ, ω, ρ, and
e.m. ˇelds along with Dirac nucleon spinors. It has basically seven (eight) para-
meters (if self-coupling of ω is included). The EFT, inspired by the QCD based
expansion, includes up to quartic meson terms. Conventionally, it has thirteen
parameters. On the other hand, the PCA, as the name suggests, avoids completely
the meson ˇelds and includes quadratic (including derivatives), cubic, and quartic
terms of bilinear spinors. It has nine (seven) parameters (if the isovector terms are
dropped). The parameters appearing in their respective Lagrangians are seldom
derived. These are usually determined phenomenologically by ˇtting some of the
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ground state properties of a few selected evenÄeven nuclei. All the approaches,
though having different number of parameters, lead, more or less, to the results
of the same level of accuracy. Even the density dependence of the parameters has
been investigated. It is not still clear, which one is the most appropriate. Maybe,
only the future investigations will dictate.

Here, we shall consider and use only the conventional RMF (σ, ω, ρ model).
We analyze quantitatively the differences in the calculated observables arising
due to the use of different prescriptions generally employed for the solution of
the RMF/RHB equations. For example, the comparison of the results obtained by
solving the RHB equations in the coordinate space and those obtained by solving
the RHB equations using the spherical oscillator basis will indicate the importance
of the correct asymptotics. The differences between the results obtained through
the solutions of the RHB equations and those of the RMF equations with frozen
gap in the spherical oscillator basis will demonstrate the contributions arising due
to the self-consistent treatment of pairing. On the other hand, the comparison
between the RMF results with the frozen gap in the spherical and deformed (axi-
ally symmetric) oscillator basis will highlight the importance of the deformation
effects.

The experimental determination of absolute charge radii for unstable nuclei
is a difˇcult task. However, the difference between the squared charge radii (δr2

c )
of the given isotope with respect to the reference nucleus in the isotopic chain has
been measured through the hyperˇne splitting (isotopic shift) experiments (laser
spectroscopy) [18Ä21]. These measurements have revealed rich information about
the δr2

c for the given isotopic chain with the addition/removal of neutrons. In
particular, the charge radii are found to increase with removal of neutrons from
speciˇc neutron number. This is contrary to the expected r0A

1/3 behavior and
therefore, is termed as anomalous behavior of the isotopic shifts. Such anomalies
have been observed at several places throughout the periodic table. The relativistic
mean ˇeld theory has been successful in explaining these anomalies. This is
explicitly demonstrated for several isotopic chains considered here.

For illustration, a few representative examples of isotopic, isotonic, and iso-
baric chains are selected. In particular, the calculated results for the chains of
Nitrogen, Neon, Argon isotopes (sd shell), Iron isotopes (pf shell), Cesium iso-
topes (rare earth), Radium isotopes, N = 12 isotones, and A = 18 isobars have
been presented and discussed in detail.

The pseudospin symmetry [22, 23] has been used in the nuclear structure
physics since over thirty years. Its origin, however, remained an unresolved
mystery. Only recently, the pseudospin symmetry has been shown using RMF to
be purely of relativistic origin [24Ä27].

The antiproton (p) annihilation experiments [28Ä32] help to investigate the
nuclear periphery. In such experiments, a beam of slow antiprotons is made
to interact with the target. The antiproton then occupies a higher Bohr orbit
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in the target nucleus. It then cascades down the Bohr orbits by emitting the
characteristic antiprotonic X rays. Finally, it enters the nuclear periphery and gets
annihilated upon encountering a proton or a neutron. This so-called annihilation
site is estimated to be around 2.5 fm away from the half density radius of
the nucleus. These experiments enable one to extract the ratio of neutron and
proton densities of the target nucleus at the annihilation site through the so-
called peripheral factor, which is proportional to the ratio of the corresponding
annihilation probabilities [28,29]. In this peripheral region, both the neutron and
proton densities are very small. Therefore, the asymptotics becomes important in
the theoretical studies of nuclear densities. Further, the ratio of two very small
numbers (neutron and proton densities) imposes a stringent test on the theoretical
model used for the calculation of the nuclear densities. A small error even in
one of them could affect the resulting ratio considerably. The peripheral factors
calculated and discussed here agree well with the experiment.

The radioactive ion beam (RIB) facility helps to produce and use the unstable
nuclei as secondary beams for further experimentation. The total reaction cross
sections (σR) for a number of chains of isotopes as projectiles incident on 12C
target have been experimentally measured [33]. In practice, using these experi-
mental reaction cross sections, the parameter in the assumed form of the neutron
density distribution of the projectile is extracted within the Glauber model [34]
by knowing the densities of the target nucleus and the proton density distrib-
ution of the projectile. This yields the so-called experimental neutron (matter)
root-mean-square (r.m.s.) radius and the neutron (matter) density distribution of
the projectile. We compare these matter radii with the corresponding calculated
results. We use the calculated proton and neutron density distributions of the
projectile to calculate the reaction cross sections within the Glauber model. The
calculated cross sections are then directly compared with the experiment.

Another related, and important observable is the total charge-changing cross
section (σcc). This is deˇned as the total cross section for change in the charge
number of the projectile. The difference between σR and σcc is equal to the
total neutron removal cross section (σ−xn). The σcc yields information about
the proton densities in the presence of neutrons in projectile. Also, it has been
claimed that the σcc may set an upper limit over the r.m.s. charge radius of the
projectile [35]. Intuitively, it appears that the σcc may be obtained theoretically
by just using the projectile proton density in the Glauber model, instead of both
the neutron and the proton densities, as is done for the σR. It has been, how-
ever, shown that this approach is conceptually deˇcient [36]. Experimentally, the
charge-changing cross sections for all the isotopic chains from Boron to Fluorine
have been recently measured [37]. Here, we calculate theoretically the σcc for
some of these nuclei as projectiles, incident on 12C targets at speciˇed ener-
gies, within the Glauber model and compare them with the corresponding expe-
riment [37].
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The superheavy nuclei have been the focus of research activity in both theo-
retical and experimental sectors, since the prediction of island of stability around
Z ∼ 114 and N ∼ 184 [38, 39]. So far, the elements up to charge number
116 have been successfully produced in the laboratories around the world using
cold/hot fusion technique [40Ä43]. Search for the elements with higher charge
numbers is still on. These elements decay primarily by emitting α's or by spon-
taneous ˇssion. Another very interesting and, perhaps, the most striking decay
mode of the elements around Uranium (actinides, e.g., Rn, Ra, U, Am, etc.), is
the cluster (heavier than α particle) radioactivity [44Ä50]. So far, around thirty
such decays have been reported [50]. Here, we employ the RMF formalism to
investigate the structure and subsequently, the α (cluster)-decay properties of the
superheavy (actinides) elements.

Why Relativistic Formulation? The nonrelativistic analysis is known to
indicate that the average ˇeld in the nucleus has almost WoodsÄSaxon (WS) ra-
dial shape with strength (U ) about 50 MeV. However, U ∼ 50 MeV � mc2

(∼ 1000 MeV). Now the question arises: why the relativistic formulation is
required? The answer to this question is afˇrmative mainly due to the following
reasons.

1. The conventional optical model failed to account for the measured spin
observables such as the analyzing power (Ay) and the spin rotation function
(Q) in the polarized protonÄnucleus scattering experiments at the intermediate
energies (∼ 300 MeV). As the proper description of spin is relativistic, it was
therefore suggested to use the Dirac equation with Lorentz scalar (S, attractive)
and vector (V , repulsive) time-like potentials, instead of the Schréodinger equation.
This so-called Dirac phenomenology turned out to be remarkably successful in
accurately reproducing the measured cross sections (σ) and the spin variables Ay

and Q [51Ä57]. As an illustrative example, the σ, Q, and Ay calculated by using
the Dirac phenomenology for the polarized proton Ä 40Ca scattering at 200 MeV
are presented in Figs. 1, aÄc. Excellent agreement between the calculated [58] and
the corresponding experimental results is amply evident from these ˇgures. It was
this phenomenal success of Dirac phenomenology which triggered the numerous
successful applications of RMF approach to several nuclear properties.

2. The most direct indication for the need of relativistic description stems
from the observed large anomalous nuclear l · s splitting. We now illustrate this
below explicitly. Notice that in the atomic case l · s interaction is given by the
well-known Thomas formula:

Uat
ls =

1
4M2

1
r

∂Uat

∂r
(l · σ) , (1)

where Uat is the central potential, which is the sum of the Coulomb ˇeld of the
nucleus and the self-consistent ˇeld, calculated using, for example, the HartreeÄ
Fock procedure. The observed nuclear l · s splitting is very large (∼ 30 times)
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and is of opposite sign as compared to the atomic case. This important term
in the nonrelativistic description, as mentioned before, is introduced in practice,
phenomenologically. Explicitly:

α

r

∂ρ

∂r
(l · σ) , (2)

with
∂U

∂r
= − ∂ρ

∂r
, (3)

U ∼ −50 MeV, having WS shape.

Fig. 1. The experimental and calcu-
lated [58] cross section σ (a), spin
rotation functions Q (b), and analyz-
ing power Ay (c) for the 200 MeV
p − 40Ca scattering
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We shall now show that these features do emerge from the σ−ω model of
Walecka [1] or from the so-called Dirac phenomenology. In this picture the
nucleon dynamics is governed by the Dirac equation with the static scalar (S)
and vector (V ) potentials (ˇelds). It reads:

[α · p + β (M + S) + V ]Ψμ = EμΨμ. (4)

Rewriting this equation in terms of ψu (ψl) upper (lower) component of the
Dirac spinor (Ψμ) and eliminating the lower component ψl, one ends up with the
following second-order differential equation (up to an accuracy of order ε/M ) for
the upper component ψu:⎡⎣p

1
2Mp + (S + V )︸ ︷︷ ︸+ 1

r

(
∂

∂r

1
2M

)
︸ ︷︷ ︸ lσ

⎤⎦ψu = εψu. (5)

The ˇrst term in the r.h.s. of the above equation corresponds to U(r), whereas
the second term can be identiˇed with Uls. The energy E is measured relative to
nucleon mass M (Eμ = M + εμ; εμ being negative).

This is the Schréodinger-like equation with:
(i) Central potential U(r) = S + V ; S − ve and |S| > |V |.

(ii) Mass term M = M

(
1 +

S − V

2M

)
, 2M = 2M + S − V .

(iii) Spin-orbit term: Ulσ; Uls =
1
r

∂

∂r

(
1

2M

)
Uls is large, as |V − S| � U

M < M.
Notice that it has the correct sign and also the magnitude. Comparing this

with the corresponding nonrelativistic (phenomenological) term

1
r

∂

∂r

(
1

2M

)
=

α

r

∂ρ

∂r
(6)

yields:

1
2M = αρ +

1
2M

. (7)

The last term appears because for r � nuclear size, M → M , ρ → 0.
Knowing α and ρ one can estimate V and S. For example, phenomenology

gives: α = 85.5 MeV · fm5 and ρ = 0.17 fm−3, therefore

M
M

=
1

1 + 2αρM
≈ 0.6. (8)
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Thus, M = 0.6M yields 2M + S − V = 2 × 0.6M ; or S − V = −0.8M ≈
−750 MeV. Shell model gives V + S ≈ −50 MeV, yielding, V � 350 MeV and
S � −400 MeV.

These magnitudes of V and S are consistent with the Dirac phenomenology.
Thus, in spite of the fact that ε/M � 1, inside the nucleus the ˇelds acting

on the nucleon are not small (∼ −400 MeV, +350 MeV) in comparison with
its rest mass. So this is the reason why the nucleus is relativistic even though
ε/M � 1. The value U = −50 MeV is the result of the delicate cancellation of
two big numbers.

Section 1 presents the essentials of the RMF/RHB formulation. Some of the
calculated results obtained by using the different prescriptions employed for the
solution of the RMF/RHB equations, are discussed in Sec. 2. The representative
results are presented and discussed in Sec. 3 The antiproton annihilation for the
nuclear periphery is investigated in Sec. 4 The relativistic mean ˇeld description
of pseudospin symmetry is the subject matter of Sec. 5. The calculation of the
reaction and charge-changing cross sections in the Glauber model is discussed in
Sec. 6. A comparative study of the calculated reaction and the charge-changing
cross sections for some representative cases (Nitrogen isotopes, N = 12 isotones,
and A = 18 isobars) is presented in the same section. The double folding
model and the WKB approximation, required to calculate the α/cluster decay
half-lives, are discussed in Sec. 7. The explicit results for the α/cluster decay
of ®transuranium¯ elements are presented and discussed. The summary and
conclusions form the subject matter of Sec. 8.

1. FORMULATION

A review of RMF/RHB theories is in order here. In this formulation, the
point nucleons are assumed to be interacting only via the c-number electromag-
netic (e.m.) and meson ˇelds. The classical mean (c-number) ˇelds, scalar σ,
and vector ω are produced by the relativistic nucleon sources. The Lagrangian
density describing their dynamics is taken to be the standard nonlinear σ−ω
model of Walecka [1,2]. The total Lagrangian density L with minimal coupling
is composed of three terms:

a) the free baryonic (Lfree
B ),

b) the free mesonic (Lfree
M ), and

c) the interaction (Linterac
BM ):

L = Lfree
B + Lfree

M + Linterac
BM . (9)

These are given by

Lfree
B = ψ̄i (iγμ∂μ − M)ψi, (10)
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Lfree
M = −1

2
∂μσ∂μσ − U(σ) − 1

4
ΩμνΩμν +

1
2
m2

ωωμωμ +
1
4
g4(ωμωμ)2−

− 1
4

Rμν Rμν +
1
2

m2
ρρ

μ ρμ − 1
4

FμνFμν (11)

and the interaction term is taken to be

Linterac
BM = −gσψ̄iψiσ − gωψ̄iγ

μψiωμ − gρψ̄iγ
μτψiρμ−

− eψ̄iγ
μ (1 + τ3)

2
ψiAμ. (12)

The nucleons are assumed to be embedded in the self-interacting σ-meson poten-
tial having the cubic and quartic terms given by [59]:

U(σ) =
1
2
mσσ2 +

1
3

g2σ
3 +

1
4
g3σ

4. (13)

In the above equations, M stands for the nucleon mass, the symbols mσ (gσ), mω

(gω), mρ (gρ) are meson masses (coupling constants); g2 and g3 are the coupling
constants for the cubic and quartic self-interaction terms for the σ ˇeld [59];
g4 is the coupling constant for the quartic self-interaction term for the ω ˇeld;
e2

4π
=

1
137

is the coupling constant for the photon; τ (τ3) denotes isotopic spin

(third component of τ ) for the nucleon spinor (τ3 is −1 for a neutron and +1 for
proton). The isovector vector ˇeld ρμ is a four-vector in Minkowski's space and
a three-vector in the isospin space. It allows one to adjust isovector properties in
the nucleus.

The ˇeld tensors Ωμν , Rμν corresponding to the ω and ρ mesons and the ten-
sor Fμν corresponding to the electromagnetic ˇeld, appearing in the Lagrangian,
are given by

Ωμν = ∂μων − ∂νωμ, (14)

Rμν = ∂μρν − ∂νρμ, (15)

Fμν = ∂μAν − ∂νAμ. (16)

The isovector quantities are indicated by overhead arrows.
The nuclear many-body wave function is taken to be a Slater determinant

of Dirac spinors. Since the exchange contributions are neglected, the Hartree
approximation is implied in the nucleon sector. The variational approach then
leads to the Dirac-type equation with potential terms for the nucleons and KleinÄ
Gordon-type equations with the sources involving nucleon moments and currents
for the classical meson ˇelds. This set of coupled nonlinear differential equations,
known as the RMF equations, is to be solved self-consistently.
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Application of the classical EulerÄLagrange variational principle to the total
Lagrangian gives the equations of motion. To simplify the resulting equations
of motion, a number of further conditions are imposed. For example, the con-
tribution from the antiparticles is neglected (no-sea approximation). Only the
static solutions of the equations are sought. Time reversal symmetry is imposed.
This makes the space-like components of the ˇelds disappear. Due to charge
conservation, only the 3-component of the isovector ρ survives. The simpliˇed
equations of motion thus obtained are given by [6](

−ια · ∇ + β (M + gσσ) + gωω0 + gρτ3ρ
0
3 + e

1 + τ3

2
A0

)
ψi = εi ψi (17)

for the nucleon. Here M is the nucleon mass and σ, ω0, ρ0
3, and A0 are the meson

and electromagnetic ˇelds. These ˇelds are to be determined self-consistently
from the KleinÄGordon equations for the mesons and photon:{

−∇2 + m2
σ

}
σ = −gσρs − g2σ

2 − g3σ
3, (18){

−∇2 + m2
ω

}
ω0 = gωρv + g4(ω0)3, (19){

−∇2 + m2
ρ

}
ρ0
3 = gρρ3, (20)

−∇2A0 = eρc. (21)

The source terms (nuclear currents and densities) appearing in the above equations
are given by [6]

ρs =
∑

i

niψ̄iψi, (22)

ρv =
∑

i

niψ
†
i ψi, (23)

ρ3 =
∑

i

niψ
†
i τ3ψi, (24)

ρc =
∑

i

niψ
†
i

(
1 + τ3

2

)
ψi. (25)

In practical calculations, the sum in these equations is taken only over the positive
energy states (no-sea approximation).

The occupation probabilities ni for the state i, in the absence of pairing is
given by:

ni = 1 for εi � εf ;
= 0 for εi > εf .
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Here, εi is the single particle energy of the state i, and εf is the Fermi energy.
In the case of simple BCS prescription of pairing, the occupation probability ni

reads:

ni = v2
i =

1
2

⎡⎣1 − εi − λ√
(εi − λ)2 + Δ2

⎤⎦ . (26)

In practical calculations, one imposes further spherical or cylindrical sym-
metries. In the case of the spherical symmetry, the sources (Eqs. (22)Ä(25))
appearing in the KleinÄGordon (KG) equations (Eqs. (18)Ä(21)) take particularly
simple forms:

ρs =
∑

i

ni(2ji + 1)(f2
i − g2

i ), (27)

ρv =
∑

i

ni(2ji + 1)(f2
i + g2

i ), (28)

ρ3 =
∑

i

ni(2ji + 1)τi(f2
i + g2

i ), (29)

ρc =
∑

i

ni

(
1 + τi

2

)
(f2

i + g2
i ), (30)

where, f and g are the upper and lower components of the Dirac spinor.
The saturation mechanism is built-in in this relativistic formulation, Fig. 2.

This can be readily demonstrated, particularly, with regard to the spherically sym-

Fig. 2. Saturation mechanism in the rela-
tivistic Hartree formulation

metric case. A glance on any standard
Lagrangian parameter set (see, for ex-
ample, Table 2 in the next section) re-
veals that mσ, mω are large. Ignoring
the Laplacian in the KG equation, the
ˇelds are found to be proportional to
the corresponding densities, that is,

σ ∝ ρs,

ω ∝ ρv.

For collapse, 2M∗ shrinks, i.e., S be-
comes large. On the other hand, small
components |g|2 become large.

Thus, if |g|2 becomes large, ρs becomes small. As ρs is the source of σ,
i.e., S makes automatically σ or S smaller. This is the mechanism (of preventing
collapse) of saturation in the relativistic Hartree.
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1.1. Relativistic HartreeÄBogoliubov Theory. The pairing correlations are
important for the open-shell nuclei. These can be incorporated either by using
simple BCS prescription (constant gap) or self-consistently through the Bogoli-
ubov transformation. The latter leads to the RHB equations, they are given
by [8,10]: (

hD − λ Δ̂
−Δ̂∗ −h∗

D + λ

)(
U
V

)
k

= Ek

(
U
V

)
k

. (31)

Here, λ is the Lagrange multiplier; Ek is the quasiparticle energy, and Uk and
Vk are normalized four-dimensional Dirac super spinors,∫ (

U †
kUk′ + V †

k Vk′

)
= δkk′ ; (32)

hD is the usual Dirac Hamiltonian (see [8]) given by,

hD = −ια · ∇ + β (M + gσσ) + gωω0 + gρτ3ρ
0
3 + e

1 + τ3

2
A0. (33)

Here M is the nucleon mass, and σ, ω0, ρ0
3, and A0 are the meson and e.m.

ˇelds. These ˇelds are to be determined self-consistently from the KleinÄGordon
equations (Eqs. (18)Ä(21)), with new sources (currents and densities) in terms of
the Dirac superspinors [8, 10]:

ρs =
∑

Ek>0

V †
k γ0Vk, (34)

ρv =
∑

Ek>0

V †
k Vk, (35)

ρ3 =
∑

Ek>0

V †
k τ3Vk, (36)

ρc =
∑

Ek>0

V †
k

1 + τ3

2
Vk. (37)

In practical calculations of the sources (nucleon currents and moments), the sum
is restricted, as before, only to the positive energy states (no-sea approximation).

The RHB equations have two distinct parts: the self-consistent ˇeld (hD)
that describes the long range particle-hole correlations and the pairing ˇeld (Δ̂)
that accounts for the correlations in the particleÄparticle (pp) channel. In the
coordinate space representation, the kernel of the pairing ˇeld Δ̂ is given by


ab (r, r′) =
1
2

∑
c,d

V pp
abcd (r, r′)κcd (r, r′) , (38)
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where the roman symbols a, b, c, d denote all the single-particle state quantum
numbers; V pp

abcd (r, r′) are the matrix elements of the two-body nuclear potential
in the pp channel. The pairing tensor is given by

κcd (r, r′) =
∑

Ek>0

U∗
ck (r)Vdk (r′) . (39)

The integral operator Δ̂ acts on Vk (r),

Δ̂a (Vk (r)) =
∑

b

∫
d3r′Δab (r, r′)Vbk (r′) . (40)

Reliable and satisfactory derivation of V pp
abcd is not yet available in RMF

(see [8,10]). Guided by the success of the nonrelativistic HartreeÄFockÄBogoliu-
bov (HFB) investigations with phenomenological ˇnite or effective zero range
Gogny-type interaction in the pp channel and in the absence of the ˇeld theo-
retic derivation of V pp

abcd in the RMF, one adopts a phenomenological approach
while solving the RHB equations employing the ˇnite range Gogny interac-
tion [60, 61]. Alternatively, the density-dependent effective two-body zero-range
interaction [62] is also employed for this purpose.

In the case of the constant gap, Δ̂a (≡ Δ) becomes diagonal, resulting in
the BCS-type expressions for the occupation probabilities [6, 8] (Eq. (26)). As
a result, the RHB equations (Eq. (31)) reduce to the RMF equations with the
constant gap.

Next we present and discuss the results obtained by using different techniques
for the solution of RMF/RHB equations.

2. DETAILS OF THE CALCULATIONS

The explicit RMF/RHB calculations require the following input information:
• parameters appearing in the Lagrangian,
• V pp or the gap parameters Δ for calculation of v2

k.
The RMF/RHB calculations yield the following results: the ˇelds (σ, ω0,

ρ0
3, and A0), the nucleon spinors (Ψi), the single particle energies (εi), the

occupancies, root-mean-square radii, densities, nucleon currents, moments, and
total binding energy, etc.

In this work, the RMF/RHB equations are solved either using the basis
expansion method or in the coordinate space (c). Explicitly:

1. We ˇrst use the oscillator basis (ob) for the numerical solution of RMF
equations (with constant gap) and also for RHB equations with ˇnite range Gogny
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D1S interaction. The corresponding results are denoted by SPH and RHB(ob),
respectively. The phenomenological Gogny D1S interaction is given by [60,61]:

V (r1, r2) =
∑

i=1,2

e−{(r1−r2)/μi}2
(Wi + BiP

σ − HiP
τ − MiP

σP τ ) . (41)

Table 1. Gogny D1S parameters

i μi Wi Bi Hi Mi

1 0.7 Ä1720.30 1300.00 Ä1813.53 1397.60
2 1.2 103.64 Ä163.48 162.81 Ä223.93

Factors μi, Wi, Bi, Hi, and Mi

(i = 1, 2) are parameters of the
interaction. These are listed in
Table 1.

The differences between the
SPH and the corresponding

RHB(ob) results will be solely due to the treatment of pairing (constant gap
and Bogoliubov).

2. Next we solve the RHB equations with zero-range density-dependent two-
body interaction [62] in the coordinate space. This interaction is expressed as [62]:

V (r1, r2) = V0δ(r1 − r2)
1
4

(1 − σ1σ2)
(

1 − ρ(r)
ρ0

)
, (42)

here, V0 is the interaction strength, and ρ0 (= 0.152 fm−3 [62]) is the nuclear
matter density. The strength V0 is ˇxed so as to reproduce the pairing energy [62]
obtained from the ˇnite range Gogny D1S interaction.

The results obtained by solving RHB equations in coordinate space are
denoted by RHB(c). The differences between the RHB(ob) and the corre-
sponding RHB(c) results will re�ect the importance of incorporating the correct
asymptotics.

For explicit numerical calculations, we use the box size of 25 fm for the
solution of the RHB equations in the coordinate space. The variation of the box
size (± 10 fm) marginally affects the results. For example, the binding energies,
on an average, change by only 0.02%, the radii differ only in the third decimal
place of fermi, whereas the peripheral factors change by less than 1%. The
value of V0 obtained by reproducing the pairing energy resulting from the use
of Gogny D1S interaction in RHB(ob) lies between 700 and 800 MeV · fm−3. It
is further observed that a variation in V0 by ± 50 MeV· fm−3 hardly affects the
radii, binding energies, and the peripheral factors.

3. To ascertain the effect of deformation the RMF equations with the constant
gap approximation are solved in the deformed oscillator basis with axial symmetry
(the corresponding results are denoted by DEF). The differences between the SPH
and the corresponding DEF results will re�ect the importance of deformation.

Numerical calculations require the parameters appearing in the Lagrangian
and the gap parameters Δ or V pp as input. Several parameter sets for the
Lagrangian density are available. Usually, the Lagrangian parameters are not
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derived, but are determined phenomenologically by ˇtting the nuclear matter
properties and the ground state properties of a few selected spherical nuclei, e.g.,
16O, 40Ca, 112Sn, and 208Pb. These parameters then are frozen and used for the
calculation of any nucleus in any part of the periodic table. Here we use the most
successful NL3 parameter set [63]. The NL3 set has in all seven parameters (M
and mρ are kept ˇxed). These are listed in Table 2. The results obtained by using
the other successful Lagrangian parameter sets (e.g., NL1 [3,6], NL-SH [64], NL-
SV1 [65]) exhibit identical systematics. Therefore, the conclusions/inferences
presented here will generally remain valid.

Table 2. Different sets of the Lagrangian parameters commonly used in the RMF/RHB
calculations. The masses are in MeV. All the coupling constants are dimensionless,
except the g2. The latter is expressed in terms of fm−1

Paramete-
M mσ mω mρ gσ gω gρ g2 g3 g4rization

NL3 939.0 508.194 782.501 763.0 10.217 12.868 4.474 Ä10.431 Ä28.885 0.0

In the constant gap approximation for pairing, the neutron (proton) gap para-
meters Δn (Δp) are obtained from the observed oddÄeven mass differences [66].
The gap Δn (Δp) is taken to be identically zero for the magic neutron (proton)
core and for the one particle (hole) outside (in) this core. This is expected and
is also consistent with the RHB results with Gogny D1S pairing interaction in
pairing channel. For example, Δp (Δn) calculated from the observed oddÄeven
mass differences is ˇnite for Z > 9 (N > 9). The pairing energies obtained
with the constant gap with the spherical oscillator basis (SPH) differ in several
cases from the corresponding RHB values obtained in the spherical oscillator ba-
sis (RHB(ob)) or in the coordinate space (RHB(c)). Also, the use of the constant
gaps may yield different occupation probabilities as compared to the correspond-
ing RHB values with the Gogny D1S interaction for pairing. To be consistent
with the RHB results, the constant gaps (independent of the particle level) are
ˇxed so that the SPH pairing energy is almost identical to the corresponding
RHB(ob) pairing energy. This choice of pairing gaps is shown to be important
for describing the observed anomalous behavior in the Neon isotopes [67].

3. RMF/RHB RESULTS FOR GROUND STATE PROPERTIES

The comparative study presented here may reveal the level and the extent
of differences arising in the physical observables like the binding energies, sizes
(neutron and proton radii), densities, etc., arising due to the use of different
variants of solving RMF/RHB equations. Extensive calculations have been carried
out for such a comparative study. Here, we present and discuss the results of only
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a few selected isotopic, isotonic, and isobaric chains, in particular, the isotopic
chains of Nitrogen, Neon, Argon, Iron, Cesium, and Radium, A = 18 isobaric
and N = 12 isotonic chains.

3.1. Isotopic Chains. For the isotopic chains up to Iron, the ground state
properties are presented as a function of the third component of isospin (Tz =
(N −Z)/2). For the other two chains (Cesium and Radium), the binding energies
are plotted as a function of mass number. This convention is followed throughout,
unless otherwise speciˇed.

Binding Energies. The differences between the calculated and corresponding
experimental binding energies [66] are plotted in Fig. 3 for these isotopic chains. It
is clearly seen that the different prescriptions yield very similar binding energies.
The RHB(ob) and RHB(c) results are almost identical, implying that the inclusion
of the correct asymptotics (within a spherical box) is not very crucial for the
prediction of binding energies. However, it is also seen that SPH and RHB(ob)
results though are similar, the differences do exist between them at a ˇner level.
This is probably due to the treatment of pairing. It should be noted that the pairing
gaps in SPH calculations have been selected to reproduce the corresponding
RHB(ob) pairing energies. Thus, it can be concluded that even the frozen gap
approximation leads to reasonable values of binding energies, provided the pairing
gaps are appropriately selected. In the case of Nitrogen isotopes, the inclusion of
deformation effects has hardly any effect on the calculated binding energies. It is
interesting to note that the RMF/RHB calculations yield over-binding near the drip
lines. In fact, a similar observation holds for all the isotopic chains in the low mass
region. This indicates the need for ˇne tuning the Lagrangian for large positive
isospins. It may also imply that the correct coupling between the continuum and
the levels below the Fermi surface is important, especially for the high isospin,
or the neutron-rich nuclei. This observation is absent for the case of the neutron
deˇcient nuclei. In the case of the Neon isotopes, however, the inclusion of
deformation does improve binding energies near N = Z region, where most
of the nuclei in this chain are strongly deformed. Again, on the neutron-rich
side over-binding is observed. The Argon chain, on the other hand, exhibits a
slightly different behavior. These isotopes turn out to have milder deformations.
The binding energies are not altered signiˇcantly due to deformations, except for
the nuclei in the neighborhood of N = Z. The inclusion of deformation has,
however, signiˇcant effect in the case of Iron isotopes. Except for 54Fe, which
turns out to be spherical, everywhere else, the inclusion of deformation brings the
calculated binding energies closer to the experiment.

For the Cesium chain, the deformation has a dramatic effect. The binding
energies are improved considerably in this case. The nuclei here tend to get
over-bound near the neutron shell closure (137Cs). Similar remarks hold for the
Radium chain. There is a clear over-binding near the neutron shell closure, 214Ra.
For the heavier Radium isotopes (beyond 224Ra), the inclusion of deformation
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Fig. 3. The binding differences between the results obtained by different prescriptions of
solving the RMF/RHB equations and the corresponding experimental values [66] for N (a),
Ne (b), Ar (c), Fe (d), Cs (e), and Ra (f) chains: � Å RHB(c); � Å RHB(ob); � Å
SPH; ∗, dashed lines Å DEF
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clearly improves the agreement between the calculated binding energies and the
experiment.

Thus, the inclusion of deformation improves the calculated binding energies
signiˇcantly for nuclei with Z > 8, especially for N = Z and neighboring iso-
topes. However, for the nuclei far away from the line of stability, the differences
between the theory and the corresponding experiment are relatively larger. This
may indicate inadequacy of the isospin dependence in the current ansatz of the
Lagrangian density.

The RHB(ob) and RHB(c) results are almost identical. The SPH and RHB(ob)
results are usually similar to each other. Thus, from here onward, it will sufˇce
to present and discuss the RHB(c) and DEF results only. The only exception is
the Radium chain, where the calculations in the coordinate space (RHB(c)) are
not as reliable. Hence, for this case, we shall present and discuss RHB(ob) and
DEF results. We close this section with a remark that overall the RMF/RHB
results agree well with the corresponding experiment, but signiˇcant departures
are clearly seen for the nuclei with high Tz. This is probably due to centre-
of-mass motion and/or due to possible inadequacy of the isospin dependence in
the Lagrangian density used. Further, the deformation effects are important for
binding energies.

Deformations. Deformation is a measure of departure from sphericity. Con-
ceptually, the quadrupole deformation parameter β is a quantitative measure of
the deformation of the nucleus. It is related to the quadrupole moment. In prac-
tice, β is extracted from the proton (Qp) and neutron (Qn) quadrupole moments
through:

Q = Qn + Qp =

√
16π

5
3
4π

AR2
0β, (43)

with R0 = 1.2A1/3.
The calculated (DEF) β for isotopic chains are shown in Fig. 4. The β values

shown here correspond to the lowest solution obtained in the DEF calculations.
The corresponding MéollerÄNix (MN) [68] values are also shown (where available)
for comparison. In general, DEF and MN agree well with each other. The overall
systematics of the deformation parameters is as expected.

Most of the Nitrogen isotopes turn out to be deformed. Exceptions are
13,14,15N. Interestingly, the most neutron-rich isotopes have relatively milder de-
formations. For 17,18,19,21N additional solutions, close to the minimum solutions
are found to exist. These additional solutions are just a few hundred keV higher
than the minimum solution. This may indicate shape co-existence in these cases.
These solutions are indicated in the ˇgure by unconnected stars.

The variation in β for Neon isotopes is as expected and is in accordance with
the trend obtained by Méoller and Nix [68]. Here also, the most neutron-rich iso-
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Fig. 4. The calculated quadrupole deformation parameter β (∗, dashed lines) for N (a),
Ne (b), Ar (c), Fe (d), Cs (e), and Ra (f) chains. The corresponding MéollerÄNix (�, dotted
lines) [68] values are also shown (where available)
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topes turn out to have milder deformations. The Neon isotopes close to N = Z
are found to have strong prolate deformations. The present calculation indicates
shape transition between 22Ne and 23Ne, which is in accordance with that of
MéollerÄNix. It turns out that all the N = Z nuclei in this low mass region
are prolate, with the only exception of 16O and 18F. The calculated deformation
parameter β for the Argon isotopes seems to be reasonable. It should be noted
that all the Argon isotopes considered here, except 37,38Ar, are found to have
oblate deformation. However, oblate-to-prolate shape transition is observed from
36Ar to 37Ar.

The Iron isotopes are found to have prolate deformation, except for 54Fe
(spherical), which has N = 28 subshell closure. The case of Cesium isotopes
is interesting, where all the isotopes except for the nuclei close to 137Cs (shell
closure N = 82), turn out to be deformed. Most of these are prolate deformed.
The prolate-to-oblate shape transition is observed from 122Cs to 123Cs and oblate-
to-prolate from 130Cs to 131Cs.

The Radium isotopes exhibit a slightly different trend. There is a ®valley¯
of spherical or near spherical nuclei between 209Ra and 218Ra. In fact, the rest,
except for 227Ra to 232Ra, turn out to have only milder deformation (< 0.1).

A combined analysis of Figs. 3 and 4 reveals that the agreement between the
calculated and the corresponding experimental values of the binding energies im-
proves when the deformation is appreciable. However, as discussed earlier, there
are a few exceptions. In conclusion, the inclusion of deformation is important
for the ground state properties. This statement will be substantiated further in
the study of the neutron/proton radii, especially the isotopic shifts. There it will
be seen that the inclusion of deformation is essential for the correct theoretical
description of the observed structure in the experimental isotopic shifts for the
chains of Neon, Iron, and Cesium isotopes.

Separation Energies. The separation energies are crucial observables, since
they govern the asymptotics of the nuclear density. Further, the magnitude of
the single-particle separation energies re�ects the extent of the ®exoticity¯ of the
nucleus. An examination of the experimental single-particle separation energies
for a chain of isotopes reveals oddÄeven staggering effect. The calculated single-
and two-neutron separation energies (Sn and S2n) obtained from the calculated
binding energies are shown in Figs. 5 and 6, along with the corresponding exper-
imental [66] values (where available).

An inspection of Fig. 5 reveals that all the calculations reproduce the exper-
imental values of single-neutron separation energies well. The oddÄeven stag-
gering is also reproduced. However, the inclusion of deformation brings the
calculation closer to the experiment. The separation energies being the difference
of two large numbers: the total binding energies of the neighboring nuclei, even
a small change in one of the binding energies may make a signiˇcant difference
to the separation energies. The deformation effects are then even more important
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Fig. 5. The calculated single-neutron separation energies (Sn) for the isotopic chains
considered along with the corresponding experimental values (�, solid lines) [66] (where
available). � Å RHB(c); � Å RHB(ob); ∗ Å DEF
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Fig. 6. The calculated two-neutron separation energies for the isotopic chains considered
along with the corresponding experimental values (�, solid lines) [66] (where available).
� Å RHB(c); � Å RHB(ob); ∗ Å DEF
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for the calculation of separation energies. This is clearly seen in Neon, Iron, and
Cesium isotopic chains.

It is known that negative separation energy implies unbound nucleus. The
drip line is therefore characterized by the change in the sign of the separation
energy. In the present study, we do not intend to make any predictions about
the existence of the drip lines. We just intend to comment that, even though
the calculated separation energies agree well with the corresponding experiment,
small differences do exist between the two, maximum being of the order of
1 MeV. The separation energies near the drip lines are very small, which in
turn demands the accurate calculation of the separation energy, better than a
few hundred keV, expecting an accuracy of that order in RMF may be rather
unreasonable, in the light of the complexity of the problem. Nevertheless, it
is gratifying to note that the RMF/RHB yield the binding energies well within
0.25% on the average.

The calculated (RHB(c) and DEF) two-neutron separation energies are shown
in Fig. 6 along with the corresponding experimental values [66] (where available).
These calculations, indeed, reproduce the experiment well. The deformation
effects are seen to be important here also. Two-neutron separation energies
reveal the shell effects which in turn give a hint about the stability of the nucleus.
If these are constant beyond a certain part of the given isotopic chain, then the
corresponding nuclei can probably be regarded as unstable. The shell closures,
however, are very clearly seen. These are characterized by a sharp fall in the
separation energy. A very sharp fall in the two-neutron separation energy is
clearly seen as one goes from 137Cs to 139Cs. This is due to the major shell
closure at neutron number 82. Similar observations hold for the other isotopic
chains. It is to be mentioned that in some of the light nuclei, the conventional
magic numbers disappear, and instead, new shell closures appear.

The Q value for α (cluster) emission is just the difference between binding
energies of parent nucleus and the sum of binding energies of daughter and the
alpha (cluster) nucleus. The accurate prediction of Q for α (cluster) emission
in very heavy and transactinium elements is really crucial, since the decay half-
lives depend sensitively on Q values. Even a difference of few hundred keV
may lead to an order of magnitude change in the half-life value. These are
presented and discussed in detail for the α-decay chain of the Superheavy nuclei
(Sec. 7).

Single-Particle Level Spectrum. Next, the single-particle states are exam-
ined. As an illustration, the single-particle level spectrum for the Neon isotopes
is presented in Fig. 7. The corresponding fermi energies are shown by dot-dashed
lines. The behavior of the energy levels with Tz is as expected. For Tz = −1
and Tz = 3 (18,26Ne resp.) the different m states for a ˇxed j state are degener-
ate, corresponding to the spherical solutions. The ˇnite deformation (β) lifts the
degeneracy (as expected) in the other isotopes.
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Fig. 7. The calculated DEF single-particle level spectrum for the Neon isotopes. The levels
are designated by |2jz |π quantum numbers

Nuclear Radii. The nuclear radii are the (square root of) second moments of
the density distributions. The charge radii of the stable nuclei can be determined
accurately by electron scattering experiments. For the nuclei far away from the
line of stability, such measurements are difˇcult due to their short lifetimes. How-
ever, with the developments in the ˇeld of laser spectroscopy, it has now become
possible to measure the isotopic shifts of long chains of isotopes (see [18Ä21]).
These measurements provide rich nuclear-structure information. The neutron
radii, on the other hand, are still very difˇcult to be determined experimentally.
One of the aims of the RIB experiments is to estimate the proton/neutron radii
and hence the matter radii of the unstable nuclei. But these estimations are highly
model-dependent, and we shall refer to them as the ®so-called¯ experimental
radii. These are generally obtained through a Glauber model analysis of the total
reaction or interaction cross section. Usually, a harmonic oscillator or WoodsÄ
Saxon-type density distribution is assumed for the projectile, and the density
parameter is tuned so as to reproduce the reaction cross sections [33,69,70].

Another interesting and important feature of the loosely bound nuclei is
the nuclear skin thickness (deˇned as difference between the r.m.s. neutron and
proton radii). As more and more neutrons are added, the single neutron separation
energy goes on decreasing. The neutron density distributions, therefore, spread to
larger and larger spatial extent. However, the proton distribution is little affected.
The difference between the neutron and proton radii goes on increasing as one
moves towards more and more neutron-rich nuclei. The skin thickness, therefore,
is a measure of neutron richness or deˇciency of the nucleus. It is found that the
skin thickness bears a simple relation with the corresponding difference between
the single nucleon separation energies.

Next, the charge radii and isotopic shift values are presented.
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Charge Radii. The charge radii (rc) can be obtained from the calculated
point proton root-mean-square radii (rp) through the relation:

r2
c = r2

p + 0.64, (44)

where the factor 0.64 accounts for the ˇnite size of proton. These then can be
directly compared with the corresponding experimental values. The calculated
r.m.s. charge radii (rc) for the chains of Neon, Argon, Iron, and Cesium isotopes
are plotted in Fig. 8. The experimental charge radii, determined by either electron
scattering or isotopic shift measurements are also shown (wherever available).
Clearly, the calculations reproduce the experiment well. All the four ˇgures show
that the deformation effects are crucial for describing the observed anomalous
behavior (departure from the expected r0A

1/3 law) of the charge radii.

Fig. 8. The calculated and the corresponding experimental charge radii (where available)
for the chains of Ne (a), Ar (b), Fe (c), and Cs (d) isotopes. � Å RHB(c); ∗ Å DEF;
�, curves Å experiments
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The charge radii of Neon, deduced from the recent isotopic shift measure-
ments [20] (knowing the charge radius of 20Ne [71]), exhibit very rich structure.
The charge radius is maximum for 28Ne on the neutron-rich side, and for 17Ne
on the neutron-deˇcient side. It goes through a minimum at 24Ne. Thus, with
addition or removal of neutrons from 24Ne, the charge radius is found to increase.
In addition, a mild oddÄeven staggering is clearly observed in the neutron-rich as
well as deˇcient isotopes. The calculated (DEF) charge radii are found to be in
perfect harmony with the experiment. The anomalous behavior mentioned above
is well reproduced. The RHB(c) results, on the other hand, do not reproduce
this trend, indicating that the deformation effects are crucial for describing the
anomalous behavior.

The isotopic shift measurements have also been reported for the Argon iso-
topes [72]. These have been measured with respect to 38Ar, for which no ex-
perimental measurement of charge radius is available. However, the electron
scattering measurement for 40Ar is available [71]. Thus, we have deduced the
charge radii from the measured isotopic shifts and the known charge radius of
40Ar. These charge radii turn out to be nearly constant for the entire chain. Both
the calculations (RHB(c) and DEF) reproduce this trend. The calculations predict
an increase in the charge radius for 31Ar with respect to 32Ar, but there is no
experimental data available to compare with.

Only a few experimentally determined charge radii are known [71] for the
Iron isotopes. The inclusion of the deformation effects is again found (Fig. 8) to
be important. A prominent kink is predicted for 54Fe. There is no experimental
data available for comparison. It would be however, interesting to verify this
prediction experimentally.

The detailed analysis of the results for Cesium lead to similar conclusions.
Extensive experimental data of the laser spectroscopic studies of Cesium isotopes
is available in the literature [73]. The charge radii deduced from the measured
isotopic shifts [73] and from the known charge radius of 133Cs [71], have been
shown in the ˇgure as experimental radii. It is seen that both the calculations
(RHB(c) and DEF) do reproduce the radii rather well. The kink at N = 82
shell closure (137Cs) is well reproduced. Beyond this shell closure, both the
RHB(c) and the DEF calculations reproduce the experimental charge radii almost
exactly. However, below the shell closure, the DEF results are found to be better
than the corresponding RHB(c) results. Thus, the deformation is important for
the description of ground state properties. Experimentally, a prominent jump is
observed from 121Cs to 120Cs. The radius again decreases from 119Cs to 118Cs.
Though our calculations are very close to the experiment, we do not get this
unusual behavior.

Next we study the chain of Radium isotopes. The calculated (RHB(c) and
DEF) isotopic shifts for the Radium chain are presented in Fig. 9 along with the
corresponding experimental values [19] (where available). Unfortunately, no ex-



THE RELATIVISTIC MEAN FIELD AND SOME OF ITS RECENT APPLICATIONS 391

Fig. 9. The calculated (RHB(c) and DEF)
isotopic shifts for Radium chain with re-
spect to 214Ra. The experimental data (�,
solid curve) [19] is also included for com-
parison. ∗ Å RMF

perimental charge radius measurement is
available for the reference nucleus 214Ra
or any other Radium isotope. Therefore,
here we only present the calculated iso-
topic shifts. The Radium chain is one of
the heaviest chains studied by the isotopic
shift measurements. It can be clearly seen
that RHB(c) as well as DEF results are
in perfect harmony with the experimen-
tal isotopic shifts [19]. The kink at shell
closure N = 126 (214Ra) is well repro-
duced.

Matter Radii. Next we study the
matter radii. The r.m.s. matter radii are
deduced from the point proton and neu-
tron radii through:

r2
m =

Zr2
p + Nr2

n

Z + N
. (45)

As mentioned earlier, one of the aims of the RIB reaction cross section measure-
ments is to deduce the r.m.s. radii of the loosely bound projectiles. For almost
all the chains in the low mass region (up to Magnesium) these deduced r.m.s.
matter radii are available in the literature [33]. Such analysis is also available for
Chlorine and Argon isotopes [74]. But, these deduced radii are highly model-
dependent. Now we present the matter radii for Nitrogen, Neon, and Argon
chains. The results for Fe, Cs, and Ra chains are not included in the view of the
absence of the experimental data.

The calculated (RHB(c) and DEF) r.m.s. matter radii for Nitrogen, Neon,
and Argon chain are presented in Fig. 10 along with the corresponding so-called
experimental matter radii [33,74] (where available). Clearly, the calculated radii
are in good agreement with the experiment.

The so-called experimental matter radii for Nitrogen exhibit interesting sys-
tematics. There is a prominent dip at 13N. The rm remains nearly a constant up
to 17N and then it increases steadily. There is another slight dip at 21N and a
very sharp rise in the rm for 22N and 23N, indicating a substantial change in the
structure in these two isotopes. The calculations also reproduce the experimental
trend. The dip at 13N is nicely reproduced. Thereafter, it increases monotoni-
cally. Overall quantitative agreement between the theory and the corresponding
experiment is satisfactory. The deformation does not seem to have any signiˇcant
effect on the rm for this chain.

Experimentally, the charge radii for the Neon chain are known to have very
unusual behavior [20]. The matter radii re�ect a similar structure [33]. Both
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(RHB(c) and DEF) theoretical calculations reproduce the experimental rm well,
apart from a very prominent dip at 19Ne. Argon chain, too, has a number of
interesting features. A dramatic dip from 31Ar to 32Ar and a milder dip for
37,38Ar are most signiˇcant. The calculations, however, predict more or less
monotonic increase in rm, except for a very slight decrease in rm from 31Ar
to 32Ar.

Fig. 10. The calculated and the corresponding so-called experimental [33,74] r.m.s. matter
radii (where available) for the chains of N (a), Ne (b), and Ar (c) isotopes. � Å RHB(c);
∗ Å DEF; �, curves Å experiment

To summarize, the calculations reproduce the so-called experimental rm well,
but, there are minor differences at a few places. The deformation seems to have
a marginal effect on the matter radii.
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Nuclear Skin Thickness. The nuclear skin thickness, deˇned as the differ-
ence between the neutron and proton radii, is an interesting quantity. For all
the isotopic chains, the skin thickness is found to increase almost monotonically
with the increase in the neutron number. The skin thickness may be related
to the corresponding differences between the single-neutron and proton separa-
tion energies. Therefore, here, we explore this possibility for all the isotopic
chains.

The calculated values of nuclear skin thickness are plotted as a function of
the difference between the corresponding single-neutron and proton separation
energies in Fig. 11 for all the isotopic chains. An inspection of these ˇgures
reveals a strong negative linear correlation between the skin thickness and the
separation energy differences. This is true for all the mass regions across the
periodic table. To quantify the degree of correlation, we carry out the regression
analysis [75]. Accordingly, the correlation coefˇcient (C) and the slope (m) are
calculated using the following expressions:

C =
Cov (x, y)

σx · σy
, (46)

where the covariance ®Cov¯ is deˇned as:

Cov (x, y) =
1

N − 1

∑
j

(xj − x̄) (yj − ȳ) , (47)

the variance is given by

σ2
z =

1
N − 1

∑
j

(zj − z̄)2 (z = x or y) (48)

and

m =

∑
j (xj − x̄) (yj − ȳ)∑

j (xj − x̄)2
. (49)

The standard error in the slope is given by

e =
σ√
N

, (50)

where σ is the standard deviation and N is the number of observations or the
sample points.

The calculated results are presented in Table 3. The correlation coefˇcients
obtained are better than 95% and are negative for these chains. This clearly
reveals the strong negative correlation between the nuclear skin thickness and
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Fig. 11. The variation of the calculated nuclear skin thickness as a function of the corre-
sponding difference between the single neutron and proton separation energies [66]. � Å
RHB(c); � Å RHB(ob); ∗ Å DEF
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Table 3. The calculated correlation coefˇcients, slope coefˇcients, and the standard
errors

Nuclei
Approxi- C m e Nuclei

Approxi- C m e
mation mation

N RHB(c) Ä0.97 Ä0.026 0.002 Fe RHB(c) Ä0.95 Ä0.017 0.002
DEF Ä0.97 Ä0.024 0.002 DEF Ä0.93 Ä0.016 0.003

Ne RHB(c) Ä0.97 Ä0.028 0.002 Cs RHB(c) Ä0.97 Ä0.019 0.001
DEF Ä0.99 Ä0.024 0.001 DEF Ä0.97 Ä0.020 0.001

Ar RHB(c) Ä0.97 Ä0.017 0.001 Ra RHB(ob) Ä0.96 Ä0.012 0.001
DEF Ä0.96 Ä0.016 0.002 DEF Ä0.96 Ä0.013 0.001

the corresponding separation energy differences. Interestingly, the slope of the
regression lines turns out to be a weak function of charge number. Approximately,
the slope is directly proportional to charge number. To quantify this statement,
it is essential to include a large number of data sets. The values of the standard
error indicate that there is at most 15% spread about the regression line.

3.2. Isotonic and Isobaric Chains. Next we investigate the N = 12 isotonic
and A = 18 isobaric chains.

Binding Energies and Deformations. To investigate the exact degree of ag-
reement between the theory and the corresponding experiment [66], we plot the
difference between the calculated and the corresponding experimental binding
energies in Fig. 12. All the prescriptions of solving the RMF/RHB equations are

Fig. 12. The difference between the theoretical and experimental [66] binding energies for
the N = 12 (a) and A = 18 (b) chains. � Å RHB(c); � Å RHB(ob); � Å SPH;
∗, dashed lines Å DEF
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found to reproduce the experiment well. However, it is clearly seen that the
inclusion of deformation does improve the agreement.

Next, we plot the calculated (DEF) deformation parameters for the N = 12
and A = 18 chains along with the corresponding MéollerÄNix values [68] (where
available) (Fig. 13).

Fig. 13. The calculated (DEF) (∗, dashed lines) and the corresponding MéollerÄNix (MN)
(�, dotted lines) [68] deformation parameters for N = 12 (a) and A = 18 (b) chains

The deformation parameters are found to be as expected. 17B (in N = 12
chain) turns out to have very large deformation (∼ 0.6). Another interesting
feature clearly seen in A = 18 chain is that there is a mirror symmetry about
Tz = 0 (18F). The mirror symmetry in almost all the ground state properties about
Tz = 0 has also been observed in A = 20 isobaric chain [76].

Radii. The r.m.s. radii are now investigated for N = 12 and A = 18 chains.
The calculated and the corresponding experimental charge and matter radii for
these chains are presented in Fig. 14. The so-called experimental matter radii
have been taken from [33], whereas the charge radii are from [20,71,77,78].

The agreement between the RHB(c) and DEF results and the experiment is
found to be excellent. There are some minor differences between the calculated
and the corresponding so-called experimental matter radii, but the observed trend
is well reproduced. Similar remarks hold for charge radii.

We have seen that in the case of the isotopic chains, the nuclear skin thick-
ness and the corresponding difference between the single-neutron and proton
separation energies are strongly correlated. This correlation is found to be true
for the isotopic chains across the periodic table. It is therefore interesting to
check for this correlation for the isobaric and the isotonic chains. The calculated
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Fig. 14. The variation of the calculated charge and matter radii for N = 12 (a, b) and A =
18 (c, d) chains. The corresponding experimental values (�, solid curves) [20, 71, 77, 78]
are also shown (where available). � Å RHB(c); ∗ Å DEF

Table 4. The calculated correlation coefˇcients,
slope coefˇcients, and the standard errors

Chains C m e

N = 12 RHB(c) Ä0.90 Ä0.032 0.006
DEF Ä0.94 Ä0.028 0.004

A = 18 RHB(c) Ä0.98 Ä0.024 0.003
DEF Ä0.99 Ä0.025 0.001

skin thickness for the N = 12
and A = 18 chains is plotted
as a function of the correspond-
ing difference between the sin-
gle neutron and proton sepa-
ration energies [66] in Fig. 15.
The strong negative correlation
is evident. To quantify the de-
gree of correlation, we again calculate the correlation coefˇcient and slope of the
regression line. The calculated results are presented in Table 4.
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Fig. 15. The variation of calculated skin thickness as a function of the corresponding
difference between the single neutron and proton separation energies [66]. � Å RHB(c);
∗ Å DEF

The negative correlation is amply clear from Table 4, the correlation is better
than 90%. The only exception is RHB(c) for N = 12 chain. An inspection of
Fig. 15 shows that the RHB(c) skin thickness predicted for 17B in this chain is
too large. If this data point is suppressed, then the correlation coefˇcient for
RHB(c) turns out to be better than 94%. In all these cases, the standard error
turns out to be small.

3.3. Density Distributions. In order to compare the calculated point pro-
ton density distributions with the corresponding experimental densities, the ˇnite
proton size is required to be included. As illustrative examples, here we con-
sider 54,56,58Fe. For this purpose, the L = 0 projected and renormalized proton
densities are folded with the Gaussian proˇle to obtain the charge densities using

ρc(r) =
1

(
√

2πσ)3

∫
d3r′ρp(r′) exp

{
−(r − r′)2

2σ2

}
, (51)

where σ is a parameter ˇxed such that the Gaussian proˇle has the correct radius
(proton radius, 0.8 fm). The motivation behind selecting the Iron isotopes is that
for these cases, the model-independent determination (FourierÄBessel series) of
the charge densities is available [71]. The folded point proton densities and the
corresponding experimental charge densities [71] are plotted in Fig. 16. Clearly,
the calculations reproduce the experiment well. Even the slight depression ob-
served in the interior region of the distribution is well reproduced. Only at a ˇner
level, the DEF densities differ slightly from the corresponding experimental den-
sities. These differences arise only in the peripheral region. Further, the folded
and calculated point proton densities noticeably differ from each other primarily
in the peripheral region. The experimental densities (FourierÄBessel) may not be
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Fig. 16. The calculated (ρc) (solid curves) and the corresponding experimental (FourierÄ
Bessel series) (dashed curves) charge densities of 54,56,58Fe. The point proton densities
(ρp) (dash-dotted curves) are also presented for comparison

Fig. 17. The calculated charge (ρc) (solid curve)
and the corresponding point proton (ρp) (dashed
curve) densities for 224Ra

as reliable in the far peripheral
region.

The effect of folding is ex-
pected to be small for the heavier
nuclei. To illustrate, the folded
and DEF point proton densities
of 224Ra are plotted in Fig. 17.
Clearly, the folded and the point
proton densities are very similar
to each other. Only minor differ-
ences between them arise far in
the peripheral region.
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Clearly, the RMF/RHB describe remarkably well the observed ground state
properties of the nuclei spanning the entire periodic table.

4. ANTIPROTON ANNIHILATION

It has been suggested [28Ä32] that the antiproton (p) annihilation in which the
energy transferred to the nucleus is negligible can proˇtably be used to explore
the nuclear periphery. When an antiproton is slowed down in the matter to less
than 1 keV, an antiprotonic atom may be formed. This then cascades toward
nuclear surface by emitting antiprotonic X rays. This cascade terminates when
the antiproton encounters a nucleon at the nuclear surface and gets annihilated.
Schematically, this is illustrated in Fig. 18.

Fig. 18. Schematic representation of the p̄-annihilation experiment

The process is symbolically represented as:

p + A(Z, N)

↗
↗ X(Z − 1, N)

→ + · · · (pions).
↘

Y (Z, N − 1)
↘

If the target nucleus A(N, Z) is selected judiciously such that both the residues
X(N, Z − 1) and Y (N − 1, Z) are radioactive, then their relative yields can be
measured accurately by standard radiochemical methods.
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The so-called experimental peripheral factor fp
exp [28,31]

fp
exp =

N(p, n)
N(p, p)

Im (ap)
Im (an)

Z

N
(52)

can then be extracted. Here N(p, n)/N(p, p) is the measured ratio of the residues
Y (Z, N − 1) and X(Z − 1, N); an(ap) is the pÄn (pÄp) scattering amplitude.
The factor (Im (an)) / (Im (ap)) accounts for the ratio of annihilation probabilities
and in practice it is taken to be 0.63 [28]. In this formula it is assumed that the
probabilities of excitation of the deep hole states during the distant annihilation
are very small [30].

The peripheral factor is related to the nuclear density

fp =
Z

N

ρn

ρp
, (53)

where ρp (ρn) is the proton (neutron) density of the parent nucleus at the annihila-
tion site, taken to be R1/2 +2.5 fm [28,30]; R1/2 being the half density radius of
the parent nucleus. In recent years antiproton (p) annihilation experiments have
been carried out, enabling one to extract the ratio of neutron to proton densities
at the annihilation site (see Eq. (53)). These experiments, therefore, explore the
nuclear periphery. In this peripheral region, both the neutron and the proton
densities are very small indeed. Therefore, the asymptotics becomes important in
the theoretical studies of nuclear densities. Further, the ratio of two very small
numbers (neutron and proton densities) imposes a stringent test on the theoretical
model used for the calculation of the nuclear densities. Further, fp is a ratio of
two very small numbers (neutron and proton densities at the annihilation site),
therefore, a very small error even in any one of them may result in a large change
in the calculated fp.

Table 5. The nuclei for which the experimental p̄-annihilation data are available

48Ca 58Ni 96Zr 96Ru 100Mo 104Ru 106Cd 112Sn 116Cd 124Sn

128Te 130Te 144Sm 148Nd 154Sm 160Gd 176Yb 232Th 238U

We use the RMF approach to study the nuclei for which antiproton annihila-
tion data are available [28Ä32] (see Table 5). Here, the asymptotics is expected
to play a crucial role.

4.1. Ground State Properties. Binding Energies. For a comparative study
of the binding energies obtained by using different methods for solving the
RMF/RHB equations, we plot differences in the calculated binding energies and
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the corresponding experimental values [66] in Fig. 19. It is evident from the
ˇgure that the differences between the binding energies obtained in RHB(c) and
RHB(ob) are almost negligible. The binding energies calculated using RMF in
spherical oscillator basis in frozen gap approximation (SPH), though very sim-
ilar to those obtained from RHB(c) and RHB(ob), differ slightly in few cases:
maximum deviation being less than 0.4%. The pairing energies in RHB(c) and
RHB(ob) are very similar; but these do differ from those obtained from SPH;
though the net binding energies are very close to each other, as mentioned before.

Fig. 19. Difference in the calculated
(RMF/RHB) and corresponding exper-
imental [66] binding energies

Fig. 20. The calculated deformation para-
meters β (∗, dotted line). The correspond-
ing results obtained by Méoller and Nix
(�, dashed line) [68] are also indicated
for comparison

It is noticed that the calculated binding energies substantially differ from the
corresponding experimental values only for such cases where the deformation
seems to be important. As is seen from Fig. 19, the inclusion of the deformation
brings the calculated binding energies (DEF) very close to the experiment. To
further illustrate this point, calculated (DEF) deformations (β) are plotted along
with the corresponding values of Méoller and Nix [68] in Fig. 20. The calculated
(DEF) deformations agree very well with the MéollerÄNix values. It is noticed that
the effect of deformation to the binding energy is important only for the nuclei
where β is large.

To conclude this part, the binding energies calculated by using different
procedures for the solution of the relativistic mean ˇeld equations are very similar
among themselves and also are in overall good agreement with the experiment.
The inclusion of deformation brings the calculated binding energies very close to
their corresponding experimental values [66].
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Radii. The calculated values of charge radii (rc (fm)) are plotted in Fig. 21
along with the corresponding experimental values [71, 79, 80]. The calculations
are found to be in close agreement with the experiment.

Fig. 21. The calculated (RMF/RHB) charge
radii along with the corresponding experi-
mental [71, 79, 80] values

Fig. 22. The calculated neutron skin thick-
ness (rn − rp) for the nuclei used in the p
experiments

The calculated neutron skin thickness (rn − rp) is shown in Fig. 22. It is
seen that the trend in the neutron skin is qualitatively similar for RHB(c) and
DEF, but there are some minor differences at a ˇner level. It is further noticed
from the ˇgure that the nuclei considered in this study, separate out into two
distinct groups: those having larger rn − rp and those having small rn − rp. This
observation is consistent with the fact that the nuclei belonging to the former have
considerable neutron excess.

Densities. It is observed that the calculated point nucleon densities obtained
by using different prescriptions for numerical solutions for the RMF/RHB equa-
tions are very similar. In fact, the calculated spherical densities (SPH, RHB(ob),
RHB(c)) are almost identical in the interior and deviate slightly for large r, i.e.,
in the peripheral (outer) region. In the deformed case, the L = 0 component in
the expansion of the calculated densities (DEF) is also qualitatively similar to its
spherical counterpart. Therefore, here, we shall restrict detailed discussion to the
RHB(c) and DEF densities only.

For illustration, the calculated nucleon (neutron and proton) densities (DEF,
RHB(c)) for some representative nuclei (96Zr and 238U) are shown in Fig. 23. It
is clearly seen that the calculated proton (neutron) densities differ slightly only
in the peripheral region, where the proton (neutron) densities have very small
values. This, however, is very crucial as we shall see for the calculation of the
peripheral factor.



404 GAMBHIR Y.K., BHAGWAT A.

Fig. 23. Neutron (a, c) and proton (b, d) densities for some representative nuclei. Solid
lines Å RHB(c); dash-dotted lines Å DEF

4.2. Peripheral Factors. The peripheral factors calculated by using densities
obtained from RHB(c) and DEF along with the corresponding experimental values
are presented in Fig. 24. In this ˇgure, we have not included the SPH and
RHB(ob) results. It is noticed that the fp

exp is smaller than unity only for two
cases viz. 106Cd (0.6 ± 0.1) and 144Sm (� 0.5) (not shown in the ˇgure). The
single proton separation energies for these two cases are 7.3 and 6.3 MeV [66],
respectively, as compared to the corresponding single neutron separation energies
10.7 and 10.5 MeV [66]. This does not seem to indicate a long proton tail. The
corresponding calculated values of the peripheral factor for RHB(c) (DEF) are
1.5 and 2.2 (1.7 and 2.1), respectively. Therefore, these experimental results are
somewhat surprising. Similar remarks also hold for 96Ru and 112Sn where the
experimental values of fp (fp

exp) are close to 1 (1.1±0.2 for 96Ru and 1.01±0.18
for 112Sn). The corresponding RHB(c) (DEF) values are 1.3 (1.3) and 1.9 (2.3),
respectively.
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Fig. 24. The calculated peripheral factors
along with the corresponding experimental
values [28, 32] plotted as a function of mass
number

The inspection of Fig. 25 reveals
that the calculated fp are qualitatively
similar to the experiment. However,
they are widely spread over for indi-
vidual cases. In order to ascertain the
quality of agreement, we calculate the
mean squared deviation D and the χ2.
These are deˇned as [75]:

D =
1
N

∑
i

(yi − yexp
i )2 (54)

and

χ2 =
1
N

∑
i

(yi − yexp
i )2

(δyi)
2 . (55)

Here, ei is the error in yexp
i .

The calculated values of D and χ2

are presented in Table 6. In these cal-

Fig. 25. The dependence of the RHB(c) (�),
the DEF (∗) and the experimental (�) periph-
eral factors on Sn along with the best ˇt lines
for RHB(c) (dash-dotted), DEF (dashed) and
experiment (solid)

culations, 106Cd and 144Sm are not
considered for the reasons mentioned
earlier. The χ2 varies from 11 to 24
for the calculated fp values. This vari-
ation in χ2 is not surprising since the
calculated fp is a ratio of two very
small numbers (ρn and ρp at the an-
nihilation site), therefore, a very small
error even in any one of them may re-
sult in a large change in the calculated
fp. The χ2 for RHB(c) is found to be
minimum and this probably is due to
the use of large box in RHB(c).

In order to ascertain the correla-
tion between peripheral factor and the
single neutron separation energy (Sn),
the correlation coefˇcient C and the
slope regression coefˇcient R (with
standard error; see [75]) are calculated.
These are presented in Table 7.

It is clear from the table that both RHB(c) and RHB(ob) give relatively
better negative correlations as compared to the rest (SPH and DEF). However,
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comparison of the slope regression coefˇcients reveals that RHB(c) gives a better
description of the experiment, as compared to the other prescriptions of solving
the RMF/RHB equations.

Table 6. The calculated D and
χ2 values

Approximation D χ2

RHB(c) 2.2 11.8
RHB(ob) 4.1 18.7
SPH 6.2 24.3
DEF 3.6 16.5

Table 7. The calculated correlation coefˇ-
cients (C) and regression coefˇcients R

Approximation C R

RHB(c) Ä0.88 Ä0.56± 0.08
RHB(ob) Ä0.86 Ä0.35± 0.05
SPH Ä0.52 Ä0.16± 0.07
DEF Ä0.53 Ä0.30± 0.12
Experiment Ä0.80 Ä0.95± 0.19

Fig. 26. The variation of the ratio of periph-
eral factors fp

exp/fp
cal for the RHB(c) (�) and

the DEF (∗) with mass number. The lines
corresponding to the average value of the ra-
tio for the RHB(c) and that of DEF are also
indicated by dash-dotted and dashed lines, re-
spectively

Table 8. The mean values and standard
deviations for the ratio of the theoreti-
cal and the corresponding experimental
peripheral factors

Approximation x σ

RHB(c) 1.24 0.35
RHB(ob) 1.39 0.57
SPH 1.82 0.80
DEF 1.39 0.53

Next, the ratio fp
exp/fp

cal is plot-
ted against the atomic mass number in
Fig. 26. For a perfect agreement between
the calculation and the experiment, the ra-
tio should be unity. Both the RHB(c) and
DEF values are scattered around 1. The
mean values x for the ratio are presented
in Table 8. The x values corresponding to
RHB(c) and DEF are also shown by dash-
dotted and dashed lines (respectively) in
Fig. 26. For quantiˇcation, the standard

deviation [75] is computed. The values of σ, so obtained are listed in Table 8
along with the corresponding values of x. The inspection of the data presented in
the table reveals that the results of the RHB(c) calculations are relatively closer
to the experiment as compared to those of SPH, DEF, and RHB(ob).
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5. ORIGIN OF PSEUDOSPIN SYMMETRY

The pseudospin symmetry has been discovered in nuclear physics nearly
30 years ago [22,23] and since then it has been used proˇtably and successfully
for the description of several nuclear properties. The real origin of the pseudospin
symmetry remained unknown till the recent observation of Ginocchio [24, 81],
where for the ˇrst time the origin of this symmetry has been claimed to be
revealed as due to the near equality in magnitude of the attractive scalar and
repulsive vector ˇelds in relativistic theories.

5.1. Pseudospin Concept. The concept of pseudospin symmetry [22, 23]
is based on the experimental observation of the existence of quasi-degenerate
doublets of normal parity orbitals (n, �, j = �+1/2) and (n−1, �+2, j = �+3/2)
such as (4s1/2, 3d3/2), (3d5/2, 2g7/2), etc., in the same major shell. Since for
spherical systems the quantum numbers jπ are conserved, the pseudospin angular
momenta (�̃, s̃ = 1/2) satisfy j̃ = j = l̃±1/2. Thus, the experimentally observed
single-particle states are approximately pairwise degenerate.

To interpret this near degenerate pair of j = � + 1/2 and j = � + 3/2 states
as pseudospin (s̃) doublets corresponding to m̃s = ±1/2, pseudospin angular
momentum �̃ has to be � + 1. It then follows that the pseudoquantum number:
Ñ = N − 1, the radial quantum number ñ = n − 1 and the parity π̃ = −π.
For zero pseudospin orbit splitting, the pseudospin multiplet will be degenerate.
Thus the pair of orbitals (4s1/2, 3d3/2) and (3d5/2, 2g7/2) can be viewed as

the (2p̃1/2, 2p̃3/2) and (1f̃5/2, 1f̃7/2) pseudospin doublets, respectively. The
symmetry can also be investigated in deformed nuclei. In the asymptotic Nilsson
scheme one ˇnds the pseudospin quantum numbers (Ñ = N − 1, ñ3 = n3,
Λ̃ = Λ + 1, and Ω̃ = Ω). Therefore, the Nilsson orbitals [N, n3, Λ, Ω = Λ + 1/2]
and [N, n3, Λ + 2, Ω = Λ + 3/2] can be viewed as the pseudospin orbit doublets
[Ñ , ñ3, Λ̃, Ω̃ = Λ̃±1/2] [82]. For example, the pair [404]7/2+ and [402]5/2+ can

be interpreted as the pseudospin orbit doublet: [3̃03]7/2−, 5/2−.
Models based on this concept have been shown to provide successful spec-

troscopic description of nuclei away from closed shell regions (e.g., see [83]).

5.2. Relativistic Origin of Pseudospin Symmetry. In the following discus-
sion, we omit the explicit mention of the corresponding equations and contribu-
tions from the ρ meson and the photon since these are not relevant to the present
discussion. However these are considered in the actual calculations and therefore,
the results do include their contributions.

For spherically symmetric case the nucleon spinor ψi(r, s, t) is chosen to be
of the form

ψi(r, s, t) =
(

ψui

ψli

)
=
(

fi(r) Φ�ijimi(ϑ, ϕ, s)
igi(r) Φ�̃ijimi

(ϑ, ϕ, s)

)
χti(t) (56)
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with

Φ�jm(ϑ, ϕ, s) =
∑

msm�

〈
�m�

1
2
ms

∣∣∣∣ jm〉Y�m�
(ϑ, ϕ)χms(s), (57)

where Y�m�
(ϑ, ϕ) is the spherical harmonics and χti (χms(s)) is the isospin

(spin) part of the wave function of the nucleon i. The orbital angular momenta
�i and �̃i are determined by ji and the parity πi as

� = j + 1/2, �̃ = j − 1/2 for π = (−)j+1/2 (58)

and
� = j − 1/2, �̃ = j + 1/2 for π = (−)j−1/2

. (59)

The equivalent Schréodinger equation can be obtained starting from the Dirac
equation, by eliminating the small component. Here, however, we prefer to
eliminate the large component for this purpose.

Eliminating the large component ψui we have for the small component ψli

the following second-order differential equation (see [25,27]):{
−∇2 − S′ − V ′

E − (S − V )

(
∂

∂r
− κi − 1

r

)}
ψli =

= (2m − E − (S + V ))(E − (S − V ))ψli . (60)

For the case of equal strengths, S = V , Eq. (60) reduces to:

−∇2ψli + E(S + V )ψli = E(2m − E)ψli . (61)

Clearly, Eq. (61) has an energy-dependent potential (E(V + S)) and has the
eigenvalue E(2m − E). After scaling the radial variable r = x/(

√
E), the

potential has a complicated (
√

E) dependence, i.e., S
(
x/

√
E
)

+V
(
x/

√
E
)
. In

such a situation this equation (61) is no longer a normal Schréodinger eigenvalue
equation. Further, it is obvious that for this equation all solutions with ®bound¯
states in the Fermi sea with E � 0 are shifted to one degenerate eigenvalue with
E = 0, which, in fact, is not bound. The corresponding wave functions are not
normalizable. This indeed is an unphysical situation. This equation is the same
as Eq. (3) of [24] in the scaled variable x when written in terms of the partial
waves and using the relation �(� + 1) = κ(κ − 1).{

d2

dx2
+

2
x

d

dx
− l̃(l̃ + 1)

x2
− [(V − S) − 2 + E]

}
gi = 0. (62)

Here �, the angular momentum of the lower component gi, is identiˇed with
the pseudospin angular momentum (�̃). This is the pseudospin symmetry limit
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of Ref. 24, where the doublets j = �̃ ± 1/2 with the same �̃ are degenerate.
However, in this limit only the Dirac sea states exit and no Dirac valence bound
states and therefore it contradicts reality. According to these considerations in
all realistic situations the pseudospin symmetry must be broken. Therefore the
question arises, to what extent it is broken in real nuclei.

5.3. Realistic Calculations, Results and Discussions. The broken pseudospin
symmetry both for the spherical and deformed nuclei within the relativistic mean
ˇeld approach has been investigated [25, 27, 84]. For its study, 208Pb is chosen
as a representative of spherical nuclei; and 154Dy as a representative of deformed
nuclei. The Lagrangian parameter set NL3 [63] is used in the calculations.

First, spherical RMF calculations in the coordinate space are carried out for
208Pb. The calculated binding energy and the charge radius agree remarkably well
with the experiment. The calculated single particle energies for the bound orbitals
near the fermi surface are shown in Fig. 27, a for neutrons (ν) and protons (π).
It is clear from the ˇgure that the pairs of bound neutron valence orbitals (2g7/2,

3d5/2) and (1i11/2, 2g9/2) which correspond to pseudospin doublets (2f̃7/2, 2f̃5/2)

and (1h̃11/2, 1h̃9/2), respectively, are quasi-degenerate indicating only a small
breaking of pseudospin symmetry. The same is more or less true for the pairs
of neutron hole ((2f5/2, 3p3/2), (1h9/2, 2f7/2)), proton valence (particle) (1h9/2,
2f7/2), and proton hole ((2d3/2, 3s1/2), (1g7/2, 2d5/2)), orbitals forming the
pseudospin doublets. But here the energy separation between the partners of
the respective doublets is relatively larger. The larger is the binding energy
the larger is the separation. This indicates that the concept of the pseudospin
symmetry becomes better and better for the orbitals as their energies approach
closer and closer to the continuum. This is consistent with the results found
in [24] for the square-well potentials. In addition, the energy separation becomes
larger if the pseudo-orbital angular momentum (�̃) increases. The dependence
of the energy splitting of the pseudospin partners on the energy E and on the
pseudo-orbital angular momentum �̃ can easily be understood from Eq. (60). For
a given pseudo-orbital angular momentum �̃ the term in Eq. (60) which splits the
pseudospin partners is:

S′ − V ′

(S − V ) − E

κi

r
. (63)

It has the energy dependence (E− (S−V )) in the denominator. Now (S−V ) is
about 50 MeV. Bound states in the Fermi sea have a binding energy E < 50 MeV.
For increasing binding energy E, i.e., going to more deeply bound states, the
denominator decreases. This then results in a larger energy splitting between the
pseudospin partners. For example, for the orbit �̃ = 3 the energy splitting between
the pseudospin partners (1g7/2 and 2d5/2) will be relatively larger as compared to

that between (2g7/2 and 3d5/2). In addition, the bigger is the value of �̃ the larger
is the splitting. For instance, the energy splitting between the pseudospin partners
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Fig. 27. Pseudospin splitting in the spherical nucleus 208Pb: a) single-particle spectra in
the vicinity of the Fermi surface for neutrons (ν), protons (π), large (f ) and small (g)
components of the Dirac wave functions for the pseudospin doublets ν2d̃ (b), ν2f̃ (c), and
π2g̃ (d) [85]

(1i11/2 and 2g9/2) corresponding to �̃ = 5 is relatively larger as compared to that

between the partners (2g7/2 and 3d5/2) which corresponds to �̃ = 3, in the same
major shell. Interestingly, the sign of the energy splittings between the partners
of the neutron valence doublets is opposite to those of the neutron hole, proton
particle, and proton hole doublets.

The normalized single nucleon wave functions (both large (f ) and small (g)
components) are plotted for the pseudospin partners corresponding to the valence
neutron pairs, the neutron hole pairs and valence proton pairs in Figs. 27,b, c,
and d, respectively. The phase of the lower components (g) of one of the
partners is reversed while plotting in order to exemplify the differences in the
lower components of the pseudospin partners. Clearly, the lower components are
much smaller in magnitude as expected and are almost equal in magnitude. In
the case of exact pseudospin symmetry, the lower component of the pseudospin
partners should be identical (except for the phase). The very small differences
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between these g's which mainly appear around the surface are negligible for the
pseudospin partners having very small binding energies.

Next we consider deformed systems and impose constraint on the quadrupole
moment. Relativistic Hartree calculations have been carried out for the nucleus
154Dy. Numerical details are given in [6]. Pairing correlations are treated in the
constant gap approximation and the Lagrangian parameter set NL3 [63] is used.

Fig. 28. Single-particle energies of the deformed Dirac equation for the protons (a) and
neutrons (b) in the nucleus 154Dy as a function of the quadrupole deformation parameter
β2 [85]. Asymptotic pseudospin quantum numbers are given and the pseudospin partners
are indicated by arrows ↑ and ↓

The energies of the bound proton (neutron) pairs of orbitals corresponding to
pseudospin doublets are plotted against the deformation β2 ranging from 0.0 to 0.5
in Fig. 28. The asymptotic Nilsson quantum numbers [N, n3, Λ, Ω] are good for
large values of the deformation β2. The pseudospin doublets [Ñ , ñ3, Λ̃, Ω̃ = Λ̃±
1/2] [82] are indicated by [Ñ , ñ3, Λ̃] ↑ and ↓ in the ˇgure. For zero deformation
(β2 = 0), the orbitals are indicated by the corresponding spherical states. The
ˇgure reveals the following number of interesting facts. It is seen that the
energy splitting between the pseudospin partners is smaller for the valence orbitals
and for the partners just below the Fermi surface. This energy difference is
relatively larger for the partners having larger pseudospin angular momentum
(�̃). In general, this separation stays almost constant and does not vary with
deformation after reasonable value of β2. The energy difference between the
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↓ and the ↑ partners always remains positive except for [404], where there is
crossing at around β = 0.3. Such a crossing is not very unusual, it has also been
observed in [82].

These systematics are consistent with those observed in the spherical case
above. For more results and details, see [25,27].

Thus, it is established that the origin of pseudospin symmetry, indeed, is
relativistic, and it is well accounted for within the RMF framework.

6. CROSS SECTIONS

To test the calculated ground state densities further, we now investigate the
reaction properties of some of the nuclei considered here. Experimentally, the
reaction cross sections have been measured for chains of the Nitrogen, Neon,
and Argon isotopes [33, 74]. The charge-changing cross sections have also been
measured for some of these nuclei [35,37] and for a few Iron isotopes [86].

The reaction analysis of the loosely bound nuclei at high projectile energies
is most conveniently carried out using the Glauber model, which is based on
the multiple scattering theory [34]. The Glauber model requires the densities of
target and projectile nuclei as inputs. Therefore, comparison of the calculated
reaction cross sections with the corresponding experiment will be a good test of
the calculated densities. It can be, in simple terms, viewed as the well-known
eikonal approximation applied to the case of multiple scattering. The eikonal
approximation is applicable for those scattering problems, where the scattering
potential varies a little over a distance of the order of the de Broglie wavelength.
As long as the projectile energy is sufˇciently high, the potential itself need not
be weak. This situation is quite different from the Béorn approximation, where
the effect of the potential on the incoming wave is not large [87]. Under the
conditions of the eikonal approximation, the semiclassical notion of path becomes
tenable. Hence, it becomes possible to replace the exact wave function by the
semiclassical wave function, in terms of Hamilton's principal function. Thus,
here, it is implicitly assumed that the projectile has ®sufˇciently¯ high energy so
that the eikonal approximation is valid. However, it has been shown [88Ä90] that
with some modiˇcations, the Glauber model can be used with remarkable success
for the case of intermediate energies as well. This is known as the Finite Range
Glauber Model.

Under the optical limit [88, 91] of the Glauber model, the reaction cross
section (σR), deˇned as the total cross section for change in the mass number of
the projectile, is expressed as:

σR = 2π

∫
bdb[1 − T (b)], (64)

where T (b) is the transparency function at impact parameter b.
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6.1. Glauber Model at High Projectile Energies: Zero Range Limit.
Replacing the nucleon proˇle function [34] by δ function times the experimen-
tal nucleonÄnucleon (NN ) cross section σ̄ (zero range limit), the transparency
function T (b) reduces to:

T (b) = exp

⎡⎣−∑
i,j

σ̄ij

∫
ds ρ̄ti(s) ρ̄pj(|b − s|)

⎤⎦ . (65)

Here, the summation indices i and j run over neutrons and protons of the tar-
get and the projectile. The subscript t(p) refers to target (projectile), and ρ̄(s)
is the z-direction integrated nucleon (proton and neutron) density distribution
expressed as:

ρ̄(s) =

+∞∫
−∞

dzρ
(√

s2 + z2
)

, (66)

with s2 = (x2 + y2).
The calculation of the reaction cross section in the Glauber model requires

the experimental NN cross section and the density distributions of both the target
and the projectile. The former is taken from experiments, and is then multiplied
by a phenomenological factor ε (usually taken to be 0.8), to partly include the
effects due to the nuclear medium. For example, due to Pauli blocking and Fermi
motion, the in-medium NN cross section gets attenuated in comparison with the
free nucleonÄnucleon cross section.

6.2. Glauber Model at Low Projectile Energies. The Glauber model dis-
cussed up to now (zero range Glauber model), is applicable for higher projectile
energies. The zero range Glauber model is required to be modiˇed when the
projectile energies are small. The modiˇcations are twofold: 1) the ˇnite range
effects in the proˇle function and 2) the Coulomb modiˇed trajectories.

Within the ˇnite range approximation the transparency function is written as:

T (b) = exp

⎧⎨⎩−
∫
P

∫
T

∑
ij

[Γij (b − s + t) ρ̄Pi(t)ρ̄Tj(s)] dsdt

⎫⎬⎭ . (67)

Here, the proˇle function is given by [88,90]:

Γij(beff) =
1

2πβ2
σij exp

(
− b2

eff

2β2

)
. (68)

In this expression,

beff = |b− s + t|, (69)
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b is the impact parameter and s and t are just the dummy variables for integration
over the z-projected target and projectile densities. The range parameter β is

β = βNN = 0.996 exp
(
− E

106.679

)
+ 0.089, (70)

where E is the projectile energy. This range parameter is obtained by ˇtting
12C on 12C cross sections from 30 A · MeV to 1 A · GeV energies. The
nucleonÄnucleon cross section is as usual taken from the experiment, or taken
from some empirical ˇt to the experimental nucleonÄnucleon cross sections (see,
for example, [89]).

Especially for the lower energies, apart from the ˇnite range effect, another
important aspect is required to be taken into account: the Coulomb effects.
The straight line trajectories assumed in the Glauber model, get distorted since
the Coulomb force becomes signiˇcant at lower energies. This effect can be
incorporated in the Glauber model through the classical perihelion. Under this
assumption, the Coulomb modiˇed impact parameter (b′) can be written as:

b′ =
1
k

[
η +
(
η2 + k2b2

)1/2
]
, (71)

where, η is the usual Sommerfeld parameter, and k is the wave number of
projectile. With this correction, the total reaction cross section is expressed as:

σR = 2π

∞∫
2η/k

b′
(
1 − η

kb′

)
[1 − T (b′)]db′. (72)

6.3. Charge-Changing Cross Sections. The charge-changing cross section is
another important observable. It can be deˇned as the total cross section for all
the processes which result in the change of the atomic number of the projectile.
Neutron removal cross section can be similarly deˇned as the cross section for
processes which result in a change of atomic mass but not of the atomic number
of projectile [37]. The charge-changing cross sections are very important since
they give information about the proton distributions in the nucleus in the presence
of neutrons. Extensive experimental data on charge-changing cross sections is
available in the literature [35,37,86,92Ä97].

It had been proposed by Serber [98] that the nuclear breakup reactions can
be modeled as two-step processes: the ˇrst step being fast, and the subsequent
process being a slow process. The ˇrst step results in modiˇcation of the compo-
sition of the reaction partners, and it excites the fragments. This process is very
fast and is called the abrasion stage. The second process, which is considerably
slower than the ˇrst one, involves the de-excitation of the excited fragments by
evaporation of neutrons, protons, light particles, etc. This is called the ablation
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stage [99]. The ablation stage is expected to make additional contributions to the
total charge-changing cross sections. Therefore, the charge-changing cross sec-
tions cannot be obtained directly in analogy with the total reaction cross section,
by using the proton density of the projectile instead of the full (both the proton
and the neutron) density of the projectile. There are some claims [100] that in
spite of the possibility of additional contributions to the charge-changing cross
section due to projectile neutrons, it is enough to use projectile proton densities
to account for the experimental charge-changing cross sections. However, as we
shall see later, this approach is, conceptually deˇcient.

Keeping these aspects in mind, we examine the structure of the transparency
function:

T (b) = exp

[
−
∑
i,j

σ̄ij

∫
ds ρ̄ti(s)ρ̄pj(|b − s|)

]
. (73)

For brevity, the z-integrated densities ρ̄t(s) and ρ̄p(|b− s|) are replaced by
ρ̄t and ρ̄p, respectively, for the target and projectile. Equation (73) then reads:

T (b) = exp

[
−
∑
i,j

σ̄ij

∫
ds ρ̄tiρ̄pj

]
. (74)

Explicitly, summing over the neutron and proton indices:∑
i,j

σ̄ij

∫
ds ρ̄ti ρ̄pj = σ̄pp

∫
ds ρ̄tpρ̄pp + σ̄pn

∫
ds ρ̄tpρ̄pn +

+ σ̄np

∫
ds ρ̄tnρ̄pp + σ̄nn

∫
ds ρ̄tnρ̄pn, (75)

= (σ̄pp

∫
ds ρ̄tpρ̄pp + σ̄np

∫
ds ρ̄tnρ̄pp) +

+ (σ̄pn

∫
ds ρ̄tpρ̄pn + σ̄nn

∫
ds ρ̄tnρ̄pn). (76)

The transparency function, therefore, splits up into the product of two terms:

T (b) = T p(b)T n(b), (77)

where,

T p(b) = exp
[
−(σ̄pp

∫
ds ρ̄tpρ̄pp + σ̄np

∫
ds ρ̄tnρ̄pp)

]
, (78)

T n(b) = exp
[
−(σ̄pn

∫
ds ρ̄tpρ̄pn + σ̄nn

∫
ds ρ̄tnρ̄pn)

]
. (79)
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The subscripts n and p stand for neutrons and protons, respectively. Note that
the transparency function has been factorized into two terms: one containing
complete target density and only the proton density of the projectile and the
other containing the complete target density and only the neutron density of the
projectile (hence the superscripts n and p). The reaction cross section, therefore,
becomes:

σR = 2π

∫
bdb
[
1 − T p(b)T n(b)

]
, (80)

which, in turn, can be written as:

σR = 2π

∫
bdb
[
T p(b) − T p(b) + 1 − T p(b)T n(b)

]
=

= 2π

∫
bdb
[
1 − T p(b)

]
+ 2π

∫
bdb
[
T p(b)(1 − T n(b))

]
. (81)

Intuitively [100], one may think that the charge-changing cross section may
involve only the proton density of the projectile. The ˇrst term in Eq. (81)
represents such a mechanism (®Glauber Mechanism¯) for the charge-changing
cross sections. We denote this term by σfree

cc , signifying that the neutrons in the
projectile have no role to play in the charge-changing process. The second term
in Eq. (81) is denoted by σI

cc, leading to:

σR = σfree
cc + σI

cc. (82)

Notice that the quantities σR (=σcc +σ−xn) and σcc are experimentally measured.
Theoretically, the calculations of σR and σfree

cc are straightforward (unambiguous),
while the problem appears in the calculation of σcc, because of the ˇnite projectile
neutron contribution (σcc − σfree

cc ). The term σI
cc contains both 1) the projectile

neutron contributions to the total charge-changing cross section and 2) the total
neutron removal cross section. Realizing the fact that the projectile neutrons may
also contribute to the charge-changing cross sections, we write σcc as a sum of
two terms:

σcc = σfree
cc + FσI

cc. (83)

The reaction cross section therefore becomes:

σR = σcc + (1 −F)σI
cc. (84)

The total neutron removal cross section (σ−xn) for the projectile, is the difference
between the reaction cross section and the corresponding charge-changing cross
section. Therefore,

σ−xn = σR − σcc,

= (1 −F)σI
cc. (85)



THE RELATIVISTIC MEAN FIELD AND SOME OF ITS RECENT APPLICATIONS 417

The detailed comparative study of the calculation and the experiment reveals
that factor F may be parametrized as [36]:

F = 0.8
Z2

N2
for N � Z,

(86)

= 0.8 for N < Z,

where N(Z) denotes the neutron (proton) number of the projectile. This choice
of F works well throughout the periodic table [36].

6.4. Results. Total Reaction Cross Sections. The total reaction cross section
is a fundamental and reliable quantity that is measured in the RIB experiments.
Usually, the Glauber model is employed to analyze the cross sections and to
deduce the r.m.s. radii. The Glauber model can also be used to estimate the total
reaction cross sections theoretically. It requires both the target and the projectile

Fig. 29. The calculated (RHB(c) (�) and DEF (∗)) and the corresponding experimental
(�, solid curves) [33, 74] reaction cross sections for the nuclei in the N (a), Ne (b) and
Ar (c) chains as projectiles incident on 12C target



418 GAMBHIR Y.K., BHAGWAT A.

density distributions as the input. These can be obtained from a theoretical model.
In this work, we use the calculated RMF/RHB neutron and proton densities of the
nuclei considered here, in the Glauber model as projectile densities. The target
density (12C) has been taken from an earlier work [101].

The deformed densities cannot be used as such in calculating the cross sec-
tions. Therefore, in this work, the deformed densities are expanded in terms of
multipoles, and the L = 0 component is projected out. It is the renormalized (to
the correct particle number) L = 0 component that is used in the cross-section
calculations. The results obtained for this case are denoted by DEF.

The calculated reaction cross sections for the nuclei belonging to the chains
of N, Ne, and Ar isotopes as projectiles on 12C target at speciˇed projectile
energies are plotted in Fig. 29. The corresponding experimental values [33,74] are
also indicated. The overall agreement between the theory and the corresponding
experimental results is impressive. Finer differences do exist at various places.
The maximum difference between the theory and the experiment is ∼ 6%.

Fig. 30. The calculated (RHB(c) (�) and DEF (∗)) and the corresponding experimental (�,
solid curves) [33] reaction cross sections for the nuclei in the N = 12 (a) and A = 18 (b)
chains as projectiles incident on 12C target

Next, we plot the reaction cross sections for the N = 12 and A = 18 chains
in Fig. 30. Again, the agreement between the theory and the experiment is found
to be excellent. It should be noted that the deformation has a little effect on
the cross sections. Still, there are a few cases like 20Ne, where inclusion of
deformation does bring the calculated cross sections closer to the experiment.

Charge-Changing Cross Sections. We present and discuss the results obtained
for σcc using the proposed model [36] for the nuclei belonging to N and Fe
(isotopic), N = 12 (isotonic), and A = 18 (isobaric) chains incident on 12C
target. The results for Fe chain are for polyethylene (ÄCH2) target.
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The respective results for σcc are presented in Fig. 31. The ˇgures reveal
excellent agreement between the present model and the corresponding experiment.
The curve with the tag ®free¯ corresponds to σfree

cc (Eq. (82)). The curve without
any such tag corresponds to the present model (Eq. (83)). The Glauber model, as
mentioned earlier, requires an additional phenomenological parameter, denoted by
ε, which is the ratio of the experimental free nucleonÄnucleon cross section to the
in-medium nucleonÄnucleon cross section. The in-medium nucleonÄnucleon cross
section may be less than the free value. This is reasonable, since the medium
poses restrictions due to complicated effects like the Pauli blocking and Fermi
motion. In almost all the Glauber model analysis, this parameter is assumed to
have a ˇxed value, 0.8 [69]. In order to reproduce the experimental σcc with only
the ˇrst term (σfree

cc ), this parameter should be enhanced to at least 1.3, which

Fig. 31. The calculated charge-changing cross sections (σcc) along with the corresponding
experimental values [35, 37, 86] (where available)
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may be unphysical. It is to be noted that with this ε = 1.3, the calculated σR are
overestimated. It is recommended that for the consistent description of σR and
σcc the same factor ε (0.8) should be used.

The experimental σcc are almost constant for a given chain of isotopes.
However, there are sudden jumps in the cross sections. For example, 16N is found
to have large charge-changing cross sections in comparison with the neighboring
nuclei. Also, there is a sharp decline in σcc from 22N to 23N. This may correspond
to the appearance of a new magic shell (N = 16).

Neutron Removal Cross Sections. Knowing the reaction cross sections and the
charge-changing cross sections, the neutron removal cross sections (σ−xn) can be

Fig. 32. The calculated neutron removal cross sections (σ−xn) along with the corresponding
experimental values (�, solid curves) (deduced from [35, 37]) (where available). � Å
RHB(c); ∗ Å DEF
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obtained, merely by taking the difference between the two [33]. Here, we present
and discuss our results of σ−xn and compare these with the corresponding σ−xn

values deduced from the experimental reaction cross sections and the charge-
changing cross sections. It should be noted that the neutron removal cross sections
thus deduced from the experimental data may be a little bit erroneous, since taking
this difference implies that both the cross sections have been measured at the same
energy. The projectile energies are different in some of these cases. Since these
energies are relativistic, the energy dependence is expected to be weak.

The agreement between the theory (RHB(c) and DEF) and the corresponding
so-called experimental σ−xn is impressive. This validates the reliability of the
proposed model for σcc and hence that for σ−xn. The neutron removal cross
sections for the neutron deˇcient nuclei are found to be small (few tens of mb),
which is intuitively clear. Beyond N = Z, σ−xn is found to increase almost
linearly with the third component of isospin, which is in agreement with the
corresponding experiment. Thus, within the framework of the Glauber model, it
is possible to describe observables like the charge-changing and neutron removal
cross sections, consistently with the reaction cross sections.

Further Considerations. The charge-changing cross section is related to the
proton density of the projectile. Actually, the dominant contribution (� 80%)
to the charge-changing cross section comes from the Glauber-type mechanism
(σfree

cc ), where the neutrons in the projectile are considered to be merely spectators.
The other mechanisms contribute the rest (� 20%) and these have been considered
phenomenologically in the second term of our deˇnition (in Eq. (83)).

Further, we ˇnd that the neutron removal cross sections increase linearly with
the increase in the neutron number. Therefore, it is natural to investigate, how
these quantities are related to the neutron skin thickness and hence the difference
between the corresponding single-nucleon separation energies. We have seen
earlier that the latter two are related to each other through a very strong negative
linear regression.

To explore this, we next study the ratio:

R−xn
cc =

σcc − σ−xn

σR
(87)

as a function of the calculated values of nuclear skin thickness.
This ratio is plotted as a function of the corresponding values of nuclear

skin thickness in Fig. 33. Inspection of these ˇgures reveals a remarkable feature:
the ratio R−xn

cc is nearly independent of skin thickness for neutron deˇcient
nuclei (negative skin thickness), whereas for the neutron-rich side, it bears a very
strong negative linear correlation (with correlation coefˇcient close to Ä1) with the
corresponding values of nuclear skin thickness. To quantify this observation, the
regression analysis is carried out. The calculated results are arranged in Table 9.
Inspection of the table reveals an excellent correlation as observed before.
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Fig. 33. The calculated ratio R−xn
cc (Eq. (87)) for N (a), Ne (b), N = 12 (c), and

A = 18 (d) chains as a function of the corresponding nuclear skin thickness values
(rn − rp). � Å RHB(c); ∗ Å DEF

Table 9. The calculated correlation coefˇcients,
slope coefˇcients and the standard errors

Nuclei Approximation C m e

N RHB(c) Ä0.999 Ä0.775 0.010
DEF Ä0.997 Ä0.776 0.020

Ne RHB(c) Ä0.999 Ä0.771 0.012
DEF Ä0.998 Ä0.801 0.019

N = 12 RHB(c) Ä0.998 Ä0.745 0.020
DEF Ä0.996 Ä0.832 0.032

A = 18 RHB(c) Ä0.999 Ä0.751 0.020
DEF Ä0.995 Ä0.819 0.055

It should be noted that the cor-
relation has been calculated by
leaving out the ®plateau¯ region
of the graphs (33).

Results of Finite Range
Glauber Model. We now present
some of the preliminary re-
sults of the ˇnite range Glauber
model calculations. A signiˇ-
cant amount of experimental data
for the low-energy reaction cross
section measurements, for stable
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as well as unstable projectiles exists in the literature [102Ä104]. As illustrative
examples, we have chosen two cases: 1) 12C on 12C reactions (energy depen-
dence) and 2) cross sections for chain of neutron-deˇcient Selenium isotopes as
projectiles, incident on 28Si target at low energies (∼ 50 A · MeV).

The calculated Glauber model reaction cross sections for 12C projectile inci-
dent on 12C target at different energies are shown in Fig. 34, a. It can be clearly
seen that at energies below around 150 A · MeV, the ˇnite range Glauber model
(FRGM) results are in excellent agreement with the experiment [90, 102], in com-
parison with the corresponding zero range (ZRGM) results. At higher projectile
energies, the difference between the two models decreases. Both of these are in
good agreement with the experiment at the higher projectile energies.

Fig. 34. The calculated and the experimental reaction cross sections for: a) 12C projectiles
on 12C target (energy dependence); b) Selenium projectiles on 28Si target. See the text for
details

Next, the calculated (DEF) reaction cross sections for neutron-deˇcient Se-
lenium isotopes are presented in Fig. 34, b, along with the corresponding experi-
mental values [104]. The agreement between the calculations and the experiment
is found to be excellent within the limits of the experimental error bars.

7. DECAY HALF-LIVES

The production, identiˇcation and study of the superheavy elements is of
current interest, and is being vigorously pursued by a number of laboratories
around the world. All these are very short lived, and decay primarily through
spontaneous α emission. Thus, they can be identiˇed through the αÄα correla-
tions. So far, the elements up to Z = 116 have been successfully produced and
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identiˇed. Here, we use the RMF formalism to study the superheavy nuclei, with
the primary focus on the decay properties. For illustration, we present the results
for the α decay chains of 271Ds (Z = 110) and 278113. The calculation proceeds
in three steps. The ground state properties of the relevant nuclei are calculated
using the RMF theory. Next, the calculated densities are used to determine the
nucleusÄnucleus interaction potential within the double folding model [105Ä108].
The resulting potential, along with the nucleusÄnucleus Coulomb potential are
used in the WKB model to determine the decay half-lives. This prescription
has been applied successfully to describe the α decay of the superheavy nucleus
277112 [109].

The cluster radioactivity of the heavy nuclei [44Ä50] is one of the most strik-
ing discoveries in the nuclear physics. We investigate the cluster decay properties
of the heavy nuclei using the RMF coupled with the double folding and WKB
approaches, in analogy with the α-decay investigations of the superheavy nuclei.
Here, as an illustrative example, we present and discuss the 14C radioactivity of
the Radium isotopes.

The essentials of the double folding procedure now follow.
7.1. Double Folding Model. The basic idea behind the double folding model

is to get a reasonable nucleusÄnucleus potential, knowing some nucleonÄnucleon
interaction (e.g., M3Y interaction, etc.). In general, the double folding potential
comprises of the direct and the exchange terms. The direct term contains the
direct nucleonÄnucleon matrix elements, whereas, the exchange term, as the name
suggests, contains the exchange part. The latter is considerably more difˇcult to
handle in practice. Thus, for some of the applications, the exchange term is
simulated by a delta function pseudopotential, with some density dependence.

Fig. 35. Geometry of the double folding prescription

In the present work, the double folding prescription to obtain the
nucleusÄnucleus potential has been used (refer to Fig. 35 for the geometry of
the problem). The M3Y effective nucleonÄnucleon interaction employed here is
given by [106, 108]:
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vM3Y = 7999
e−4s

4s
− 2134

e−2.5s

2.5s
. (88)

The exchange effects are considered only through a delta-function pseudopoten-
tial [106]:

vpseudo = J00(E)δ(s), (89)

where the volume integral (J00) is [106]:

J00 = −276
(

1 − 0.005E

Aα

)
, MeV · fm3. (90)

In the present work, the energy dependence is ignored. Thus, the M3Y interaction
with pseudopotential becomes:

vM3Y+pseudo = 7999
e−4s

4s
− 2134

e−2.5s

2.5s
− 276δ(s), MeV. (91)

The density dependence is supposed to compensate to some extent the higher-
order exchange effects and the effects of the Pauli blocking. Following the earlier
work [106], it is assumed to be of the form:

vdd = C(1 − β(E)ρ2/3
1 )(1 − β(E)ρ2/3

2 ), (92)

where C is the overall normalization constant and is taken to be 1.0 in the present
work. β(E) is the energy-dependent part of the density-dependent term and is
assumed to have a constant value, 1.6 [106].

With the density dependence and the M3Y with pseudopotential, the assumed
nucleonÄnucleon interaction is now given by:

v(s) = C

(
7999

e−4s

4s
− 2134

e−2.5s

2.5s
− 276δ(s)

)
×

×
(
1 − β(E)ρ2/3

1

)(
1 − β(E)ρ2/3

2

)
. (93)

In these expressions, β(E) is 1.6 and s is equal to rpt (refer to the ˇgure).
The total double folding potential between the nucleusÄnucleus system is:

VPT(R) =
∫

ρP (rp)ρT (rt)v(rp − rt + R)drpdrt, (94)

where v is as deˇned above (Eq. (93)). In the actual calculations, we evaluate
the six-dimensional integral in the above equation by transforming it into the
momentum space. The details are easy to work out and are straightforward.
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In order to evaluate the half-life time of the nucleus against α (cluster) decay,
one needs to know the nuclear potential, the Coulomb potential and the energy of
the α (cluster), which in turn is obtained by the Q value and the zero-point energy
of the oscillation of the α (cluster) in the potential well. It should be noted that, in
the present case, it is assumed that the α (cluster) is already formed in the parent
nucleus, so that its motion can be simulated by assuming that it is moving in an
average potential well formed by the daughterÄα (cluster) system. The Coulomb
potential (VC(R)) required in this case, is obtained by double folding the point
proton densities of a daughter and α (cluster) with the Coulomb interaction.

Here the decay half-life is calculated using the WKB approximation. The
half-life time of the nucleus (parent) against the α decay is then given by

T1/2 =
ln 2
ν

(
1 + eK

)
. (95)

Within the WKB approximation, the action integral is given by

K =
2
�

Rb∫
Ra

{2μ (E(R) − Q)}1/2 dR, (96)

where μ is the reduced mass of the α (cluster)Ädaughter system. The total
interaction potential E(R) is written as

E(R) = VPT(R) + VC(R) +
�

2

2μ

λ2

r2
, (97)

with VPT as deˇned by Eq. (94) and VC(R) is the double folded Coulomb
potential. The last term with λ = l + 1/2 represents the centrifugal term and
reduces to the usual l(l + 1) form for large l. This term is usually known as the
Langer term [110] and is used in the WKB approximation. In the present work,
we take l = 0. The Ra and Rb in Eq. (96) are the lower and upper turning points,
respectively. These are determined through the requirement:

E(Ra) = Q + Eν = E(Rb).

In Eq. (95), ν is the assault frequency, given by

ν =

(
1

2R

√
2E

M

)
, (98)

where R is the radius of the parent, given by R = 1.2A1/3; E is the energy of
the cluster, corrected for recoil; M is the mass of cluster, expressed in MeV.
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7.2. α Radioactivity of 271Ds, 278113. We now present and discuss applica-
tion of the RMF formalism to the superheavy elements. Our aim is to calculate
the half-lives of these nuclei against α decay. The calculations proceed in three
steps. The ground state properties are ˇrst calculated using RMF formalism. The
αÄdaughter interaction potentials are next determined within the framework of
double folding procedure. The calculated as well as the experimental Q values
against α decay are then used in the WKB approximation for determining the
half-lives.

Extensive calculations of all the α-decay chains observed so far have been
carried out. Here, as an illustrative example, we present and discuss the results for
α-decay chains of 271Ds and 278113 (A = 278, Z = 113) only. It is interesting
to note that all the observed nuclei in this mass region are found to be prolate
deformed. Therefore, it is sufˇcient to present the results obtained by solving
RMF equations in deformed oscillator basis.

Fig. 36. a, c) The calculated and the AudiÄWapstra [66] binding energies for the nuclei
belonging to α-decay chains of 271Ds, 278113 and the quadrupole deformation parameters.
b, d) The corresponding MollerÄNix values [68] are also indicated for comparison
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Binding Energies. The calculated and the corresponding extrapolated
(Audi03) [66] binding energies for the nuclei appearing in the α-decay sequences
of the superheavy nuclei 271Ds and 278113 are presented in Fig. 36, a, c. It
is clearly seen that the calculations are in good agreement (about 5 parts in
2000) with the corresponding extrapolated values [66]. This quality of agreement
(0.25%, on the average) is also found for all the observed decay chains of the
superheavy nuclei.

Deformations. The quadrupole deformation parameters (β) are obtained from
the calculated point neutron (Qn) and proton (Qp) quadrupole moments through:

Q = Qn + Qp =

√
16π

5
3
4π

AR2
0β

with R0 = 1.2A1/3 fm. The calculated β for the nuclei considered are shown in
Fig. 36, b, d, along with the corresponding values of the microscopicÄmacroscopic
(micÄmac) calculations of MéollerÄNix (MN) [68]. All the nuclei investigated here
turn out to be prolate. By and large, this observation agrees with the predictions
of Méoller and Nix [68]. Minor differences do exist at some places.

Single-Particle States. To convey the structure of the single-particle levels,
we display these levels (two below and two above the Fermi surface) in Fig. 37
for the nuclei appearing in the α-decay chains of superheavy nuclei 271Ds and
278113. These are reasonable and are as expected.

Fig. 37. Single-particle level structure near the Fermi level
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Matter Radii. The root-mean-square (r.m.s.) matter radii (rm) are obtained
from the r.m.s. proton and neutron radii through

r2
m =

Zr2
p + Nr2

n

Z + N
. (99)

Fig. 38. The r.m.s. matter radii. ∗ Å DEF

Fig. 39. The radius parameter (r0 =
rm/A1/3, A being the mass number) for
all the known heavy nuclei in the range
108 � Z � 116

These are of considerable interest to the
experimental community. The calculated
rm values are shown in Fig. 38. They are
found to be varying monotonically with
the mass number. The corresponding ra-
dius parameter is deˇned by

r0 =
rm

A1/3
, (100)

where A is the mass number. The cal-
culated parameter r0 for all the known
chains of superheavy elements in the
range 108 � Z � 118 is plotted in
Fig. 39. The parameter r0 is found to
be a constant to a good degree of pre-
cision, with average value 0.965 (with
σ = 0.0005) fm. This r0 (Eq. (100))
should be distinguished from the one
used, e.g., by Buck et al. [111] and Akovali [112], in the calculation of the
hindrance factors. There, r0 really corresponds to the size of the potential well
used.
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A few superdeformed ground state solutions exist for some of the superheavy
nuclei (e.g., 292116, 288114, etc.). Such solutions are also reported earlier by
Ren [113] and also by Sharma et al. [114]. These superdeformed solutions
seem to be unphysical and may disappear if the higher multipolar constraints
are imposed. This assertion is supported by the recent micÄmac calculations by
Muntian and Sobiczewski [115].

Q Values. The Q value of a parent nucleus against α decay is just the
difference between the binding energy of the parent nucleus and the sum of
binding energies of the daughter nucleus and α nucleus. The results for both (Ds
and Z = 113) chains are shown in Fig. 40, a, c. The calculations are found to be
in agreement with the corresponding experimental values. The calculations differ
from the experiment at some places, the maximum departure being of the order
of 1 MeV. This is gratifying in the view of the fact that, the Q values being the
difference between large numbers, a small error in even one of them could affect
the Q values substantially.

Fig. 40. a, c) The Q values against α decay. The corresponding experimental values [40,
116] are also shown, where available. b, d) Half-lives against α decay of superheavy nuclei
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Half-Lives. The calculated and the corresponding experimental half-lives for
the superheavy nuclei against α decay are presented in Fig. 40, b, d. The half-
lives obtained by using the calculated Q values in the WKB procedure are denoted
by DEF, whereas those obtained by using the corresponding experimental Q are
denoted by Qexp+WKB in Fig. 40. Both the calculations qualitatively agree with
the experiment. The differences, even of the order of magnitude exist. The half-
lives obtained by using the calculated Q values, though similar to the experimental
trend, differ from it quantitatively at places. This re�ects hypersensitivity of the
half-lives on Q values. It is clearly seen that the use of experimental Q values
in WKB approach brings the calculated half-lives much closer to the experiment.
This re�ects reliability of the calculated nucleusÄnucleus potential. It, therefore,
can be used with conˇdence in the reaction calculations, e.g., as the real part of
the optical potential.

Similar calculations of half-lives for all the chains of superheavy nuclei
observed to date have been carried out [117], with similar quality of agreement
with the corresponding experimental values.

7.3. Cluster Decay of Radium Isotopes. One of the interesting discoveries in
nuclear physics is the cluster decay. In all, ˇve of the Radium isotopes have been
found to be spontaneous 14C emitters. This is one of the reasons for selecting the
chain of Radium isotopes in the present study. Here, we investigate the cluster-
decay properties of some of the Radium isotopes (221−226Ra). As mentioned in
Sec. 7, the calculations are carried out in three steps. In the ˇrst step, the relevant

Fig. 41. The calculated (DEF (∗)) Q values
for 14C decay of Radium isotopes, along
with the corresponding experimental values
(�, solid curves) [66], where available

ground state properties are calculated
within the framework of relativistic
mean ˇeld theory. Two properties are
essential here: the binding energy (to
obtain Q value for cluster decay) and
the total (proton + neutron) density of
daughter as well as the cluster (to calcu-
late the double folding potential).

Most of the Radium isotopes in the
region of interest turn out to be de-
formed. Therefore, here we only present
and discuss the results obtained by solv-
ing RMF equations in the deformed os-
cillator basis (DEF).

The calculated Q values for 14C de-
cay of the Radium isotopes are plotted
in Fig. 41 along with the corresponding
experimental values [66]. The ˇgure re-
veals that the calculated Q values are in overall good agreement with the experi-
ment [66]. The maximum departure is of the order of 2 MeV (about 6%).
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Fig. 42. The calculated (DEF (∗)) half-
lives for 14C decay of Radium isotopes,
along with the corresponding experimen-
tal values (�, solid curves) [50], where
available. The results obtained by using
the corresponding experimental Q values
are also shown (Qexp)

The calculated half-lives are next presented in Fig. 42 along with the exper-
imental values [50], where available. Here, the label DEF corresponds to the
half-lives obtained by using the DEF Q values in the WKB approach, Qexp in-
dicates the half-lives obtained by using the experimental Q values in the WKB
framework. Clearly, the use of experimental Q values in the double folding plus
WKB approach reproduces the experimental half-lives well. Even the DEF re-
sults are found to be reasonable. This graph also shows the sensitive dependence
of half-lives on the Q values: a few per cent change in Q values changes the
calculated half-lives by orders of magnitude. An exhaustive study of the observed
cluster decays has been carried out recently [118] along the similar lines.

SUMMARY AND CONCLUSIONS

The salient features of RMF are presented. The results of a few selected iso-
topic/isotonic/isobaric chains spread over the entire periodic table are presented
and discussed. The inclusion of deformation is found to be important for an
accurate description, particularly, of binding energies and charge radii. The cal-
culations reproduce the ground state properties remarkably well. The total binding
energies are reproduced, on the average, within 0.25% and the calculated charge
radii differ only in the second decimal place of fermi from the corresponding ex-
perimental values. It is observed that the binding energies of the nuclei with large
neutron excess are overestimated. This trend persists throughout the low mass
region. This may point towards the need to ˇne tune the Lagrangian parameters,
especially in the isospin sector. The RMF successfully accounts for the observed
peripheral factors, extracted in the antiproton annihilation experiments. It is in-
teresting to note that the RMF establishes the origin of pseudospin symmetry,
which was till recently a mystery, to be relativistic.

The RMF densities used in the Glauber model successfully describe the
observed total reaction cross sections. The transparency function of the Glauber
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model has successfully been factorized to give consistent deˇnitions of the charge-
changing as well as the neutron removal (stripping) cross sections. The proposed
forms for these cross sections are shown to be consistent with the observed charge-
changing and neutron removal cross sections. In short, the present framework
successfully and consistently describes the reaction and charge-changing (neutron
removal) cross sections.

The calculated Q values of the superheavy nuclei against the α decay are
found to be in reasonably good agreement with the experiment. The calculations
deviate from the corresponding experiment, at the most by 1 MeV. The half-lives
obtained by using these Q values, though qualitatively similar to the experiment,
do differ signiˇcantly at some places, implying that the half-lives depend very
sensitively on the Q values used. On the other hand, the use of experimental
Q values improves the agreement signiˇcantly. This implies that the calculated
double folding potential is reliable and can be used with conˇdence in other
reaction studies as the real part of the optical potential. Similar remarks do hold
for the cluster radioactivity of heavy nuclei.

To conclude, the relativistic formulation and its remarkably accurate descrip-
tion of nuclear properties with only a few ˇxed parameters is now considered to
be one of the most striking developments in the ˇeld of nuclear theory.
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