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PATH INTEGRATION ON DARBOUX SPACES
Ch. Grosche

II. Institut flr Theoretische Physik, Universitat Hamburg, Hamburg, Germany

In this paper the Feynman path integral technique is applied to two-dimensional spaces of
nonconstant curvature: these spaces are called Darboux spaces D 1—D ry. We start each consideration
in terms of the metric and then analyze the quantum theory in the separable coordinate systems. The
path integral in each case is formulated and then solved in the majority of cases, the exceptions
being quartic oscillators where no closed solution is known. The required ingredients are the path
integral solutions for the linear potential, the harmonic oscillator, the radial harmonic oscillator, the
modified Poschl-Teller potential, and for spheroidal wave functions, respectively. The basic path
integral solutions, which appear here in a complicated way, have been developed in recent work and
are known. The final solutions are represented in terms of the corresponding Green functions and the
expansions into the wave functions, respectively. We also sketch some limiting cases of the Darboux
spaces, where spaces of constant negative and zero curvature emerge.

B H crodmeii p 60Te (eflHM HOBCK s TEXHHK KOHTHHY JIbHOTO MHTEIPUPOB HUS HNPHMEHEH K
JIBYMEPHBIM HPOCTP HCTB M IIPOU3BOJIBHOH KPMBU3HBI: 9TU HPOCTP HCTB H 3B HBl IIPOCTP HCTB MU
I p6y D1—D1y. P ccMoTpenne K XKmoro ¢iayd 4 H 4 TO B TEPMUH X METPUKH, 3 TeM IpO H JIH3H-
POB H KB HTOB 5 TEOpPUS B P 3MIE/AIOIUXCS CHCTEM X KOOpAMH T. B K xXmom ciyu e ¢opmymnupy-
eTcs KOHTHHY JIbHBII MHTErp JI, 3 TeM H XOOUTCS pelleHHe I OOJNBIIMHCTB CiIyd eB. Mckimoue-
HMe cfie]l HO [T HI' PMOHHYECKOIo OCLIJIIATOP YeTBEpTOro MOPSK , KOTI 3 MKHYTOrO pelleHHUs
He cyuiecTByeT. HeoOGXomuMble MHIPEIUEHTHI SBISIOTCS PELICHUSMH KOHTHHY JIBHOTO MHTEIp JI Ui
JIMHEIHOTO MOTEHNH JI , T PMOHUYECKOTO OCHWIIATODP , P AU JIBHOIO I' PMOHHYECKOTO OCHIJLIATOD ,
MoauHIMpoB HHOro morteHuu J Ilemuia—Temrep u cdepoun JbHBIX BOMTHOBBIX (PyHKIMII COOTBET-
crBeHHO. OCHOBHbIE pelleHHs KOHTUHY JIbHOTO MHTETPUPOB HUS, KOTOpbIE MOSBIIIOTCS 31€Ch B CIOX-
Hoii (hopme, Obln p 3p OOT HbI B Hell BHUX p 60T X. KoHeuHble pelleHus NpeicT BIEHBI B TEPMUH X
COOTBETCTBYIOIMX (pyHKUMA ['pHH ¥ p 37MO0XEHHH MO BOMHOBBIM (PyHKIMAM. Berno mpeact BrieHs!
npezieibHble CTyd U npocTp HeTB JI pOy, e BO3HUK IOT IIPOCTP HCTB IOCTOSIHHOM OTPHIL[ TENbHOM
WIH HYJEeBOH KPUBHU3HEL

1. INTRODUCTION

1.1. General Overview and Recent Work. In recent years there have been
an enormous success in developing path integral techniques and in solving Feyn-
man path integrals. After its invention by Feynman [10], the solution of the
harmonic oscillator has been for a long time the only accessible path integral
solution. Several textbooks made the path integral more popular, e.g., Feynman
and Hibbs [12] and Schulman [60]. However, as a tool in quantum mechanics
the path integral remained in a dormant state, whereas its main applications were
in the field theory, e.g., [11,14,35,50]. Only later on, the technique of radial
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path integrals, i.e., the Cartesian path integral formulated in spherical coordi-
nates, was developed in the 1960’s by Edwards and Gulyaev [9] and Peak and
Inomata [59].

Matters shifted with the first calculation of the path integral for the Hydrogen
atom [7,8] by Duru and Kleinert. In the textbook [46] a lot of applications and
a summary of the development of this technique can be found, including many
references on the subject. The principal development in their approach was a
technique called space-time transformation, sometimes also called «Duru—Kleinert
transformation», which does not only perform a coordinate transformation in the
path integral but also transforms the time-slicings ¢ = T7'/N into new time-
slicings 6. This combined coordinate and time-transformation usually ends up in
manipulating the action in the path integral in such a way that a given problem is
transformed into one of the basic path integrals. These basic path integrals are,
roughly speaking, the harmonic oscillator, the radial harmonic oscillator [59],
the (modified) Poschl-Teller potential path integrals [1,6,13], and the spheroidal
path integral [24,26]. In our book «Handbook of Feynman Path Integrals»
[34] we have given a thorough overview of all the techniques how to handle
and manipulate path integrals, and, most important, an up-to-date list of several
hundred solvable path integrals and the corresponding references.

The separation of a particular quantum mechanical potential problem into
more than one coordinate system has the consequence that there are additional
integrals of motion and that the spectrum is degenerate. The Noether theorem
[57] connects the particular symmetries of a Lagrangian, i.e., the invariances
with respect to the dynamical symmetries, with conservation laws in classical
mechanics and with observables in quantum mechanics, respectively. In the case
of the isotropic harmonic oscillator one has in addition to the conservation of
energy and the conservation of the angular momentum, the conservation of the
quadrupole moment; in the case of the Coulomb problem one has in addition
to the conservation of energy and the angular momentum, the conservation of
the Pauli-Runge-Lenz vector. In total, the additional conserved quantities in
these two examples add up to five functionally independent integrals of motion
in classical mechanics, respectively observables in quantum mechanics.

A topic which appeared in the formulation of the radial path integral and for
the (modified) Poschl-Teller potential [1,6,13,47] was the path integration over
group spaces. This included the formulation and evaluation of the path integral in
spaces of constant curvature, the curvature being positive (spheres), negative (hy-
perboloids), or zero (Euclidean and pseudo-Euclidean space). This opened a new
rich field of investigations. It required separation of variables in the Schrodinger,
respectively the Laplace-Beltrami equation Apg — F, in various coordinate sys-
tems in these spaces. The case of two- and three-dimensional Euclidean space can
be found, e.g., in [55] and in the textbooks [54, 56]: In two-dimensional flat space
there are four coordinate systems and in three-dimensional space there are eleven
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coordinate systems which separate the Helmholtz, respectively the Schrodinger
equation®.

A thorough study of separation of variables of the Laplace—Beltrami equation
in spaces of nonzero constant curvature was first performed by Olevskii [58], who
studied the two- and three-dimensional cases of constant curvature. In particu-
lar, he found that on the two-dimensional hyperboloid there are nine coordinate
systems; and on the three-dimensional hyberboloid, 34 coordinate systems which
allow separation of variables in the Laplace—Beltrami equation. However, only
in several cases, which exhibit symmetry properties, closed solutions in terms
of higher transcendental functions are known. In many coordinate systems very
little is known about the corresponding solutions of the eigenvalue equation in
terms of special functions and no closed solution is known. These coordinate
systems are usually parameter-dependent, e.g., ellipsoidal or paraboloid systems.
Usually, only in the nonparameter-dependent coordinate systems, like spherical
and parabolic coordinates, a well-developed theory of higher transcendental func-
tions is known. In these cases, the relevant eigenfunctions can be expressed in
terms of hypergeometric and degenerate hypergeometric functions and we find
Legendre polynomials (in cases with a discrete spectrum) and functions (in cases
with a continuous spectrum), the Bessel and Whittaker functions (in cases with a
continuous spectrum) and numerous polynomial solutions (in cases with a discrete
spectrum), and so on.

The only exception of parametric coordinate systems, where a developed
theory of the corresponding higher transcendental functions exists, are the elliptic
and spheroidal coordinate systems in a flat space [53] and on spheres [26]. The
important point is that this theory allows one to expand the exponentiated invariant
distance in terms of elliptic and spheroidal wave functions. These functions are
one-parameter-generalized functions of the well-known spherical harmonics and
Bessel functions. It also allows one to formulate the «spheroidal path integral»
which can be added to the list of basic path integrals.

Based on [58], the theory of [53], and the thorough study of coordinate sys-
tems in spaces of constant curvature [37], we were able to find the solution of the
path integral formulations in these spaces, expressed in its separating coordinate
systems [23,24]. This study included the two- and three-dimensional Euclidean
and pseudo-Euclidean spaces, the two- and three-dimensional spheres, the two-
and three-dimensional hyperboloids, imaginary Lobachevsky space, respectively
the single-sheeted hyperbolic [22], SU(u,v)-path integration [18], hyperbolic
spaces of rank one [19], and Hermitian hyperbolic spaces [19, 25].

*As pointed out in [2] there are 17 types of coordinate systems which R-separate the Laplace
equation, i.e., A;,g® = 0. However, these additional systems are very complicated except the case
of the toroidal coordinate system.
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Let us finally note that due to Kalnins, Miller, Winternitz, and coworkers
there is in a series of papers an extensive study on separation of variables of the
Schrédinger, respectively the Helmholtz equation in spaces of constant curvature,
called «Lie Theory and Separation of Variables». We just would like to refer
to [2,3,5,40,54] and the textbooks [24,37] with their extensive reference list on
this subject.

1.2. Introducing Darboux Spaces. An extension of the study of path in-
tegration on spaces of constant curvature is the investigation of path integral
formulations in spaces of nonconstant curvature. Kalnins et al. [38,39] denoted
four types of two-dimensional spaces of nonconstant curvature, labeled by D 1—
D1y, which are called Darboux spaces [48]. In terms of the infinitesimal distance
they are described by:

q)) ds* = (z+vy)dzdy, (1.1)
I ds® = (ﬁ + b) dady, (1.2)
(I11) ds®> = (a e~ (@tv)/2 4 be " Y)dudy, (1.3)

(z=v)/2 L oly—2)/2) 1 p
IV)  ds® = _ale c )j dady, (14)
(e(m—y)/2 — e(y—r)/2)

a and b are additional (real) parameters. Kalnins et al. [38, 39] studied not
only the solution of the free motion, but also emphasized on the superintegrable
systems in theses spaces. Superintegrable means that in two dimensions at least
three constants of motion must exist, which is by construction already fulfilled for
the free motion. They found appropriate coordinate systems, and we will consider
all of them. In the majority of the cases we will be able to find a solution,
however in some cases this will be impossible due to the quartic anharmonicity
of the problems in question.

The Gaussian curvature in a space with metric ds? = g(u,v)(du? + dv?) is
given by (g = det g(u,v))

1 (0% 0

Equation (1.5) will be used to discuss shortly the curvature properties of the
Darboux spaces, including their limiting cases of constant curvature.

In the following sections we discuss each of the four Darboux spaces, we
set up the Lagrangian, the Hamiltonian, the quantum operator, and formulate and
solve (if this is possible) the corresponding path integral. We also discuss some of
the limiting cases of the Darboux spaces, i.e., where we obtain a space of constant
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(zero or negative) curvature. In particular, for D11 we consider the limiting case
b = 0 a little bit more explicitly: It gives the two-dimensional hyperboloid (with
constant negative curvature). The other limiting case on Dy; (a = 0, i.e., R?)
is only sketched. In the case of Dy there is no limiting case, because we have
no free parameter in the metric to choose from. In the two remaining Darboux
spaces, D1 and Dy, the limiting case of Dy is not very difficult since it is
the zero-curvature case R? which emerges. In D1y we sketch the matter with
some notes.

In order to make the paper self-contained we provide in the Appendices some
material about the basic path integral techniques and solutions. We set up the path
integral formulation for general coordinates, including our lattice definition of the
time-sliced path integral and shortly describe several transformation techniques,
including coordinate transformation and the space-time transformation. Also,
we summarize some important path integral solutions, like the (radial) harmonic
oscillator, the linear potential, and the modified Poschl-Teller potential, including
the corresponding Green functions. These solutions including their generalization
to related potentials are indispensable tools in the path integral investigation of
Darboux spaces.

2. DARBOUX SPACE D;

We start with the consideration of the Darboux Space D and consider the
following coordinate systems:

((u,v) coordinates:) r=u+iv, y=u—iv(u=a), (2.1)
(Rotated (r,q) coordinates:) u =rcost+ ¢gsin, 2.2)
v=—rsind+qcos? (¥ €[0,7]), (2.3)

(Displaced parabolic:) u= %(52 —n?) +a, v==En
(EeR,n>0,a>0). (2.4)

The infinitesimal distance, i.e., the metric is given by

ds* = (x4 y)dxdy, (2.5)

((u,v) coordinates:) = 2u(du® + dv?), (2.6)
(Rotated (7, q) coordinates:) = 2(rcos? + ¢sind)(dr? + dg?), 2.7)
(Displaced parabolic:) = (&2 —n* + 2a)(£2 + n?)(d&? + dn?). (2.8)

We find, e.g., in the (u,v) system for the Gaussian curvature

K=t (2.9)

u?
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There is no further parameter in the metric, therefore this space is of nonconstant
curvature throughout for all v > a with a being some real constant a > 0*.

2.1. The Path Integral in (u,v) Coordinates on D1. In order to set up the
path integral formulation we follow our canonical procedure as presented in [34].
The Lagrangian and Hamiltonian are given by, respectively:

1
L(uy iy, 0) = mu(i® +9%), H(w,pu,0,p0) = =@y +p),  (210)

and we must require u > a for some a > 0, and v € [0, 27] can be considered as
a cyclic variable [39]. The canonical momenta are

h(o 1 h 0
pu—;<%+ﬂ>a p”_;%’ (211)

and for the quantum Hamiltonian we find

2 2 2
H:—j—mi(%%-%) zﬁx/%—u(pi+p3)\/%—u- (2.12)
We formulate the path integral (first ignoring the half-space constraint):
m \ VNl
K(u" o', 0", 05 T) = 1\/14><>o (271'1671) H /QUJdu]dUJ .
N
X exp % ;@(Muj +AZ) | = @13)
u(t'")=u" o(t")=v"
= / / Du(t)2u x
u(t)=u’ o(t)=v’
T
X exp %/u(if +o?)dt (2.14)
0

(@; = Juju;—1). I have displayed the path integral in our lattice definition,
which will be used throughout this paper. Due to this lattice definition of the path
integral, we have no additional h? potential because the dimension of the space

*In [39] the condition @ > 1/2 is imposed in order to embed D1 into a three-dimensional space
with coordinates X, Y, Z such that dX? 4+ dY? 4+ dZ? = 2u(du? 4 dv?). For dX? +dY? + dZ?
we have v € [0, 27r). For dX? +dY? — dZ? we have v € R.
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of nonconstant curvature equals 2, c.f. (A.7). In this path integral we perform a
time transformation according to At(j) = 2@As(j), i.e., with time-transformation
function f(u) = 2u = /g (g is the determinant of the metric tensor), and we
obtain:

oo

E orm [
K" o' 0" ;T) = / d—e_lET/h/ds”K(u”,u',v”,v’;s”) (2.15)
21h
s 3
with K (s”) given by:
K(u// U/ v// v/_s//) —
u(sll):ull U(S//):v// ) S//
i m, .o .9
= / Duf(s) Du(s)exp ﬁ/ {E(U + )+2uE]ds =
u(0)=u’ v(0)=v’ 0
(S//):ull
il(v —v") 1212
- ¢ 5 OXP ( — %%s”) / Du(s)x

X eXp %/(%iﬂ—kth)ds . (2.16)
0

The feature that the time-transformation function equals f = ,/g is a general
feature of the Darboux-space path integration. I have separated the v-dependent
part of the path integral in circular waves. The remaining path integral in the
variable u is a path integral for the linear potential. Let us denote the path
integrals in the variables u and v by K,(s"”) and K,(s"”), respectively. We
obtain for the product of the two kernels with corresponding energy-dependent
Green functions G, (E; E,,) and Gy (E; &,):

K(’LLH,U/,UH,U/;T): / 5 heizET/h/dS//Kv(’U//,’Ul;S//)Ku(u//,u/;S//):
T
—0 0
i dE ‘ET/h/OO n 1 / —i&ys"" /R "o 1
= [ oe’ ds" — [ d€, e " MG (Bs0" 05 ) 5=
/%he ¥ ori ¢ (B3 07, v 80) 5 2%
—o0 0
X /dé’u e S IhG (B W5 E,) =
[ dE e B
= / —e_ZET/h—,/dSGU(E;U”,U';—E)Gu(E;u”,u';E). (2.17)
21h 271

— 00
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Alternatively, in terms of the Green function we get

h
G //7 /’ //7 /; E —
(u",u' 0" V' E) 3

/dé’Gv(E;v”,v’;g)Gu(E;u”,u';—5). (2.18)

Inserting now the explicit form of the v-dependent kernel we obtain:

o0
K(u”,u',v”,v’;T) _ /

— 00

dE
27h

il(v —v")

o0
o—iET/h Z €

2w

l=—00

272
Gu<E;u”,u’;——l f >
2m

(2.19)
For the complete solution we must know the kernel G, (v”, u'; £) which we obtain
in the following way. The Green function for the linear potential V (z) = kx is
given by [34]

Am £ EN1Y?
(k) (11 1. _ r < n_ <
G\ (2", 25 &) ah {(x k) (x k)} X
V8mk £\*? V8mk £\"?
X 11/3 [T <x< — E) K1/3 T <x> — E) 3 (220)
I, and K, are modified Bessel functions [15], and . and x~ denote the smaller
and larger of 2’ and ", respectively. We have to identify & = —L2h%/2m,
k = —2F, and x = w. In addition, we have to recall that the motion in u takes

place only in the half-space v > a. In order to construct the Green function in the
half-space x > a we have to put Dirichlet boundary conditions at x = a [20,21].
Therefore the Green function for the linear potential in the half-space x > a is
given by

W0 E)GW (a,u€)

"o, — (k) (1 1.
G(m:a)(u b ) =GW (W uE) G(k)(a,a;g) (2.21)
Therefore we obtain finally:
2 Qil(0"=v") 4 1212 1212 1/2
RTARTRT Y H g € = ’r_ "_
G(u",u',v" v E) l:z—:oo 53 Ku 4mE> (u 4mE>] X
- 12h2 N 12K2
R (“ - 4m—E>K1/3 (“ - 4mE) -
~ 122
Il/?)(a_ ) 232 272
dmE ) - Ih ~ I
_ - l2h2 K1/3 (ul — 47/n—E>K1/3 ('LL// — 4mE> . (222)
Ky (a a 4mE>
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And I,(z) denotes

L) =1, (LL_mEZSﬂ)’
3h
with K, (z) similarly. The Green function (2.22) is rather complicated due to
the boundary condition at u = a, and we will not evaluate the free-particle wave
functions. Let us only consider the following point. According to Langguth and
Inomata [49] the modified Bessel function I,,(z) has the asymptotic expansion

1

2
I,(2) ~ —e*" /% for |z| — 00), 2.23
()~ 7= (For [2] — o) 2.23)
provided R(z) > 0. However, if —37/2 < arg(z) < 7/2, one has
]. 2 2 .
I,(z) ~ eV /% 4 e 2tV /atin(v+1/2) for |z| — 00). (2.24
(2) N N (for |2| ). (2.24)

(A similar consideration is valid for K,.) In our Green function (2.22) we now
see that due to the —-sign in the square-root expression in the argument of the

modified Bessel functions, its argument becomes purely imaginary, from which

. 3/2
follows that for large u we get «plane» waves oc e~ with some wave number

k, including in- and out-coming waves. This is the well-known feature of «plane
waves» in the free particle motion, in the present case modified by the curvature
of the space.

Let us note another particularity of the quantum motion in Dj. According
to [39] the coordinates (u,v) can only be uniquely determined if we embed the
space D7 into a three-dimensional Euclidean space with definite or indefinite
metric, respectively. In the present calculation we have chosen the definite case.
However, if we chose a metric according to d>X + d?Y — d*T = 2u(d?u + d*v),
it is found that the variable v can vary in its range over the entire real line,
ie.,, v € R. In the separation in the path integral (2.16) the only difference
would be that the summation over the discrete quantum number [ is replaced
by an integration over the continuous quantum number k, say, including the
replacement [ — k in all the following formulas from (2.16) on.

The problem of the exact range of the variables (u,v) we will encounter
several times, and for this reason we will leave this range unspecified. Implicitly
we assume that when terms o< u =2 appear, then w is in the range v > 0, i.e, a
radial variable. In the other coordinate systems like parabolic, spherical, elliptic,
etc., the usual range of variables is assumed. If however, a coordinate is treated
within the range of R, but is in fact restricted to be positive or larger than a
definite number, then (2.21) must be applied to find the proper quantum solution.

2.2. The Path Integral in Rotated (7, g) Coordinates on Dy. In order to set
up the path integral formulation we follow again our canonical procedure. The
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Lagrangian and Hamiltonian are given by, respectively:

L(r,7,q,q) = m(rcos? + ¢sin?) (% + ¢?), (2.25)
1 2, .2
s 45 = - r . 2.26
H(T,p q pq) 4m(7"cos%9+qsm19) (p +pq) ( )
The canonical momenta are
h(o cos v
. = (= : , 2.27
b z<8r+2(rcosz9+qsm19)> (2.27)
h(o sin
= —|(= . 2.28
Pq i<8q+2(rcosﬂ+qsinﬂ)) (2.28)
The quantum Hamiltonian has the form
h? 1 0? 0?
H — — [ _— = 2.29
2m 2(r cos ¥ 4 gsin ) <8r2 +8q2> (2:29)
1 1 y 1
- L . (2.30)
2m \/2(r cos 9 + gsin ) r+7y) V/2(r cos ¥ + gsin )
The path integral is formulated in the usual form*
T(t”):’,"' q(t”):q”
K" ' q",¢;T)= / Dr(t) / Dq(t)2(r cosd + gsindd)x
r(t)=r’ q(t')=q'
T
m . .2 .2
X exp | = (rcosd + gsind)(r° 4+ ¢°)dt | =
0
dE o [
— / ﬁ eszT/h/ds//Kv(,r,//’r/’q//7q/;S//)7 (2.31)
0

K" v q" ¢;s") = / Dr(s) exp [%/(%fz—&—QErcosﬁ)ds x
0

*We will assume 7, ¢ € R, otherwise (2.21) must be applied.
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I have time-transformed the path integral with the time-transformation function
f(r,q) = 2(rcos¥ + gsind) = /g. Both path integrals are path integrals in r
and g, respectively, for the linear potential. In order to find the Green function,
we set this function in the variable r as G,(€) and in the variable ¢ as G4(&),
respectively. We get similarly as before:

dE h
K(r" v q",d;T) = / T — /dc‘?G ' =E)Ga(d", ¢ E).
27Th
(2.33)
Together with the solution of the linear potential, this gives the solution

5 2/3
—iET/h /
K", q",q¢;T) /dEe /d5<h2 Ecosﬁ) X
( & 4mE cos9\ /? o
2F cosd h?
(o & AmE cos9\/? y
" T 2Ecosd h?
(™ 2 2/3A' " & 4mEsin9\"? o
h2V Esind ! ¢ 2E sinv h?

. & AmEsing\/?
x Ai _<q/+2Esmﬂ>< s ) . (2.34)

2
and Ai(z) denotes the Airy function <§ = §Z3/ 2):

x Al

x Ai

NG = 3vE[Las©- 1) = 5 ZRis©, @39
Ai(=2) = 3V [T = Jis©)]- (2.36)

2.3. The Path Integral in Displaced Parabolic Coordinates on Di. In
parabolic coordinates the Lagrangian and the Hamiltonian are given by

LEEni) = FE-r+2)@+n)E+i?), @3]
1 2+ 2
H(E pe.n.py) = r : (2.38)

2m (€2 — 12 +2a) (& + 7?)
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The canonical momenta are

“::§<%+8—;+m 8i%>’ 239
Py = §<%_52—n2+2a+521n2>' (2.40)
The quantum Hamiltonian has the form
" :‘5%8—w+;mww%@;+%g: 24D
" Ve
1

X

V(€ =P +2a)(E + %)

(2.42)

The path integral formulation is as follows (with the implemented time-transform-

ation function f(£,m) = (€2 — 0% +2a)(£2 +1?) =

E(t)=¢"
K", 0" n'T) = / Dg(t)x
g(t)=¢’

n(t")=n"

V9):

x / Dit)(€ — 1 +2a) (€2 + 1)

n(t)=n’'

T
X exp %/f — 1?4 2a)(E2 +?)(E2 +P)dt| =
0

dE ’ET/h] "
= _— g d
/ 27h ¢ s

£(s")=¢"
0 £(0)=¢

(s")=

o [ o

n(0

X exp h/{ (€2 +?) +E(§4—n4+2a(§2+n2))]ds . (243)

This is a path integral of a quartic anharmonic oscillator which cannot be solved.
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3. DARBOUX SPACE D

In this section we consider the Darboux space Dir (1.2). We have the
following four coordinate systems:

((u,v) coordinates:) T = %(v +iu), y= %(v —iu), 3.1
(Polar:) u = pcostt,
v=ypsind (0>0,9€ (—7/2,7/2)), (3.2)

(Parabolic:) u=¢&n, v= %(52 —n?)  (£>0,7>0), (3.3)

(Elliptic:) u = d coshw cos ,
v=dsinhwsiny (w > 0,p € (—7/2,7/2)). (3.4)

The 2d is the interfocal distance in the elliptic system. Separation of variables is
possible in all four coordinate systems. For convenience we also display in the
following the special case of the parameters a = —1 and b = 1 [38] (Table 1).
The infinitesimal distance is given in these four cases:

ds®> = (ﬁ + b) dxdy,
2 2
((u,v) coordinates:) = buu2 a(du2 + dv?) = “ ;2_ ! (du? + dv®), (3.5)
bo? cos? ¥ — a
(Polar:) — %%W(df + 0*dv?) =
2cos?d + 1
. be2n? —
(Parabolic:) = %(52 +17?)(dE% + dn?) =
= (b= L) 1 (o2 = L) | (@ +an?) = 37
- &2 T CEA
1+ &
= 52—;”(52 + ) (d€2 + dn?), (3.8)

bd? cosh® w cos® ¢ —
(Elliptic:) = oS weos p—a (cosh? w — cos? ) x
cosh? w cos? ¢

X (dw? + dp?) == Kbal2 cosh? w + a2 ) -
cosh® w
a

— (p)} (dw? + dp?). (3.9)

— (bd2 cos? ¢ +
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Table 1. Limiting cases of coordinate systems on D 11

. A® E,
Metric: D (a=—-1,b=0)|(a=0,b=1)
2
bu—z_a(du2 + dv?) (u, v)-system Horicyclic Cartesian
U
b92 cos’Y —a 2 2 .
£ —=———(do” + dv*) Polar Equidistant Polar
0 cos” ¥
be*n® — a2 2Y(de? + dn? Paraboli Semicircular— Paraboli
W(f +n°)(d€” +dn°) arabolic parabolic arabolic
bd? cosh® w cos” p—a, o
cosh? w cos? ¢ Elliptic Elliptic— Elliptic
x (cosh? w — cos? p)(dw? 4 d*¢?) parabolic
We can see that the case ¢« = —1, b = 0 leads to the case of the Poincaré

upper half-plane [17,23,24], i.e., the two-dimensional hyperboloid A(?). In this
case separation of variables is possible in nine coordinate systems [58]; this
has been extensively discussed in [24,29]. The parabolic case corresponds to the
semicircular—parabolic system and the elliptic case to the elliptic—parabolic system
on the two-dimensional hyperboloid. On the other hand, the case a = 0, b = 1 just
gives the usual two-dimensional Euclidean plane with its four coordinate systems
which allow separation of variables of the Laplace—Beltrami equation, i.e., the
Cartesian, polar, parabolic, and elliptic system. Hence, the Darboux space II
contains as special cases a space of constant zero curvature (Euclidean plane) and
a space of constant negative curvature (the hyperbolic plane). A discussion of a
more general case on the question of contracting Lie algebras corresponding to
coordinate systems in spaces of constant curvature can be found in [36]. This
includes the emerging of coordinate systems in flat space from curved spaces.
We find for the Gaussian curvature in the (u,v)-system
a(a — 3bu?)
K= (a = 2602 (3.10)

For b = 0 we find K = 1/a which is indeed a space of constant curvature, and
the quantity a measures the curvature. In particular, for the unit-two-dimensional
hyperboloid we have K = 1/a, with a = —1 as the special case of A(?). In the
following we will assume that @ < 0 in order to assure the positive definiteness
of the metric (1.2).

3.1. The Path Integral in (u,v) Coordinates on Dy;. We start with the
(u,v)-coordinate system. We formulate the classical Lagrangian and Hamiltonian,
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respectively:
. . mbu?—a, ., .
L(u,b,v,0) = 5 T (u® 4 v%), (3.11)
1 u? 9 9
H(upusvspo) = 5 (P + P7)- (3.12)

The canonical momenta are

h(o b 1 h 0
et D) et o

ou bu2—a u

The quantum Hamiltonian has the form

B u? 0%  9?

H - -+ v (£ .2 ) 14
2mbu2—a<8u2+8v2> 3.14)
1 U 9 9 U
S L 3.15
oo Tﬂ—a(p Py) —— (3.15)

We write down path integral, perform a time-transformation with f(u) = (bu® —
a)/u® = /g and insert the path integral solution for the free particle in the
variable v and the radial harmonic oscillator [34,59] in the variable u (A% —1 /4=
2mak /h?):

K" o' " v';T) =
u(t//):u t//):

T
— ; 2 _
_ / / bu a exp m / bu a(q,f +i?)dt| =

2h u2

u(t')=u’ v(t) 0

’U(S”):

u(s"”)=u"" v’
— 72ET/h "
/ 5.7 /d / Du(s / Du(s)x

—o0 u(0)=u’ v(0)=v’

aFE
/ |: F]dS + ﬁbESH =

(oo}

0
oodS” k(v —o' 1 7 h2]€2
_ “= —iET/h e ik(v' —v") ZbES" — Z "
/27Th /27r /dke exp(hb s h2ms)x
0

— 00 — 00

X exp

St .
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Df‘I&

1
m 2 2 4
—u® —h ds| =
exp / 2 ¥ 2mu? y

_/ 72ET/ /ds/// dk e ik(v'' =0’ myu'u" A Sl
27rh ihs"
T m

7J‘(S// ):u// 2
X
u(0)=w’

0

— 00

h2 k2 2 2 mu'u’
E— " RS / " I . ‘1
xexp[ (b 2m> + > s (U +u )] ,\< e ) (3.16)

We can see that the case a = 0 yields the solution of the free particle in R? since
A = %1/2, and a proper combination of I/, gives exponentials. Together with
the integral [15, p.719]

/Ooe—a/m—brjy(cx)df —2J, {\/ 2a(\/b2+—d2—b)J K, {\/ 2a(\/b2+—d2+b)J
0

(3.17)
we obtain for the Green function (\ resolved and taken on the cut, a < 0)

dk eik(v”—v’) %

G(’LLH,’LL/,UH,’U/; E) _ L ”I;L/u// /
7

9mbE 9mbE
><A< k?-"f;—sqk)m( k2 — ";L;’ u>>, (3.18)

G(U o' ’U 1} E /dkezkv —1))/ = pblnhﬂpilp «
2 — J—
g (7 +3) 8

2mbE 2mbE
xKip< k2 — ”;2 u’> KZ-,,< k2 — ”;f u”>, (3.19)

2m|a|E
4 h?
The wave functions and the energy spectrum are read off:
e’k (/2 h 2mbE
U(u,v) = psinhmp Klp g2 - 27, )
V2T ™ h?

12 1
E = 24 2. 3.22
2ma] (p *4) 622

with
)\ =

= ip. (3.20)

(3.21)
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Here I have used the following identity as used in [32] utilizing [52, p.194]
and [15, p.819; 732], respectively

17 a2 4 b? + 12
Iy (az) Ky (bt) = —— a” b e
x(ax) K (bx) s /dt Q,\1/2< 2ab )CObﬂ?t

T tanhpd 2452y g2
/dtcosxt p il pPip_l/Q (u) =
0

A2 + p? 2ab

2 ptanh mp dp

0
Pu, Qu are Legendre functions of the first and second kind, respectively [15,
p-999]. The case a = —1, b = 1 gives the case of [38], i.e., the Green function:

T ow_. [dp  2psinh
G u' v W E) = /dke”“(” _”)/—]2j = P 17rp x
0 2
- )k
" om (p +4>

x Kip ( k2 — <p2 + i) u”> K, ( k2 — <p2 + i) u’) . (324

And the wave functions read

etkv \opsinhmp 1
v = K; k2 — [ p?2+ = . 3.25
(u,0) N . P (p + 4> u (3.25)
If we take in (3.19) a = —1, b = 0, we obtain the solution for the Poincaré upper

half-plane [32]. We can evaluate (3.16) by means of [15, p.719] yielding

G u' 0" W' E) \/%/e_““hdf )%:%Qém(coshd),
0

(3.26)
where

2 2
(’U” _ 1}/)2 + u' + u”
20w

coshd = , (3.27)

which is the Poincaré distance on the hyperboloid. For b # 0 such an expression
cannot be found.



712 GROSCHE CH.

3.2. The Path Integral in Polar Coordinates on D. In polar coordinates
the classical Lagrangian and Hamiltonian are given by

. LY a -2 242
L(r,7,9,9) = 5 (b .2 005219>(Q + 0°¥*), (3.28)
H(opordyps) = ——(b— — - 2 10 (3.29)
0,Po,V, Py - m 92 COS2’19 pg QQpﬁ . .
The momentum operators are
h| O bo cos? ¥ 1
_ hio ocos’ v 1 3.30
Pe i {BQ—F(bcos?ﬂg?—a 29)]’ (3.30)
hl o bo? sin ¥ cos ¥
= - nYy — —————— 3.31
bo {819+ ( bQQCOS2’L9—a>:|7 (3-31)

and the quantum Hamiltonian is given by

h2 a \ '[9 10 18
H = —[b—-— — t+t——+ === | = 3.32
2m< g2cos219> (8@2 * Q3Q+ 0? 8192> (3.32)
—1/2 —1/2
= ib_L p2+ip129 b—L —
2m 02 cos? ¥ ¢ 2 02 cos? ¥
-1

a h?

- (b_ pp §> R L)

Hence, we get for the path integral

g(t”):g" 19(t”):’l9”

Ko o 0" 9 T) = D D - a
W= [ opun [ pioe(v- i)«
o(t")=¢’ 9(t)=10"

i r a op?
K3 2 292 _
T exp h/ l ( 0? cos219>(g e )+(b 0? cos219> 8mg2] dt
0

(3.34)

However, this coordinate representation is not very well suited for our purposes,
except that we recover for a = 0 polar coordinate in R?. We introduce ¢ = ™
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and cost¥ = 1/ cosh 7. This gives the transformed path integral

T1 (t”):‘rl” TQ(t”)iTé/
be272
/ D11 (t) / Dro(t) cosh ( 5 — a) X
cosh” 1
T (t)="7{ T2 (t')=T}
T o2
7 m e-2 .9 2 _ .2
X ex — —\ ———— —a | (77 + cosh” 71 75) —
P ﬁ0/{2<cosh2ﬁ >(1 1%2)
be?" 1 g2 1 dE ¥
() P L | :/ ‘ZET/h/ds”x
(cosh2 T ) 8m ( cosh? 7 )1 } 2rh

—o00 0

x K(r{', 7,75, m5;8") (3.35)
1
with the time-transformed path integral K (s”) given by <>\ =4/ 1 2m|a|E /12,
a< O):

T1(s")="{ To(s" =14
K(r], 7,75, 75:8") = / D11 (s / D1y(s) cosh 11 x
71(0)=7{ 72(0)="74
; s m 27—2 h2 .
Xexpl — 72+ cosh? 7 7 —&-Ebi—aE—— 1+——— )| dt ».
p{h/[Q(l 12) cosh27'1 8m< cosh271>]

0
(3.36)

The path integral in 72 has now the form of the path integral for Liouville quantum
mechanics [32,34] yielding

h2
(el 7l 87) = mxp{ <|aE—8—>s”]><
m

2 T J=2mbE V=2mbE .
—2/ kkblnhﬂ'kKlk(Tmbe72>Kik<Tmbe@>><
0

1 (s")= § 1

=1y 2
i m h2 k + -
D — | = - — 4 |gs| =
/ 7i(s) exp h / 2 "o cosh? 7y 8
71(0)=7{ 0

h2
= /cosh 7{ cosh 7{ exp [ <a|E — 8—m>s”] X
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« 2 / dk k sinh Tk Kz, <7V_2;”bE efé> K <7V_2;”bE efé'> X
0

:1

oo

1 psinh wpdp —ip*hs'" /2m pip
% 2 cosh? k+ sinh® 7 ¢ -1/2
£ L4

(£ tanh 7)) P! (£ tanh "),

k 1/2
(3.37)

where we have inserted the path integral solution for the special case of the
modified Poschl-Teller potential [24]. Performing the s” integration gives the

energy spectrum:
_ h? 2y 1
~ 2m|d Py
with the Green function o .
71, YW 71,74
G(r{’,r{,rg,rg;E):Z/dp/dk ”’“ D) Wpra(Tm) g
0 0

1 )
2
- |-F
s (7 +3)
and the wave functions are given by

\/2 h b 1
Yy, b (T1,72) = VIO ———Vksinh 7k Ky, (Z ﬂ <p2 + Z) eTZ> x
a

psinh wpdp i
. \/cosh2 k + sinh® 7rp P jp(Etanh7), (3.39)

\Ilp,kr i(gv ’19) QSln V k sinh mk K’Lk( %(pQ + i) Q) X

p sinh 7Tpdp i )
- \/cosh2 k + sinh? WpPilf—lm(:t sind). (3.40)

Here, we have inserted the original (o, ?)-coordinate system. For b = 0 we
obtain the equidistant coordinate system on the two-dimensional hyperboloid.
For the coordinate 7, this is obvious. For the coordinate 7, we observe that the
K, -Bessel function can be represented in this limit as [15, p. 1063]

K, () =+me ™ (2 )”1/1( +1/1+21/x>

x M\/}eik‘fz N L ehm2 (3.41)
1 2k sinh 7k
I 5 — 'Lk

which gives together with the normalization factors the final result of [24].
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3.3. The Path Integral in Parabolic Coordinates on D;. The classical
Lagrangian and Hamiltonian are given by

c, mbé2n? —a : .
LEEmn) = 555”2—772(52 + 7)€ + %), (3.42)
1 & pitp;
= — ) 3.43
H(£7p€7n7pn) 2m b§2772 —a £2 _|_ 772 ( )
The canonical momenta are given by
h(o0  bl+ a/§3)
= “\gzt+t—), (3.44)
Y (85 NG
h{0O bn+ a/n3)
Py = |57+t —). (3.45)
! i (377 NG
The quantum Hamiltonian has the form:
h? a a\ "'/ o2 02
H = _—— b 2 b 2 —_ - — —= ey b - 3.46
2m<£ * & 772> (352 +8772> (340
1 2 2 @ a\ " 2 2
= %<b§ +0n —5—2—¥> (pg +py) X
2 2 a a\ " '?

We obtain for the path integral in parabolic coordinates and a time transformation
(the time-transformation function reads f(£,n) = (b€2n? — a)(€2 + 1?)/&2n? =

V9

é-(tll)zé-ll n(t”):’l’]”

"oero 1. _ b£2"72_a 2 2
K¢ n".nT) = DE(t) Dn(t) e (&5 +n7)x
§(t)=¢ n(t")=n’
. Tb£2 2
m —a . .
X exp 271/ng<52+772)(£2+772)6# =

0
9]

:/ dE e_iET/h/ds”K(f",g’,77”,77’;5”), (3.48)
2mh
0

— 00
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with the path integral K (s) given by
K& "5 s") = Ke(£", 65 ") Ky (05 87) =

6(5”)25” S”
1 m ;o 9 a
= / DE(s) exp E/{;E +E<b£ —£—2>]ds X
£(0)=¢’ 0
”7(5//): 1"
i a
X / exp —/{ 77—|—E<77——2>]ds . (349
h 7
n(0)=n’

The Green function of the kernel G, (&) is given by ()\2 = i — 2mla|E/R?,
w? = =2bE/m, a < 0):
r B(l + A—g/hw)}
Fe/EET (1))
X We janw a2 (%ﬁi) Me j2n0,7/2 (%Uﬁ) (3.50)

M, (2), W, . (z) are the Whittaker functions [15, p. 1059]. Inserting the solution
for the radial kernel in £ we get for G(E) (we can also interchange ¢ and 7,
however, the final result will be symmetric in £ and 7, so this is not necessary)

G(g//’ 5/7 "7,/’ 77/5 = g gl/ / wds |: - %(5/2 + §/2) cot ws”:l X

Ge(§",€5€) =

sinws’
r 1(1—|—/\ E/hw)
x Ty _mwg'e” /ﬁe—iss”/h 2 - mew o)
thsinws” 2mi hw\/WF 1+)\) £/2hw2/2\ 51>
mw o f” dppblnhﬂ'p
X M£/2hw,)\/2< 5 77<> = 2771 o

P ]
) -E
2m|al +4>
1
r[§(1+x—5) . .
X F( Yy W£/2,>\/2(TU%)M&‘/Q,/\/Q(Tni)X

mwg/é'//
ihsinws” )’

(3.51)

/ o exp ié’ws” - ;rz—;;(éﬂ + 5/2) Cotws”} Kip (
0
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where we have used the dispersion relation [16]

h? 7 dp psinh
() = = / 5 PP Kp(2), (3.52)

1
0O 2m <p2—|—1>—E

and have redefined £ — Ehw. The s”-integral I(p) is evaluated in the following
way: We set u = ws”, followed by a Wick rotation, yielding

/ du exp {— u€ — 2—;(5'2 +£'2)Cothu} K, <M> =
0

sinh u hsinhu

(subsitution sinhu = 1/sinhv:)
x £
- v _ o2 o2 (T erenr _
_/dv<coth2> exp{ 5T (" +¢ )coshv]sz( - g'e smhv)

h

2
_ 1 . mw .,2 mw 2
= 2mwg’¢" r |:§(1 +p — 5)] ‘ WE/Q,ip/Q(TEN >W£/2,ip/2 (Tfl ),

(3.53)

where we have applied the integral representation [15, p. 729]:

o0 2v
/ (coth g) exp (— “ ;Gthoshx> Ky, (t\/aras sinhz)dz =
0

r (— + 40— l/>
= raasT (1 T 20 W, u(a1t)W, ,(asot). (3.54)

Collecting terms, this gives for G(F)
7
G, ¢ " ' E) = Z?(ﬁ’ﬁ”n’n”)’”z/dé’x
2

oo

1
r {—(1 +ip — 5)}
dp psinh p 2
h2

1 2
2
“)-E
3mlal (p *4)

2\ 1rrn 2
X We2,ip/2 (ng” )WS/2,ip/2 (prl )X

X

i 9 We 2,ip/2 (iﬁni)
We 2,ip/2 (1773 ) ’

x - B(l_ip_g)] (1 + ip)

T Bu +ip— 5)} (3.55)
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h 1 h
We have abbreviated w = i—4 /b <p2 + Z) /la| = i—p. In order to evaluate this
m m

expression on the cut, we use the following representation as given in [52, p. 298]

7r
Wantz) = sin(2m ) .
% MX)fl"f(Z) _ MX;N(Z) (3 56)
1 1 ’ ’
F(5+M—X)F(1—2u) F(E—M—X>F(1+2u)

This gives the final expression for the Green function:
G(g//vg/’n//vn/; E) _ h(g/g//n/n//)—l/QX
4

r B(l +ip—5)]

x/dé’/ dp psinh mp _ y
h? 5 1 2mp?
0 p°+ -F

2mal 4

4
a2 * c 2 e pl2 * o~ 2
X Ws/zz'p/z(ZPf" )Wm,ip/z(lpf' )Ws/z,ip/z (%pf" )Wg/z,ip/z(wn' ) (3.57)

The wave functions can be easily read off from this expression:
2

r B(l +ip— 5)]
[psinh 7mp
\Ij&p(fan) = 2'/7'677 ﬁ X

X We 2,ip/2 (157 ) We a2 (i562) . (3:58)

Note the simplifications in the case a = —1,b = 1.

Recall that we have redefined £ — hw& in (3.53). In the limiting case
b = 0 and £/hw reinserted, this means that £/2fuw — oo for w — 0; however
the product of the index and the argument of the Whittaker functions (£/2Aw) -
(mw/h) is constant. In this limit the Whittaker functions yield K- and H."-
Bessel functions, as it should be for the semicircular—parabolic coordinate system
on the two-dimensional hyperboloid. Of course, the parabolic system in R? can
be recovered, e.g., staring from (3.49). This concludes the discussion.

3.4. The Path Integral in Elliptic Coordinates on Dy;. The classical La-
grangian and Hamiltonian are given by

m bd? cosh? w cos? o — a

L(w,w,p, ) = (cosh? w — cos? p)(w? + ¢?) =

2 cosh? w cos? ¢
= 2| ba? cosh? w+——— ) — (bd? cos? o+ —2 (@2 4+4%), (3.59)
2 cosh” w cos? ¢
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1 cosh? w cos? ¢
H W, Pw, P, =5 3)+ 2
©.pu,0,0) 2m (bd? cosh? w cos? ¢ — a)(cosh? w — cos? ) (o +pe)
(3.60)
In the following we use
bd? cosh® w cos® ¢ —
Vg = o8 2w R (cosh? w — cos? p).
cosh” w cos? p
For the momentum operators we obtain
h| 0  tanhw a
w = —-|=—+ bd? cosh? w — )] , 3.61
P i {Bw NG} ( cosh? w 6D)
RO tanp(, o, a
= —|=—+——bud — . 3.62
Pe i [8<p+ VI ( cosy cos? ¢ (3.62)
This gives for the quantum Hamiltonian
® cont ot ¢ (2.7
~2m (bd? cosh® w cos? p — a)(cosh? w — cos? p) \Ow? ~ 92 )
1 1

1
= —— (P2 +p3)—. (3.63
Qm\ﬁ(m p¢)\y§ (3.63)

Therefore we obtain for the path integral (the time-transformation function reads

flw,p) =1/9)

K" W'\ ¢", ¢ T) =
w(tll):wll So(t”):@
= [ pety [ Dot

w(t) = P ()=’

bd? cosh? wcos? p — a
Ld (cosh? w— cos? @) x

2
cosh” w cos? p

T
im [ bd? cosh® w cos? p—
X exp m/ oSl Weos ¥ a(cosh2w—0082 @) (WP +@)dt| =
0

2h cosh? w cos? ¢
— / d—e_ZET/h/ds”K(w”,wl,gDH,(pl;sﬂ), (3.64)
2mh
—o0 0
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with the path integral K (w" W', ¢" ¢';s"”) given by (a < 0)

//

(s W(S"):so
K" W' " ¢s") = / Duw(s / Dp(s)x

w(0)=w’ (0)=¢’

"

"

X exp {% / [%(uﬂ +¢%) + Ebd2(cosh2w — cos® p) + x

0
1 1
X |a|F +
la (cosh2w COSQ@)

For a = 0 we recover elliptic coordinates in R2. This path integral has the form
of the spheroidal coordinate system. Actually, almost the same path integral was
investigated in [24, p.122] in connection with the elliptic-paraboloid coordinate
system on the three-dimensional hyperboloid. Let us set:

ds}. (3.65)

2mla|lE 5, _2mbd2E

1
2—_
=1 o " n2

In [24] we have derived the following heuristic path integral identity:

M(tll):M// l/(t”):l///
Du(t) / Du(t)d?(sinh® pu + sin’ v) x
u(t)=p v(t)=v'
1" 1
t 2
i m h? A" - 4
X exp R — —d*(sinh? pu + sin? v) (42 + 0?) — dt p =
Py % / 2 ( K (@ ) 2md? sinh? psin? v
tl
A+1T(U—A+1) [
= d+/sin ' sin v sinh pi/ sinh "’ ZZ; ;— NS I 0 /p2 e PP T/2m o
= 0

X psl’\*(cosz/;p2d2)psl’\(cosV";deQ)S[\(1)*(coshu’;pd)S[\(1)(coshu”;pd),
(3.66)

where Sl”(l),psl" are prolate spheroidal wave functions [53]. By considering a
proper analytic continuation and observing

psy(2;0) = P (z) (lz] <1), (3.67)



PATH INTEGRATION ON DARBOUX SPACES 721

we found the solution (a > 0, [¥] < 7/2, 0 € R):

a(t//): 1" ﬁ(t// /19// 2 t//
h2a—
/ DIt cos ;L cosZ v DQ
cosh” a cos3 ¥
a(t/):a’ t/) 9/ (t/ /
« exp m /t” (cosh® @ — cos2 ) (a2 +9?) + ¢ g — 3inT
2h cosh?® @ cos2 ¢ 8m
d . 1 /
= v/cosha’ cosha” cos® cos ﬂ'//Q—Kem(@ —0) %
s
R
X /dp sinh Wp/ (i sinh h e T (@*+1)/2m o
(cosh? k + sinh? 7p)?

X Z Sz(?/z etanha”;i/{)S:gEll)/;(etanha’;im)x

€€—

X psik—1/2(€/ sin9”; —I€2)pszii1/2(6/ sind’; —k?).  (3.68)

Let us use (3.68): Of course, the variable p is omitted, we use only the emerging
parameter x. The parameters A in (3.66) and (3.65) are the same up to the
factor |a|. The main difference is in the parameters x and &, the latter being

h? 1
imaginary. Inserting in K the energy spectrum |a|E = By <p2 + Z) gives
m

1
R = id\/b <p2 + 1) /|a = ip. Combining (3.66) and (3.68) yields for the path
integral (3.65):
G(w//,w/,QOH,QO/;E) —

=m/ - dp sinh p /( dkk sinh b

X
) = _|_1 Bl cosh? 7k + sinh? 7p)2
2m\a| 4

X Z Slp 1/2 (etanhw”; p)Szp (i)/Q(etanhw’;—ﬁ)x
€,e/=%1

X PSjp_yp(€ sin @’/;ﬁQ)psziil/Q(e’ sin ;s p%) . (3.69)
The wave functions have the form:

WUy kie,er (W, ) = (/COS PX

vsinhmpk sinh k. _; i . .
P i;ffll)/Q(e tanh w; —p) psizil/2 (¢'sinp; p%).  (3.70)

cosh? 7k + sinh? p
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Of course, the cases a = —1,b = 1 simplify the formulas a little bit. For b = 0
the spheroidal wave functions give the limiting case (3.67), therefore the solution
of the elliptic-parabolic system on the two-dimensional hyperboloid emerges [24].
This completes the discussion on D1y.

4. DARBOUX SPACE D1

The coordinate systems to be considered in the Darboux space Dy are as
follows:

((u,v) system) x=v+iu, y=v—iu, 4.1)
(Polar:) & =opcosp, n=opsing (o> 0,p € [0,27]), 4.2)
(Parabolic:) &= 2 %/? cos g n= 2"/ gin g,
4 28
=1In gy v = arcsin e (EeR,n>0), 4.3)
(Elliptic:) & =dcoshwcosp, n = dsinhwsinp 4.4)
(w>0,¢ € [—m, 7)),
Hyperbolic: = 0). 4.5
(Hyperbolic:) & = 2\//@4-\/ .= 2\/W wv (p,v > 0). (4.5)

For the line element we get (we also display, where the metric is rescaled in such
a way that we set a = b =1 [38]):

ds* = (ae”@TV/2 4 pe @tV gudy,
((u,v) coordinates:) = e 2“(b+ ae")(du® + dv?) =
= (e7" +e ) (du® + dv?), (4.6)

(Polar:)

a+ - Q) do® + ¢°d¢”) =

14+ ) do* + 0*dp?), 4.7

(Parabolic:)
1+ —(&+n ) ) ) (d€? + dn?), (4.8)

(Elliptic:)

(
(143
(a4 36+ 7)) @6+ a”) -
(143
(

a+ d2 sinh? w + cos gp))
d?(sinh? w + sin? ) (dw? 4 dp?), (4.9)

. b A2 d?
(Hyperbolic:) = (a 50— u)) (u+v) (M—’”; - V—’é) . (4.10)

X
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For the Gaussian curvature we find

abe 3
K =— . 4.11
(be=2v 4+ ge~u)4 ( )

For, e.g., a = 1,b = 0 we recover the two-dimensional flat space with the
corresponding coordinate systems. To assure the positive definiteness of the
metric (1.3), we can require a, b > 0.

4.1. The Path Integral in (u,v) Coordinates on Dyj;. The classical La-
grangian and Hamiltonian are given by

. mbtae” 5, ., 1 e 5
E(U,U,U,’U) = 5 62u (U +v )’ H(uvpuvv7pv) - %b—i—ae“ (pu +pu)
(4.12)
The canonical momenta are given by
h(d lae *+2be 2 h 0
L= =~ = —— ), pp=-——, 4.13
P i <8u 2 ae u4be v ) Pv =500 (413)
and for the quantum Hamiltonian we find
h? 1 0 o2
H = ———"""—F—F |+ ]= 4.14
2mae % + he 2 <8u2 * 81}2> (414)

1/ 1 , 2) / 1
- ) - _— 4.15
2m \ ae % + be—2u (p“ TPy ae v 4 bhe2u ( )

Therefore we obtain for the path integral

u(tll):u// v(tll):v//

K(u”,u',v”,vl;T) — ’Du(t) Dv(t)(ae_" +be_2“)><
u(t)=u’ v(t)=v’

T

/(a e "+ be ) (0 +0P)dt| =

1
2

3

X exp

>t

0
— / d—Ee_iET/h/dSHK(UH,U/,’l}”,’Ul;SH), (4.16)
2mh

—o0 0
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with the time-transformed path integral K(s”) given by (f(u) = (ae™ +
be2) =\ /g)

u(s”):u” ’U(S”):’U”
)

/ Du(s) / Du(s)x

u(0)=u’ v(0)=v’

/ { +Eb< —2u %e“)]ds @17
0

We observe that the path integral in the variable w is a path integral for the Morse
potential

1 / 1 / 1
K@ u' v v s") =

X exp

St

Viz) = % (e_m -2« e_r)

with Vo = /—2mbE/h and a = —a/2b; the Green functions in u and v are
given by [34]

r (% +V-2m&E/h+ av —2mbE/2bh>
I/ —2mbET (1 + 2/—2m&/h)

V=S8mbE _,_
X W_ o/ =2mbE /2bh,=2mE /1 3 € X

Gu(u';u';€) = elu'+u")/2 5

V=SmbE _,
X M_ , /=5mvE /21, 2m£/h< 3 e >>7 (4.18)

1 zl(v —v')

Gov"05€) T Z < RRE[2m &

(4.19)

This gives for the Green function in (u,v) coordinates the solution

(note v—2mé&/h — +1)

1 vV —2mbE
s zl(v”—v ) mlI’ _+l+w
2 2bh (' +u'") /2

G . E)—
W' B)= 3 h/—2mbET(1 + 21)

X

l=—0o0
vV=2mbE _ vV=2mbE _

xW_ x/m/2bhl<2Te u<>M—a\/m/2bh,l<2Te u>>~
(4.20)
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In order to extract the wave-functions we use the following representation:

1 2,/x
——exp [ — (m—i—y)cota].fgu( A y) =
sin a sin o
o T (2t ptip)T (s +pu—i
) / 5 tutip ) U5 +u—ip
= X
27 /Ty I'2(14 2u)

X e 2PNy (—2ia) M, (+2iy)dp.  (4.21)

This relation can be derived by using an integral representation as given by Buch-
holz [4, p.158]. Application of this representation by exploiting & = h?1%2/2m
and evaluating the residuum at E = h%p?/2m (w = \/—2E/m, we seta = b = 1,
and utilize the calculation of [16] by inserting the path integral solution of the
radial harmonic oscillator in (4.17) together with an appropriate coordinate trans-
formation) yields:

=) q de€ SmE
"o, _ €
Gl v, Vs B) = o E/fﬂz? Tt
l=—00 — =€
2m
/ do diaE V8ME ; _. !
X - exp o — (e +e )cotwa X
sinwo h h

0

—(u'4+u"")/2 s (v =o'
\/8mEe ( )/ ) _ Z (S ( )e(u'+ul1)/2x

X1 sgen ( o

hsinwo

2
1
F<—+l+ip)
/ eTrP/de 2 M 9 ! M 9 o
X i —zlpe —ip/2,1\ 4P € .
h2p? 2702(1 + 21 W’l( ) P ( )
O (1+20)

l=—00

om
(4.22)

And we can read off the wave functions

1 .
\1/ el v/t <5 - Hp/Q) M 2 4.23
p,l(U,'U) - \/% \/% F(]. + 2[) ip/2,l ( — <«i€ )a ( . )

respectively with (a, b) reinserted:

1
eilv omp/4 r (5 +1+ ’LClp/Q\/E

U R = M. — 9 \/E —u)
pvl(u ’U) \/ﬂ \/ﬂ F(1+2l) zap/\/EQ,l( p e (Z 24)
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Note that this evaluation is almost the same as in the path integral for the two-
dimensional Coulomb potential [34]. This concludes the discussion of the (u,v)
system on Dyy.

4.2. The Path Integral in Polar Coordinates on Dy;. In the coordinates
(0, ) the Lagrangian and Hamiltonian take on the form

) . m b ) ;
Lle,op,9) = 5 (a + ZQ2> (6* + 0%¢°),
1 1 1 4.25)
a—+ ZQ2

The canonical momenta are given by

h( O bo 1 h o
Ly _ve - 29 42
Pe ) (39 + 4a + bo? + 29)’ Py ; (4.26)

Therefore the quantum Hamiltonian is given by

h2 1 02 190 1 02
g - LA A 427
2m bz<392+gag+g23¢2> *-27)
a+19
1 1 h2
_ " (4.28
2m 8mg2’( )

and in this case we have an additional quantum potential oc 42. This gives for

b
the path integral (f(g) =a+ 192 = \/§>

o(t")=e" e(t")=¢"

b
K(o", 0, ¢",¢sT) = / Do(t) / Ds@(t)<a+zg2>9x
P(t)=¢’

o(t')=e’
X 3./T@ +92('2+2'2)+ +9271 -
FPNR ) |2\ 0Tyl )l Tew “T1% ) Sme? -
0

(oo}

_ / ﬂe_iET/h/ds”K(g”,QI,QDH,(,D/;SN), (4.29)
0

t

L ——|

2mh

— 00
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with the time-transformed path integral K (s”) given by

Q(S”):Q” @(S//):LP

K", 0 ¢",¢'ss") = / Do(s)o / D

0(0)=¢’ »(0)=¢

"

i m. .2 2.2 b, h? _
X exp h/[Q(Q +Q¢)+E<a+4g>+8m92]ds =
0

oo Zl SD 7LP) Q(S//):g//
=X wmm | P
2(0)=¢’
12 L
¢ m .o b o 2 Z " "
- — E-o°—h d E =
X &P h/ g & TEe 2me? S+has
0
eil(tp”fﬁol) mw
= X
= 2 thsinws’”
mw. ;2 12 " i " mwo' 0"
- — t —aFEs" | I[[| ——— 4.30
xexp{ 2ih(g ") cotws” + ha g ] l(ihsinws”) ( )

(w? = —Eb/2m), where I have separated off the ¢-path integration and in the last
step inserted the path integral solution for the radial harmonic oscillator [34,59].

We use the integral representation [15, p.729]:

/ (coth ) exp (— “ ;Gthoshx> I, (t\/a1ag sinh z)de =
0

r (; +pu— 1/)
= M, Hw, t). (4.31
t/arasl (1 + 2p) wlart)Wop(azt). (43D)

Therefore we obtain for the entire Green function (rescaling b — 4b%)

x il =) T mwds”
G //’/ " /'E _ € /
("0, 9", ¢ ) E -

l=—00 0

thsinws”

. /o
mw ;2 72 nwo, v " mwo o
X - — ot —aFs" | [[}| ————
P { 2ih(g o) cotwsT + R } l(ihsinws“)
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(substitution u = ws” = hpbs” /m, E = h?p?/2m, and Wick rotation)

o0 il(tp”*@') o d . b b N/
€ U p /2 172 . 10po O
— - th 1
l;m 2m /sinhueXp[ 2 (07 +2")co u—|—zaup} l( sinhu)
(substitution sinh u = 1/ sinh v)
< il o) T iap
= Z GT/d’U(COthg> X
|=—00 0

b
X exp {— %(9'2 + g”2) cosh v} I;(ibpg’ 0" sinh v)

(reinserting p = v2mE/h)

1
0 ille"—') — r [5(1 +1—ay/ —QmE/B/ﬁ)}

T 2 am/ge\ 2B T +10) .
2mE 2mE
XW, J=amE b 2m,1/2 (b T2 9>> M,/ =omE5/2m12 (b Vi 9<> :

(4.32)

In order to extract the wave functions we use again representation (4.21) and
obtain

O il =¢") 1 7 dp ™
27 2mby/ 0" 0" h%p?
0 -

2m

r {%(1+l+iap)} 2

I2(1+1)

X

Miap/2,l/2(_ibpg/)Mfiap/Q,l/Q(ibpg//)a (4.33)
and the wave functions have the form

1 .
eile eﬂ'p/2 r |:§(1 +1+ Zap):|]

U, (0. 0) = M,, —ibpo).
p,l(Q 90) \/ﬂ\/m I p/2,l/2( ’LpQ)

(4.34)

Note that this system is very similar to the (u,v) system, the principal difference

being another counting in [ and the replacement o = e™ ",
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4.3. The Path Integral in Parabolic Coordinates on Dy, The classical
Lagrangian and Hamiltonian are given by

;. m b 2 .
ceémi) = 5 (ot € +P) @4
1 1 (4.35)
H(E pesn,pe) = %b—(pg +p727).
a+ 1(52 +7°)
The canonical momenta are given by
» h{ 0 L b¢ » h{| 0 L bn
f = — —_ B ——— S —— s n = — o _— s
0 b 0 b
T\ es@n) AT e @+
(4.36)
and for the quantum Hamiltonian we find
2 1 2 2
H - _QH_ g _<g_£+%> _ (4.37)
m
at (€ +) !
1 1
= pg +p727) —b . (4.38)
a+ 1(52 +7°)

Therefore we obtain for the path integral

£(t")=¢" n(t")=n" )
Kot aim= [ oo [ ou (ar f@ )
n(t)=n’'

£(t)=¢’ t

T
iﬂ é 2 2 2 -2 _
X exp 2h/<a+4(£ +n )) (& +n7)dt| =
0
_ / ﬂe—iET/h/ds”K(f”,g’,n”,n’;s”), (4.39)
2mh
0

— 00
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with the time-transformed path integral K (s”) given by (the time-transformation

function reads f(§,n) = <a+ 3(52 +772)> — /9

e(s")=¢" n(s
K(€",¢ " ;") = / De(s)
&/ n(

1" ):n//
Dn(s)x
£(0)= Y=n’

0

"
S

, . ) .
X exp 1/ M2y i)+ B2+ n?)|ds” +atBs" S . (4.40)
n) |2 4 R
0

The path integrals in ¢ and 7 are path integrals for the harmonic oscillator, with

w? = —Eb/2m. The Green function for the harmonic oscillator in the variable &

is given by [34]
Ge(£'.€56) =

m 1 £ 2mw 2mw
:\/Wr<§‘ﬁ>l’é+5/ﬁw< h 5>>D%+5/"W<_ R 5<>’

(4.41)

and similarly for G, (', n'; ). The D, (z) are parabolic cylinder functions [15,
p. 1064]. This gives (b — 4b?)

G(E". "0 E) =

m m 1 aFE-E& m 1 & m
= fde—— - Zr(o+ 2 (a2
/ 20\ 2B <2+ bh 2E> <2+bh\/ 2E>><
4 8mEDb? 4 8mEDb?
XD _yyepce E< _T£>> D_yyezze o (_ _T&)X

+/ 8mEb? [ 8mED?
Dot ( ‘7’7>>D—;+,; = (— T <)

(4.42)

Considering (4.40), we observe that it has the same form as the path integral
for the Coulomb potential in two dimensions in parabolic coordinates which
was solved in [8,23,27,34]. In the present case the Coulomb coupling « is
replaced by aF/2; and the energy F, by bE/4. Introducing the «Bohr»-radius
ap = h?/ma = 2h?/maFE we find for the solution of (4.39) as follows:

ihp2 e,0) * e,0
K(&", & 0" n;T) =Z/dé/dpe”hp T/2mg e (¢ ywio? (€ "),
€,0 R R

(4.43)
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and ) __ denotes the summation over even and odd states, respectively; the

functions \Ilif’go) (€,m) are given by

e7r/2ap

V2472
r(3-5;/an+0)

(0) —in/4
XE L /a7 V2P

vl (g, n) = X

2
0 —im
E(—§+%(1/as+<>(e V)

x . (444)
2
3 i 1) —in/4
‘F <Z - Q_p(l/aB + C)) E,%+%(1/GB+4)(G V2p&)x
(1) —iT
XEL (i@ V2PT)
which are §-normalized according to [51]
[ [ae w2 € muldem = o0 - poc — 0. @4
0 R

and ( is the parabolic separation constant. The functions EY (z) and EY (z) are
even and odd parabolic cylinder functions in the variable z, respectively [4]:

v 22 22\ T4 22
2 ;?> = V27 (3) Mu/2+1/4,1/4<?>,
v

1
2
—-1/4 2
: .2/ 1-v 3 22 22 Z
EIE):ZZG / 1F1< 5 ,5,?> =27 (3 MV/2+1/471/4 5 )
(4.46)
1Fi(a;b;2) is the confluent hypergeometric function [15, p.1057], and
M, u(2) = M,y (%) /T(1 4 2u). Note the relation

D,(z) =2"/ 2\/§

This concludes the discussion.
4.4. The Path Integral in Elliptic Coordinates on D;. The classical La-
grangian and Hamiltonian are given by

EO) — e/ By ( _

N2 T2 @47

B (2) EV(2) ]

L(w,w, o, c,b):%cﬂ <a+gd2(sinh2 w+ cos? cp)) (sinh2 w+ sin? ©) (W2 +¢?),
(4.48)
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1 p% + 1}

H(wapuagpvptp) = % b £ .

d? (a + ZdQ(sinh2 w + cos? cp)) (sinh? w + sin? )
(4.49)

The canonical momenta have the form
h(d bd? sinh w cosh sinh w cosh
by = _<_+ blTl c; shw N -bln2w Ob.;u )7 4.50)
Ow  4a+ bd%(sinh”w + cos? ) sinh®w + sin® ¢

B E(E_ bd? sin  cos ¢ sin ¢ cos ) @51)

Pe d¢  4a+ bd?(sinh® w + cos? ) sinh®w +sin?p)

b
and for the quantum Hamiltonian we find (we use /g = d? (a + Zd2(sinh2 w

cos? cp)) (sinh? w + sin? )

(p2 +p2)i- (4.52)

N A
2m 5

H = ——|—S+—
2m /g <8w2 * Oyp?
This gives for the path integral

w(t) =" P(t")=¢"
KW' sT) == [ Do) [ Delt)vax
w(t) = (1) =¢'
. d2 T
X exp ”;h /<a+ d?(sinh? w+ cos? @) | (sinh? w+ sin® @) (W2 +p?)dt | =
0

— —iET/h "
/27rh /d KW' W' ", ¢'ss"), (4.53)
0

— 00

the time-transformation function (f(w,y) = ,/g) with the path integral K (s")
given by

K((.UN (.Ul g0// (pl.sll) —

(s")=w" ("= s

/ Duw(s /_ s) exp {%/ [%(@2 + @)+

0)=w’ »(0) 0

b
+E (a + Zd2 (sinh? w + cos? <p)> (sinh? w + sin? @)] ds}. (4.54)
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For this kind of problem we do not have any theory of special functions to treat
with and we leave this intractable path integral as it stands. b = 0 gives the
elliptic system in R? [24].

4.5. The Path Integral in Hyperbolic Coordinates on Dy;. The classical
Lagrangian and Hamiltonian have the form

S m b 02 o2
Ly, p,v,v) = B0 (a+ i(u - v)) (M+V)<F - §>, (4.55)
1 12y — vip;
Hp ps e = 5~ 2 E : (4.56)
(a4 30=) o0

The canonical momentum operators are given by

RO 1 1 b 1
Pp = ?{3_+5<+ —|—l/+ b ——>:|, 4.57)
K K a+§(u—ll) H
RO 1 1 b 1
bv = ‘[a—ﬁ(* i —;)]» (4.58)
rLon : at (=)

and the quantum Hamiltonian has the form

(4.60)

V(wgm—m) <u+v>py\/(a+§<u—u>) (0 +v)

Note that from each coordinate there comes a quantum potential AV = h?/8m,
however they are canceling each other due to the minus-sign in the metric in v.
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The path integral has the form

w(t")=n" v(t")=v" <a+g(u - v)> (n+v)
KW' W/ v" v T)= / Dy(t) / Du(t) x
%
w(t)=p' v(t)=v'
m [ b 22 2
@ e _ ,U,__]/_ _
o 2h/<a+2(u V)) (M+V)<u2 VQ)dt
0
TAE o |
= / ﬁe_ZET/h/dSNK(/,LN,,U//,T/”,l/’;s”)7 4.61)
N 0

b
with the time-transformation function f(u,v) = (a + §(u - 1/)) (u+v), and
the path integral K (s”) is given by

M(S//):MI, V(SII):VI, 1
K" W' vss") = / Du(s) Du(s)— x
%
w(0)=p’ v(0)=v’
X ex 1/ m (i P FaB(u4 ) + SbE(E —1?)| ds b . (4.62)
Py % 2 \p2 2 a PR o

Each of the last path integrals has a similar form as the one discussed in [16].
One can perform the transformation y = e, v = eY. This gives, e.g., in the
variable p in the short-time element

2eh pli=1 @) — 2671(Ay ) +24€h(Ay ) _th(Ay ) 8m’ (4.63)

‘ e\ 2
where use has been made of the identity (Ay(J ) )4=3 ZG—) , which is, of course,
m

valid only in the sense of fluctuating paths. Note that a quantum potential
AV = —h?/8m appears. However, the same potential arises in the transformation
v = eY, but with the opposite sign, and both contributions cancel. Therefore the
path-integration in (u, ) now gives a path-integration in (z,y) of the following
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form
I(S//):I// y(S//):’[///
K" 2" y",y';s") / Dz(s) Dy(s) %
x(0)=z' ¥(0)=y’
b 2x T 2
X exp { — Q(x -y )+ FE g€ tae —E|-e—ace¥) |dsy,

(4.64)

and we find the product of two path integrals for the Morse potential. Applying the
same techniques as in [16] we obtain for the Green function G(u/, u',v",v'; E)
(with the abbreviations w = \/—bE/m and rescaling b — 2b):

200
G, W/ V'V E) = n /d(s(V_QmE)/ do

27 h? sinwo
4aiFE V=2mE 9 2v—2mEu' i
xexp[ - o+ = (ul e ) cot wo Im/h T ihsinwo X

W + ") cot wT} X

/ dr { 4aiE v —2mE
X - exp | — +
0

sin wT h T h
2v/=2mEV'V
I — ———|. 4.65
% 8mg/h< thsinwTt ) (4.65)

Note that we have due to the minus-sign in v in the metric an additional minus-
sign in &€ in the Green function in the variable v. Using now the same integral
formula form Ref. 4 as before, we get (simplifying a = b =1)

oo oo

1 42 2mE
G, ', ", v B) = 2mh2/d5h / /dT/dpl/dp2><
. (4F . (4AFE .
X exp {z (7 + 22wp1> o—1 <? — 2w}p2> T:| X

2
o™ (P1tp2) ’F( +g+2p1>‘ ’F( —|—5+2p2>‘
_ _ X
W I'2(1+ 2€) '2(1+2¢)

—2mE 2 —2mE 2
X Mipl,f:‘ <_2TMI )Miph:‘f <2T,u” ) %

—9mE —9mE
x M, (-27’”;/2) M_, ¢ (27’”1/’2) (4.66)

h h
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(€ = V8mé /h). Performing the o and 7 integrations gives poles for p; and
po yielding E = h?p?/2m = h?p3/2m, as it should be, e.g., the po integration
evaluates the residuum and we obtain:

4
0 I‘( +)\—|—zp>
27p
G, pw' V' Vi E) ——/ AdA / e Pdp ‘ ’x

N/N//V/V// h2p2 5 47Tp21"4(1 + 2)\)
2m
X Mip x ( — 2ipu'2) M_;p 5 <2ip//'2) Mip A ( — 2ip1/'2) M_ip 2 (2ip1/"2) ,

(4.67)

which gives the normalized wave functions:

2
‘1" —&-)\—&-zp)‘ o
)= S V3 (—2' 2)Mi (—2’ 2).
Wy a(p, v 471_/“/ T2(1+2)) D P,A tpl P (24

(4.68)

This concludes the discussion on D y;.

S. DARBOUX SPACE D1y

Finally, we consider the Darboux space Dry. We have the coordinate sys-
tems:

((u, v) coordinates:) r=v+iu, y=v-—iu 5.1
(uwe (0,7/2), veR),
(Equidistant:) u = arctan (e%), v= g 5.2)
(¢ €R,BER),
(Horospherical:) x = log a _2 y = log a ; w (v >0), (5.3)

(Elliptic:) u=dcoshwcosyp, v =dsinhwsinp 5.4
(@ > 0,p € (0,7/2)).

We obtain the following forms of the line-element (¢ > 2b, ayx = (a £ 2b)/4):

ble® ¥ +eV T +a

ds? = — 5— dzdy

(z—y)/2 (y—=)/2
ble +e ]_Zadxdy:—
(e(I*y)/2 — e(yfw)/2) (eI*y - ey*I)
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2b cos
((u,v) coordinates:) = M(d?ﬂ + dv?) =
4sin”u

= <a42r + 2 )(duQ—i—va)

sinu  cosZu

(rescaling g — u, g — 1), (5.5)
— 2btanh
(Equidistant:) = % (da? + cosh? adB?), (5.6)
(Horospherical:) = <i—; + Z—2> (dp? + dv?), (5.7)
.. a_ a
Elliptic:) = + X
(Elliptic:) (cosh2 wcos2p  sinh?wsin? cp)

x  (cosh® w — cos? ) (dw? + dp?) =

a4 a_ a4 a_
= P B M Dot HRs B 2 X
sin“¢p cos*p  sinh"w  cosh”w

x  (dw? + dp?). (5.8)

We observe that the diagonal term in the metric corresponds to a Poschl-Teller po-
tential, a Rosen—Morse potential, an inverse-square radial potential, and a Pdschl-
Teller and modified Poschl-Teller, respectively. In particular, the (u,v) and the
equidistant systems are the same, they just differ in the parameterization. The
limiting cases a = 2b and b = 0 give particular cases for the metric on the
two-dimensional hyperboloid (Table 2).

Table 2. Limiting Cases of Coordinate Systems on D 1v

(2) (2)
Metric: D1y A A
(a = 2b) (b=0)
21’4(30,57%"'“@1;2 + dv?) (u,v) coordinates | Equidistant| Equidistant
sin” u

a—_2b4‘w (da® + cosh? adB?) Equidistant ~ |Equidistant | Equidistant

a_; 4 a_g (d® + dv?) Horospherical | Horicyclic Sem1c1rcu_lar—
o v parabolic
a— + a4

cosh® wcos® ' sinh® wsin® ¢ Elliptic Elliptic— | Hyperbolic—

x (cosh? w — cos? ) (dw? 4 dp?) parabolic parabolic
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For the Gaussian curvature we obtain, e.g., in the (u,v) system

a3 a? a_ay

+
. 6 6 a4 4
3 Ccos® u

K _ s u SN~ U COS™ u . (59)

a a 3
+ —_
S
ST u COsS“ U

The case a = 2b yields a_ = 0, and

K=-3, (5.10)

and therefore again a space of constant curvature, the hyperboloid A(®) is given
for b > 0. We have set the sign in the metric (1.4) in such a way that from
a = 2b > 0 the hyperboloid A(?) emerges. We could also choose the metric
(1.4) with the opposite sign, then a = 2b < 0 would give the same result. In the
following it is understood that we make this restriction of positive definiteness of
the metric and we do not dwell into the problem of continuation into nonpositive
definiteness. Because the (u,v) coordinates and the equidistant system are the
same, we do not evaluate the path integral in the equidistant system. In the
following we assume a4 > 0 and ay > a_.

5.1. The Path Integral in (u,v) Coordinates on D1y. The classical La-
grangian and Hamiltonian are given by

m 2bcos2u + a

L(u,@,v,0) = W2+ 0?), 5.11
(wiv,8) = G i 4 0?) (5.11)
1 sin? 2u 9 9
wy Yy Pvu a — \Mu v/ 512
H(t, pu; v, po) 2m2bcos2u—|—a(p 7o) (5.12)
The canonical momentum operators are given by
h( o 2bsin 2u h 0
w= <=z +2cot2u— —— |, p,=-7, 5.13
P i <3u+ coreu 2bcos2u—|—a> P iOv (5.13)

and the Hamiltonian operator has the form

K2 sin? 2u 0? H?
H — _ S JE— —_— = 5.14
2m 2bcos2u + a <3u2 0v? > .14)
1 sin 2u 9 sin 2u (5.15)

2
= e (PP P e
2m \/2bcos2u + a(pu Py) V2bcos2u + a
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We obtain for the path integral

u(t//):u// v(t”):v”

K" o' " v';T) = / Duft) / Do(t) ( a; + a_) X

sin“u  cos?u
u(t)=u’ v(t)=v’

T

X exp @/< e SR )(ﬂ2+1}2)dt . (5.16)

2h sinu = cos?u
0

This formulation in (u,v) coordinates is unconvenient. ~Without the term
ay/sin?u (5.16) would be identical with the path integral in the hyperbolic
strip [17], which is actually a reformulation of equidistant coordinates on the
two-dimensional hyperboloid. Following [17] we perform the coordinate trans-
formation cosu = tanh7. Further, we separate off the v-path integration, and
additionally we make a time transformation with the time-transformation function
f =ay /sin?u+a_ /cos® u. Due to the coordinate transformation cosu = tanh
additional quantum terms appear according to

Ny 2
im (Au) im A\ 2 h 1
o : ) zexp | 2 (Ar0)? i L (14— )|
o (26ﬁcosu(1—1)cosu(1) xp |5 (A7) —ig 1+ )

5.17)
We get for the path integral (5.16)
K" o' " v';T) =
[ dE o [ : n?
— / ﬁ eszT/h/dS// exp |:% <a+E—%>s”] K(T”, T/,UH,’U/; S”),
—o0 0
(5.18)
and the time-transformed path integral K (s”) is given by
® eikv(v”—v/)
K(r", 70" 28" = / dk, (cosh 7’ cosh 7") ™1/ x
T(S”):T” § 9 1
i m a_ kb B2 kot 7
X Dr(s)exp | = —72 4 - — 4 las|. 519
/ (s) exp 71/ 2 sinh?7  2m cosh? 7 ©-19)
T(0)="' 0
The special case a_ = 0 gives the wave functions on the two-dimensional hyper-

boloid in equidistant coordinates, respectively on the hyperbolic strip. Inserting
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the solution for the modified Poschl-Teller potential and evaluating the Green
function on the cut yields for the path integral solution on Dy as follows
(K" o 0" 0 T) = K(r", 7', 0", v;T)):

K" o' " v;T) = /dkv/dpe*iTE"/h\I/p)kU(T”,v”)\Il;kv(T/,v’), (5.20)
o) 0

eikvv )
U (1,0) = —ee k) (1), 521
pholm) = gy () (5.21)
K2 1
E, = 24 = 5.22
p omay (p + 4>a ( )

1
where n? = 1 2macFE/ h? and the wave functions for the modified Poschl—

Teller functions as given in Appendix B. Reinserting cosu = tanh7 gives the
solution in terms of the variable w.

5.2. The Path Integral in Horospherical Coordinates on D 1y. The classical
Lagrangian and Hamiltonian are given by

Ll fosv, ) = %(5ﬁ~—yﬁ+fx (5.23)
1 w2 (pl + 1
H(ps pu, vy pw) = —#. (5.24)

2m ayp? +a_v?

For the canonical momentum operators we have

h(o via_/p
= - |—————— 5.25
pM Z(alu a+u2+a_1/2>’ ( )
h( 0 wray Jv
y = — 5.26
b (81/ ayp?+ a_v? (5.26)

and for the quantum Hamiltonian we get
0 o h? ,u v? 82 82
C2magp? + a_1? 61/

a2
prv? u V2
‘/ ) | ———. 5.28
a+ﬂ + a_ 7/2 p,u, py a+ﬂ + a_ 7/2 ( )

(5.27)
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For the path integral we obtain (time-transformation function f(u,v) = ay/u?+

a_/v? = /9)

M(t”):l,b,, l/(tll):l///

"o s, _ a a—
K( i /" /5 T) = put) [ puio (% + %)«
n(t)=p’ v(t)=v'

T
im Ay G- \,.9 .o B
X exp ﬁ/<ﬁ+ﬁ>(u +v)dt| =
0
— / —e_ZET/h/ds”K(u”,,u/,l///,l//;sll), (5.29)
27h
—00 0
and the time-transformed path integral K (s”) is given by
M(S//):MII V(SII):VII
K"l = [ puts) [ Dus)
p(0)=p’ v(0)=v"

X exp %/ {%(;‘ﬂ +1?) +E<CZ—; + Z-g)]ds . (5.30)
0

These two path integrals can be solved by means of the solution for the inverse-

square radial potential, by following the approach of [24] for the semicircular—

parabolic system on the two-dimensional hyperboloid. We insert the path integral

solution for the inverse-square radial potential (kernel and the Green function)

and obtain

o0
4m?

G W V'V E) = /ds/’K(u”,u’,v“,v’;s”) = 3 VX

0

x / %I& 2m5%>K>\< 2m5y—>>15\(\/—27715%)[(5\(\/—27715%) =
T

h
Ood " d . .
M/M//V/V///%/Q_fiezfs /h><
0
m imv'v"’
< oxp {W(l/zwﬂz)]h (W)IX (x/—Qme’%)Kx (\/—Qmé'u%).

(5.31)
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I have used the abbreviations (assuming a4 > a_)

1 2mFE ~ 1 2mFE a_ 1 1
2 L smb 2 _ L _smb L el O R
A =1 2 G, 1 2 a_, D a (p +4> 1 (5.32)

For the p-dependent part one uses the dispersion relation (3.52) together with the
integral representation [15, p.725]

/6—1/2 (2% +w )/QTK ( >dl‘ — QKV(z)KU(u)) (5.33)
X

T

In order to analyze the v-dependent part, we first rewrite the v-dependent part of
the Green function according to

. . s
In(=ikp) K (=ikps) = - Ja (k<) HyY (ks ), (5.34)
and then the wave functions on the cut are obtained by using
11\ ~Ty % / ) " (1) ’ " (1) Nl _
W p (1" )W (1) X [J—zp(ku VH 5, (k') — Jip (k") Hy, (K )} =
= sinhapHL (k" VHY) (ki) (5.35)

(A = —ip) and the relation of the Hankel function, i.e., Hﬁl)(z) =ile ™" J,(2)—
J_(2)]/ sinwv. Therefore with & = h?k/2m:

Gl s B) = Y / .

om? Q_ZI (—i\/E,u<)K;\(—i\/Eu>)><

></ PR Ky (VR ) Kip (VEY) + (o v) § =
2
-|—-F
2may (p +4>
A I///dl{/ dppSthﬂ'pSinhwp "
-|—-F
2may ( 4)

[ (V) e (VR O (R O () + ) (536)

I have taken into account that the final result must be symmetrical in p and v
which also accounts for the additional factor 1/2. The wave functions thus have
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the form

U, () = 2\/\/__ v/psinh wpsinh mp [Kip (VEv) H(_li)ﬁ(\/gu) + (u < 1/)] .
(5.37)

Note that a— = 0 gives the horicyclic path integral on the two-dimensional
hyperboloid. Then A = +1/2, and the corresponding Bessel functions give
exponentials, therefore we obtain the wave functions of the horicyclic system.

This result completes the calculation.

5.3. The Path Integral in Elliptic Coordinates on Dy. The classical La-
grangian and Hamiltonian are given by

L(w,
o a+ 2 2 .2 .2

+ cosh” w — cos™ ) (w” + ¢*), (5.38
2 (cosh 2weos?p  sinh? wsin? cp) ( ¢)( ©°), (5.38)

H(wapwv @apga) =
-1 21,2
1 _ 2 4
:_< - PR - ) TP (539)
2m \ cosh®wcos? p  sinh”wsin® ¢ cosh® w — cos? ¢
For the canonical momentum operators we get
Rl o _1 2<atanhw a+cothw>]
Y = S| L4V — , 5.40
P 7 {3(# g sinh? w cosh? w ( )
h| 0 _ a_ tan a4 cot
Py = —,{——Fg 1/2< ) Lt 2 SO)]’ (5.41)
1 | 0p sin® ¢ cos® ¢
the Hamiltonian operator is given by
h? a_ ay ) -1
H = —— + x 5.42
2m (cosh2 wcos2p  sinh?wsin? o (>42)

y 1 ( 9? N 0? ) B
cosh2w—0032 ow? 02 )

1 1
= 5.43
y— f(pwﬂ?@)\/g (5.43)
For the path integral in elliptic coordinates we obtain (note that for a_ = 0

we get the path integral in elliptic—parabolic coordinates on the two-dimensional
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hyperboloid)

K" ', ¢" ¢ T) = / /

w(t)=w’ )=¢

T
im - a4 a_ Lo .o
X ex + - w4 p*)dt
P / (sm @] COS2 ¢ sinh®w cosh2w> ( 7
0

(5.44)

In order to obtain a convenient form to evaluate (5.44) we perform the coordinate
transformation cos ¢ = tanh 7 in the same way as in (5.16). Performing the time
transformation with f(w,¢) = /g, the time-transformed path integral K (s") is
given by

K(w//,w/,T//,T/;T) —

— i dE iET/h]o 1 i h? "o
= / 57 ds" exp N ar B B K(w" W' 1" 15",
— 00 O

(5.45)

and the time-transformed path integral K (s”) is given by

w(S//):w// T(S//):TII
KW' W' 7§ = / Dw(s) / Dr(s) cosh7x
w(0)=w’ T(0)=7’
. ¢ E
X exp %/ [%(7'2 + cosh? Tu‘ﬂ) + Sf;lg -

0

1 arE a_E h? ) ]
+ — ——)|dspy. (5.46
cosh? 7 (sinh2 w cosh’w 8m (5.46)

The w-path integration is separated by means of a modified Péschl-Teller potential
with n? = 1/4+2mFEa, /h?, v?> = 1/4+2mFEa_/h?, and the T-path integration
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is the same as in (5.19). This gives the solution:

o0

KW' '\ 7" 7T) = /dkv/dpe”TEP/h\Il* (W, 7y k(W 7"),(5.47)
—00 0
)"

Uy p(w,7) = (COShT 1/2@"”( YW (1),

1
2ma+ (p * Z)’

where 13 = 1/4—2ma.FE/h?, and we can reinsert cos ¢ = tanh 7. This concludes
the discussion on the Darboux space Dyy.

(5.48)

E, = (5.49)

6. SUMMARY AND DISCUSSION

In this paper I have discussed path integration on Darboux spaces, labeled
by D1 to Dry. We set up the metrics following Kalnins et al. [38,39]. In each
of these spaces the Schrodinger equation, respectively the path integral, were
separable in several coordinate systems. Our results are summarized in Table 3.

In the Darboux space D1 we found the solutions in the (u,v) and rotated
(u,v) coordinates. A closed expression for the Green functions could be found,

Table 3. Solutions of the path integration in Darboux spaces

Space and coordinate system Solution in terms of the wave functions

(u, v) coordinates Product of Airy functions
D1 | Rotated (u,v) coordinates | Product of Airy functions
Displaced parabolic No solution

(u, v) coordinates Exponential times /K -Bessel function
Du Polar Legendre times K-Bessel function

Parabolic
Elliptic

Product of W-Whittaker functions
Spheroidal wave functions

(u, v) coordinates
Polar

Exponential times M -Whittaker functions
Exponential times M -Whittaker functions

D1 | Parabolic Product of parabolic cylinder functions
Elliptic No solution
Hyperbolic Product of M-Whittaker functions

D1v

(u, v) coordinates
Equidistant
Horospherical
Elliptic

Exponential times Legendre function
Exponential times Legendre function
Product of K- and H")-Bessel functions
Product of Legendre functions
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however, the wave function is only implicitly known because of the boundary
conditions which must be imposed on the system. A solution in displaced par-
abolic coordinates was impossible due to its quartic anharmonic structure of the
transformed dynamics.

In the Darboux space D1y, I succeeded in writing down the Green functions
and the corresponding expansions into the wave functions. I found the expres-
sions in the four coordinate systems, i.e., (u,v) coordinates, polar, parabolic and
elliptic coordinates. Several path integral techniques from former studies were
indispensable tools in the considerations. We stressed the limiting case of the hy-
perbolic plane, i.e., the two-dimensional hyperboloid. The Green function and the
wave functions were determined in the soluble systems with the general feature

h?p? 1
that the energy spectrum has the form: E = 5 T | <p2 + Z) The additional
mla

h2p2
8m|al
on spaces with negative curvature [33].

In the Darboux space Dy, I found the solutions in the (u,v) system, the
closely related polar system, the (u,v) system, and the hyperbolic coordinate
system. In elliptic coordinates no solution could be found. The Green function

and the wave functions were determined in the soluble systems with the general
2,2

feature that the energy spectrum has the form: E = o which is different in
m

zero-point energy Fy = is a characteristic feature of the quantum motion

its zero-point valued form D1.

In the Darboux space Dy, we found solutions in (u,v) coordinates, horo-
spherical, and elliptic coordinates. Here also the limiting case to the two-
dimensional hyperboloid was shortly mentioned. The Green functions and the
wave functions were calculated in the separable coordinate system. The energy
h2p2
2may

We were able to solve the various path integral representations, because we
have now to our disposal not only the basic path integrals for the harmonic oscil-
lator, the linear oscillator, the radial harmonic oscillator, and the modified Poschl—
Teller potential, but also path integral identities derived from path integration on
harmonic spaces like the elliptic and spheroidal path integral representations with
its more complicated special functions [24,26,34]. This includes also numerous
transformation techniques to find a particular solution based on one of the basic
solutions. Various Green-function analysis techniques can be applied to find not
only an expression for the Green function but also for the wave functions and the
energy spectrum.

The present study continues the analysis of path integrals on curved space
[24] with the simple case of the two-dimensional Euclidean space with its four
separating coordinate systems (Cartesian, polar, elliptic and parabolic) up to the

1
spectrum has the form: E = <p2 + Z)’ similarly as on Dr.
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complicated case of the three-dimensional hyperboloid with its 34 separating
coordinate systems.

In our papers [27-30] we have studied superintegrable potentials on spaces
of constant curvature, i.e., flat space [27], spheres [28] and two- and three-
dimensional hyperboloids [27,28]. In the Euclidean flat spaces R? and R? a
complete list was given, and they were called Smorodinski—Winternitz poten-
tials [61]. We have extended this study by introducing corresponding potentials
on spaces with (nonzero) constant curvature, i.e., on spheres and hyperboloids.
Further studies along these lines for superintegrability on spaces with constant
curvature were performed by Kalnins et al. [41] on the complex 2-sphere (five co-
ordinate systems which separate the Laplace-Beltrami equation), on the complex
Euclidean space E5 ¢ [42] (six coordinate systems which separate the Laplace—
Beltrami equation), in R? and on the two-dimensional sphere (with emphasis on
the polynomial solutions of the superintegrable potentials) [43], and on the two-
dimensional hyperboloid [44,45]. In the latter also two potentials were studied
which have not until then been considered. The focus in those studies was of
course on the harmonic oscillator (with its deformations and generalizations) and
the Coulomb potential. As it turns out, in all those spaces a harmonic oscilla-
tor and a Coulomb potential could be defined and solved in various coordinate
representations. In particular, the three-dimensional Coulomb potential problem
separates into spherical, conical, parabolic, and prolate spheroidal coordinates.
These features translated also into the three-dimensional sphere and the three-
dimensional hyperboloid. This particular feature of the Coulomb system has its
origin in its superintegrability, i.e., beside the energy and the angular momentum
conservation we have an additional conserved quantity, the Lenz—Runge vector.

Therefore we have explicitly shown that path integral calculations are not
only possible in flat space (with several potential problems), or in spaces with
nonvanishing constant curvature, but are also applicable in spaces of nonconstant
curvature.

The most serious drawback of the path integral method in comparison to
the operator method is that in the operator method we can investigate the more
complicated parametric coordinate systems in terms of Lamé polynomials. For
this kind of coordinate systems a path integral approach exists for the spheroidal
wave functions (elliptic wave functions in R? and spheroidal wave functions
in R3) based on the theory of Meixner and Schéfke [53], and for the three-
dimensional sphere [26].

It is therefore quite natural the raise of the question of superintegrable system
in Darboux spaces, in fact one of the intentions of [38,39]. And indeed, analogies
of an oscillator and a Coulomb potential can be found. However, the freedom of
choice of free parameters seems somewhat limited in comparison with the spaces
of constant curvature. This can be understood by the feature of the Darboux
spaces that the corresponding metric includes already a complicated «potential»
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term, i.e., the metric almost equals a superintegrable potential in R2. The time-
transformation function is in almost all cases equal to ,/g which is most obvious
in the case of Dyy. These issues will be discussed in more detail in a future
publication [31].

Acknowledgements. I would like to thank George Pogosyan (JINR, Dubna)
for helpful discussions on the properties of coordinate systems and superintegra-
bility, and a critical reading of the manuscript.

Appendix A
FORMULATION OF THE PATH INTEGRAL IN CURVED SPACES

In order to set up our notation for path integrals on curved manifolds we
proceed in a canonical way. To avoid unnecessary overlap with our Table of
Path Integrals [34] I give in the following only the essential information required
for the path integral representation on curved spaces. For more details concern-
ing ordering prescriptions, transformation techniques, perturbation expansions,
point interactions, and boundary conditions I refer to [34], where also listings
of the application of Basic Path Integrals will be presented. In the following q
denote some D-dimensional coordinates. We start by considering the classical
Lagrangian corresponding to the line element ds?> = gq,dq®dq® of the classical
motion in some D-dimensional Riemannian space

2
) m [ ds m ca -
La(@.a) = =] — V(@)= 5 9a(a)i"¢" — V(a). (A.1)
2 \ dt 2
The quantum Hamiltonian is constructed by means of the Laplace—Beltrami
operator
h? P19
H=-—A V(q)=———
om P +Via) 2m /g 0q°

" 0
g %a—qb +V(a) (A2)

as a definition of the quantum theory on a curved space. Here are g = det (gap)
and (g®°) = (gap)~!. The scalar product for wave functions on the manifold reads

(f,9) = / dav/gf*(q)g(q), and the momentum operators which are Hermitian

with respect to this scalar product are given by

1
P h<a+&), r, - 2o (A3)

T i\dgr 2 dq

In terms of the momentum operators (A.3) we can rewrite H by using a product
according to gup = hachep [34]. Then we obtain for the Hamiltonian (A.2) (PF —
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Product Form)

n’ 1
H=—o—Aup+V(a) = 5" papph® + AVer(a) + V(@), (A4
m 2m

and for the path integral

"

q(t")=q
K(d' o T) = / Drra(t)y/g(@)x

a(t)=q’

t//

<o {2 [ [Bhotahataird - via - ver(a] ) =

t

m \NP/2N-1
= 1. A/
Ngnoo <2m'eh> kl;[l /qu 9la)

. N
i m a
X exp {ﬁ ; {Zhbc(%‘)hm(%‘—l)ﬁ% Agj —€V(q;) — eAVPF(qj)] }
(A.5)
AVpr denotes the well-defined quantum potential

h2
AVpr(q) = 3m {gabrarb +2(g*Ty) p + gab,ab:| +

h2
+ 8_m (Qhachbcﬂb _ hacﬂhbc’b _ hac,bhbc,a) (A.6)

arising from the specific lattice formulation (A.5) of the path integral or the or-
dering prescription for position and momentum operators in the quantum Hamil-
tonian, respectively. We have used the abbreviations ¢ = (¢ —t')/N = T/N,
Aq; =q; —qj-1, q; = q(t’' + je) (t; =t +¢€j,j =0,...,N) and we interpret
the limit N — oo as equivalent to ¢ — 0, T fixed. The lattice representation
can be obtained by exploiting the composition law of the time-evolution operator
U = exp (—iHT'/h), respectively its semigroup property.

Note that the first summand on AV corresponds to the quantum potential of
the Weyl-ordered Hamiltonian, respectively a midpoint prescription of the path
integral. Note also that in the case that the metric tensor is diagonal to the unit
tensor, i.e., (gap = f2d4p) We obtain

AV (q)

f— 2 .
:h2D—QZ(4 D)fi+2f f,aa. (A7)

8m f4
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This gives the important special case that for D = 2: AV = 0, a property which
is quite useful for the considered two-dimensional Darboux spaces.

The path integral representation (A.5) is not explicitly evaluable in many
cases, in particular if coordinate-dependent metric terms are explicitly present, or
potentials like the Coulomb potential. Here the so-called «time transformation»
comes into play which leads in combination with «coordinate transformation»
to general «space-time transformations» (also «Duru—Kleinert transformation»
[7,8,46]) in path integrals. The time transformation is implemented [46] by
introducing a new «pseudotime» s”’. In order to do this, one first makes use of
the operator identity (one-dimensional case)

1 1
7 R LSS A P sy ) Y X Py

fl('ra t)7 (A8)

where H is the Hamiltonian corresponding to the path integral K (¢”,¢'), and
fi.r(x,t) are functions in ¢ and ¢, multiplying from the left or from the right,
respectively, onto the operator (H — E)~!. Secondly, one introduces a new
«pseudotime» s” and assumes that the constraint

/ dsfi(F(q(s),s)) - fr(F(q(s),s) =T =t" =t (A.9)
0

has for all admissible paths a unique solution s” > 0 given by

¢

o
" _ dt B ds
° _t//fl(%t)fr(x,t) _/Fﬂ(q(s),s)' (A.10)

t

Here one has made the choice fi(F(q(s),s)) = fr(F(q(s),s)) = F'(q(s),s)
in order that in the final result the metric coefficient in the kinetic energy term
is equal to one. A convenient way to derive the corresponding transformation
formulae uses the energy-dependent Green function G(F) of the kernel K (T)
defined by

1

"o B = "
G(d", ¢ E) <q T F i

i r 7 i€
q’> = ﬁ/dTe (EHOT/RE (" /s T).
0

(A.11)
For the one-dimensional path integral one obtains the following transformation
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formula:
dE .
K", 2T) = /%e_ZET/hG(q”,q’;E), (A.12)
R
1 ! Z / 1 ! / 1/2 T 11 1 ! 1
G(" ¢ E) = E[F (¢")F (Q)} /ds K(d",q¢;5"), (A.13)
0

with the transformed path integral K having the form
m \ /2N
X//,/'//ZI' /d
(@ d5s7) = Jlim <2m'eh> kl;[l ok

. N
xexp{%z

Jj=1

(8g))* = () (V(F(@)) - E) - eAV(g))

}, (A.14)

q(s//):qll
= Dq(s)x
q(0)=q’
) ) m .
X exp {ﬁ / lEqQ - F/2(q) (V(F(q) - E) — AV (q) ds}, (A.15)
0
and with the quantum potential AV given by
K2 F//2 Jald

Note that AV has the form of a Schwarz derivative of F. A rigorous lattice
derivation is far from being trivial and has been discussed elsewhere [13,34,46].

Let us consider a pure time transformation in a path integral. Let (q — a
D-dimensional coordinate)

exp (—is”ﬁ(H—E)ﬁ/h) q/>,

(A.17)

G(a"a: ) = VF@If@y, [ ds"(a”
0

t//
which corresponds to the introduction of the «pseudotime» s’ = / ds/f(q(s))

t
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and we assume that the Hamiltonian H is the product ordered. Then

i
Gla",d' s B) = +(f'f")? 20=02) [ K(q",q';s")ds", (A.18)

with the path integral

a(s”)=q
K(q//’q/;sl/) — /
q(0)=q’

1"
S

X exp % / {%Bacﬁcbqaqb— f(V(q)—l—AVpF(q)—E)]ds . (A19)
0

Here hae = hae/v/T» /G = det(hq.) and (A.19) is of the canonical product form.
Note that for D = 2 the prefactor gives unity.

This latter path integral technique of «time-transformation» is used in this
paper in almost all cases in order to solve the corresponding path integrals in the
various coordinate systems on Darboux spaces. Of course, the time-transformation
is used in such a way that the metric term (gqp) is transformed to unity.

In our calculations we have in all cases a metric which is diagonal, and in
almost all cases is of the form g,;, = f284. This has the consequence that the
quantum potential AV = 0 and the term hqe can be transformed to unity. This
simplifies the calculations significantly.

Appendix B
SOME IMPORTANT PATH INTEGRAL SOLUTIONS
AND IDENTITIES

In this Appendix we cite some important path integral solutions, in particular
for the (radial) harmonic oscillator, the linear potential, and for the modified
Poschl-Teller potential.

B.1. The Path Integral for the Radial Harmonic Oscillator. The calculation
of the path integral for the radial harmonic oscillator has first been performed by
Peak and Inomata [59]. For a comprehensive bibliography, see [34]. We have
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the path integral representation (r > 0)

’I‘(t”):’l‘” . n )\2
/ Dr(t) exp 1/ m(,2
r(t")=r’

1
m 2.2\ 32 4 _
h g\ T )= h 2mr?
t/
mw\r'r! mw( 2 /,2) otwT |1 mwr'r" (B.20)
= Xp | — — cotw —_— .
ihsnwT P 2n " M\ ihsinwT )’
I\(z) is a modified Bessel function. The energy-dependent kernel (the Green
function G(E)) is given by
’ 0o r(t//):r// ) t” )\2 _ 1
1 /dE e BT/ / Dr(t) exp ! / @(7;2 —w?r?) — n? 4
h h 2
0 r(t)=r'

2mr2 dt| =
t/

1

r {5(1 +A— E/hw)

mw mw
W janwae | =12 )M » (—r2 )
BN/ T (1 + \) E/2h 7>\/2< h > E/2hw,\/2 n<
(B.21)
Here M, ,(z) and W, ,(z) are Whittaker functions.

B.2. The Green Function for the Linear Potential. The energy-dependent
kernel for the linear potential is given by

oo I(t”):(E” . T
%/dEeiET/h / Dx(t) exp ' / (m
0

_ 22
N 5 T km) dt
z(t')=x' 0

1/2

=-= x'—g x”—g /><

3 h? k k
V8mk E\*”? V8mk E\*?
X K1/3 [7 <$> — Z) Il/?) 3—h <$< — Z) . (BZZ)
B.3. The Green Function for the Harmonic Oscillator. The energy-dependent
kernel for the harmonic oscillator is given by
50 m(t”):m”

T
i iET/h mofoo 9 o9 _
N /dEe / Dz (t) exp 5T /(x wz®)dt
0 z(t)=z' 0
m 1 FE 2mw 2mw
~ et (3 i) et <VT90>> Dy (‘V h )

The D, (z) are parabolic cylinder functions.
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B.4. The Modified Poschl-Teller Potential. The path integral solution for the
modified Poschl-Teller potential can be achieved by means of the SU(1, 1)-path
integral. For a comprehensive bibliography, see [34]. We have [1,6,13,47]

r(t'")=r" t! 2 2

) 1 1
i m., BT T3 VT3

)expQ — —rf - — - dt ) =
/ P h/ 2 2m | sinh®r  cosh?r

_ (1) * (7 g () ihT TR b
Z\If NP ()exp{Qm[Q(/c1 ko — n) 1} X

i V) * v ihT 2
X /dp\Ill(,”’ 5 ()W) (") exp (— 5P ) (B.24)
0

Let us introduce the numbers k1, ko defined by: k1 = 1/2(1+v), ko = 1/2(14£n),
where the correct sign depends on the boundary conditions for » — 0 and r — oo,
respectively. In particular for n? = 1/4, i.e., ks = 1/4,3/4, we obtain wave
functions with even and odd parity, respectively. The number Nj; denotes the
maximal number of states with 0,1,..., Ny < k1 — ko — 1/2. The bound state
wave functions read as (k = k1 — ko — n)

\Ifgl"’”) (r) = N(77 v) (sinh r)2k2 2(coshr)™ 2k1+5
X 2F1(—k‘1 +ko+ kK, —k1 + ko — k+1;2k; — Sinh2 7‘), (B.25)

1 [226 — DD(ky + ko — 6)D(ky + ko + 5 — 1)]Y2

N("%V) —
m T T(2hy) | (ki — ko + m)D(ky — ks — k1)

(B.26)

The scattering states are given by

\IJI(,"’”) (r) = NZE”’”) (cosh )21~ 2 (sinh )22~ 2 x
X oF) (k1 + ko — &, k1 + ko + K — 1;2kg; —sinh®7),  (B.27)

1 psinh 7wp
N{v) = \/ (ki + ks — 0)D(=ky + k
P T(2ky) 92 [ (k1 + ko — k)[(—k1 + ko + k) X

XxD(ki+ke+rk—D0(=k1+ka—r+1)

}1/2, (B.28)
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[ =1/2(1+ip)]. 2Fi(a,b;c;z) is the hypergeometric function. The Green
function has the form

50 T(t//):r//
% / dE eiET/h / Dr(t)x
0 r(t)=r

i m., h*(n?—1/4 ,,2_1/4)}
X e — =7 - — — dt p =
P h/ [2 " 2m< sinh? r cosh? r
t/
- m (k1 — L)L, + k1 4 1)

= — X
h? F(k‘l + ko + 1)F(k‘1 — ko + 1)

x (coshr’ cosh ")~ (F1=k2) (tanh ¢+ tanh ")k Hh2H1/2

1
><2F1<—L,,+k1,L,,+k1+1;k1—k2+1;72>><
cosh” r.

X oI ( —L,+ ki, L, +k1+ 1k + ko + 1;tanh2 7’>>. (B.29)
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