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Shell phenomena in small quantum dots with a few electrons under a perpendicular magnetic
ˇeld are discussed within a simple model. It is shown that various kinds of shell structure occurring
at speciˇc values of the magnetic ˇeld lead to disappearance of the orbital magnetization for particular
magic numbers of noninteracting electrons in small quantum dots. Including the Coulomb interaction
between two electrons, we found that the magnetic ˇeld gives rise to dynamical symmetries of a
three-dimensional axially symmetric two-electron quantum dot with a parabolic conˇnement. These
symmetries manifest themselves as near-degeneracy in the quantum spectrum at speciˇc values of
the magnetic ˇeld and are robust at any strength of the electronÄelectron interaction. A remarkable
agreement between experimental data and calculations exhibits the important role of the thickness of
the two-electron quantum dot for analysis of ground state transitions in a perpendicular magnetic ˇeld.
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INTRODUCTION

The development of the semiconductor technology has made possible the
conˇnement of a ˇnite number of electrons in a localized three-dimensional space
of a few hundreds of Angstroms [1,2]. This mesoscopic system, which was made
up of artiˇcially trapped electrons between a few layers of various semiconductors
and called quantum dot (QD), opens new avenues in the study of the interplay
between quantum and classical behavior at low-dimensional scale. The quantum
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dot is formed by removing the electrons outside the dot region with external gates
(lateral dot), or by etching out the material outside the dot region (vertical dot)
(see, for example, [3Ä5]). The dot is connected to its environment by electrostatic
barriers, the so-called source and drain contacts, and gates to which one can apply
a voltage Vg . In order to observe quantum effects, QDs are cooled down to well
below 1 K. Note that in vertical QDs there is a strong screening of the Coulomb
interactions in contrast to lateral ones (see [4]). It results in strong quantum
effects of the conˇnement potential on dynamics of conˇned electrons. The main
effects discussed in the present review are directly relevant to vertical dots.

The smaller the quantum dot is, the larger the prevalence of quantum effects
is upon the static and dynamic properties of the system. Almost all parameters
of QDs: size, strength of a conˇning potential, number of electrons, coupling
between dots, dielectric environment, the shape of tunneling barriers, as well as
external parameters, such as temperature and magnetic, electrical and/or electro-
magnetic ˇelds, Å can be varied in a controlled way. It is precisely to stress
this controllability that the names artiˇcial atoms and quantum dots have been
coined. Therefore, QDs can be considered as a tiny laboratory allowing direct
investigation of fundamental properties of charge and spin correlations at the
atomic scale [3, 4, 6, 7]. Another strong motivation for studying the properties of
QDs is due to a rapid development of the ˇeld of quantum computing, since the
entangled states of the electrons conˇned in a quantum dot may give a natural
realization of a quantum bit or ®qubit¯ [5]. It is expected that QDs could lead
to novel device applications in ˇelds such as quantum cryptography, quantum
computing, optics and optoelectronics, information storage, biology (	uorescent
labelling of cellular targets).

The simplest approach to the description of ˇnite quantum systems of in-
teracting Fermions is based on the idea that the interactions create an effective
potential in which particles are assumed to move independently. For ˇnite Fermi
system like nuclei and metallic clusters, the bunching of single-particle levels
known as shells [8Ä10] is one consequence of this description, since the mean
free path is comparable with the size of the system. A remarkable stability is
found in nuclei and metallic clusters at magic numbers which correspond to closed
shells in the effective potential.

For small quantum dots, where the number of electrons is well deˇned (N �
30), the mean free path of the electrons at Fermi energy (λF ∼ 100 nm) appears
to be larger or comparable with the diameter of the dot (d ∼ 10−100 nm) [11].
It seems therefore natural to assume that the properties of the electron states in
QDs close to the Fermi level should be determined by the effective mean ˇeld of
the ®artiˇcial atom¯, produced by nontrivial interplay of the external conˇnement
governed by gate voltage and electronÄelectron interaction. However, the atomÄ
quantum dot analogy should not be carried too far: unlike electrons in an isolated
atom, carriers in semiconductor QDs interact strongly with lattice vibrations and
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could be strongly in	uenced by defect, surface, or interface states. In contrast to
real atoms, for which the conˇning Coulomb potential is well known, the forces
that keep the carriers in place in self-organized traps are difˇcult to estimate from
the ˇrst principles. The exact shape and composition of the traps are not well
known often and depend on the growth procedure; in addition, complications
are introduced by the complex band structure of the strained material and, in
some cases, the effect of piezoelectric forces. A good assessment of an effective
conˇning potential inside the dot can be obtained from a combined study of the
ground-state and excitation energies. Ground-state energies are investigated by
capacitance spectroscopy or by single electron tunnelling spectroscopy [4]. Far-
infrared spectroscopy is used to study the excitations of N -electron states in the
dots (see below).

The electron states of few-electron quantum dots subjected to a strong mag-
netic ˇeld have been studied extensively in various experiments. The electrody-
namic response (far-infrared spectroscopy) of QDs is expected to be dominated by
the many-body effects produced by conˇned and interacting electrons. Sikorski
and Merkt [12] found experimentally, however, the surprising result that the reso-
nance frequencies in the magneto-optical spectrum are independent of the number
of electrons in the QD. In these systems which are experimentally realized, the
extension in the x− y plane is much larger than in the z direction. Based on the
assumption that the extension in the z direction can be effectively considered zero,
a good description of the far-infrared resonance frequencies has been found [12]
within a two-dimensional (2D) harmonic oscillator model in the presence of a
magnetic ˇeld [13]. This result was interpreted as a consequence of Kohn's
theorem [14] which is applied for a parabolic potential [15, 16]. According to
this theorem, for the parabolic conˇnement the total Hamiltonian can be divided
into two parts, the center-of-mass motion and the relative motion which contains
the electronÄelectron interaction. The wave length of the external laser ˇeld far
exceeds the average dot diameter and, therefore, can be well approximated by a
dipole electric term only. Since the radiation of an external electric dipole ˇeld
couples only to the center-of-mass motion and does not affect the relative motion,
the dipole resonance frequencies should be exactly the same as those of the non-
interacting system with the parabolic conˇnement and, therefore, be independent
of the electronÄelectron interaction. The more complicated resonance structure
observed in [17, 18] raised, however, the question as to the validity of Kohn's
theorem for QDs. In order to describe the experimental data it was assumed that
there is a deviation of the conˇning potential from the parabolic form, and dif-
ferent phenomenological corrections have been introduced [19, 20]. Considering
external gates and surrounding of a two-electron QD as the image charge, it was
shown in [21] that the effective potential has, indeed, anharmonic corrections to
the parabolic potential. However, their contribution becomes less important with
the increase of the magnetic ˇeld strength.
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Recent single-electron capacitance spectroscopy experiments in vertical
QDs [22Ä24] provide another strong evidence in favour of the parabolic po-
tential as an effective conˇnement potential in small QDs. In these experiments
shell structure phenomena have been observed clearly. In particular, the energy
needed to place the extra electron (addition energy) into a vertical QD at zero
magnetic ˇeld has characteristic maxima which correspond to the sequence of
magic numbers of a 2D harmonic oscillator. The energy gap between ˇlled shells
is approximately �ω0, where �ω0 is the lateral conˇnement energy of the 2D
harmonic oscillator. In fact, these atomic-like features when the conˇning energy
is comparable to, or larger than the interaction energy, have been predicted before
in a few publications [25Ä27]. Indeed, for small dot size and small number of
electrons the conˇnement energy becomes prevalent over the Coulomb energy.
This has been conˇrmed for two interacting electrons in an external parabolic
potential [28] and by calculations of the effective single-particle levels within the
density-functional theory for electron numbers N ∼ 100 [29] (see for a recent
review [30]).

These experimental and theoretical studies lead to a conclusion that, indeed,
for a few-electron small QDs the parabolic potential is a good approximation for
the effective conˇnement. It is worthwhile to say that for the typical voltage
∼ 1 V applied to the gates, the conˇning potential in small quantum dots is some
eV deep which is large compared to the few meV of the conˇning frequency.
Hence, the electron wave function is localized close to the minimum of the well
which always can be approximated by a parabolic potential.

Depending on the experimental setup the spectrum of a quantum dot displays
shell structure or follows the prediction of random matrix theory (see for a
review [31]). In this short survey we will discuss some results related to a
manifestation of symmetries in small QDs. The rearrangement of the intrinsic
structure of small QDs under the perpendicular magnetic ˇeld can be traced
within a simple model introduced for the ˇrst time in [26]. Using this model
we will consider in Sec. 1 the evolution of shell effects upon the perpendicular
magnetic ˇeld. In spite of simplicity, the model contains some basic features of
structural properties of small QDs. For instance, the model describes the effect
of spontaneous breaking of the symmetry of the mean ˇeld due to the magnetic
ˇeld and a number of electrons. Probably, due to above reasons the model has
been ®rediscovered¯ by other authors (see, e.g., [30]). In Sec. 2, we will trace
the dynamical effects of the conˇnement strength, the magnetic strength, the
Coulomb repulsion, and their mutual interplay in the model for a two-electron
QD. We will show that at a particular strength of the magnetic ˇeld the nonlinear
dynamics of two-electron QD becomes separable. Section 3 will be devoted to a
comparison of theoretical and experimental results for the ground state energies
of two-electron quantum dots in a perpendicular magnetic ˇeld. In Sec. 4 we
will discuss the concept of the effective charge which allows one to include the
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effect of the dot thickness for the analysis of the ground state transitions in 2D
approximation. The conclusions are ˇnally drawn in Sec. 5. Two Appendices
provide some details of calculations.

1. SHELL EFFECTS IN SMALL QUANTUM DOTS

To analyze experimental data a few approximations are commonly used. The
underlying lattice of the semiconductor material is taken into account by using
the effective mass for the conduction electrons, and a static dielectric constant,
reducing the Coulomb repulsion. As was mentioned in Introduction, an effective
trapping potential in small QDs with a few electrons is quite well approximated
by a parabolic conˇnement. The ground state energy of the dot is calculated with
the aid of a total energy of the closed dot. This approximation is well justiˇed,
when the tunneling between QD and source and drain is relatively weak. Using
these approximations one can study the effect of the magnetic ˇeld on the electron
spectrum of the dot. Hereafter, the magnetic ˇeld acts perpendicular to the plane
(xy) of motion of electrons.

Thus, the Hamiltonian of an isolated quantum dot with N electrons in a
perpendicular magnetic ˇeld reads

H = H0+Hint =
N∑

j=1

[
1

2m∗

(
pj−

e

c
Aj

)2
+U(rj)+μ∗σz(j)B

]
+

N∑
i>j=1

k

|ri− rj |
,

(1)
where k = e2/4πε0εr. Here, e, m∗, ε0 and εr are the unit charge, effec-
tive electron mass, vacuum and relative dielectric constants of a semiconductor,
respectively. The conˇning potential is approximated by a three-dimensional
harmonic oscillator potential (HO) U(r) = m∗[ω2

xx2 + ω2
yy2 + ω2

zz2]/2, where
�ωi (i = x, y, z) are the energy scales of conˇnement in the x, y, z direc-
tions, respectively. The effective spin magnetic moment is μ∗ = gLμB with
μB = |e|�/2mec, and σz is the Pauli matrix.

1.1. Shell Structure in Simple Models. To illuminate shell phenomena in
QDs let us start with a simple model [26, 32, 33]. The effect of an external
homogeneous magnetic ˇeld can be calculated exactly for a three-dimensional
(3D) harmonic oscillator potential irrespective of the direction of the ˇeld [26,32].
For the perpendicular magnetic ˇeld we choose the vector potential with a gauge
A = (1/2)B × r = (1/2)B(−y, x, 0). In this case the electronic spectrum
generated by the Hamiltonian (1) without interaction is determined by a sum

H0 =
N∑
i

hi of a single-particle harmonic oscillator Hamiltonians h = h0 + hz,
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where

h0 =
px

2 + py
2

2m∗ +
m∗

2

2∑
i=1

ω2
i x2

i − ωLlz. (2)

Here, for a perpendicular magnetic ˇeld we have

ω2
1 = ω2

x + ω2
L, ω2

2 = ω2
y + ω2

L, (3)

and ωL = |e|B/(2m∗c). Since the orbital momentum lz

lz = xpy − ypx (4)

couples lateral variables, the dynamics in z direction is determined by one-
dimensional harmonic oscillator hz = p2

z/2m∗ + m∗ω2
zz2/2.

Before we proceed, a few remarks are in order. It is true that the external ˇeld
is the dominant part of the mean ˇeld, and thus the effective conˇning potential
should re	ect the main features of it. Yet it must also contain the effect of the
interplay between Coulomb forces and the external ˇelds which are governed
by the charges in the adjacent layers and gates and the magnetic ˇeld. Due to
these considerations, we assume that the conˇning potential should also take into
account the changes that affect the properties of the single-electron states owing
to a variation of the homogeneous magnetic ˇeld as well as the slab thickness.
We assume that the system adjusts itself under the in	uence of the magnetic ˇeld
and a particle number. Minimizing Etot associated with the Hamiltonian given
by Eq. (1) (without the interaction term), a variation of the magnetic ˇeld strength
leads to a corresponding change of the conˇning effective potential which is given
by the oscillator frequencies. In other words, for a given magnetic ˇeld, we must
seek the minimum of Etot under variation of the oscillator frequencies. In this
way, we accommodate the effect of the interplay between the Coulomb forces and
external ˇelds such as the external conˇnement and the magnetic ˇeld. Here, the
Pauli principle is essential as it limits the accessible quantum conˇguration space
for the electrons. The variation cannot be unrestricted as the conˇning potential
encloses a ˇxed number of electrons, and assuming that the electron density area
does not change, we are led to a ˇxed volume constraint which translates into
the subsidiary condition ωxωyωz = ω3

0 with ω0 ˇxed. Denoting the Lagrange
multiplier by λ we solve the variational problem

δ(〈g|H0|g〉 − λωxωyωz) = 0, (5)

where |g〉 denotes the ground state. From Eq. (5) we obtain, after differentiation
with respect to the frequencies and using Feynman's theorem [34]

d

dωk
〈g|H0|g〉 =

〈
g
∣∣∣dH0

dωk

∣∣∣g〉, (6)



150 NAZMITDINOV R.G.

the useful condition

ω2
x〈g|x2|g〉 = ω2

y〈g|y2|g〉 = ω2
z〈g|z2|g〉 (7)

which must be obeyed at the minimum of Etot. We restrict ourselves to consider-
ation of a thin slab which extends essentially in two dimensions. This is achieved
by varying only ωx and ωy in the minimization procedure while keeping ωz ˇxed
at a value which is, say, few times larger than the other two frequencies. In this
case only ω2

x〈g|x2|g〉 = ω2
y〈g|y2|g〉 can be fulˇlled. Choosing different (ˇxed)

values of ωz allows to study the dependence of the results on the slab thickness.
Since the electron interaction is crucial only for partially ˇlled electronic

shells (see, for example, [4, 30]) we deal in this section mainly with closed
shells. This case corresponds to the quantum limit �ω0 > k/l0, where k/l0 is
the typical Coulomb energy, and l0 = (�/m∗ω0)1/2 is the effective oscillator
length. In fact, for small dots, where large gaps between closed shells occur (see
results of calculations in [25, 27, 29]), the electron interaction plays the role of a
weak perturbation which can be neglected. But even in the regime �ω0 < k/l0
a distinctively larger addition energy is needed, if an electron is added to a
closed shell. We do not take into account the effect of ˇnite temperature; this
is appropriate for experiments which are performed at temperatures kBT � �ω0,
with �ω0 being the mean level spacing. In the following, we use meV for the
energy and T (Tesla) for the magnetic ˇeld strength. The effective mass is chosen
as m∗ = 0.067me for GaAs, which yields, for N ≈ 15, the size R ≈ 320 
A and
�ω0 = 3 meV [32]. The effective mass determines the orbital magnetic moment
μeff

B for electrons through the relation �ωL = μBBme/m∗ = μeff
B B and leads to

μeff
B ≈ 15μB. The magnetic orbital effect is much enhanced in comparison with

the magnetic spin effect (with the effective Lande factor |gL| = 0.44), yet the
tiny spin splitting does produce signatures as we see below.

Since we consider the dot with a ˇxed ωz, shell effects are determined by
the ratio of the eigenmodes Ω± in the lateral plane (see for details Appendix 4.3
and [32]). Shell structure occurs whenever the ratio of the two eigenmodes
Ω± of the Hamiltonian H0 is a rational number with a small numerator and
denominator. Closed shells are particularly pronounced if the ratio is equal to
one (for B = 0), or two (for B ≈ 1.23), or three (for B ≈ 2.01) and lesser
pronounced if the ratio is 3/2 (for B = 0.72), or 5/2 (for B = 1.65) for a
circular case ωx = ωy (see Fig. 1, a). Note that, for better illustration, we used
for the spin splitting the value 2μB instead of the correct μ∗ in all Figures; the
discussions and conclusions are based on the correct value. The values given
here for B depend on m∗ and ωx,y. As a consequence, a material with an
even smaller effective mass m∗ would show these effects for a correspondingly
smaller magnetic ˇeld. For B = 0, the magic numbers (including spin) turn
out to be the usual sequence of the two-dimensional isotropic oscillator, that
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Fig. 1. Single-particle spectra as a function of the magnetic ˇeld strength. Spectra are
displayed for a plain isotropic (ωx = ωy) two-dimensional oscillator (a), a deformed (b)
and an isotropic oscillator including an L2 term (c). For better illustration the value 2μ∗

is used for the spin magnetic splitting in all the Figures. From [33]

is 2, 6, 12, 20 . . . For B ≈ 1.23 we ˇnd a new shell structure as if the conˇning
potential would be a deformed harmonic oscillator without magnetic ˇeld. The
magic numbers are 2, 4, 8, 12, 18, 24 . . . which are just the numbers obtained from
the two-dimensional oscillator with ω> = 2ω< (ω> and ω< denote the larger
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and smaller value of the two frequencies). Similarly, we get for B ≈ 2.01 the
magic numbers 2, 4, 6, 10, 14, 18, 24 . . . which corresponds to ω> = 3ω<. If we
start from the outset with a deformed mean ˇeld ωx = (1 − β)ωy with β > 0,
the degeneracies (shell structure) lifted at B = 0 reoccur at higher values for B.
In Fig. 1, b we display an example referring to β = 0.2. The signiˇcance of
this ˇnding lies in the restoration of shell structures by the magnetic ˇeld in an
isolated QD that does not give rise to magic numbers at zero ˇeld strength due to
deformation. We mention that the choice β = 0.5 would shift the pattern found
at B ≈ 1.23 in Fig. 1, a to the value B = 0. Closed shells are obtained for values
of B and β which yield Ω+/Ω− = l = 1, 2, 3 . . .

Indeed, it is the shell structure caused by the effective mean ˇeld which
produces the maxima that are observed experimentally in the addition energy

Δμ = μ(N) − μ(N − 1) (8)

for N = 2, 6, 12 electrons (see [22]), where μ(N) is an electrochemical potential
of an N -electron dot. In order to shed light on this phenomenon let us calculate
Δμ in a constant-interaction (CI) model that provides an approximate description
of the electronic states of QDs (see for details [4]). In the CI model the total
ground state energy of an N -electron dot is

E(N) =
[e(N − N0) − CgVg]2

2C
+

N∑
i

εi, (9)

where N = N0 for gate voltage Vg = 0. The term CgVg represents the charge
(a continuous variable) induced on the dot by gate voltage Vg , through the gate
capacitance Cg . It is assumed that the Coulomb interactions of an electron on the
dot with all other electrons, in and outside the dot, are parameterized by a constant
total capacitance C. The total capacitance between the dot and the source, drain
and gate is C = Cs + Cd + Cg . The quantum contribution is determined by the
sum over all occupied single-particle energies εi, which depend on the magnetic
ˇeld. In the CI model it is assumed that single-particle spectrum is calculated for
noninteracting electrons. The electrochemical potential of the dot is deˇned as
μdot = E(N)−E(N − 1). Electrons can 	ow from the source (left) to the drain
(right) through a transport (bias) window eVsd when μleft > μdot(N) > μright

(with −|e|Vsd = μleft −μright). With the aid of Eq. (9) one obtains the additional
energy

Δμ = εN − εN−1 + e2/C, (10)

where εN is the highest ˇlled single-particle state for an N -electron dot; e2/C is
the classical electrostatic energy. In the CI model additions of single electrons are
periodic in e2/C, since the difference εN − εN−1 is usually neglected. In reality,
however, it is the 	uctuation (shell effects) of the difference that matters, at least
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for small QDs. A similar effect is known in nuclear physics and for metallic
clusters. There, shell effects due to single-particle motion create minima in the
total potential energy surface which is dominated by the bulk energy, which is
the classical liquid drop energy [9, 10]. The analogy goes further in that, in an
isolated small QD, the external magnetic ˇeld acts like the rotation on a nucleus
thus creating new shell structure; in this way superdeformation (axis ratio 2:1) has
been established for rotating nuclei owing to the shell gaps in the single-particle
spectrum [9].

In [32] we have obtained various shapes of the QD by energy minimization.
In this context it is worth noting that at the particular values of the magnetic
ˇeld, where a pronounced shell structure occurs, the energy minimum would
be obtained for circular dots, if the particle number is chosen to be equal to
the magic numbers. Deviations from those magic numbers usually give rise to
deformed shapes at the energy minimum. To what extent these ®spontaneous¯
deformations actually occur (which is the JahnÄTeller effect [35]) is the subject
of more detailed experimental information. The far-infrared spectroscopy in a
small isolated QD could be a useful tool to provide pertinent data [32].

The question arises as to what extent our ˇndings depend upon the particular
choice of the mean ˇeld. Here we conˇrm the qualitative argument presented
above that for sufˇciently low electron numbers virtually any binding potential
will produce the patterns found for the harmonic oscillator. The Coulomb in-
teraction lowers the electron levels for increasing magnetic quantum number |m|
(see, e.g., [28]). We add to the Hamiltonian H0 (see Eq. (1)) the term −γ�ωLL2,
where L is the dimensionless z component of the angular momentum operator.
For γ > 0, the additional term lowers the energy levels of higher angular momenta
and mimics the Coulomb interaction effect. As a consequence, it has the effect of
interpolating between the oscillator and the square well single-particle spectrum.
For ωx �= ωy and γ �= 0, the combined Hamiltonian H ′ = H0 − γ�ωLL2 is
nonintegrable [36] and the level crossings encountered in Fig. 1 become avoided
level crossings. The essential effect upon the lower end of the spectrum can be
seen in the isotropic oscillator where the magnetic quantum number m is a good
quantum number. In this case H ′ = H isotr

0 − γ�ωLm2. In Fig. 1, c we display a
spectrum of such H ′. The shell structure, which prevails for γ = 0 throughout
the spectrum at B ≈ 1.23, or B ≈ 2.01, is now disturbed to an increasing extent
with increasing shell number. However, for the parameters chosen, the structure
is still clearly discernible for about seven shells, that is for particle numbers up
to about twenty ˇve. The lifting of the degeneracies at B = 0 is also clearly seen
where the levels are split according to the absolute values of |m|; it is this split-
ting which gives us guidance in choosing an appropriate value for γ. For B = 0,
single-particle levels lie between the corresponding degenerate levels pertaining
to the HO and the two-dimensional square well where the splitting of these levels
is very strong.
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1.2. Magnetic Properties. When the magnetic ˇeld is changed continuously
for a QD of ˇxed electron number, the ground state will undergo a rearrangement
at the values of B, where level crossings occur [28]. In fact, it leads to strong
variation in the magnetization [6] and should be observable also in the magnetic
susceptibility χ = −∂E2

tot/∂B2 as it is proportional to the second derivative of
the total energy with respect to the ˇeld strength. While details may be modiˇed
by electron correlations, we think that the general features discussed below should
be preserved.

In Fig. 2 we discern clearly distinct patterns depending on the electron num-
ber, in fact, the susceptibility appears to be a ˇngerprint pertaining to the electron
number. All features of Fig. 2 can be understood from the single-particle spectra
displayed in Fig. 1. If there is no level crossing, the second derivative of Etot

is a smooth function. The crossing of two occupied levels does not change the
smoothness. In contrast, if an unoccupied level crosses the last occupied level,
the second derivative of Etot must show a spike. In this way, we understand the
evenÄodd effect when comparing N = 8 with N = 9 in Fig. 2. The spin splitting
caused by the magnetic ˇeld at B ≈ 2.01 for N = 8 is absent for N = 9. This
becomes evident when looking at a blow up of this particular level crossing which
is illustrated in Fig. 3, where the last occupied level is indicated as a thick line
and the points where a spike occurs are indicated by a dot. Note that the splitting
is proportional to the effective spin magnetic moment μ∗.

Spikes of the susceptibility are associated with a spin 	ip for even electron
numbers. They are brought about by the crossing of the top (bottom) with the

Fig. 2. Magnetic susceptibility χ = −∂2Etot/∂B2 as a function of the magnetic ˇeld
strength for the isotropic oscillator without L2 term. Etot is the sum of the single-particle
energies ˇlled from the bottom up to the electron number N . From [33]

Fig. 3. Blow-ups of the relevant level crossings explaining the features in Fig. 2. Figs. a
and b refer to N = 8 and N = 9, respectively. From [33]
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bottom (top) line of a double line. Hence, both lines of the double splitting in
Fig. 3 yield a spin 	ip (N = 8), but neither of the single lines (N = 9). Strictly
speaking, the spikes are δ functions with a factor which is determined by the
angle at which the two relevant lines cross. Our ˇgures are numerical results
which do not exactly re	ect this feature. If the level crossings are replaced by
avoided crossings (LandauÄZener crossings), the lines would be broadened. This
would be the case in the present model for γ > 0 and β > 0. Finite temperature
will also result in line broadening. We would like to point out that the evenÄodd
effect, discussed for the ˇrst time in [33], has been later observed by Tarucha
et al. [37].

We now focus on the special cases which give rise to pronounced shell struc-
ture, that is when the ratio Ω+/Ω− = l = 1, 2, 3 . . . To avoid elaborate expressions
we analyze in detail the circular shape (ωx = ωy = ω0, 〈z2〉 = 0) for which the
eigenmodes, Eq. (A.5), become Ω± = (Ω ± ωL) with Ω =

√
ω2

0 + ω2
L [13]. In

this case the total energy for the closed QD is (see Appendix 4.3)

Etot = Ω+

∑
+

+ Ω−
∑

−
− μ∗B〈Sz〉 (11)

with
∑

± =
N∑
j

(n± + 1/2)j and shell number Nsh = n+ + n− [32]. We ˇnd for

the magnetization M = −dEtot/dB, taking into account after differentiation of
the total energy (11) that Ω+ = lΩ−,

M = μeff
B

(
1 − ωL

Ω

)(∑
−
− l
∑

+

)
− μ∗〈Sz〉. (12)

For completely ˇlled shell 〈Sz〉 = 0, since, for the magnetic ˇeld strengths
considered here, the spin orientations cancel each other (see Fig. 1). From the
orbital motion we obtain for the susceptibility

χ = −d2Etot

dB2
= −μeff

B
2

�Ω

(ω0

Ω

)2(∑
+

+
∑

−

)
. (13)

It follows from Eq. (13) that, for a completely ˇlled shell, the magnetization
owing to the orbital motion leads to diamagnetic behavior. For zero magnetic ˇeld
(l = 1) the system is paramagnetic and the magnetization vanishes

(∑
− =

∑
+

)
.

The value l = 2 is attained at B ≈ 1.23. When calculating
∑

− and
∑

+ we have
to distinguish between the cases, where the shell number Nsh of the last ˇlled
shell is even or odd. With all shells ˇlled from the bottom we ˇnd (i) for the last
ˇlled shell number even:

∑
+

=
1
12

(Nsh + 2)[(Nsh + 2)2 + 2] (14)
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and ∑
−

=
1
6
(Nsh + 1)(Nsh + 2)(Nsh + 3) (15)

which implies

M = −μeff
B

(
1 − ωL

Ω

)Nsh + 2
2

; (16)

and (ii) for the last ˇlled shell number odd:

∑
+

=
1
2

∑
−

=
1
12

(Nsh + 1)(Nsh + 2)(Nsh + 3) (17)

which, in turn, implies M = 0.
Therefore, if Ω+/Ω− = 2, the orbital magnetization vanishes for the magic

numbers 4, 12, 24 . . . while it leads to diamagnetism for the magic numbers
2, 8, 18 . . . A similar picture is obtained for Ω+/Ω− = 3 which happens at
B ≈ 2.01: for each third ˇlled shell number (magic numbers 6, 18 . . .) the mag-
netization is zero. Since the results presented are due to shell effects, they do
not depend on the assumption ωx/ωy = 1 which was made to facilitate the dis-
cussion. The crucial point is the relation Ω+/Ω− = l = 1, 2, 3 . . . which can
be obtained for a variety of combinations of the magnetic ˇeld strength and the
ratio ωx/ωy, as is illustrated in Fig. 1 (see also Fig. 2 in [33]). Whenever the
appropriate combination of ˇeld strength and deformation is chosen to yield, say,
l = 2, our ˇndings apply.

Concluding this section we note that consideration of the third dimension may
improve the agreement with experimental data. In fact, magic numbers observed
at zero magnetic ˇeld [22] can be reproduced as well by the 3D harmonic oscillator
model with additional axial octupole and hexadecupole deformations [38]. In the
superdeformed HO, a certain combination of strengths of these two terms leads to
the shell structure of the 2D harmonic oscillator model. We will consider below a
realistic model of two interacting electrons in a 3D quantum dot with a parabolic
conˇnement [39,40].

2. HIDDEN SYMMETRIES IN A TWO-ELECTRON QUANTUM DOT

A three-dimensional harmonic oscillator with frequencies in rational ratios
(RHO) and a Coulomb system are benchmarks for the hidden symmetries which
account for the accidental degeneracies of their quantum spectra (see, e.g., [41]).
Recent advances in nanotechnology create a remarkable opportunity to trace their
dynamical interplay in QDs. Indeed, competition between a conˇning potential,
approximated quite well by the HO, and the repulsive electronÄelectron interac-
tion produces a rich variety of phenomena, for example, in a two-electron QD
under a perpendicular magnetic ˇeld (see [4, 7] and references therein). In fact,
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a two-electron QD becomes a testingÄground for different quantum-mechanical
approaches [7] and experimental techniques that could provide highly accurate
data for this system [2,4].

If the HO and the Coulomb potential are combined, most of the symmetries
are expected to be broken. Nevertheless, in particular cases, the Coulomb (Kepler)
system and the RHO may have common symmetries, as it was already noticed
a long time ago [42]. The authors of [42] could not ˇnd, however, a physical
application for this phenomenon. These symmetries were rediscovered in the
analysis of laser-cooled ions in a Paul trap [43] and of the hydrogen atom in
the generalized van der Waals potential [44]. The major aspect of this section is
to demonstrate that the hidden symmetries could be observed in a two-electron
QD with a 3D effective parabolic conˇnement under a tunable perpendicular
magnetic ˇeld. Note that these symmetries have been overlooked in a plain
quantum-mechanical models. Therefore, to this aim we focus our analysis upon
the nonlinear classical dynamics of the system. At certain conditions the motion
becomes integrable and this indicates the existence of the symmetries in the
quantum spectrum.

2.1. The Center-of-Mass and Relative Motion Hamiltonians. The Hamil-
tonian of a two-electron QD in a magnetic ˇeld is determined by Eq. (1). In this
section we consider a 3D axially symmetric HO, i.e., with conˇning frequencies
ωz and ωx = ωy = ω0. In contrast to a 2D description of the QD this approxima-
tion provides a more accurate description of various experimental features (see the
next section). In the present analysis we neglect the spin interaction (the Zeeman
term), since the corresponding energy is small compared to the conˇnement and
the Coulomb energies and is not important for our discussion.

Introducing the relative and center-of-mass (CM) coordinates r = r1 − r2,
R = (1/2)(r1+r2), the Hamiltonian (1) can be separated into the CM and relative
motion terms [28] due to the Kohn theorem (see also Introduction, Sec. 1)

H = Hcm + Hrel, (18)

where

Hcm =
P2

2M∗ − ωLLz +
M∗

2

[
ω2

ρ (X2+Y 2) + ω2
z Z2

]
, (19)

Hrel =
p2

2μ
− ωLlz +

μ

2

[
ω2

ρ (x2+y2) + ω2
z z2
]

+
k

r
. (20)

Here M∗ = 2m∗ and μ = m∗/2 are the total and reduced masses; ωL is the
Larmor frequency and Lz and lz are the z projections of the angular momenta for
the CM and relative motions, respectively. The effective conˇnement frequency
in the ρ coordinate ωρ = (ω2

L + ω2
0)1/2 depends through ωL on the magnetic

ˇeld. In this way the magnetic ˇeld can be used to control the effective lateral
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conˇnement frequency of the QD for a ˇxed value of the vertical conˇnement,
i.e., the ratio ωz/ωρ.

The CM term is described by the axially symmetric 3D harmonic oscillator
(ω0, ω0, ωz) in a magnetic ˇeld, which eigenenergies are the sum of FockÄDarwin
levels and oscillator levels in z direction

Ecm = �ωρ (2N + |M | + 1) + �ωz (Nz + 1/2)− ωLM. (21)

Here N = 0, 1 . . . is the radial quantum number, M = 0,±2,±3 . . . is the
azimuthal one and Nz = 0, 1, 2 . . . is the quantum number for centre-of-mass
excitations in z direction.

The Hamiltonian for relative motion, using cylindrical coordinates (ρ, ϕ, z),
reads

Hrel =
1
2μ

(
p2
ρ +

l2z
ρ2

+ p2
z

)
+

μ

2
(ω2

ρρ2 + ω2
zz2) +

k√
ρ2 + z2

− ωLlz. (22)

In the following we concentrate on the dynamics of Hrel. For our analysis
it is convenient to use cylindrical scaled coordinates, ρ̃ = ρ/l0, p̃ρ = pρl0/�,
z̃ = z/l0, p̃z = pzl0/�, where l0 = (�/μω0)1/2 is the characteristic length of
the conˇnement potential with the reduced mass μ. The strength parameter k of
the Coulomb repulsion goes over to λ = k/(�ω0l0). Although our consideration
is general, for the demonstration we choose the values �ω0 ≈ 2.8 meV and
ωz = 2.5 ω0 which are close to those obtained in our 3D analysis [39] of the
experiment [47] (see Sec. 3). For the effective mass m∗ = 0.067me and the
dielectric constant ε = 12, which are typical for GaAs, the value λ = 1.5.
Hereafter, for the sake of simplicity, we drop the tilde, i.e., for the scaled variables
we use the same symbols as before scaling.

In these variables the Hamiltonian for the relative motion takes the form (in
units of �ω0)

h ≡ Hrel

�ω0
=

1
2

(
p2

ρ +
m2

ρ2
+ p2

z + ω̃2
ρ ρ2 + ω̃2

zz2

)
+

λ

r
− ω̃Lm, (23)

where r = (ρ2 + z2)1/2, ω̃ ≡ ω/ω0, m = lz/�.

2.2. The Classical Dynamics and Quantum Spectra. Due to the axial sym-
metry of the system, the ϕ motion is separated from the motion in the (ρ, z) plane
and, beside the energy (ε ≡ h), the z component of angular momentum lz is an
integral of motion. Therefore, the magnetic quantum number m is always a good
quantum number. Since the Hamiltonian (23) is invariant under the re	ection of
the origin, the parity π is a good quantum number too.
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Fig. 4. Poincar�e surfaces of sections z = 0, pz > 0 of the relative motion (λ = 1.5,
ε = 10, m = 0) with: a) ωz/ωρ = 5/2, b) ωz/ωρ = 2, and c) ωz/ωρ = 3/2. Fig. b
indicates that for the ratio ωz/ωρ = 2 the system is integrable. From [40]

The classical trajectories can be obtained by solving (numerically) Hamilton's
equations

ρ̇ = pρ, ṗρ =
m2

ρ3
− ω̃2

ρρ + λ
ρ

r3
,

ϕ̇ =
m

ρ2
− ω̃L, ṁ = 0, (24)

ż = pz, ṗz = −ω̃2
zz + λ

z

r3
,

where ẋ ≡ dx/dτ , and τ = ω0t is the scaled time variable. Although the motion
in ϕ is separated from the motion in the (ρ, z) plane, the problem is in general
nonintegrable, since the Coulomb term couples the ρ and z coordinates.

Examination of the Poincar�e sections by varying the parameter ωz/ωρ (see
Fig. 4 for example) in the interval (1/10, 10) with a small step indicates that there
are ˇve integrable cases. The trivial cases are ωz/ωρ → 0 and ωz/ωρ → ∞,
which correspond to 1D vertical and 2D circular QDs, respectively. The nontrivial
cases are ωz/ωρ = 1/2, 1, 2. These results hold for any strength of the Coulomb
interaction and agree with the results for the Paul trap [43]. Below we discuss
the nontrivial cases only. The typical trajectories in cylindrical coordinates are
shown in Fig. 5, a, c.

The results obtained with the aid of the Poincar�e surfaces of sections are
invariant under the coordinate transformation. On the other hand, the integrability
is a necessary condition for the existence of a coordinate system in which the
motion can be separated. In turn, the analogous quantum mechanical system
would be characterized by a complete set of quantum numbers.

2.2.1. The Case ωρ = ωz. At the value ω′
L = (ω2

z −ω2
0)

1/2 the magnetic ˇeld
gives rise to the spherical symmetry (ωz/ωρ = 1) in an axially symmetric QD
(with ωz > ω0) [39]. In this case the Hamiltonian (23) is separable in (scaled)
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spherical coordinates

h =
p2

r

2
+

(l/�)2

2r2
+

ω̃2
zr2

2
+

λ

r
− ω̃′

Lm (25)

and the dynamics is integrable. The additional integral of motion is the square of
the total angular momentum l2.

Due to the separability of the Hamiltonian (25) in spherical coordinates the
corresonding eigenfunctions can be written in the form

ψ(r) =
φlm(r)

r
Ylm(ϑ, ϕ). (26)

The functions φlm(r) are solutions of the radial equation[
− d2

dr2
+

l(l+1)
r2

+ ω̃2
zr2 +

2λ

r
− 2(ω̃′

Lm+ε)
]
φlm(r) = 0, (27)

where l and m are the orbital and magnetic quantum numbers, respectively.
Equation (27) can be solved numerically and the eigenenergies can be determined
iteratively by varying the energy ε until the functions φlm fulˇll the boundary
conditions: φlm ∼ rl+1, dφlm/dr = (l + 1)φlm/r for r → 0 and φlm → 0 for
r → ∞. Hence, good quantum numbers for this case are (nr, l, m), where the
radial quantum number nr = 0, 1, 2 . . . counts over the radial functions φnr ,l,m(r)
within each (l, m) manifold. Moreover, since the potential energy in the Hamil-
tonian (23) is invariant under the transformation r → −r, the parity π is also a
good quantum number. For the spherical case π = (−1)l.

To complete the discussion it should be mentioned that in this case it is
straightforward to use a semiclassical quantization of the Hamiltonian (25) to
calculate the spectrum. The procedure reduces to the WKB quantization of r
motion due to the separability of the problem in spherical coordiantes. The
momentum pr determined from Eq. (25), enters the action integral

Ir =
�

2π

∮
pr dr =

�

π

rmax∫
rmin

|pr| dr, (28)

with the turning points rmin, rmax as the positive roots of equation pr(r) = 0.
The WKB quantization conditions

Ir(ε) = �

(
nr +

1
2

)
, nr = 0, 1 . . . ,

| l | = �

(
l +

1
2

)
, l = 0, 1 . . . , (29)

m = 0,±1, . . . ,±l
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determine the energy levels. For noninteracting electrons (λ = 0) the analyti-
cal calculation of the action integral leads to the (quantum mechanically exact)
eigenenergies (A.11). For λ �= 0, one can calculate the action integral (28) nu-
merically with a few iterations to determine the eigenvalues. The results for
the spherically symmetric case obtained by the WKB approach and for the cases
discussed below can be found in [39].

The restoration of the rotational symmetry of the electronic states by the
magnetic ˇeld for noninteracting electrons was discussed in Sec. 1. This phenom-
enon was also recognized in the results for interacting electrons in self-assembled
QDs [27]. It was interpreted in [27] as an approximate symmetry that had sur-
vived from the noninteracting case due to dominance of the conˇnement energy
over relatively small Coulomb interaction energy. However, as it is clear from
the form of Eq. (25), the symmetry is not approximate but exact even for strongly
interacting electrons because the radial electronÄelectron repulsion does not break
the rotational symmetry.

2.2.2. The Case ωz = 2ωρ and ωz = ωρ/2. The spherical coordinates are a
particular limit of the spheroidal (elliptic) coordinates well suitable for the analysis
of the Coulomb systems (see, e.g., [45]). Therefore, to search the separability
for the other integrable cases it is convenient to use the spheroidal coordinates
(ξ, η, ϕ), where ξ = (r1 + r2)/d and η = (r1 − r2)/d. In the prolate spheroidal
coordinates r1 = [ρ2 + (z + d)2]1/2, r2 = r. The parameter d ∈ (0,∞) is the
distance between two foci of the coordinate system (with the origin at one of
them). In the limit d → 0, the motion is separated when ωz/ωρ = 1 (Fig. 5, b).
In this limit ξ → ∞ such that r = dξ/2 is ˇnite η = cosϑ, and we obtain the
spherical coordinate system.

Let us turn to the case ωz/ωρ = 2 which occurs at the value of the magnetic
ˇeld ω′′

L = (ω2
z/4 − ω2

0)1/2. In the prolate spheroidal coordinates the motion is
separated in the limit d → ∞ (Fig. 5, d). In fact, at d → ∞: ξ → 1, η → 1 such
that ξ1 = d(ξ − 1), ξ2 = d(1− η) are ˇnite Å we obtain the parabolic coordinate
system (ξ1, ξ2, ϕ) where ξ1,2 = r ± z. In these coordinates the Hamiltonian (23)
has the form

h=
1

ξ1 + ξ2

[
2(ξ1p

2
ξ1

+ ξ2p
2
ξ2

) +
m2

2

(
1
ξ1

+
1
ξ2

)
+

ω̃2
z

8
(ξ3

1 + ξ3
2) + 2λ

]
− ω̃′′

Lm

(30)
and the equation (ξ1 + ξ2)(h − ε) = 0 is separated into two decoupled equations
for ξ1 and ξ2 variables

2ξjp
2
ξj

+
m2

2ξj
+

ω̃2
z

8
ξ3
j − (ε + ω̃′′

Lm)ξj + λ = (−1)jc, j = 1, 2. (31)

Simple manipulations deˇne the separation constant (see also Appendix 4.3)

c = az − ω̃2
ρ ρ2z (32)
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Fig. 5. Typical trajectories (ε = 10, m = 1) of the relative motion at λ = 1.5 for
ωz/ωρ = 1 (a, b) and ωz/ωρ = 2 (c, d) are shown in cylindrical and prolate spheroidal
coordinates, respectively. From [40]

which is a desired third integral of motion. Here az is the z component of the
RungeÄLenz vector a = p × l + λr/(r), which is a constant of motion for the
pure Coulomb system (i.e., when ωρ = ωz = 0) [41]. The quantum mechanical
counterpart of the integral of motion, Eq. (32), does not commute with the parity
operator and we should expect the degeneracy of quantum levels.

Due to the separability of the motion in the parabolic coordinate system, the
eigenfunctions of the corresponding Schréodinger equation can be expressed in
the form ψ(r) = f1(ξ1) f2(ξ2) eimϕ, where the functions fj are solutions of the
equations

d

dξj

(
ξj

dfj

dξj

)
−1

4

[
m2

ξj
+

ω̃2
z

4
ξ3
j −2(ε+ ω̃′′

Lm)ξj+2λ− (−1)j2c

]
fj = 0, j = 1, 2.

(33)
Equations (33) can be solved numerically and the eigenenergies and eigenvalues
of c are determined iteratively by varying simultaneously ε and c until the func-

tions fj fulˇll the boundary conditions: fj ∼ ξ
|m|/2
j , ξjdfj/dξj = |m|fj/2 for
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ξj → 0 and fj → 0 for ξj → ∞. Let n1 and n2 be the nodal quantum numbers
of the functions f1 and f2, respectively. Note that Eqs. (33) are coupled by the
constants of motion and, therefore, both functions depend on all three quantum
numbers (n1, n2, m). The states |n1, n2, m〉 have explicit form (in the coordinate
representation)

ψn1,n2,m(r) = f (n2,m)
n1

(ξ1) f (n1,m)
n2

(ξ2)
eimϕ

√
2π

. (34)

The simple product of these functions has no a deˇnite parity. Since
r → −r ⇔ {ξ1 → ξ2, ξ2 → ξ1, ϕ → ϕ + π}, the even/odd eigenfunctions
are constructed as

ψ
(±)
N,k,m(r)=

eimϕ

√
2

[f (n2,m)
n1

(ξ1) f (n1,m)
n2

(ξ2)±(−1)mf (n1,m)
n2

(ξ1) f (n2,m)
n1

(ξ2)],

(35)
where N = n1 + n2 and k = |n1 − n2|. These states are the eigenfunctions of h,
lz, |c| and the parity operator. For |c| > 0 the eigenstates (35) appear in doublets
of different parity and, therefore, of a different total spin. For c = 0 in Eqs. (33)
f1 = f2 and, obviously, only the states with parity π = (−1)m exist.

For the magnetic ˇeld ω′′′
L ≡ (4ω2

z −ω2
0)

1/2 we obtain the ratio ωz/ωρ = 1/2.
The Hamiltonian (23) expressed in the oblate spheroidal coordinates (r1 = [z2 +
(ρ + d)2]1/2, r2 = r) is separated for m = 0 (at d → ∞). For m �= 0 the
term m2/ρ2 and, consequently, the Hamiltonian (23) is not separated in these
coordinates. Note, for m = 0 the cases ωz/ωρ = 1/2 and 2 are equivalent if we
exchange the ρ and z coordinates and, hence, the additional integral of motion is
|aρ − ω̃2

z z2ρ|. For m �= 0 we use the procedure described in [43] and obtain the
following integral of motion:

C = [(aρ − ω̃2
zz2ρ)2 + a2

ϕ + 4m2ω̃2
zr2]1/2, (36)

where aρ and aϕ are the ρ and ϕ components of the RungeÄLenz vector, re-
spectively. Due to existence of three independent integrals of motion, h, m, and
c, which are in involution, the dynamics for m �= 0, although nonseparable, is
integrable. The further analysis for m = 0 is similar to the previous one and we
omit it here.

2.3. Diagonalization in the Separable Cases. Let us denote by h∗ the
Hamiltonian (23) for a speciˇc value of the magnetic ˇeld when the system
becomes separable, i.e., for ω∗

L = ω′
L, ω′′

L or ω′′′
L (for m = 0). Then for an

arbitrary value of ωL we can write

h = h∗ +
1
2
Δω̃2

Lρ2 − Δω̃Lm, (37)
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Fig. 6. The lowest eigenenergies of Hamiltonian (23) (in units �ω0) at ωz/ω0 = 2.5 and
λ = 1.5 as functions of the ratio ωL/ω0 for: a) all m; b) m = 0. The upper energy limit
is chosen high enough to amplify the shell structure of the spectrum. The integrable cases:
ωz/ωρ = 2, 1 and 1/2 are indicated by vertical dotted lines (ωL/ω0 = 0.75,

√
21/2 and√

24, respectively). From [40]

where Δω̃2
L = ω̃2

L − ω̃∗2
L , Δω̃L = ω̃L − ω̃∗

L and the term (1/2)Δω̃2
Lρ2 is the only

nondiagonal part of h in the eigenbasis of h∗. The eigenenergies of the Hamil-
tonian (23) (see Fig. 6) have been calculated with the use of the basis (35) and the
spherical basis in the intervals 0 � ω̃L � 1.5 and the 1.5 � ω̃L � 5, respectively.
The radial parts of the spherical eigenfunctions and fn1,n2,m, as well as the cor-
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responding factors in the matrix elements 〈ψi| ρ2|ψj〉, are evaluated numerically.
The complete spectrum of the two-electron QD (Fig. 6, a) shows the accumulation
of levels with different quantum numbers into well pronounced bands at strong
magnetic ˇeld. There is no obvious manifestation of the symmetries discussed
above. In fact, the effects of symmetries are shown up for separated m manifolds
only (Fig. 6, b).

For noninteracting electrons (λ = 0), the energy levels of the QD are FockÄ
Darwin levels [13]

ε = ω̃ρ(2nρ + |m| + 1) + ω̃z

(
nz +

1
2

)
− ω̃Lm. (38)

For rational ratios of ωz/ωρ, the energy levels of Eq. (38) are degenerate. It is
simply the spectrum of the RHO in the external ˇeld ω̃Lm. For instance, at
ωz/ωρ = 2 we have ε = ω̃z(N + |m|/2 + 1) − ω̃′′

Lm. The quantum number
N = nρ + nz = n1 + n2 = 0, 1, 2 . . . and each m manifold consists of the
shells characterized by this quantum number. Since the eigenenergies of the
term HCM with the corresponding quantum numbers are determined by Eq. (21),
which is the same as Eq. (38), the shells in the total spectrum of the QD are not
affected.

3. DIMENSIONALITY EFFECTS IN GROUND-STATE TRANSITIONS
OF TWO-ELECTRON QUANTUM DOTS

Two-electron quantum dots have drawn a great deal of experimental and
theoretical attention in recent years [4, 7, 30]. Experimental data including trans-
port measurements and spin oscillations in the ground state under a perpendicular
magnetic ˇeld in two-electron QDs may be explained as a result of the interplay
between electron correlations, a lateral conˇnement and magnetic ˇeld. In par-
ticular, one observes the transitions between states that can be characterized by
different quantum numbers m and total spin S of FockÄDarwin states (see details
in [47]). A 2D interpretation of experiments, however, leads to inconsistencies
(see discussion in [4,46]), providing, for example, too low values of the magnetic
ˇeld for the ˇrst singlet-triplet (ST) transition. There is no consensus on origin
of this disagreement, since various experiments are dealing with different QDs.
Evidently, it is important to understand basic sources of such inconsistencies
from view point of possible technological applications, since QDs may provide
a natural realization of quantum bit. This problem is also related to fundamental
aspects of strongly correlated ˇnite systems, which are different from bulk and
can be controlled experimentally.

3.1. The First Singlet-Triplet Transition in the Two-Electron QD. The
ground state energy of a QD as a function of the magnetic ˇeld can be probed



166 NAZMITDINOV R.G.

very elegantly by single-electron capacitance spectroscopy (SECS) [47] or by
single-electron tunnelling spectroscopy [48]. Applying a gate voltage to the
contacts brings the electrochemical potential of the contacts in resonance with
the energy μ(N, B) necessary to add the N th electron which tunnels through the
barrier into the dot. We recall that the chemical potential of the dot is given by
the ground state energy of the dot with N and N − 1 electrons (see Sec. 1),

μ(N, B) = E(N, B) − E(N − 1, B). (39)

Here, E(N, B) denotes the total energy of the QD with N electrons under a
magnetic ˇeld of strength B. Presently, we are concerned with μ(1, B) and
μ(2, B) only, which we calculate with the aid of the model considered in Sec. 2
(see also [39]). The ˇrst is simply the harmonic oscillator energy for a single
electron in the dot, μ(1, B) = E(1, B). The latter can be split into contributions
from the relative and center-of-mass motion ECM, where ECM = E(1, B). In
our consideration the addition energy (direct probe of electron correlation in the
dot) takes the form

Δμ ≡ μ(2, B) − μ(1, B) = �ω0ε − E(1, B), (40)

where ε is the relative energy determined by the Hamiltonian (23) and E(1, B) =
�ωρ + �ωz/2. Our aim is to describe the ˇrst singlet-triplet transition observed
in two-electron QD under the perpendicular magnetic ˇeld [47].

In a number of papers (e.g., [47Ä50]) μ(1, B) has been used to estimate
the conˇning frequency �ω0 in a two-dimensional model of the QD. Indeed,
with �ω0 = 5.4 meV (�ωz = 0) one obtains a very satisfactory ˇt to μ(1, B)
(see [47]). However, with this �ω0, neither Δμ (which is by almost a factor 2
too large) nor the value for B, where the ˇrst singlet-triplet transition occurs,
is reproduced correctly as is obvious from Fig. 7, a. It has been argued that for
increasing magnetic ˇeld μ(N, B) might not follow the behaviour modelled with
a pure QD with constant conˇning frequency, see [48, 50], and Ref. 11 in [49].
Hence, we believe it is more realistic to extract �ω0 from the difference of the
chemical potentials μ(2, 0) − μ(1, 0) at zero magnetic ˇeld. This has been done
in Fig. 7, a and leads with �ω0 = 2.3 meV (λ = 1.66) to the ˇrst singlet-triplet
transition (m = 0, S = 0) ⇒ (m = 1, S = 1) at B = 1.02 T (the Zeeman
term is absent). This value differs from the experimental value of B ≈ 1.5 T
only by about 30% in contrast to the difference of more than a factor 2 with
�ω0 = 5.4 meV (dashed line).

The discrepancy of 30% vanishes if one proceeds to a 3D description of the
QD. In this case �ω0 = 2.6 meV (λ = 1.56) is needed to match μ(2, 0)−μ(1, 0),
only slightly different from the 2D case, but the ˇrst singlet-triplet transition
occurs now at B = 1.59 T (see Fig. 7, b). If one includes the contribution from
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Fig. 7. Difference Δμ of electrochemical potentials, Eq. (40), from the experiment [47]
(shaded curve). Figure a shows the theoretical Δμ from a 2D quantum dot model with
�ω0 = 5.4 meV (dashed curve) and �ω0 = 2.3 meV (solid curve). Figure b shows Δμ
from a 3D model with �ω0 = 2.6 meV and ωz/ω0 = 2.4 (solid curve). From [39]

the Zeeman energy

EZ =
1
2
μ∗B[1 − (−1)m] (41)

with μ∗ = gLμB, gL = −0.44, this value reduces to B = 1.52 T in good
agreement with the experiment. Of course, this agreement is achieved by tuning
the second parameter, available in the 3D case, namely ωz/ω0 = 2.4, i.e., the ratio
of vertical to lateral conˇnement. On the other hand, a rough estimate assuming
ωz/ω0 ∼ d0/dz (see, for example, [32]) reveals with the experimental value
dz = 175 
A, a lateral size of d0 ≈ 420 
A which is the correct order of magnitude
although the exact lateral extension in the experiment is not known [47]. The
analysis shows that in contrast to a 2D description the 3D description provides a
way to describe the energy spectrum for small B, the value of the magnetic ˇeld
for the ˇrst singlet-triplet transition, and the ratio of lateral to vertical extension
of the dot consistently. To pursue discussion in favour of this view point we
address to details of the recent study of excited states in two-electron vertical
QDs [23].

It was predicted that the ground state of an N electron QD becomes the spin
polarized maximum density droplet (MDD) [51] at high magneic ˇeld. For a
two-electron QD it is expected that the MDD occurs after a ˇrst ST transition
(see discussion in [30]). Below we will demonstrate that the experimental results
found in [23] related to the MDD can be explained if one takes into account
the 3D physical nature of the QD. We will discuss the additional criterion to
distinguish the 2D and 3D nature experimentally.
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3.2. The Collapse of MDD State in the Two-Electron QDs. Theoretical
calculations [52] assert that after the ˇrst ST transition the increase of the magnetic
ˇeld induces several ground state transitions to higher orbital-angular and spin-
angular momentum states. This issue was addressed on transport study of the
correlated two-electron states up to 8 and 10 T in a lateral [53] and vertical [23,24]
QDs, respectively. It is quite difˇcult to detect the structure of ground states after
the ˇrst ST transition in a lateral QD due to a strong suppression of the tunnel
coupling between the QD and contacts. Altering the lateral conˇnement strengths,
the transitions beyond the ˇrst ST transition are reported in vertical QDs [23]. In
fact, the variation of the conˇning frequency with the same experimental setup
opens a remarkable opportunity in the consistent study of effects of the magnetic
ˇeld on electron correlations.

Three vertical QDs with different lateral conˇnements have been studied in
the experiment [23]. In all samples clear shell structure effects for an electron
number N = 2, 6 . . . at B = 0 T have been observed, implying a high rotational
symmetry. Although there is a sufˇciently small deviation from this symmetry
in sample C (from now on in accordance with the list of [23]), a complete shell
ˇlling for two and six electrons was observed. Such a shell structure is generally
associated with a 2D harmonic oscillator (x− y) conˇnement [4]. However, it is
noteworthy that a similar shell structure is produced by a 3D axially symmetric
HO if the conˇnement in the z direction ωz = 1.5ω0 is only slightly larger than
the lateral conˇnement (ωx = ωy = ω0). In this case six electrons ˇll the lowest
two shells with FockÄDarwin energy levels with nz = 0. It was found also that
the lateral conˇnement frequency for the axially symmetric QD decreases with
the increase of the electron number [54], since the screening in the lateral plane
becomes stronger with large electron number. In turn, this effectively increases
the ratio ωz/ω0 making the dot to be more ®two-dimensional¯, since the vertical
conˇnement is ˇxed by the sample thickness. Indeed, the N dependence of the
effective lateral frequency is observed in [23]. All these facts imply that the
three-dimensional nature is a prerequisite of a consistent quantitative analysis of
small QDs with a few electrons.

Our analysis is carried out by means of the exact diagonalization of the
Hamiltonian (1) for two 3D interacting electrons in a perpendicular magnetic ˇeld.
The conˇning potential in Eq. (1) is approximated by a 3D axially symmetric HO
U(r) = m∗[ω2

0 (x2+ y2) + ω2
zz2]/2, where �ωz and �ω0 are the energy scales of

conˇnement in the z direction and in the xy plane, respectively. The evolution of
the ground-state energy of a two-electron QD under the perpendicular magnetic
ˇeld can be traced by means of the additional energy Δμ (see Eqs. (8), (39)).

Fitting the B-ˇeld dependence of the ˇrst and second Coulomb oscillation
peak positions to the lowest FockÄDarwin energy levels of the 2D HO with the
potential m∗ω2

0r
2/2, Nishi et al. [23] estimated ω0 for all three samples A, B,

C. Although the general trend in the experimental data is well reproduced by



MAGNETIC FIELD AND SYMMETRY EFFECTS IN SMALL QUANTUM DOTS 169

Fig. 8. The magnetic dependence of the additional energy Δμ in two-electron QDs with
lateral conˇnements �ω0 = 4.2, 3.7, 3.5, 2.9 meV (the ˇrst, second and fourth values are
experimental values for samples A, B, and C, respectively, [23]). The conˇnement in the
third (z) direction �ωz = 8 meV is ˇxed for all samples. The results for |g∗| = 0.3(0.44)
are connected by solid (dotted) line for �ω0 = 4.2, 3.5, 2.9 meV and by dashed (dotted)
line for �ω0 = 3.7 meV. The solid grey lines display the experimental spacing ΔVg as
a function of B (in a.u.). The arrows identify the position of experimental ground state
transitions [23]. From [55]

the 2D calculations, the experimental positions of the ST transition points are
systematically higher (see Fig. 3 of [23]). Different lateral conˇnements in the
above experiment are achieved by the variation of the electron density, without
changing the sample thickness. Using the ®experimental¯ values for the lateral
conˇnement and the conˇnement frequency ωz as a free parameter, we found that
the value �ωz = 8 meV provides the best ˇt for the positions of kinks in the
additional energy (40) with the Zeeman energy EZ (41)

Δμ = �ω0ε − E(1, B) + EZ (42)

in all three samples. Note that the Zeeman energy EZ is zero for the singlet
states. For the sake of illustration, we display in Fig. 8 the magnetic dependence
of the experimental spacing between the ˇrst and the second Coulomb oscillation
peaks ΔVg = Vg(2) − Vg(1) for samples AÄC, which can be transformed to the
additional energy Δμ (see details in [23,24]). In the ΔVg −B plot, ground state
transitions appear as upward kinks and shoulders [24]. It was found from the
Zeeman splitting at high magnetic ˇelds that |g∗| = 0.3 [24] and we calculate the
additional energy with this and the bulk values.
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We nicely reproduce the experimental position of the ˇrst ST transitions at
B = 4.2, 3, 2.3 T in samples A, B, and C, respectively (see Fig. 8). When the
magnetic ˇeld is low, a difference between the calculations with different |g∗|
factors is negligible. Upon decreasing the lateral conˇnement �ω0 from sample A
to sample C (the increase of the ratio ωz/ω0), the Coulomb interaction becomes
dominant in the interplay between electron correlations and the conˇnement [39].
In turn, the smaller the lateral conˇnement at ˇxed thickness is (the stronger is
the electron correlations) the smaller the value of the magnetic ˇeld is at which
the ST transitions or, in general, crossings between excited states and the ground
state may occur.

There is no signature of the second crossing in the ground state for sample
A at large B (up to 10 T). Here, the ratio ωz/ω0 ≈ 1.9 and the effect of the third
dimension is most visible: the conˇnement has a dominant role in the electron
dynamics and very high magnetic ˇeld is required to observe the next transition
in the ground state due to electron correlations. Thus, the MDD phase survives
until very high magnetic ˇelds (B ∼ 10 T).

A second kink is observed at B = 7 T in sample B [23]. Our calculations
with the ®experimental¯ lateral conˇnement �ω0 = 3.7 meV produces the second
kink at B = 9.5 T, which is located higher than the experimental value. The
slight decrease of the lateral frequency until �ω0 = 3.5 meV shifts the second
kink to B = 8.7 T, improving the agreement with the experimental position of
the ˇrst ST transition as well. In addition, the use of |g∗| = 0.3 (instead of the
bulk value) with the latter frequency creates a plateau, which bears resemblance
to the experimental spacing ΔVg . However, there is no detailed information on
this sample and we lack a full understanding of this kink. It seems there is an
additional mechanism responsible for the second kink in sample B.

The most complete experimental information is related to sample C and we
also study this sample in detail. In sample C the ˇrst experimental ST transition
occurs at B = 2.3 T, while the signatures of the second and the third ones are
observed at B ≈ 5.8, 7.1 T, respectively (see Fig. 8). The 2D calculations (with
the ®experimental¯ values �ω0 = 2.9 meV, |g∗| = 0.44) predict the ˇrst, second,
and third ST crossings at lower magnetic ˇelds: B = 1.7, 4.8, 5.8 T, respectively
(see Fig. 9). The results can be improved to some degree with |g∗| = 0.3. To
reproduce the data for Δμ, Nishi et al. [23] have increased the lateral conˇnement
(�ω0 = 3.5 meV, |g∗| = 0.44). As a result, the ˇrst, second, and third ST
transitions occur at B = 2, 6.3, 7.5 T, respectively. Evidently, 2D calculations
overestimate the importance of the Coulomb interaction. The increase of the
lateral conˇnement weakens simply the electron correlations in such calculations.
In contrast, the 3D calculations reproduce quite well the positions of all crossings
with the ®experimental¯ lateral conˇnement �ω0 = 2.9 meV at B = 2.3, 5.8, 7.1 T
(see Fig. 9).
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Fig. 9. Magnetic ˇeld dependence of the addition energy Δμ for the 2D model with
�ω0 = 2.9, 3.5 meV and for the 3D model (�ω0 = 2.9 meV, �ωz = 8 meV). Ground
states are labeled by (M, S), where M and S are the total orbital momentum and the total
spin, respectively. Grey vertical lines indicate the position of the experimental crossings
between different ground states. From [55]

One of the questions addressed in the experiment [23] is related to a shoulder-
like structure observed in a small range of values of the magnetic ˇeld (see our
Fig. 8 and Fig. 4 of [23]). This structure is identiˇed as the second singlet state
(2, 0) that persists till the next crossing with the triplet state (3, 1). According
to [23], the ground state transition from the triplet (1, 1) state to the singlet
(2, 0) is associated with the collapse of MDD state for N = 2. Therefore, a
question arises: at which conditions it would be possible to avoid the collapse of
the MDD phase (in general, to preserve the spin-polarized state); i.e., at which
conditions the singlet (2, 0) state never will show up in the ground state. In fact,
the collapse of the MDD depends crucially on the value of the lateral conˇnement
and the dimension of the system. We found that in the 2D consideration the (2, 0)
state always exists for experimentally available lateral conˇnement (see Fig. 10).
Moreover, in this range of ω0 the 2D approach predicts the monotonic increase
of the interval of values of the magnetic ˇeld ΔB, at which the second singlet
state survives, with the increase of the lateral conˇnement. In contrast, in the
3D calculations, the size of the interval is a vanishing function of the lateral
conˇnement for a ˇxed thickness (�ωz = 8 meV). It is quite desirable, however,
to measure this interval to draw a deˇnite conclusion and we hope it will be done
in future.

As discussed above, the decrease of the conˇnement at ˇxed thickness in-
creases the dominance of the electron correlations in the electron dynamics. Fur-
thermore, this decrease, related to the decrease of the electron density [23, 54],
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Fig. 10. The interval ΔB in which the singlet state (2, 0) survives as a function of the
lateral conˇnement for 2D and 3D calculations. The conˇnement in the third (z) direction
�ωz = 8 meV is ˇxed for the 3D calculations. From [55]

creates the favorable conditions for onset of electron localization. This localization
(crystallization) in QDs is associated with the formation of the so-called Wigner
molecule [56]. In the 2D approach the crystallization is controlled by the ratio of
Coulomb and conˇnement strengths λ = (k/l0)/�ω0 ≡ RW (l0 = (�/m∗ω0)1/2)
(cf. [57]), which is about RW ∼ 3 for the QDs considered in experiments [23].
For a 2D two-electron QD, it is predicted that the Wigner molecule can be formed
for RW ∼ 200 at zero magnetic ˇeld [58], or at very high magnetic ˇeld [59] (for
�ω0 ∼ 3 meV and small RW such as in the experiments [23]). In the 3D axially
symmetric QDs the ratio between vertical and lateral conˇnements (anisotropy)
may, however, affect the formation of the Wigner molecule. This problem can
be analyzed by dint of the electron density

n(r) =
∫ [

|Ψ(r, r′)|2 + |Ψ(r′, r)|2
]
dr′, (43)

when one electron is at the position r if the other one is located at a position r′.
A criterion for the onset of the crystallization in QDs can be the appearance of
a local electron density minimum at the center of the dot [60]. For 2D QDs this
leads to a radial modulation in the electron density, resulting in the formation of
rings and rotovibrational spectra [61].

Our analysis of the conditions realized in the experiments [23] predicts very
high magnetic ˇelds (B > 12 T) for the formation of the Wigner molecule.
However, with a slight decrease of the lateral conˇnement, at �ω0 = 2 meV we
obtain the desired result. The 3D analysis of electron density (see Fig. 11) gives
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Fig. 11. a) The magnetic dependence of the ground state in 2D and 3D (�ωz = 8 meV)
approaches for a lateral conˇnement �ω0 = 2 meV. b) The 2D (left) and 3D (right) electron
densities are displayed for different ground states (M, S) at corresponding magnetic ˇelds.
The largest 3D density grows from a central small core over a ring to a torus with the
increase of the magnetic ˇeld. From [55]

an unequivocal answer that at B > 7.25 T the triplet state (5, 1) can be associated
with a formation of the Wigner molecule. There is an evident difference between
the 2D and 3D approaches: the 2D calculations predict the crystallization at lower
magnetic ˇeld (ΔB ∼ 1 T). The further increase of the magnetic ˇeld leads to
the formation of a ring and a torus of maximal density in 2D and 3D densities,
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respectively. Notice that if geometrical differences are disregarded, 3D evolution
of the ground state can be approximately reproduced in 2D approach with the
effective charge concept [39] (see also [53]). This problem will be discussed in
the next section.

4. EFFECTIVE CHARGE

Self-evidently true that in QDs the Coulomb interaction couples lateral and
vertical coordinates and the problem is nonseparable, in general. By virtue of
the exact diagonalization of 3D effective Hamiltonian one can study the effect
of the vertical conˇnement on the energy spectrum (cf. [54]). This can be done,
however, only for QDs with a small number of electrons. Even in this case there
are difˇculties related to the evaluation of 3D interaction matrix elements. The
problem simpliˇes signiˇcantly if it is possible to separate the center-of-mass
motion from the relative motion like in the fully parabolic potential. It is the
purpose of the present section to introduce a consistent approach which enables
us to reduce a 3D Coulomb problem to the 2D one without loosing major effects
related to the QD's thickness for an arbitrary vertical conˇnement.

In real samples the conˇning potential in the z direction is much stronger than
in the xy plane. It results in different time scales (see below) and this allows one to
use the adiabatic approach [62]. To account for effect of localization of the dot in
the layer of thickness a, let us consider a 3D model for two electrons described by
the Hamiltonian (1) with a potential U(r) = m∗[ω2

0 (x2+y2)+ω2
zz2]/2, where �ωz

and �ω0 are the energy scales of conˇnement in the z direction and in the xy plane,
respectively. The thickness of QDs is much smaller in comparison with the lateral
extension. Therefore, the vertical conˇnement �ωz is much stronger than the
lateral conˇnement �ω0 and this fact is, usually, used to justify a 2D approach
for study of QDs. However, there is a nonzero contribution from the vertical
dynamics, since the energy level available for each of noninteracting electrons in
z direction is ε = �ωz(nz + 1/2). For the lowest state nz = 0 ⇒ ε1 = 1/2 �ωz.
By dint of the condition Vz(±zm) ≡ m∗ω2

zz
2
m/2 = ε1 one deˇnes the turning

points: zm =
√

�/(m∗ωz). We assume that the distance between turning points
should not exceed the layer thickness, i.e., 2zm � a (see Fig. 12). In virtue of
this inequality it follows that the lowest limit for the vertical conˇnement in the
layer of thickness a is

�ωz � 4�
2

m∗a2
. (44)

For typical GaAs samples with the thickness a between 10 and 20 nm this
estimation gives the minimal value for �ωz between 45 and 11 meV, respectively.
These estimations provide a genuine cause for the use of the adiabatic approach
in case of QDs, since Tz(= 2π/ωz) � T0(= 2π/ω0).
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Fig. 12. Left: the localization of QD in the layer of the thickness a; right: the schematic
representation of the position of zero-point motion in the parabolic conˇnement relative to
the layer thickness

4.1. Adiabatic Approximation. To lowest order the adiabatic approach con-
sists of averaging the full 3D Hamiltonian (1) over the angle-variables θzi = ωzit
(fast variables) of the unperturbed motion (k = 0) of two electrons after rewrit-
ing the (zi, pzi) variables in terms of the action-angle variables (Jzi , θzi). As
a result, the dynamics effectively decouples into an unperturbed motion in the
vertical direction governed by the potential

∑
i

V (Jzi , θzi) and into the lateral

motion governed by the effective potential

Veff({x, y}; {Jz}) =
∑

i

vi + V eff
int (ρ; Jz1 , Jz2), (45)

where v is deˇned below in Eq. (48) and

V eff
int (ρ; Jz1 , Jz2) =

1
(2π)2

2π∫
0

dθz1

2π∫
0

dθz2VC(ρ, z1(Jz1 , θz1)−z2(Jz2 , θz2)) (46)

is the effective electronÄelectron interaction that contains the memory on z dynam-
ics through integrals of motion Jzi . The effective electronÄelectron interaction
affects, therefore, only the dynamics in the lateral plane, where the conˇning
potential is the parabolic one. Hence, the effective Hamiltonian for two-electron
QD reads

Heff = H0 + Ez + V eff
int , (47)

where Ez =
∑
i

εi and εi is the electron energy of the unperturbed motion in the

vertical direction. The term H0 =
2∑

i=1

hi consists of the contributions related only

to the lateral dynamics (xy plane) of noninteracting electrons

h = t + v − ωLlz =
p2

ρ

2m∗ +
(

l2z
2m∗ρ2

+
1
2

m∗ω2
ρρ2

)
− ωLlz. (48)

We recall that the effective lateral conˇnement frequency ωρ = (ω2
0 + ω2

L)1/2.
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Our approach is based on transparent physical idea that the third dimension
reduces the Coulomb interaction in comparison with the 2D case. Therefore,
our proposal consists in the consideration of the Coulomb term determined by
the effective value keff (®effective charge¯) with due regard of the vertical (z)
dynamics, i.e.,

VC =
k

r12
≈ keff

ρ
, (49)

where ρ = [(x1 −x2)2 +(y1 − y2)2]. In order to evaluate the effective charge, let
us present the effective interaction (46) in the following form V eff

int = kf(ρ)/ρ.
Then one can deˇne the effective charge as the mean value of the function kf(ρ).
As we will see below this approach provides a remarkable agreement with the
3D theory.

Thus, the procedure for evaluating of the effective charge consists of two
steps: (i) the averaging of the Coulomb term VC(ρ, z) over the angle variables in
the z direction, which gives the effective 2D potential V eff

int (ρ) = kf(ρ)/ρ; (ii) the
calculation of the mean value of the factor f(ρ) upon the nonperturbed lateral
wave functions, i.e.,

keff = k〈f(ρ)〉 ≡ 〈ρ V eff
int (ρ)〉. (50)

For a parabolic (lateral) conˇnement, the nonperturbed wave functions are
FockÄDarwin states (cf. [3]). Due to the Kohn theorem [14] (see Introduction,
Sec. 2 and below), the mean value in Eq. (50) can be evaluated using the FockÄ
Darwin states for the relative motion. For the lowest states (with different values
of the quantum number m related to the z component of orbital momentum but
with the radial quantum number nρ = 0) one obtains for the effective charge

keff =
2

|m|!

(
μωρ

�

)|m|+1
∞∫
0

e−μωρρ2/�ρ2|m|+2 V eff
int (ρ) dρ, (51)

where μ = m∗/2 is the reduced mass.
4.2. Parabolic Potential. As was discussed in Sec. 2, in the 3D model

with a vertical conˇnement approximated by a parabolic potential, the CM and
the relative motions are separated. Since the CM dynamics does not affect the
electron interaction, we consider only the 3D Hamiltonian for the relative motion

Hrel = hrel +
k

r
+

p2
z

2μ
+

μω2
zz2

2
. (52)

The term hrel is deˇned by Eq. (48) in which the effective electron mass is
replaced by the reduced mass μ; r = r1 − r2 (ρ, pρ) are the relative coordinates
and lz is the z projection of the angular momentum for relative motion [39].
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After rewriting the (z, pz) variables in terms of the actionÄangle variables
(Jz , θz)

z =

√
2Jz

μωz
sin θz, pz = μż, (53)

for the unperturbed (k = 0) motion (see details in Appendix A in [39]), one
has to integrate out of the fast variable, i.e., to average the Hamiltonian (52)
over the angle θz. As a result, the effective electronÄelectron interaction is (see
Appendix B in [39])

V eff
int (ρ; Jz) =

2k

πρ
K

(
− 2Jz

μωzρ2

)
, (54)

where K(x) is the complete elliptic integral of the ˇrst kind. The effective
Hamiltonian for the relative motion is

Heff
rel = hrel + V eff

int (ρ; Jz) + Erel
z , (55)

Erel
z = ωzJz = �ωz(nz + 1/2). (56)

Taking into account the deˇnitions of Eqs. (50), (56) and the result of Eq. (54),
one obtains for the effective charge

keff =
2k

π

〈
nρ, m

∣∣∣∣K
(
−� (2nz + 1)

μωzρ2

)∣∣∣∣nρ, m

〉
, (57)

where |nρ, m〉 are the FockÄDarwin states (see Eq. (A.9) in Appendix A; for the
relative motion nρ = nr, ωρ = Ω, m∗ ⇒ μ).

For the lowest states (nρ = nz = 0) one reduces Eq. (57) to the form of
integral (51). As a result, the effective charge can be expressed in terms of the
Meijer G function [63]

keff =
k

π|m|! G2,2
2,3

(
ωρ

ωz

∣∣∣∣ 1/2 1/2
0 m+1 0

)
. (58)

Guided by the adiabatic approach, it is instructive to compute the effective charge
by dint of quantum-mechanical mean value of the Coulomb term in the 3D
oscillator state |nρ, m〉|nz〉

keff = 〈〈ρ VC(ρ, z)〉〉 = k 〈〈(1 + z2/ρ2)−1/2〉〉. (59)

Here, |nz〉 is a normalized one-dimensional harmonic oscillator wave func-
tion [41]. Since the lateral extension exceeds the thickness of the QDs by several
times, one may suggest to consider the ratio (z/ρ)2 as a small parameter of the-
ory. Note, however, that the averaging over the 3D oscillator state |nρ, m〉|nz〉
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implies the application of the ˇrst order perturbation theory for calculation of the
contribution of the Coulomb interaction in QDs. For nρ = nz = 0 one obtains

keff = k
2

|m|!

(
μωρ

�

)|m|+1√
μωz

π�

∞∫
0

K0

(
μωzρ

2

2�

)
eμ( 1

2 ωz−ωρ)ρ2/�ρ2|m|+2 dρ,

(60)
where K0 is the modiˇed Bessel function of the 2nd kind. One observes that in
both deˇnitions of the effective charge (Eqs. (57), (60)) there is a contribution of
the electron dynamics along the coordinate z.

4.3. Comparison of Different Approaches. To illuminate the key advantage
of the effective charge concept it is noteworthy to analyze the available ex-
perimental data [23] within various approaches. To this aim we will compare
the results of calculations of the additional energy in 2D approximation (with
the effective Coulomb interaction) and in 3D approach with a full Coulomb
interaction.

As was shown above, using the ®experimental¯ values for the lateral conˇne-
ment [23] and the conˇnement frequency ωz as a free parameter, we reproduced
successfully with the value �ωz = 8 meV and |g∗| = 0.3 the positions of kinks
in the additional energy in all three samples [55]. In other words, we were able
to reproduce all experimental singlet-triplet transitions in the ground states of the
two-electron vertical QDs, induced by the magnetic ˇeld [23]. We recall that
in the 2D approach used by Nishi et al. [23] one encounters the problem of the
correct interpretation of the experimental data (see, for example, Fig. 13, a, a plain
lateral conˇnement �ω0 = 2.9 meV). In the effective charge approximation the
vertical conˇnement is taken into account with the aid of keff in the 2D effective
Hamiltonian. The remarkable accord between the predictions based on our results
and the observation conˇrms the validity of the suggested concept (see Fig. 13).

Note that the results based upon the adiabatic approximation are in better
agreement with the full 3D calculations in contrast to those obtained with the aid of
the plain quantum-mechanical averaging procedure for keff = 〈〈ρ VC(ρ, z)〉〉. As
discussed above, the adiabatic approach is based on the effective separation of fast
(vertical) and slow (lateral) dynamics with subsequent averaging procedure. In
contrast, the plain quantum-mechanical averaging represents a type of perturbation
theory based upon the ˇrst order contribution with respect to the ratio z/ρ only.
The higher order term may improve the agreement at small magnetic ˇeld, since
the vertical dynamics is non-negligible and affects the lateral dynamics. The
increase of the quantum number m, caused by the increase of the magnetic
ˇeld strength, reduces the orbital motion of electrons in the vertical direction.
The larger is m the stronger is the centrifugal forces, which induce the electron
localization in a plane, and, therefore, the lesser is the importance of the vertical
electron dynamics. In the limit of strong magetic ˇeld (large m) the dot becomes
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Fig. 13. a) The additional energy Δμ as a function of the magnetic ˇeld in the parabolic
model. The results of calculations with a lateral conˇnement only (the 2D approach,
�ω0 = 2.9 meV, |g∗| = 0.3) and full 3D approach [55] (�ωz = 8 meV) are connected
by dotted and solid lines, respectively. The vertical grey lines indicate the position of the
experimental crossings between different ground states in a sample C [23]. Ground states
are labeled by (m,S), where m and S are the quantum numbers of the operators lz and
the total spin, respectively. The results based upon the adiabatic approximation, Eq. (58),
and the plain quantum-mechanical averaging procedure, Eq. (60), are connected by dashed
and dash-dotted lines, respectively. b) The ratio keff/k as functions of the magnetic ˇeld
based on Eq. (58) and the plain quantum-mechanical averaging, Eq. (60) are connected by
dashed and dashed-dotted lines, respectively

more a ®two-dimensional¯ system. This explains the improvement of the accuracy
of the plain quantum-mechanical averaging procedures at large m, i.e., for the
ground states at high magnetic ˇelds.

Finally, a remark is in order. For the sake of illustration we have used
only keff for the lowest basis states (nρ = n′

ρ = 0) with different m. However,
even for the ground state calculations with the aid of the exact diagonaliza-
tion, the interaction matrix elements keff〈n′

ρ, m|ρ−1|n′
ρ, m〉 with nρ, n

′
ρ � 0 have

been taken into account. Namely, the diagonalization is performed using the
interaction matrix elements up to nρ, n

′
ρ = 10. Obviously, the accuracy of the

method would improve if one calculates the ®effective charge matrix elements¯

k
(m)
nρ,n′

ρ
= 〈n′

ρ, m|ρV eff
int |n′

ρ, m〉 for each interaction matrix element. However, in

this case the procedure would loose the simplicity and becomes impractical. For-
tunately, from the comparison of the present results with exact 3D calculations
we found that for the analysis of the ground state properties it is sufˇcient to
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use only the elements k
(m)
0,0 ≡ k

(m)
eff , even for the interaction matrix elements

with nρ, n′
ρ � 0.

SUMMARY

The consequences of shell structure effects for the addition energy of a
small isolated quantum dot for noninteracting electrons have been analyzed in
a simple model with a parabolic conˇnement [26, 32]. At certain values of the
magnetic ˇeld strength, shell structures appear in a spectrum of a quantum dot,
also in cases where deformation does not give rise to magic numbers at zero
ˇeld strength. Measurements of the magnetic susceptibility are expected to re	ect
the properties of the single-particle spectrum and should display characteristic
patterns depending on the particle number [33].

We have shown that quantum spectra obtained in the model of the axially
symmetric 3D quantum dot with two interacting electrons exhibit hidden symme-
tries at certain values of the magnetic ˇeld. The Coulomb interaction destroys the
general symmetry of the 3D HO. However, the magnetic ˇeld can recover sym-
metries which are common for the RHO and Coulomb systems. At a relatively
low value of the magnetic ˇeld ω′′

L (for our parameters B ≈ 2.4T) we reveal the
ˇrst manifestation of the hidden symmetries in two-electron QD. This symmetry
is determined by the integral of motion, Eq. (32). It results in the appearance of
shells at each m manifold (Fig. 6, b). There are exact crossings and repulsions
between levels of different and of the same parity, respectively, in each shell.
The near-degeneracy of the quantum spectrum is reminiscent of a striking de-
generacy observed for the RHO or pure Coulomb systems. At higher values of
the magnetic ˇeld ω′

L (B ≈ 7.5 T), the dynamical spherical symmetry appears,
since l2 becomes an additional integral of motion. This symmetry manifests itself
as the attraction between levels with different orbital quantum numbers and the
same parity (Fig. 6, b). In contrast to spectra of pure Coulomb systems or of the
RHO, there are no crossings between eigenstates of the subset characterized by a
given quantum number m, since the accidental degeneracy is removed. Although
the symmetry is recovered at very strong magnetic ˇeld ω′′′

L (B ≈ 15.9 T) due to
the appearance of the integral of motion Eq. (36), the dynamics is nonseparable
for m �= 0. Note that shells are similar to the spherical case.

The symmetries may be detected by studying the conductance of two-electron
QDs at low temperatures. In particular, at ω′′

L in the excited states there is the
onset of a singlet-triplet degeneracy related to crossings of the eigenstates (35)
with |c| > 0 (see Fig. 6, b). The total spin S alternates between 1 and 0 and the
addition of the second electron with a spin-up or spin-down orientation to the QD
will cost the same energy.

We demonstrated that the conˇnement in the z direction is important ingredi-
ent for the quantitative analysis of the experimental data for two-electron axially
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symmetric vertical QDs. In contrast to the 2D description, the 3D approximation
provides a consistent description of various experimental features: the energy
spectrum for small magnetic ˇeld, the value of the magnetic ˇeld for the ˇrst and
the second singlet-triplet transitions. We propose a criterion for the additional
spectra, which evidently demonstrates the effect of the third dimension. Accord-
ing to this criterion the singlet state (2, 0) is a vanishing function of the lateral
conˇnement (see Fig. 10) in the vertical magnetic ˇeld in the two-electron axially
symmetric vertical QD. We found that the decrease of the lateral conˇnement
in the experiment [23] until �ω0 = 2 meV would lead to the formation of the
Wigner molecule at B ∼ 8 T.

We developed the effective charge approach taking full account of the thick-
ness of two-electron quantum dots. Our approach is based on the adiabatic
approximation where the full 3D dynamics of two interacting electrons is sep-
arated by means of action-angle variables on the independent vertical motion
and the lateral dynamics described by the effective 2D Hamiltonian. The sep-
aration is reached due to different time scale in the vertical (fast) and lateral
(slow) dynamics and it is well justiˇed in all types of QDs (vertical and lateral).
As a result, one has to solve only the Schréodinger equation for 2D effective
Hamiltonian where the full charge k is replaced by keff (screened Coulomb in-
teraction) (see Eqs. (50), (51)). The eigenvalue problem was solved by dint of
the exact diagonalization of the effective 2D Hamiltonian in the FockÄDarwin
basis. The screening due to the sample thickness is especially strong for quan-
tum states with small values of the quantum number m. We recall that these
states determine the structure of ground state transitions at small and intermediate
values of the magnetic ˇeld. Therefore, the screening provides a consistent way
to deal with the effect of the thickness upon the position of the singlet-triplet
transitions. In particular, the screening should be taken into account for the
analysis of evolution of the energy difference between singlet and triplet states
in the magnetic ˇeld. This energy is considered to be important for analysis of
the entanglement and concurrence in QDs (cf. [64]). The comparison of the re-
sults with available experimental data [23] demonstrates a remarkable agreement
and conˇrms the vitality of the approach. Being important for the states with
small quantum number m, the screening of the Coulomb interaction becomes
small for the states with large m, which dominate in low-lying spectrum at large
magnetic ˇelds. On the other hand, these states cause strong centrifugal forces
which induce the electron localization in a plane. In turn, the stronger is the
magnetic ˇeld the less important is the vertical conˇnement. It follows that a
plain Coulomb interaction becomes reliable in 2D approaches for the analysis
of the ground state evolution of QDs only at very large magnetic ˇelds. Fi-
nally, we would like to stress that, while this approach facilitates calculations,
the effects related to the hidden symmetries can be understood only in the 3D
approximation.
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Appendix A
TWO-DIMENSIONAL HARMONIC OSCILLATOR

IN A PERPENDICULAR MAGNETIC FIELD

The electronic spectrum generated by the Hamiltonian (1) without interaction

is determined by a sum
N∑
i

hi of a single-particle harmonic oscillator Hamilto-

nians h = h0 + hz (see Sec. 1). The properties of the Hamiltonian hz are well
known [41]. The eigenvalue problem for the Hamiltonian h0 can be solved using
the transformation⎛

⎜⎜⎜⎝
x

y

Vx

Vy

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

X+ X�
+ X− X�

−
Y+ Y �

+ Y− Y �
−

V +
x V +

x
�

V −
x V −

x
�

V +
y V +

y
�

V −
y V −

y
�

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

a+

a†
+

a−
a†
−

⎞
⎟⎟⎠ . (A.1)

Here, a+
i (ai) is a creation(annihilation) operator of a new mode i = ± with the

following commutation relations:

[ai, a
+
j ] = δi,j , [ai, aj] = [a+

i , a+
j ] = 0. (A.2)

One can solve equation of motion

[ai, h0] = Ωiai, i = ± (A.3)

and express the Hamiltonian h0 through new normal modes

h0 = �Ω+(a+
+a+ + 1/2) + �Ω−(a+

−a− + 1/2), (A.4)

where

Ω2
± =

1
2
(ω2

x + ω2
y + 4ω2

L ±
√

(ω2
x − ω2

y)2 + 8ω2
L(ω2

x + ω2
y) + 16ω4

L), (A.5)
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Y± = iy±, X± = x±, x± = 2ωL
Ω±

Ω2
± − ω2

1 + ω2
L

y±,

V ±
x = −iωL

Ω2
± + ω2

1 − ω2
L

Ω2
± − ω2

1 + ω2
L

y± = −iΩ±
Ω2

± − ω2
2 − ω2

L

Ω2
± − ω2

2 + ω2
L

x±,

V ±
y = Ω±

Ω2
± − ω2

1 − ω2
L

Ω2
± − ω2

1 + ω2
L

y± = ωL
Ω2

± + ω2
2 − ω2

L

Ω2
± − ω2

2 + ω2
L

x±,

y2
± = ± �

2mΩ±

Ω2
± − ω2

1 + ω2
L

Ω2
+ − Ω2

−
, x2

± = ± �

2mΩ±

Ω2
± − ω2

2 + ω2
L

Ω2
+ − Ω2

−
.

Note that the coefˇcients of the transformation (A.1) can be expressed in terms
of ωx, ωy, ωL as well. The eigenstates of the Hamiltonian h0 are

|n+n−〉 =
1√

n+!n−!
(a+

+)n+(a+
−)n− |00〉. (A.6)

The operator lz is diagonal in this basis

lz = n− − n+. (A.7)

In case of circular symmetry, i.e., ωx = ωy = ω0, the eigenstate Eq. (A.6) reduces
to the form of the FockÄDarwin state (see [3]). Quite often it is useful to use the
representaion of the FockÄDarwin state in cylindrical coordinates (ρ, θ), which
has the form

φnrm(ρ, θ) =
1√
2π

eimθRnrm(ρ). (A.8)

This state is eigenfunction of the operator lz with eigenvalue m and the radius-
dependent function has the form

Rnrm(ρ) =
√

2
lB0

√
nr!

(nr + |m|)!

(
ρ

lB0

)|m|
exp
[
− ρ2

2lB0
2

]
L|m|

nr

(
ρ2

lB0
2

)
. (A.9)

Here lB0
2 = �/(2m∗Ω), Ω =

√
ω2

0 + ω2
L and L denotes the Laguerre polyno-

mials [41].
The pair of quantum numbers (n, m) and (n+, n−) are related by

n = n+ + n−, m = n− − n+ (A.10)

and n = 2nr + |m|. The single-particle energy in the FockÄDarwin state is

ε(n, m) = �Ω(n + 1) − �ωLm = �Ω(2nr + |m| + 1) − �ωLm. (A.11)

The quantum number n is associated with a shell number Nsh for an N -electron
quantum dot in 2D approach.
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Appendix B
THE RUNGEÄLENZ VECTOR

The components of the RungeÄLenz vector a = p × l + λr/r in (scaled)
cylindrical coordinates are

aρ = (ρpz − zpρ)pz +
(m2

ρ2
+

λ

r

)
ρ,

aϕ = −m

ρ
(ρpρ + zpz), (B.12)

az = (zpρ − ρpz)pρ +
(m2

ρ2
+

λ

r

)
z.

The additional integrals of motion for the cases ωz/ωρ = 1/2 (m = 0) and
ωz/ωρ = 2, Eq. (32), can be treated as the ρ and z components of a generalized
RungeÄLenz vector

c = a + b(ρ, z), (B.13)

respectively. Here b is assumed to be dependent on the positions only, whereas
the RungeÄLenz vector contains the momenta. This is the essence of the ansatz.
In our case the components of vector b are

bρ = −ω̃2
z z2ρ, bϕ = 0, bz = −ω̃2

ρ ρ2z. (B.14)

Now we construct the additional integral of motion for the case ωz/ωρ = 1/2
with an arbitrary m from the length of the vector (B.13) in the xy plane

C2 = c2
ρ + c2

ϕ + δ = (aρ − ω̃2
z z2ρ)2 + a2

ϕ + δ. (B.15)

Since aϕ consists of the kinetic term only, we expect the same form for cϕ, i.e.,
we put bϕ = 0. The last term δ is also assumed to be a function of the positions
only and, if Eq. (B.15) is an appropriate form for C2, this term can be determined
from the condition dC2/dτ = 0, i.e.,

dδ

dτ
= − d

dτ

[
(aρ − ω̃2

zz2ρ)2 + a2
ϕ

]
. (B.16)

Using Eqs. (B.12) and (2.2), one can show that

d

dτ

[
(aρ − ω̃2

zz2ρ)2 + a2
ϕ

]
=−8m2ω̃2

z(ρpρ + zpz)=−4m2ω̃2
z

dr2

dτ
. (B.17)

This immediately gives
δ = 4m2ω̃2

zr2. (B.18)
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