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The formalism allowing one to account for the effect of a finite space-time extent of particle-
production region is given. Its applications to the lifetime measurement of hadronic atoms produced
by a high-energy beam in a thin target, as well as to the femtoscopy techniques widely used to
measure space-time characteristics of the production processes, are discussed. Particularly, it is found
that the neglect of the finite-size effect on the pionium lifetime measurement in the DIRAC experiment
at CERN could lead to the lifetime overestimation comparable with the 10% statistical error. The
theoretical systematic errors arising in the calculation of the finite-size effect due to the neglect of
nonequal emission times in the pair center-of-mass system, the space-time coherence and the residual
charge are shown to be negligible.

HsnoxeH ¢opM JIH3M, MO3BOIIOMNNA ydecTh 3(h(heKT KOHEUHBIX IPOCTP HCTBEHHO-BPEMEHHBIX
p 3MepoB 061 cTH reHep muu 4 ctun.  OOCyXn ercs NMpuMeHeHHe 3Toro (opm JmM3M K H3Mepe-
HUIO BPEMEHHU KM3HHM [JPOHHBIX TOMOB, OOp 30B HHBIX IIDH B3 UMONCHCTBHMH Iy4K Y CTHII BHICOKOI
9HEPrHy C TOHKOH MHIIEHBIO, T KXe K H3MEPEHHIO IPOCTP HCTBEHHO-BPEMEHHBIX X P KTEPHCTHK
HPOLECCOB TeHep LMK 4 CTHUILL C MOMOLIBI0 (PeMTOCKONHUYECKHX METO0B. B u cTHOCTH, 1OK 3 HO, 4TO
npeHeOpexxeHne 9(h(HeKTOM KOHEUHBIX P 3MEpOB IPH M3MEPEHHH BPEeMEHH XHU3HH IHOHHS B 9KCIIEpH-
menTe DIRAC B CERN MOXeT NpUBECTH K 3 BBIILIEHUIO BPEMEHH XH3HH, Cp BHUMOMY C 10 %-ii ctT -
THCTHYEeCKOH ommoOKoil. ITok 3 HO, YTO NPH BBMHUCICHNH 3(P(PEKT KOHEYHBIX P 3MEpOB MOXHO Ipe-
HeOpeub HEOAMH KOBOCTHIO BPEMEH BMUCCHM B CHCTEME LIEHTP M CC ABYX 4 CTHII, IIPOCTP HCTBEHHO-
BPEMEHHOH KOTepeHTHOCTBIO M OCT TOYHBIM 3 PSIOM.

PACS: 03.65; 25.75; 36.10

INTRODUCTION

The determination, on a percent level accuracy, of the breakup probability of
the 777~ atoms produced by a high-energy beam in a thin target is of principle
importance for a precise lifetime measurement of these atoms in the DIRAC
experiment at CERN [1-4]. This experiment aims to measure the lifetime 7y of
the 77~ atoms in the ground state with 10% precision. As this lifetime of the
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order of 10715 s is determined by the probability of the annihilation 777~ —
7070 1/710 ~ |a§ — a3|?, the DIRAC measurement enables one to determine
the absolute value of the difference al — a2 of the s-wave isoscalar and isotensor
mm-scattering lengths to 5%. This represents a factor of 4 improvement of the
accuracy achieved in previous studies [5] and is comparable with the precision
of the most recent experiments E865 at BNL [6] and NA48/2 at CERN [7]. The
former is based on a study of K.4 decays and yields the statistical error of 6%
in a; this measurement essentially exploits other experimental data together with
dispersion relations (Roy equations), the systematic and theoretical errors being
estimated on the level of several percent. The latter studied the cusp effect at the
7 tn~ threshold in the distribution of the 27° effective mass in K+ — 77070
decays and yields |aY — a?| with a few percent statistical precision and ~ 5%
theoretical error. Both these measurements are in agreement with the preliminary
DIRAC result based on ~ 40% of the collected statistics [4], as well as with the
prediction of the standard chiral perturbation theory [8].

It should be stressed that the theoretical prediction for the difference a) — a2
depends on the structure of the QCD vacuum. Thus, on the standard assump-
tion of a strong quark condensate one has a) — a3 = (0.374 + 0.006) fm [8].
With the decreasing condensate this difference increases and can be up to 25%
larger [9]. The precise measurements of the mm-scattering lengths thus submit
the understanding of chiral symmetry breaking of QCD to a crucial test.

The method of the lifetime measurement is based on the production of 7+~
atoms in a thin target and subsequent detection of highly correlated 77~ pairs
leaving the target as a result of the breakup of a part of the 777~ atoms which
did not decay within the target [10]. Clearly, the breakup probability is a unique
function of the target geometry and material, the Lorentz factor and the ground-
state lifetime of the 7+ 7~ atom. The analysis shows that, to achieve the accuracy
of 10% in the lifetime, the breakup probability, in more or less optimal conditions,
should be measured to 4% [1].

There are two methods [2] — extrapolation and subtraction ones — which
can be used to measure the breakup probability P, (or a combination of the
breakup probabilities in different targets) defined as the ratio of the number Nzr
of breakup atoms to the number N4 of the atoms produced in the target:

_ vy
=N,
The extrapolation method requires the calculation of the number of produced
w1+ 7~ atoms N4 based on the theory of the final-state interaction (FSI) in discrete
and continuous spectrum [10-12]. This calculation, as well as the determination
of NB7, is not required in the subtraction method which exploits the data taken
on at least three different targets made out of the same material but consisting of
a different number of layers of the same total thickness. However, this method

Py, (1)
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needs a factor of 7 larger statistics [1] and cannot yield the required precision
within the approved time-scale of the DIRAC experiment.

The FSI effect on 77~ production is sensitive to the space-time extent
of the pion-production region mainly through the distance r* between the 7+-
and 7~ -production points in their center-of-mass (c.m.) system. In [10], only the
Coulomb FSI was considered and the r* dependence was treated in an approximate
way, dividing the pion emitters into short-lived (SL) and long-lived (LL) ones. It
was assumed that »* = 0 for pion pairs arising solely from the SL emitters and
characterized by the distances * much smaller than the Bohr radius |a| of the
7T~ system (a = —387.5 fm), otherwise 7* = oo.

The finite-size correction to such calculated number of nonatomic 7+ 7~ pairs
in the region of very small relative momenta in the pair c.m. system, Q < 1/r*,
is determined by the three dimensionless combinations r*/a, fo/r*, and fo/a of
r*, a and the s-wave 7+~ -scattering length: fo = (1/3)(2a8 + a2) ~ 0.2 fm.
Typically (r*)** ~ 10 fm so that the correction is dominated by the strong
interaction effect and can amount up to ~ 10%.

Fortunately, due to a small binding energy €, ~ (mra?)~!, the finite-size
correction to the production probability in discrete spectrum at * < |a| is nearly
the same as that in continuous spectrum at zero energy. Since the calculated
number N4 of produced atoms is approximately determined by the measured
number of nonatomic 7+~ pairs and by the ratio of weighted means of the finite-
size correction factors corresponding to the production in discrete and continuous
spectrum, the finite-size correction would cancel out in N4, up to O((r*/a)?)
and O(fo/a), provided we could measure the number of nonatomic pairs in the
region of very small @ < 1/r* [13,14].

At small values of () and r*, the relative correction to the number of
nonatomic pairs is positive (due to the effect of the strong FSI ~ 2f;/r*) and
changes sign at r* ~ 10 fm (due to negative finite-size effect of the Coulomb
FSI ~ 2r* /a). 1t appears that for * < 20 fm the correction shows a quasi-linear
behaviour in @ up to ~ 50 MeV/e, with almost a universal negative slope. For
larger distances r*, the slope becomes positive and has a nontrivial () depen-
dence. If the pions were produced at small distances r* of several fm, one could
safely neglect the nonuniversal correction O((r*/a)?) and use the quasi-linear @
dependence of the correction factor to interpolate to @) = 0. However, there is a
non-negligible tail of the distances »* > 10 fm due to particle rescatterings and
resonances (particularly, 7* ~ 30 fm in the case when one of the two pions comes
from the w-meson decay). In the DIRAC experiment, the finite-size correction
can lead to a percent underestimation of N4 and to several percent overesti-
mation of N5 As a result, the corresponding overestimation of the extracted
lifetime can be comparable with the 10% statistical error and should be taken into
account.
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We discuss how to diminish the systematic error due to the finite-size effect
on the lifetime measurement of hadronic atoms, using the correlation data on
identical charged pions (containing the information about the distances r* between
the pion production points in the same experiment) together with the complete
phase-space simulations within transport models.

The formalism accounting for the finite space-time separation of particle
emitters is also in the basis of the correlation measurements of the space-time
characteristics of particle production — the so-called particle interferometry or
correlation femtoscopy (see reviews [15-21]). In fact, the femtoscopic correla-
tions due to the Coulomb FSI between the emitted electron or positron and the
residual nucleus in beta decay are known for more than 70 years; the sensitivity
of the differential decay rate to the nucleus charge and radius is taken into account
in terms of the Fermi function which can be considered as an analogue of the
correlation function in multiparticle production (see [22] for a discussion of the
similarity and difference of femtoscopic correlations in beta decay and multiparti-
cle production). The femtoscopic correlations due to the quantum statistics (QS)
of produced identical particles were observed almost 50 years ago as an enhanced
production of pairs of identical pions with small opening angles (GGLP effect).
The basics of the modern correlation femtoscopy were settled by Kopylov and
Podgoretsky in early seventieth of the last century; they also pointed out a strik-
ing analogy between the femtoscopic momentum correlations of identical particles
and the spectroscopic space-time correlations of photons (HBT effect), the latter
allowing one to measure the spectral width of the light source, as well as the
angular radii of distant (stellar) objects (see [22] and references therein). Besides
the space-time characteristics of particle production, the femtoscopic correla-
tions yield also a valuable information on low-energy strong interaction between
specific particles which can hardly be achieved by other means (see [20] and
Subsubsec. 3.3.5).

The paper is organized now as follows. In Secs.1 and 3, we give the
basics of the theory of two-particle correlations due to the FSI and QS effects.
Particularly, the formalism and assumptions behind the correlation femtoscopy are
discussed in Sec.3. Sections4 and 5 deal with the one- and two-channel wave
functions in the continuous and discrete spectrum. In Secs.2 and 6, we apply
the developed formalism to estimate the finite-size effect on the pionium lifetime
measurement in the DIRAC experiment at CERN. The results are summarized in
Conclusions. In Appendices A and B we consider the effect of nonequal times
and derive the analytical expression for the normalization effect of the short-range
interaction on the wave function of a hadronic atom, modifying the usual n~3/2
dependence of the pure Coulomb wave function on the main quantum number
n. The reader interested mainly in practical application of the formalism to the
lifetime measurement of hadronic atoms can start reading from Secs.2 and 6 and
consult the rest of the paper to clarify the eventual questions.
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1. FORMALISM

Production of two particles at small relative momenta is strongly influenced
by their mutual FSI and, for identical particles, also by QS. One can separate
the FSI effect from the production amplitude provided a sufficiently long two-
particle interaction time in the final state as compared with the characteristic time
of the production process. This condition requires the magnitude of the relative
three-momentum q* = p; — p5 = 2k* = Q in the two-particle c.m. system
much smaller than several hundreds of MeV/c — the momentum transfer typical
for particle production. For a two-particle bound state the momentum k* in this
condition has to be substituted by (2ue;)'/2, where ¢, is the binding energy, and
= mimsa/(my + msz) is the reduced mass.

Consider first the differential cross section for the production of a pair of
nonidentical particles 1 and 2 with the four-momenta p; = {w;,p;} and the
Lorentz factors «; = w;/m;. It can be expressed through the invariant production
amplitudes T'(p1, p2; @) in the form

(27T) NY2 73— d‘3 d‘3p2 Z |T DP1,p2; ) (2)

«

where the sum is done over a = {S, M, o'}, ie., the total spin S of the pair
and its projection M (which is equivalent to the sum over helicities of the two
particles) and the quantum numbers o’ of other produced particles, including
integration over their momenta with the energy-momentum conservation taken
into account.

We are interested in the pairs (1,2) of the particles produced with a small
relative velocity in a process with an ordinary phase space density of final-
state particles so that a main contribution to the double inclusive cross section
comes from the configurations (1,2, ...,4,...) with large relative velocities of the
particles 1 and 2 with respect to other produced particles (i = 3,4,...,n). Due
to a sharp fall of FSI with the increasing relative velocity, we can then neglect
the effect of FSI in all pairs (1,¢) and (2, ¢) except (1,2) and, in accordance with
the upper diagram in Fig. 1, write the production amplitude as (see however [23]
and Subsubsec. 3.3.3 for the account of the residual Coulomb field)

T(p1,p2; ) = To(p1, p2; @) + AT (p1, p2; ). (3)

Here To(pi,p2;a) is the production amplitude in the case of no FSI, and
AT (p1,p2; ) represents the contribution of the FSI between particles 1 and 2,
described by the formula

iV P2 A To(k, P — k; ) f5* (p1, pa; k, P — K)

AT ; = ; )
(p1,p2; @) o3 “(Hz_mIQ_Z'())[(P_F;)Q—mf—i()]

“)
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Fig. 1. The diagrams describing production of particles 1 and 2 in continuous and discrete
spectrum

where P = 2p = p1 +po, To(k, P — k; @) is the production amplitude analytically
continued off mass-shell; f°(p1,po; &, P — k) is the scattering amplitude of par-
ticles 1 and 2 also analytically continued to the unphysical region. In the case
of small k*, we are interested in, the central forces dominate, so the scattering
amplitude f* is diagonal with respect to the total spin S and does not depend on
its projections. Since most of the systems of our interest (7t 7, K*nF, n7p,
KT K=, K~p, except for pp) are described by a single value of S, we will often
skip it to simplify the notation.

Let us express the amplitude 7 in a form of the Fourier integral

To(p1,p2;a) _ /d4$1 d4£L'2 efip1z1fip212f]’(xhx2;a) —

:/d4xe_i(1x/27'p(x;a), 5)

where the last expression arises after the integration over the pair c.m. four-
coordinate X = [(p1P)x1 + (p2P)xa]/P? (d*rid*zy = d*Xd*x) based on
the separation of the phase factors due to the free c.m. and relative mo-
tions: e~ P1¥1TiP2r2 — o~iPX o—147/2  Here the relative four-coordinate » =
{t,r} = 21—z and the generalized relative four-momentum ¢ = ¢ — P(qP)/P?,
q = p1 — po; note that gP = m;% — my?. Apparently, the function 7 (1, zo; @)
represents the production amplitude of particles 1 and 2 at the space-time points
x1 and x4, respectively. It should be stressed that the representation (5) concerns
virtual particles as well. Inserting now in (4) the representation (5) with the
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substitutions p; — kK, p2 — P — Kk, we get

T(p1,p2; ) = /d4$1 d* 2050 (21, 22)T (21, 225 00) =
_ 4,..5(=) .
f/d Pz (2)Tp(z ), (6)

where . .
U (21, 20) = {‘I’S(ﬂ ($17$2)] = [eipqus(ﬂ(x)} (7

P1,p2 P1,P2

coincides with the Bethe—Salpeter amplitude in continuous spectrum [24]. The
second equality in (6), similar to the one in (5), merely arises after the integration
over the pair c.m. coordinate X as a consequence of the factorization of the free
c.m. motion in the phase factor e~*’X_ Thus, on the assumption of the quasi-
free propagation of the low-mass two-particle system, the momentum dependence
of the two-particle amplitude is determined by the convolution of the reduced
production amplitude

Tp(x;0) = /d4X e_iPXT(xl,xg;oz) ®)

and the reduced Bethe—Salpeter amplitude w; (7)(33), the latter depending only
on the relative four-coordinate x and the generalized relative four-momentum gq.
Using (3)-(6), we can write

v (@) = 72 4+ AT (), ©

where the correction to the plane wave is

VP2 . 2
Aw;(ﬂ(x) _ me Pz(1+Pq/P?)/2
ikx £S . P— Ii)
d4 € f (plap27l</7 ) 10
x/ T m 0P — R =m0 0

In the two-particle c.m. system, where P = 0, § = {0,2k*}, z = {¢*,r*},
the amplitude Z/J;?H)
k*) with a stationary solution - (r*) of the scattering problem having at large
r* = |r*| the asymptotic form of a superposition of the plane and outgoing
spherical waves [25].

We see that one and the same production amplitude 7 (z1, z2; @) or 7p(x; @),
corresponding to the space-time representation, enters into relations (5) and (6).
The effect of FSI manifests itself in the fact that the role of the functional basis,

(x) at t* = t7 — t5 = 0 coincides (up to the sign of vector
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which the asymptotic two-particle state is projected on, is transferred from the
plane waves to Bethe—Salpeter amplitudes \1151‘;2 (z1,22) or wag(_)(x).

Equation (6) is valid also for identical particles 1 and 2 provided the substi-
tution of the nonsymmetrized Bethe—Salpeter amplitudes \Il;?l(;; (z1,22) by their
properly symmetrized combinations satisfying the requirements of QS:

_ 1 _ _
\1151(71’72 (1, 22) — ﬁ \1151(71’72 (21, 22) + (_1)5\1152(71)2 (21, 22) | - (1)

In this case m; = mo, ¢ = ¢ and X = (x1 + x2)/2. Similar to the case of
nonidentical particles, the assumption of the ordinary phase space density of the
final-state particles allows one to account for the FSI and QS effects only in a
given pair of identical particles produced with a small relative velocity.

After substituting the representation (5) into (2), the double inclusive cross
section takes on the form

dbo

6 —_—
’Yl’degpl Ppa

=Z/d4m1 d*xq d*a) d4x'2pps(a:1, To; T, x'g)\lfgl(;; (21, 372)‘1’51(,;12*(37117 xh) =
s

(2m)

— 5 [ Bl O @, a2
S

where the functions

pPS(mlaxQ;m/hle) = Z T(J)l,l‘g; Sa M; a/)T*(xll7x12;S7 M7 O/)a

M,a
pps(xz;x’) = Z 7p(z; S, M, o )5 (2" S, M, o) = /d4X d* X' x (13)
M,o’
iP(X—X' pa P p P p2 P p P
Xe P(X X )pPS <X =+ Ex,X — ﬁl‘,X/ + ﬁl‘,,X/ — ﬁl‘,

represent elements of the unnormalized two-particle space-time density matrices;
the density matrix ppg(x1,x2;27,25) depends on the pair four-momentum P
due to the account of the energy-momentum conservation in the sum »_. On the
(Xl

assumption of an instantaneous emission in the two-particle c.m. system (] = t3),
the second expression in (12) reduces to the ansatz used in [10, 14].

Switching off the FSI and QS effects, for example, by mixing particles from
different events with similar global characteristics, one can define the reference
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differential cross section

dGO'O
TR B dpy

4 4 4.0 34 1 WA/ —1 —z)—1i —zl)
= E /d r1d zad x] d xoppg(T1, T23 27, T5) € ip1 (w1 —w1)—ip2 (2 —23)
s

= Z/d4xd4x’pps(x;x') e i@=2)/2  (1y)
S

(2m)°

and rewrite (12) as

dSo B
Bp1dips
d g0 S * /
d3p1d3 ng (p1, P2 < p1 pz(xth)\I/pl(pz (x'l,x'2)>p1pzs =

d°o0 G5O (@5 (1))
= oo ngplap2< ()03 (:c)>(7PS, (15)

where we have introduced the quasi-averages of the bilinear products of the
Bethe—Salpeter amplitudes:

I
S(— S *
(WA ) =
_ [ d'w diay d'a A3 ppg (a1, w25 7, 25) Ui (21, 22) Ut ) (2, 25)
[ drzy diag dAah dAabppg (T, w2y 2, ah) e Pr(E1—y) —ip2 (w2 —2))
S(— S(—)x*
— (O @) =L did'a'pps(wia Wy @y @)
q q GPs fd4xd4x’pps(x;x’) e—iq(z—a’)/2

(16)

and the statistical factors Gg — the population probabilities of the pair spin-S
states in the absence of the correlation effect:

Gs(p1,p2) =
[ d*zy drzo drah d*ahppg(zr, Ty 2y, ah) e~ ip1(z1—2)) —ip2(z2—a3)

> [diay dias drah dAahp pg (1, 2o; ), ah) e P (Ei—2y) —ipa (w2 —2))
5

[ d*ad* pps(w;a’) e T2/ an
Y [drxdial ppg(x;al) emiata—at)/2
5
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Note that for unpolarized particles with spins j; and jo one has

Gs =S+ D[2h + D22+ 1] > Gs=1. (18)
S

Generally, the spin factors are sensitive to particle polarization. For example, if
two spin-1/2 particles were emitted independently with the polarizations P; and
Ps, then Gy = (1 —-P; P2)/4 and G; = (3+ P, P2)/4

The same procedure can be also applied to describe the production of weakly
bound two-particle systems, like deuterons or hadronic atoms (777~ atoms, in
particular). Due to a low binding energy, as compared with the energy transfers
at the initial stage of the collision, there is practically no direct production of such
bound systems. Their dominant production mechanism is thus due to the particle
interaction in the final state. The invariant production amplitude T,(Py; S, M, o)
of a spin-S bound system b = {1 + 2} is then described by the lower diagram
in Fig.1 corresponding to the second term in the upper diagram with the free
two-particle final state substituted by the bound one. Therefore, similar to (6),
this amplitude is related to the Fourier transforms 7 or 7p, of the off-mass-shell
two-particle amplitude Tp:

Tb(Pb;S, M, O/) = /d4(IJ1 d4$2\I/bS7(P;)(£L'1,"L'2)T("E1,"E2;S, M, O/) =
:/d4mwbs(7)(a:)7'pb(x;3,M,o/) (19)

and the corresponding differential cross section — to the same two-particle space-
time density matrices ppg or pps as enter into (12), up to the substitution
P — Pbl

. d3c°
97r)3 b
(2m) ’degpb

— /d4x1 d*ao d*a! d4x’2ppbs(x1,x2; xy, x'Q)\Ili(P_b)(xl,xg)\I/i(P_b)*(x’l,x’Q) =

:/d4xd4x'ppbs(x;x’)wf(_)(x)wf(_)*(x’). (20)

Here \I/;)S:(P_b)(xl,xg) = [\I’i(z;z)(xlv@)]* = [einwa(-ﬁ-)(x)]* is the Bethe—Sal-
peter amplitude for the bound system. At equal emission times of the two
particles in their c.m. system, the amplitude w5(+)(a:), describing their rela-
tive motion, coincides with the usual nonrelativistic wave function in discrete
spectrum ¢ (r*). Similar to (15), one can also rewrite the production cross

section of the bound system through the reference cross section in (14) taken at
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p1 = Pymy/(my +ma), p2 = Pyma/(my +m2) and v = vo =, (i.e., ¢ =0,
P = Pb)l

/

d6

d?’af 3 00 S(-) S(—)*
B3P, = (2m) ’Ybidgpl Pps Gs(p1,p2) <‘I’b,pb (5317%2)‘1’;,71% ($'1,$'2)>plpzs:
d®oq S(— S(—)x !
= (27T)37b7d3p1 d3p295(P1,P2) <?/1b( ’(m)wb‘ ) (x,)>ops' (21)

We see that the production of a weakly bound system {142} is closely related
with the production of particles 1 and 2 in continuous spectrum at small kinetic
energies in their c.m. system. This relation was first formulated [26] in connection
with the production of nonrelativistic deuterons and then generalized [27] to the
relativistic case and the inclusive production. Similar relation was obtained, in
the limit of an instantaneous emission from a point-like region, also for the case
of the production of pure Coulomb hadronic atoms [10]. A complete treatment
of the production of weakly bound systems, accounting for the finite-size effect,
can be found in [11].

2. APPROXIMATE DESCRIPTION OF THE 77~ PRODUCTION

Following [10], let us first neglect the 77~ strong FSI and assume only
two types of pion emitters: SL emitters (e.g., p or A resonances) characterized
by small sizes or decay lengths on a fm level, and LL emitters (e.g., n, Ks or
A) with very large or macroscopic decay lengths. Since the relative space-time
distance between the emission points x enters in the pure Coulomb 77~ am-
plitudes 1§ " (z) and 4\ °"(x) scaled by the Bohr radius a = —387.5 fm,
one can put in (12) and (20) wéf)(x) ~ e_iq‘”/Qw((f)Com(O) = ™ [yequl(0)]*
and {7 (x) ~ {7 (0) = [Yeeul(0)]* for the fraction A of the pairs with
both pions from SL emitters (r* < |a|), and ¥{°"(z) ~ exp [ik'r* —
i(k*a)~ In (k*r* + k*r*)] (a plane wave amplitude with the phase modified
by Coulomb interaction) and w,g_)coul(x) ~ z/;é_)coul(oo) = 0 for the remaining
fraction (1 — \) of the pairs with at least one pion from a LL emitter (r* > |al).
As a result, (12) and (20) reduce to:

dbo dboy 1 2
~ i 1—A 22
d3p1 d3p2 d3p1 d3p2 [ | -k (0)‘ + ( )] ) ( )
dSJb 3 d30'0 coul 2
7P, ~ 2w g A 0] (23)

where o represents the production cross section of the noninteracting pions and
the expression for the production of bound 7+7~ system implies p; = ps =
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Py/2 and 71 = 2 = . The squares of the nonrelativistic Coulomb wave
functions at zero separation are well known:

e (0)]* = Ac(n) = 2mmlexp (2mm) — 1171, n=(K'a)™,  (24)

5 (0)|” = 6 (xlaPn®) ", b= {nl}, (25)

where the Bohr radius @ = (uejes) ™! is negative for 77~ system due to the

opposite signs of 71 and 7~ charges (e; = —es = €). The Coulomb penetration
factor A.(n) (sometimes called Gamow factor) behaves at small Q = 2k* < Q.
as Q./Q and at large @ approaches unity as 1 + (1/2)Q./Q, where Q. =
47t /la| = 6.4 MeV/c. As for the bound 77~ states b = {nl}, only the s-wave
states {n0} are produced at zero separation and their fractions with given main
quantum numbers n are uniquely fixed by the =3 law in (25).

The numbers N4 and NJZr of produced and breakup 7+7~ atoms, required
to calculate the breakup probability (1), can then be obtained in two steps [10].
First, one simulates the noncorrelated two-pion spectrum d®Ny/d*p; d®pa or,
constructs it by mixing pions from different events, and determines the overall
normalization parameter g and the fraction A or A = A\g by fitting the theoretical

spectrum
d6N dGNO dGNO
~ A, 1-N]=—"——[AA, A
d3p1 d3p2 gd3p1 d3p2 [ (77) + ( )] d3p1 d3p2 [ (77) + ]
(26)

to the measured spectrum of the pion pairs; to get rid of the pairs from the
breakup of the 7™ 7~ atoms in the target, the fit should be done in the region
@ >~ 3 MeV/c. In the second step, one can use (23) and the fitted parameter
A = \g to calculate the three-momentum distribution of the numbers of produced
atoms in given states b = {n0}:
d® Ny N 3
7P, = (2™

d® Ny

2
R d3p1d3p2 |

Al (0)], (27)
where p1 = p2 = P,/2. Then, taking into account that Bpi1dPps =
= (1/8)d*Pd3q = (1/8)yd*Pd*>Q and that at sufficiently small Q < Qo the
noncorrelated two-pion spectrum is practically @-independent (up to a correction
O(Q3/m?2)), one can calculate N4 from the number No(Q < Qo) of simulated
or mixed noncorrelated pion pairs with @ < Qo:

PNy . 3A a7 \? _
- 3 = — 3
Ny = Zb /d Py 5P, = 13 No(Q < Qo) (IalQo) En n3. (28)

One can also calculate N4 from the number of correlated nonatomic pairs,

Qo
No(Q < Qo) / dQ Q*Ac(n), (29)

0

L 3A
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using the so-called k factor [4]:

(471_)3 En—?;
(Q < QO) Ncnw (Q QO) A 2|a|3 Qo = ) (30)
[ dQ @2 A.(n)

e.g., k = 0.615, 0.263, and 0.140 for Qo = 2, 3, and 4 MeV/c, respectively. As
for the number of breakup atoms N%', it is simply obtained by subtracting the
fitted numbers of correlated (cna) and noncorrelated (nc) nonatomic pion pairs
(see (26)) from the measured number of pion pairs:

NR' = Netrm (Q < Qent) = N2 (Q < Qeut) = N2S-(Q < Qewr), 3D
7r+7r (Q < QCUt) A,NO(Q < cht)~ (32)

The value of Q.. should be chosen sufficiently large so that the interval (0, Qcut)
contains the signal from practically all atomic pairs. The possible choice is
Qcut = Qo = 4 MeV/c. One can also choose a smaller value, correcting for the
loss of atomic pairs with the help of simulated efficiency factor ezr [4]. One can
obtain N5T also in a more direct way using the data from multilayer targets [2].

Let us now consider the modification of (26) and (27) due to the strong FSI
and finite space-time separation of the particle emitters. Formally one can write

dﬁN N dﬁNO . /
Bpy Bps - Py dBp, MO Acln) + A} 33)
d3N - d cou 2
dBPZ - (27T)3'de3pT?? (1 + 5 |'Lp l ‘ , (34)
3
Ny = (Q<QO (| |Q> Zn 1—|—5 (35)
Qo
S (Q < Qo) = Q No(Q < QO)/dQ Q2 A ()1 + 5(k™)], 36)
0
0
-3
47)3 Sn 1+ 6,)
HQ < Qo) = 4( ';T|L)z|(3 T : 37)

f dQ Q*Ac(n)[1 + 0(k*)]

where the correction factors are determined by the averaging of the bilinear
products of the reduced Bethe—Salpeter amplitudes over the distribution of the



FINITE-SIZE EFFECT ON TWO-PARTICLE PRODUCTION 609

relative space-time separations of the SL emitters:

1+6(k") = <w§~*><x>w§*>*(x’)> [Ac(m)] (38)

q~P

146, = (% (@ coul ()|~ 39

+on = wnO ( )wnO |wn0 ‘ ( )
The averaging is defined in (16) with the reduced space-time density matrix sub-
stituted by its part, p%, related only with the SL emitters. Equations (38) and (39)
account only for the elastic transition & — « and ignore a small contribution of
the inelastic one 3 — «a, where a = {nt7n~}, 8 = {7°7°}; see Sec.5 and
(161), (162) for the complete treatment.

In fact, it can be argued [13, 14] that

dn = 6(0), (40)

provided the characteristic spatial separation of the pion SL emitters in the two-
pion c.m. system is much less than the two-pion Bohr radius |a|. This result
immediately follows from the well-known Migdal’s argument [26]. Namely, since
the particles in continuous spectrum at zero kinetic energy and in discrete spectrum
at very small binding energy x2/(2u) — 0 are described by practically the same
wave equations, the r* dependence of the corresponding wave functions at a given
orbital angular momentum should be the same for the distances r* < £~ ! (i.e.,
r* < nla| in the case of a hadronic atom with the main quantum number 7).

One may see that the approximate equality (40), together with the assumption
of a weak k* dependence of the correction d(k*), justify the use of the approxi-
mate equations (26)—(30). In this approximation, the finite-size correction merely
reduces to the rescaling A — A[1 + 6(0)].

We show in Secs.4 and 5 that (40) is subject to a normalization correction
O(fo/a) ~ 0.3%/n and other small corrections 47O (k% (fy“)?/a) and O(a™?),
where k% = 35.5 MeV/c is the momentum in the channel 3 = {7%7°} at the

threshold transition to the channel a = {7t7~}, f7/* = v2(ad — a)/3 =~
—0.2 fm is the transition amplitude. Taking the normalization correction explicitly
into account (see (154), (143), and (147)):

1+5n—(1+5g){1+¢>( )2|f0| [1+0<(k2§f0°*)2>} pe 2o<<f0) )}

(41)
where ¢(n) ~ 3 is defined in (109), one can rewrite the approximate equality

in (40) as 5
k* a2 *2 SL
6%26(0)+47TO<M>+0<<T2> ) 42)
a a
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Fig. 2. The distribution of the relative distance r* between the pion production points in
the pair c.m. system simulated with the UrQMD transport code [28] for pNi interactions
at 24 GeV and the relative momenta in the pair c.m. system @ = 2k™ < 50 MeV/c in the
conditions of the DIRAC experiment at CERN [29]. The curves are the results of the fits
to short-distance, w and 1’ contributions described in the text

The neglect of the corrections d,, and §(k*), i.e., the use of the approximate
equations (26)—(30) instead of (33)—(37), leads to the systematic shift of the
breakup probability:

AP, . ANy ANl‘gr

= — ) 43
P Ny + Ngr (43)
To estimate this shift, one can approximate the correlation function
dN/dQ
R =——F=4 14 6(k" 44
(@)= qNL7ag = A< +567), (44)

where §(k*) = (§(k*)) is the finite-size correction averaged over the pion three-
momenta at a fixed k* = |k*| = Q/2, by

R(Q) = AA.(n) + N’ (45)
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and use the fitted parameters A, A’ to calculate AN, /N, and ANS /N

S0 3146, — A)

AN,y
CNjy Sn3(1+46,) (46)
Qeut _
2 —
ANBr - Nﬁria;r_ (Q < cht) Of dQQ [R(Q) R(Q)] (47)
br br cut .
T e e

In the DIRAC experiment, N42 _ /Njff = 16 at Qcyy = 4 MeV/c [4] and, for
Qcut < Qe when QA (1) ~ const, it decreases approximately quadratically with
decreasing Q..+ provided the signal region contains most of the atomic pion pairs,
i.e., down to Qcuy =~ 2 MeVl/e.

In the following, we perform an analytical and numerical study of the correc-
tions ¢, and §(k*) and their effect on the breakup probability P,,. Here we only
mention that the condition r* < n|a| can be violated for pion pairs containing
pions from the decays of some resonances such as w and 7" with the decay lengths
of about 30 and 900 fm, respectively. The corresponding exponential tails are
clearly seen in Fig. 2, where the r*-distribution simulated with the UrQMD trans-
port code [28] is shown for pion pairs produced in pNi interactions at 24 GeV in
the conditions of the DIRAC experiment at CERN [29].

3. CORRELATION FEMTOSCOPY — BASIC ASSUMPTIONS

3.1. Noninteracting Nonidentical Particles: Space-Time Coherence. To
clarify the meaning of the two-particle space-time density matrix
Pg(@1, @2 27, 5), let us first neglect the FSI effect and substitute the Bethe—
Salpeter amplitudes by the plane waves. Changing in (12) the integration variables
x;, z; by the new ones:

1
T; = 5(1‘1 + $2)7 € = Tj — J);, (48)

we can rewrite the production cross section of two nonidentical particles as
dGUO
27)" e —
(@) d3p1 d3pa

= Z/d4€f1 d'Z2 Gs(T1,p1; T2, o) :Z/dzlffgps(ff,j, (49)
S

S
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where ¥ = 1 — X2 and the real functions

Gs(ZT1,p1;%1,p2) =

= /d451 dlezeP1ATI 2 p (:ﬁ + 2 2+ 23 - D g, - 6—2) ;
2 2 2 2
(50)
. _ pP
gps(T;q) = /d4XGs <X+ pQ—zfaPuX %@m) =

The function Gg, usually called emission function, being a partial Fourier trans-
form of the space-time density matrix, is closely related to the Wigner density, the
latter collecting all contributions due to free streaming of the emitted particles to
given space-time points through an integral over the emission function (see (49)
in [30]).

It is clear from (49) and (50) that more narrow is the width of the diagonal
of the space-time density matrix (the width of the ¢; distribution), more wide is
the distribution of particle four-momenta. In particular, the diagonal space-time
density matrix (i.e., zero width of the ¢; distribution) would yield the uniform
four-momentum distribution, in correspondence with the infinite uncertainty in
the four-momenta of the particles localized at certain space-time points.

Consider as an example the particle emission by independent one-particle
emitters of various types A according to the one-particle production amplitudes
(see also [31])

W . (x1 —x4)*> (w01 — 20a)’
TA ($17$A)NUA(37A)€XP{_ S 2. ;

XA2 J?OAQ)

(1)

VAT ) ~ X —_—— —
( ) p( 47’02 47’02

These amplitudes correspond to the emitters at rest with a Gaussian distribution
of the emission points 21 = {¢1,r1} around the emitter centers 4 = {ta,r4},
also distributed according to a Gaussian law. In four-momentum representation,

TV (pr;2a) ~ val@a)ua(pr) exp (—ipi1z.a),

(52)
wa(pr) ~ exp(—ra’p1?/2 = 74%p0i”/2) .

Assuming further that the emitters are sufficiently heavy, we can describe

them classically. The four-coordinates of the emitter centers x4 can then be

considered as a part of the quantum numbers o/, the sum in (13) thus containing
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the integration over z 4. Performing this integration, we get for the elements of
the one-particle space-time density matrix related to the emitter A:

P (x1,2h) = /d4xATf§1)($1;mA)ngl)*(xﬁ%xA) ~

~ exp - €2 _ €012 exp( — %12 B To12 (53)
Ara2 471y2 2r92 + 142 2192 + 742

and for the corresponding emission function:

, ] )
GV (@1,p) = /d461 e~ e ply) (5:1 + 5B - 51) ~

[ua(py)l? s Tor” (54)
~|u exp| — — .
Alp1 p o2+ 142 2702 + 742

The contribution of the emitter A to the single-particle production cross section is

~

d3o 2
(277)371613—;;: = /d4571GE41)(5?17p1) = /d4$A }Tﬁf)(pl;m)}
~ ua(p)l” ~ exp(=ra®p1? = 74%p01%) . (55)

We may see that the emitter space-time dimensions 74 and 74 determine both the
space-time coherence of particle production (the nondiagonality of the space-time
density matrix) and the distribution of particle four-momenta. In particular case
of the emitters of a vanishing space-time extent: r4 = 74 = 0 (no coherence),
any particle four-momenta are equally probable.

Note that for the emitter moving with a nonrelativistic velocity 3, and
emitting a particle 1 with the mean three-momentum p4 = m13,, the ampli-
tude (51) and the density matrix (53), respectively, acquire phase factors e~ "P4X1
and e~"P4€1 and the substitution p; — p1; — P4 has to be done in the ampli-
tude ua(p1). After averaging over the p4 distribution that decouples from the
distribution of other emitter characteristics in a Gaussian form of a width A, we
still arrive at (53)—(55), up to a substitution 742 — r42/[2(ralg)? + 1] in the e-
and momentum-dependent factors, corresponding to a widening of the momentum
distribution due to the dispersion of the emitter velocities.

As for the actual values of the parameters r4 and 74, we can estimate them
using the information about particle transverse momenta, p;, which are much
less influenced by the motion of the emitters than the longitudinal ones. Doing
this for pions or kaons, we should however exclude the low-p; region which
is dominantly populated by the decays of low-lying resonances. We can also
use the p;-distributions of these resonances. In both cases the p;? slopes in the
interactions of elementary hadrons are of ~3 (GeV/c)~2 (see, e.g., [32]), yielding
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on average 742,742 ~ 0.1 fm?. Somewhat larger values can be expected in heavy
ion collisions where a substantial part of the emitters can be associated with the
centers of the last rescatterings characterized by sufficiently large momentum
transfer. It is important that the estimated values of 742,742 appear to be
much smaller than the effective values of the parameters 72, 7p2 obtained in
femtoscopic measurements. The latter being of about 1 fm? for pions produced
at p; ~ (p;) in hadron-hadron interactions and up to several tens fm? in the
collisions involving heavy nuclei.

3.2. Noninteracting Identical Particles: QS Correlations. 3.2.1. Correla-
tion Function. Consider the production of noninteracting identical particles. It
should be noted that this consideration is not of academic interest only. Thus for
identical pions or kaons, the effect of the strong FSI is usually small and the effect
of the Coulomb FSI can be in first approximation simply corrected for (see [33]
and references therein). The corrected correlation effect is then determined by
the QS symmetrization only, i.e., the Bethe—Salpeter amplitudes have to be sub-
stituted by properly symmetrized combinations of the plane waves (see (11)). As
a result of the interference of these waves, there appears the additional term, not
present in (49):

dbo

276y Yy e
(27)° 7172 b1 s

= Z/d45¢1 d*zs [Gs(Z1,p1; %2, p2) + Gs(Z1,p; T2, p)(—1)° cos (q)] =
S

=Y [t [grs(@.0) + grs(@.0)(~1 cos(a2)] . (56)
S

Note that the off-mass-shell four-momentum p = (p; + p2)/2 enters as an argu-
ment of the emission function Gg in the interference term.

It is convenient to define the correlation function R(p1,p2) as the ratio of
the double inclusive cross section d®¢ to the reference one d%c0 which would be
observed in the case of absent QS and FSI effects:

d%c(p1,p2)

R(p1,p2) = m-

(57)

In the high-energy collisions involving nuclei, we can neglect the kinematic
constraints, as well as rather weak dynamical correlations and construct the refer-
ence distribution using the particles from different events with similar topology.
In case of a negligible FSI, there is no correlation for nonidentical particles:
R(p1,p2) = 1, while for identical particles the correlation arises due to the
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interference effect:

2 [ d*a1 d*2;Gs (21, p; 22, p) (—1) cos (q7)
R(p1.p2) =1+ = %j’d‘lfl d*T2Gs(Z1,p1; T2, P2) -
%fd‘ligps(f,O)(—l)s cos (qT)
= L B0 e, s =1 T =

=1+ ng(—l)s (cos (qf»gpsv (58)
5

where the quasi-averages satisfy the equalities

/

_\\ /7 _ ip1 (z1—xh)+ip2 (z2—x)) _

(008 (42))y, 5 = (71775 Dy =
Pip2 pip2S

’

_ =\ _ iqg(z+z’)/2 .
(cos (a2))gps = (e IERNED)

the factors Gg represent the population probabilities of the pair spin-S' states out
of the region of the correlation effect. They are defined in (17) and can be
expressed through the emission functions as

G ( ) _ fd4x1 d4x2Gs($1,p1;$2,p2) _ fd4$gps($,q)
S > Jdiry diaeaGs(a, prsee,pa) Y [dagps(z,q)’
o 5

ng =1
S

They can be also considered as the initial (QS switched off) statistical factors.
For initially unpolarized spin-j particles: Y. Gs(—1)° = (=1)% /(25 + 1).
S

(60)

Assuming, for example, that for a (generally momentum-dependent) frac-
tion A of the pairs the particles are emitted by independent SL one-particle emit-
ters described by the Gaussian amplitudes (51) or (52), while for the remaining
fraction (1 — \), related to LL emitters (7, Kg, A, ...), the relative distances r*
between the emission points in the pair c.m. system are extremely large, the
correlation function

Re Y- ua(pr)up(p2)uy (p2)up(pr) e "1a=wn)

AB
> lua(pr)up(p2))? ’

AB
(61)

R(p1,p2) = 1+A ) Gs(—1)°
S
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where the sum ) is done over all characteristics of the emitters. In the case
A,B

of only one type of the SL emitters that are at rest and differ only by the four-

coordinates x4 of their centers, the amplitudes u4 reduce to a single universal

amplitude v and the sum merely reduces to the averaging over x4, i.e.,
R(p1,p2) = 1+ A1) Gs(—1)%(cos (g(wa — 7)) =
s
=1+ )\Z Gs(—1)% exp (—1o?q® — 10%q3) . (62)
s

We see that a characteristic feature of the correlation function of identical particles
is the presence of an interference maximum or minimum at small |q|, changing
to a horizontal plateau at sufficiently large |q|, large compared with the inverse
characteristic space-time distance between the particle emission points.

3.2.2. Smoothness Assumption. In the simple model of only one type of the
emitters contributing to the observable interference effect and in the absence of the
relative emitter motion, the width of the low-|q| structure is solely determined by
the characteristic space-time distance between the one-particle emitters and does
not depend on the parameters r4 and 74, characterizing the space-time extent of
the emitters themselves, see (62). It means that the enlargement of the produc-
tion region related to the latter (ro? — 702 + (1/2)742, 70% — 702 + (1/2)74%)
is compensated in the correlation function due to the different momentum ar-
guments of the emission functions in the numerator and denominator of (58).
This is clearly seen when calculating the correlation function directly from (2),
substituting the production amplitude T'(p1, p2; ) by the symmetrized product of
the Kopylov—Podgoretsky one-particle amplitudes in momentum representation,
see (61) and (62). Of course, the independence of the interference effect on the
space-time extent of the emitters in this model (assuming that the emitters decay
according to a single universal amplitude u and differ by the four-coordinates of
their centers only) is justified only in the case of sufficiently small overlap of the
emitters to guarantee the assumption of their independence.

Generally, even in the case of independent emitters, the particles are emitted
by moving emitters of different types and the correlation function depends also
on their space-time extent r4,74. Particularly, for a Gaussian distribution of
the mean emission three-momentum p 4 of a width Ag, (62) is modified by the
substitution [31] 792 — 79% +7r4%/[2+ (ralo)~2]. Usually, the effect of a finite
space-time extent of the one-particle emitters is negligible:

ra? 2 S 2
T <L7ro, T <L 710°. (63)

Note that these conditions guarantee sufficiently smooth four-momentum depen-
dence of the emission function Gg(Z1, p1; T2, p2), such that we can neglect its
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dependence on the four-momentum difference ¢ in the region of the interfer-
ence effect characterized by the inverse space-time distance between the particle
production points. On this, the so-called smoothness assumption, (58) reduces to

R(p1,p2) =1+ Z(—l)sgs (cos (q2)) 4 ps » (64)
S
where Gg are the normalized spin factors defined in (17) and (60), and

[ d*zy d*zoGs(z1,p1; 22, p2) cos (qz)
cos (qx = =
{cos (gz))qps [ d*xq d*xoGs (21, p1; @2, p2)

_ J“d4x9PS($,q)COS(qm)
J d*zgps(z,q) :

(65)

Equation (64) is valid up to a correction representing a fraction of 742 /72,
742 /792, This correction composes a few percent for high-energy hadron—hadron
collisions and a fraction of percent for the collisions involving heavy nuclei. Note
that (64) is often used to calculate the correlation functions of noninteracting
identical particles with the help of various classical transport codes (like RQMD,
VENUS or UrQMD) [28] — the emission points are identified with the points of
the last collisions or the resonance decays.

At sufficiently small ), one can calculate the one-dimensional correlation
function R(Q) using a more simple and faster procedure than the averaging
according to (64). For this, one can exploit the fact that the angular distribution of
the vector Q becomes isotropic at ) — 0 and calculate {cos (qz)) = (cos (Qr™))
by averaging over the uniform distribution of the cosine of the angle between the
vectors Q and r* and, over the one-dimensional 7* distribution determined at ) —
0. We have checked the accuracy of this procedure using the UrQMD simulation
of the pNi interactions at 24 GeV in the conditions of the DIRAC experiment [29]
and determined the r* distributions in various @ intervals. It appears that the
m—m~ correlation functions calculated from the r* distributions corresponding to
the intervals 50-100, 100-150 and 150-200 MeV/c agree with that corresponding
to the 7* distribution in the lowest () interval of 0-50 MeV/c within 0.2-0.9%,
~ 3% and ~ 7%, respectively. It should be noted that the increasing difference
of the correlation functions with the increasing lower boundary of the above
@ intervals is not related with the violation of the smoothness assumption but
rather with the approximate treatment of the angular dependence of the vector
Q and with the ) dependence of the fractions of pairs containing pions from
resonance decays.

3.2.3. Femtoscopy with Identical Particles. One can see from (62) that, due to
the on-shell constraint ¢qo = vq = wvqy, the correlation function at vy > rg sub-
stantially depends on the direction of the vector q even in the case of spherically
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symmetric spatial form of the production region. Thus, the transverse (q L v)
and longitudinal (q || v) correlation radii are rp = ro and 7, = (r3 + v>72)"/2,
respectively.

The on-shell constraint makes the ¢ dependence of the correlation function
essentially three-dimensional (particularly, in pair c.m. system, gx = —2k*r*)
and thus makes impossible the unique Fourier reconstruction of the space-time
characteristics of the emission process. However, within realistic models, the
directional and velocity dependence of the correlation function can be used to
determine both the duration of the emission and the form of the emission re-
gion [15], as well as to reveal the details of the production dynamics (such as
collective flows; see, e.g., [34,35] and reviews [18-21]). For this, the correlation
functions can be analyzed in terms of the out (z), side (y), and longitudinal (z)
components of the relative momentum vector q = {¢, gy, ¢-} [36,37]; the out
and side denote the transverse components of the vector q, the out direction is
parallel to the transverse component of the pair three-momentum. The corre-
sponding correlation widths are usually parameterized in terms of the Gaussian
correlation (interferometry) radii r;, e.g., for spin-0 bosons

R(p1,p2) =1+ Xexp (—r2¢2 — roq; — r2q; — 2r2.q2q2), (66)

and the radii dependence on pair rapidity and transverse momentum is studied.
The correlation strength parameter A can differ from unity due to the contribution
of LL emitters, particle misidentification and coherence effects. Equation (66)
assumes azimuthal symmetry of the production process. Generally, e.g., in case
of the correlation analysis with respect to the reaction plane, all three cross
terms ¢;q; contribute.

It is well known that particle correlations at high energies usually measure
only a small part of the space-time emission volume, being only slightly sen-
sitive to its increase related to the fast longitudinal motion of particle emitters.
In fact, due to limited emitter decay momenta pg.. of few hundred MeV/e,
the correlated particles with nearby velocities are emitted by almost comoving
emitters and so — at nearby space-time points. In other words, the maximal
contribution of the relative motion to the correlation radii in the two-particle
c.m. system is limited by the moderate emitter decay length 7pgec/m. The
dynamical examples are resonances, colour strings or hydrodynamic expansion.
To substantially eliminate the effect of the longitudinal motion, the correlations
can be analyzed in terms of the invariant variable Q = 2k* = (—g?)/? and
the components of the three-momentum difference in the pair c.m. system
(@* = Q = 2k”) or in the longitudinally comoving system (LCMS) [38]. In
LCMS, each pair is emitted transverse to the reaction axis so that the general-
ized relative three-momentum q coincides with q*, except for the out-component
gz = 7tq;, where v, is the LCMS Lorentz factor of the pair. Particularly, in the
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case of one-dimensional boost-invariant expansion, the longitudinal correlation
radius in LCMS reads [35]

r, = (T/my)'/?r, (67)

where T is the freeze-out temperature; 7 is the proper freeze-out time and m,
is the transverse particle mass. In this model, the side radius measures the
transverse radius of the system while the square of the out radius gets an addi-
tional contribution (p;/m;)?A7? due to the finite emission duration A7. The
additional transverse expansion leads to a slight modification of the p; de-
pendence of the longitudinal radius and — to a noticeable decrease of the
side radius and the spatial part of the out radius with p,. Thus in the case
of a linear nonrelativistic transverse flow velocity profile fr = [ori/R of
the expanding fireball with the freeze-out transverse radius R, the side
radius

R
(1+m,B3/T)1/%

Ty R (68)
The decrease of the two-pion correlation radii with increasing transverse mass
(expansion) and decreasing centrality (geometry) has been demonstrated, e.g., in
Au + Au collisions at /s, = 200 GeV [39].

Since the freeze-out temperature and the transverse flow determine also the
shapes of the m; spectra, the simultaneous analysis of correlations and single-
particle spectra for various particle species allows one to disentangle all the freeze-
out characteristics (see, e.g., [18]). Thus in heavy-ion collisions, the correlation
data show rather weak energy dependence and point to the kinetic freeze-out
temperature somewhat below the pion mass, a strong transverse flow (with the
mean transverse flow velocity of about half the velocity of light), a short evolution
time of 8-10 fm/c and a very short emission duration of about 2-3 fm/c (see,
e.g., a recent review [21]).

3.3. Interacting Particles: FSI Correlations. 3.3.1. Production of Interacting
Particles. It is clear that the smoothness assumption allows one to express the
production cross section through the emission function Gg(x1,p1; 2, p2) also in
the case of interacting particles. Thus, separating the two-particle c.m. motion in
the phase factor exp [i P(X — X')] = exp [i(p1 — G/2)e1 +i(p2+G/2)e2] and using
the smoothness assumption to neglect here ¢ compared with p; » * and substitute,

in the amplitudes 1/);(“(@, the relative coordinates * = T + (€7 — €2)/2 and
/

2’ =T — (e1 — €2)/2 by their mean value Z, we can rewrite (12) in a simple

*The account of ¢ in the phase factor would lead to the substitution of the particle four-momenta
in the emission function by their mean (off-mass-shell) values: p; — Pm;/(m1 + mz2).
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approximate form:

d°a . 4 4 S(+) 2
R Z/d x1 d w2Gs(21,p1; 22, p2) ‘1/)(7 (fﬂ)‘

—Z/

= @)’y m——g— d3 Zg <W(+’ \> . (69)

GPs

(20

S(+>( )‘

where d%c( is the production cross section of noninteracting particles introduced
in (49). The averaging (... )zps and the initial spin factors Gg are defined in (65)
and (60). The correlation function defined as the ratio d®c/d%cq then takes on

the form:
R(p1,p2) = ZG <W<+> ‘ > : (70)

GPs

Recall that for identical particles, the Bethe—Salpeter amplitudes 7,/}~(+)( ) should
be symmetrized according to (11).

Note that for nonidentical particles, one also arrives at (69) and (70) using the
approximate ansatz \Il;?l(;g (x1,29) = ei(p1€1+p2€2)\lf,§l(j,g (Z1,Z2) which becomes
exact in the absence of FSI. For identical particles, this ansatz, applied to the
nonsymmetrized amplitudes ¥°(+) leads to the correlation function (see also

(58) and (60) in [30])

R(p1,p2) ZQSKWSH) ‘> +

qPS
+(—1)%Re <1;§(+>(x)isgl+>*(x)>qm] . (T

where 7,/1 is the reduced nonsymmetrized Bethe—Salpeter amplitude (wq (+)( ) =

¢%4%/2 for noninteracting particles). Clearly, the smoothness assumption allows
one to put (...)7pg = (...)qps and thus recover symmetrized equation (70).
Similar to the case of noninteracting particles, the relative correction to the
smoothness approximations in (69)—(71) is determined by the ratios 742 /702,
742 /70? — the measures of the nondiagonality of the space-time density matrix.
For identical particles, the correction arises mainly from the simplified treatment
of the symmetrization effect and, according to Subsubsec. 3.2.2, it is expected on
a few per mil level for the processes involving heavy nuclei. For nonidentical
particles, the corrections to the finite-size FSI contributions are of the same
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order while, those to the complete correlation functions are usually substantially
smaller, being scaled by the relative finite-size contributions of the strong and
Coulomb FSI. In case of | f¥| < r* < |al, we are interested in, the corresponding
strong and Coulomb FSI contributions are of 2f°/r* and 2r*/a, respectively
(see Sec.4).

Proceeding in a similar way with the production cross section of a bound two-
particle system, we arrive, on the same conditions as in the case of continuous
spectrum, at the approximate form:

d’oy +)
(2m)* b /d4$1d oG s(x1,p1; 72, p2) ‘?/J (z )‘ =

d3P
/d (Egps x, 0 ‘Q/JSH_) )
d®ag S()( 2
—_ 72
'yl’Yng d3 <‘w ‘ >0P87 ( )

where p; = Pym;/(mq + ms), P =P, and Py = Pyo.
3.3.2. Equal-Time Approximation. For noninteracting particles, the nonsym-

‘ 2

= (2m)°

metrized Bethe—Salpeter amplitude w((zf)(x) = ¢~K"" 5 independent of the rel-
ative emission time ¢* in the pair c.m. system. On the contrary, the amplitude of
two interacting particles contains an explicit dependence on ¢* — the interaction
effect vanishes at |t*| — co. However, it can be shown [12] (see Appendix A)
that the effect of nonequal times can be neglected on condition

[t*] < m(t*)r*?, (73)

where m(t* > 0) = mg and m(t* < 0) = my. On this condition, one can use the
approximation of equal emission times of the two particles in their c.m. system
(t* = 0) and substitute the Bethe—Salpeter amplitude by the usual nonrelativistic
two-particle wave function. The applicability condition (73) of the equal-time
approximation is usually satisfied for heavy particles like kaons or nucleons.
But even for pions, this approximation merely leads to a slight overestimation
(typically less than a few percent) of the strong FSI contribution to the production
cross section [12]. To demonstrate this, one can use the simple static Gaussian
model of independent one-particle emitters described by the amplitude (51). The
applicability condition (73) of the equal-time approximation can then be written
s [12]

70 < pryro(ro® + v?mo?) /2. (74)

Recall, however, that in high-energy collisions, the static model is relevant for a

limited rapidity region only. It means that the pair velocity v in the rest frame of
the contributing emitters is essentially determined by the distribution of particle
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Fig. 3. The FSI contribution to the 7%7° correlation function calculated for different
values of the pair velocity v in a model of independent one-particle emitters distributed
according to a Gaussian law with the spatial and time width parameters 1o = 2 fm and
70 = 2 fm/c. The exact results (solid curves) are compared with those obtained in the
equal-time approximation (dashed curves)

transverse momenta. For pion pairs at ) — 0 one then has (v) ~ 0.8. For
To <~ 70, condition (74) requires sufficiently small Compton wave lengths of
the particles in the emitter rest frame: 1/w; < 1o, while for large characteristic
emission times, 7 >> /v, it requires small de Broglie wave lengths: 1/p; < ro.
Clearly, this condition is not satisfied for very slow particles emitted by the
emitters of a long lifetime. The increasing importance of the nonequal time
effect with the decreasing pair velocity and increasing lifetime of the emitters is
demonstrated in Figs.3 and 4 for the FSI contribution in the 79%7° correlation
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Fig. 4. The same as in Fig.3 for the pair velocity v = 0.1, the spatial width parameter
ro = 2 fm and different values of the time width parameter 79

function. For sufficiently large velocities v > 0.5 and radii 79 > 1 fm, we are
interested in, the effect is rather small, not exceeding 5% of the FSI contribution
in the low-k* region, corresponding to the effect of a few per mil in the correlation
function.

As for the effect of nonequal times on the Coulomb FSI it does not influence
the leading zero-distance (r* = 0) part, and the effect of the subleading part
(expected on a similar percent level as in the case of the strong FSI) can be
neglected when scaled by its contribution ~ 2r*/a. It concerns also the case
of hadronic atoms since the subleading part is the same as in the continuous
spectrum at k* = 0.

Adopting the smoothness and equal-time approximations (with the accuracy
of a few per mil), we can rewrite (69) and (72) for the production cross sections
of particles 1 and 2 in continuous and discrete spectrum at low relative or binding
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energies as follows:

dbo

IYIIYQCPPT 72d3p d3 ZgS<W - ‘ >¢7 s’ (75)
3oy dSa,
Wopp, = (2 >wq723;——————gs<\wb ), 6

where b = {n0} and p; = Pym;/(m1 + m2) in (76); for equal-mass particles
p1 = p2 = Py/2 and 3 = 42 = . Particularly, for 777~ production, one can
then rewrite the correction factors in (38) and (39) as

SL

100k = (oo ()7) [Aem)] ™, 1)

P
1400 = (Jno (), [057(0)] (78)

We will show that the 7* dependence of the wave functions v° o and w;f for
two oppositely charged particles in continuous and discrete spectrum is practically
the same at separations r*, in the pair c.m. system, much smaller than the
Bohr radius |a|. Therefore, the corrections to (75) and (76) (arising due to
the smoothness and equal-time approximations used in their respective derivation
from (12) and (20)) practically cancel out in the ratio of the numbers of pairs
produced in continuous and discrete spectrum provided (r*)- < |al.

3.3.3. The Effect of Residual Charge. The formalism of Sec. 1 assumes a free
motion of a given particle pair during the final stage of the collision. Here we
will estimate the FSI effect of the residual charge which is known to substantially
influence particle spectra and, to a lesser extent, also particle correlations in low-
energy collisions involving nuclei [23]. Since, at high energies, this effect can be

expected of minor importance, we will estimate only its upper limit.

Generally, instead of the two-particle Bethe—Salpeter amplitude \Il,(,1 ,22 (x1,22),

the correlation function is determined by the amplitude \Ifgff,z;g {a}(ml, x) repre-
senting the solution of a complicated multibody problem, taking into account
interaction between the two particles and also their interaction with the residual
system described by the quantum numbers {«}. For our purpose, it is sufficient
to approximate these quantum numbers by an effective (comoving with a given
pair) point-like residual charge Ze and consider a thermal motion of the two
particles with the temperature 1" ~ m, in the rest frame of this charge.

Let us start with the hypothetical case of particles that interact with the charge
Ze but their mutual interaction is «switched off». In such a situation, we can
treat the systems (1, 7) and (2, Z) independently. Then the interaction with the
Coulomb center just leads to the substitution of the spatial parts of the plane
waves ¢’Pi%* by the usual Coulomb wave functions: e~ P — e~ PTiQZiZ(r;),
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where ®%7 (r;) = i /Ac(mi)F(—ini, 1,ip;), pi = Pivi + piri, mi = (piai) ™1,
a; = (w;z;Ze?)~! is the Bohr radius of the system (i, Z) (taking into account
the sign of the interaction) generalized to the relativistic case by the substitution
m; — w; of the particle masses by their energies; ¢; is the Coulomb s-wave phase
shift; A.(n;) is the Coulomb penetration factor and F(«,1,z) is the confluent
hypergeometrical function; see (24), (89), and (90). For the complete amplitude
we have:

\I,;S)-Bf(xh 332) _ eimm-ﬁ-imxz¢§11Z(r1)¢‘z)222(r2) =

= e PX e QN2 (1)) 0227 (rs).  (79)

Note that a small contribution of spin-dependent electro-magnetic forces is ne-
glected here so that ¥(1)5Z = w(+)Z i5 independent of the total spin S of the
particle pair.

Let us now «switch on» the interaction between particles 1 and 2. Since
we consider the relative motion of the two particles at characteristic distances
much slower compared with their motion with respect to the Coulomb center,
it is natural to assume that in such a case the plane wave e~ " in (79) will
be basically substituted by the Bethe—Salpeter amplitude wqg(a:) describing the
relative motion of isolated interacting particles. After this substitution we get the
amplitude in the so-called adiabatic (factorization) approximation [23]:

LS (21, 00) = e PXYE (2) 217 (1) D227 (r2). (80)
Instead of the six-dimensional correlation function R(p1,p2) we calculate the
one-dimensional one, RZ(k*), with the numerator and denominator integrated
over the simulated particle spectra. In the equal-time approximation,

N (k™)
Zl %psWﬁk; (r:)(I)‘Z)lllz(rL)(I);zLZ(rZ) 2
Z *\ 1=
R (k )7 N(k*) P P 9 (81)
Z |q)§>11i (I‘L)(I)lz)zz1 (rQi) 2
=1

where N (k*) is the number of generated particle pairs in a given k* bin. To
separate the pure effect of the residual Coulomb field on particle correlations, we
compare the correlation function RZ (k*) with the one, R“?”(k*), taking into ac-
count for the latter the effect of the nucleus Coulomb field on one-particle spectra
but not on particle correlations (i.e., simulating the argument r* independently
of the arguments r; and ry). Note that due to the velocity dependence of the
correlation function, R“?”> = R#=0 only at a fixed pair velocity v. In Fig.5, we
present the ratios of the 7+ 7~ correlation functions R% and R“#” assuming that
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Fig. 5. The ratios of the 7+ 7~ correlation functions RZ and R“Z”. For the latter, only
one-particle spectra are influenced by the effective comoving charge Z. The pions are
assumed to be emitted in the rest frame of a point-like charge Z according to the thermal
law with a temperature of 140 MeV. The distribution of the space-time coordinates of the
particle emitters is simulated as a product of Gauss functions with the equal spatial and
time width parameters 7o = c7o. The full broken line corresponds to Z = 30,79 = 2 fm,
the dashed and dotted ones — to Z = 60,79 = 2 and 3 fm, respectively

the pions are emitted in the rest frame of the residual charge Z according to the
thermal law with a temperature of 140 MeV at the space-time points distributed
according to a product of Gauss functions with the equal spatial and time width
parameters 7o = c7p. One may see that even for the radius ro as low as 2 fm
the effect of the residual comoving charge as large as Z = 60 is less than a few
per mil. Taking into account that the effective radius r( is larger than 2 fm even
for proton collisions with low-Z nuclei and that the effective residual charge is
only a fraction of the target nucleus charge, one can conclude that the effect of
the residual charge is on a negligible level of a fraction of per mil.

3.3.4. Femtoscopy with Nonidentical Particles. The FSI effect allows one
to access the space-time characteristics of particle production also with the help
of correlations of nonidentical particles. One should be however careful when
analyzing these correlations in terms of simple models like those assuming the
Gaussian space-time parameterization of the source. The simplified description
of the r* separations can lead to inconsistencies in the treatment of QS and FSI
effects. While the QS and strong FSI effects are influenced by large r* separations
mainly through the correlation strength parameter A, the shape of the Coulomb
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FSI is sensitive to the distances as large as the pair Bohr radius (hundreds of fm
for the pairs containing pions).

This problem can be at least partially overcome with the help of imaging
techniques [40] or transport simulations. The former yield the r* distribution
inverting the measured correlation function using the integral equation (75) with
the kernel given by the wave function squared. The latter account for the dynam-
ical evolution of the emission process and provide the phase-space information
required to calculate the QS and FSI effects on the correlation function.

Thus, the transport RQMD v.2.3 code was used in a preliminary analysis of
the NA49 7+ 7, 77p and 7 p correlation data from central Pb +Pb 1584 GeV
collisions [20]. The model correlation functions Rrqmp (Q; sr) have been calcu-
lated using the FSI code based on the formalism developed in [12], weighting the
simulated pairs by squares of the corresponding wave functions. The scale para-
meter s,, multiplying the simulated space-time coordinates of the emitters, was
introduced in the model correlation function to account for a possible mismatch
of the r* distribution. For this, a set of correlation functions Rrqump (Q; s;) was
calculated at three chosen values s’ of the scale parameter, and the quadratic
interpolation was used to calculate Rrqmp (Q; s») for arbitrary value of s,:

3
_SJ —_gF
Rrqup(Q; 5) = Z G SgiRRQMD(Q;si), (82)
i=1 r —°r

where {i, j, k} are permutations of the sequence {1, 2,3}. The NA49 correlation
functions were then fitted by

R(Q) = N [ARrqup(Q; 5,) + (1 = A)] (83)

with two additional parameters, the normalization N and the correlation strength
A. The fitted values of the \ parameter are in reasonable agreement with the ex-
pected contamination of ~ 15% from strange particle decays and particle misiden-
tification. The fitted values of the scale parameter show that the RQMD transport
model overestimates the r* separations of the pion and proton emitters by 10-20%
thus indicating an underestimation of the collective flow in this model.

The shape of the correlation function is less influenced by large r* separations
in the case of two-particle systems with the absent Coulomb FSI, e.g., in the
case of pA system. The data on pA correlations in heavy-ion collisions show
a significant enhancement at low relative momentum, consistent with the known
singlet and triplet pA s-wave scattering lengths. In fact, the fits using the analytical
expression for the correlation function [12] yield the Gaussian correlation radii
of 3-4 fm in agreement with the radii obtained from pp correlations in the same
experiments. These radii are smaller than those obtained from two-pion and
two-kaon correlation functions at the same transverse momenta [41] and are in
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qualitative agreement with the approximate m; scaling expected in the case of
the collective expansion, see (67) and (68).

The correlation function of nonidentical particles, compared with the identical
ones, contains a principally new piece of information on the relative space-time
asymmetries in particle emission [42]. Since this information enters in the two-
particle FSI amplitude through the terms odd in k*r* = pj(rj — r}), it can
be accessed studying the correlation functions R.; and R_; with positive and
negative projection k] on a given direction 7 or — the ratio R+i/R—;. For
example, ¢ can be the direction of the pair velocity or any of the out (z),
side (y), longitudinal (z) directions. In LCMS, we have r} = r;, except for
ri = Ax* = v (Az — v At), where 7, and v, are the pair LCMS Lorentz factor
and velocity. One may see that the asymmetry in the out (x) direction depends
on both space and time asymmetries (Ax)™ and (At)™. In case of a dominant
Coulomb FSI, the intercept of the correlation function ratio is directly related
with the asymmetry (r)% scaled by the pair Bohr radius a:

3

R-H ~14 2<7ﬂf">SL.

R—i

(84)

It appears that the out correlation asymmetries between pions, kaons and
protons observed in heavy-ion collisions at CERN and BNL are in agreement with
practically charge independent meson production and, assuming m; < mg, with a
negative (Ax)* = (x1 — z2)™ and/or positive ¢{At) = c(t1 — t2)™ on the level
of several fm [20,43]. In fact, they are in quantitative agreement with the RQMD
transport model as well as with the hydromotivated blast wave parametrization,
both predicting the dominance of the spatial part of the asymmetries generated
by large transverse flows.

In the thermal approach, the mean thermal velocity is smaller for heavier
particle and thus washes out the positive spatial shift due to the flow to a lesser
extent. As a result, (x)" < (zx)™ < (x,)™. The observation of the correlation
asymmetries in agreement with the mass hierarchy of the shifts in the out direction
may thus be considered as one of the most direct signals of a universal transversal
collective flow [20]. This is in contrast with the effect of m; scaling of the
correlation radii which can be also explained by a large transverse temperature
gradient like in the Buda-Lund model [44].

3.3.5. Correlation Measurement of Strong Interaction. One can also use
the correlation measurements to improve knowledge of the strong interaction
for various two-particle systems. In the collisions involving sufficiently heavy
nuclei, the effective radius ry of the emission region can be considered much
larger than the range of the strong interaction potential. The FSI contribution is
then independent of the actual potential form [45]. At small () = 2k* and a given
total spin S, it is determined by the s-wave scattering amplitude f°(k*) [12]. In
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case of | f¥| > rg, this contribution is of the order of | f*/ry|? and dominates over
the effect of QS. In the opposite case, the sensitivity of the correlation function
to the scattering amplitude is determined by the linear term f° /rg.

The possibility of the correlation measurement of the scattering amplitudes
has been demonstrated [20] in a preliminary analysis of the NA49 7+ 7~ correla-
tion data within the RQMD transport model. For this, besides the r*-scale s,., the
strong interaction scale sy has been introduced in the RQMD correlation func-
tion R(Q; sr, sy), rescaling the original s-wave w7~ scattering amplitude taken
from [5]: f(k*) — sy f(k*); it approximately corresponds to the rescaling of the
original scattering length fo = 0.232 fm. The fitted parameter sy = 0.63 & 0.08
appears to be significantly lower than unity. To a similar but somewhat weaker
rescaling (~ 0.8) point also the preliminary result of the DIRAC experiment on the
pionium lifetime [4], the BNL and CERN data on K4 [6] and K* - 77970 [7]
decays, as well as the two-loop calculation in the chiral perturbation theory with
a standard value of the quark condensate [8].

Comparing the fit results with the theoretical predictions, one should have in
mind that the latter are subject to the electromagnetic corrections on the level of
several percent and that the correlation measurement may underestimate f(k*)
by a few percent due to the use of the equal-time approximation. A substantial
systematic error can also arise from a simplified fit of the strong FSI amplitude.
To avoid the latter, one can use the Roy equations and represent the 7+ 7~ strong
interaction amplitude at low energies as a unique function of the isoscalar and
isotensor s-wave scattering lengths a} and a2, see Appendix D in [46]. The
two-parameter dependence of the scattering amplitude can be further reduced to a
single-parameter one within the generalized chiral perturbation theory predicting
a strong correlation between the two s-wave scattering lengths (see Eq.(13.2)
in [8]). The systematic error due to the uncertainty in the fitted r* distribution
(e.g., in the scale parameter s,.) can be diminished in a simultaneous analysis of
atn~ and 7 7F correlation functions. The high statistics DIRAC data on two-
pion correlations may thus allow one to determine the s-wave scattering lengths
a and a3 better than to 10% and serve as complementary to the pionium lifetime
measurement in the same experiment.

The correlation technique was also used to estimate the singlet AA s-wave
scattering length based on the fits of the AA correlation data from Pb + Pb colli-
sions at 158 A GeV [20]. Though the fit results are not very restrictive, they likely
exclude the possibility of a large singlet scattering length comparable to that of
~ 20 fm for the two-nucleon system. Similarly, the fit of the pA and pA corre-
lation functions measured in Au+ Au collisions at /s,y = 200 GeV allowed
one to determine the corresponding spin-averaged s-wave scattering length. The
fitted imaginary part of the scattering length of ~ 1 fm is in agreement with the
pp results (thus pointing to about the same pA and pp annihilation cross sections)
while the real part appears to be more negative [47].
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4. ONE-CHANNEL WAVE FUNCTIONS

4.1. Continuous Spectrum. 4.1/.1. Short-Range FSI. Let us start with the
case when the two-particle FSI is due to the short-range forces only. In the
considered region of small k*, the short-range particle interaction is dominated
by s waves. Since the radius of the s-wave interaction is usually small compared
with the distance r* between the production points of particles 1 and 2 in their
c.m. system, the FSI effect is mainly determined by the asymptotic behaviour of
the scattered wave outside the region of the strong interaction r* > d:

AP g+ (r*) = f(K*) e Jr*, (85)

The s-wave amplitude f depends on the magnitude of the vector k* only. As-
suming the absence of inelastic transitions, it satisfies the one-channel s-wave
unitarity condition Im f = k*|f|? or, equivalently Im f~* = —k*, and so can be
represented as

_exp (2idg) — 1

= 2ik*

where & is the s-wave phase shift and K ~! = k* cot §y is a real function of k*.
Usually (for potentials vanishing with the distance exponentially or faster) this
function is real also for negative kinetic energies k*?/(2u), so that its expansion
can contain only even powers of £* [25]. Retaining near threshold only the first
two terms in the expansion, one can express the function K~! or K through
the corresponding two parameters: scattering length fy and effective range dy or
curvature bg:

1

= (K~ ' —ik*) ", (86)

ST U . \ L1
K7V = fot + 5dok™, K= fo+bok™,  bo=—gdofo’.  (87)

The expansion of K ~! is superior for two-nucleon systems (due to large scattering
lengths, amounting to about 20 fm in the singlet case) while for other systems,
the K expansion is often preferred. To extend the latter to a wider energy range,
it is usually written in a relativistic form and additional parameters are added.
For example [8]:

2 Sip — S 3 2k*
K= 2. 2th™°0 A;x? T = , (88)
Vs s — 50 jz:;) / V/Sth

where s = (p1+p2)? = (wi+w})? wiy = (M}, +k*%)Y2 and s = (my+ma)?.
The parameter sg takes into account the eventual resonance, specifying the value
of the two-particle invariant mass squared where the phase do(k*) passes through
90°. The behaviour of the s-wave K function in a wide k* interval is however of
minor importance since we are interested in the near-threshold region and have
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Table 1. The pair Bohr radius including the sign of the interaction, a = (uz122¢%)7",
and the characteristic width of the Coulomb correlation effect, Q. = 2k = 4x/l|al,
corresponding to |77|_1 = 27 (see (24) and the first panel in Fig. 6)

Pair atrt at K+ atp KTK* | K*p ppt
a, fm +387.5 | £248.6 | £222.5 | £109.6 | +£83.6 | £57.6
Qc, MeV/e 6.4 10.0 11.1 22.6 29.7 43.0

already neglected the p-wave correction O(k*?ay /r*) in (85); here a; is a p-wave
scattering length. For 7~ system, a; ~ 0.1 fm®, fo ~ 0.2 fm, dy ~ —10 fm
and the relative p-wave contribution to the k*? term due to the short-range FSI
composes in the production cross section ~ ay /(a1 — dofo?/2 — fo3/3) ~ 30%;
the relative contribution of the k*2 term ~ (ay — dofo?/2 — fo3/3)k*?/ fo being
less than 1% of the total short-range FSI contribution for Q) = 2k* < 30 MeV/c.
Note that the extension of the asymptotic wave function in the inner region
leads to a relative shift in the production cross section of the order
|fI? d Re(1/f)/((r*)*)® [12,48]. The leading part of this shift can be, in

dk*Q
principle, corrected for (see Subsec.5.3). However, being quadratic in the ampli-

tude f, it is rather small for w7m-, 7K- or mp-systems — usually not exceeding
several percent of the short-range FSI contribution.

4.1.2. Account of the Coulomb FSI. Similar to the case of neutral particles,
we will approximate (with the same accuracy) the wave function of two charged
particles near threshold by the asymptotic solution outside the region of the strong
interaction 7* > d. It is well known that the long-range Coulomb interaction
modifies both the plane and spherical waves [25]:

Vs (1) = AT [ F (i Lig) + £ k) T (s

*

where & = k*r* + k*r* = p(1 + cos 0*), p = k*r*, n = (k*a)™}, a =
(uz122€%)~1 is the two-particle Bohr radius including the sign of the interac-
tion (see Table 1), §. = arg'(1 + in) is the Coulomb s-wave phase shift, A.(n)
is the Coulomb penetration factor defined in (24),

F(a,1,2) =14 az/1* + ala +1)22/21% + ... (90)

is the confluent hypergeometric function and G = VA:(Go+iFp) is a combination
of the regular (Fj) and singular (Gp) s-wave Coulomb functions (see, e.g., [45]):

G(p,m) = P(p,n) + 2np[In [2np| 4+ 2C — 1 + x(n)] B(p, n). 1)



632 LEDNICKY R.

Here C' = 0.5772 is the Euler constant, the functions

B(Paﬂ): BS; BOZ]-; Blznpv"'7

sz=;) 92)
>

P(p,n) =

are given by the following recurrence relations:

(n+1)(n+2)Bpy1 = 2npBp — PQanlv 93)
n(n +1)Puy1 = 20pP, — p*Pu_1 — (204 1)20pB,,,

B(p,n) = Fo/(pvVA:) — sin(p)/p and P(p,n) — cos(p) in the limit np =
r*/a — 0. The function

iAc(n)
=h ) 94
X(n) = ho) + 55 (04)
where the function h(7) is expressed through the digamma function ¥ (z) =
I'(z)/T(2): ‘ . ,
h(n) = (i) + (=) —In (") 95

2

For |n| < 0.3, the function h(n) = 1.2> — In || — C, while at large || this
function can be represented by a truncated series in inverse powers of n%: h(n) =
n~=2/12+n~%/120 + ... The amplitude

fe(k") = ; (96)

where f(k*) is the amplitude of the low-energy s-wave elastic scattering due
to the short-range interaction renormalized by the long-range Coulomb forces.
Assuming again the absence of inelastic transitions, the amplitude f(k*) =
(e?®0 —1)/(2ik*) and satisfies the one-channel s-wave unitarity condition. Sim-
ilar to the case of neutral particles, one then has [25]:

fe(k*) = <K1 - QX—(")) B : 97

a

where the function K can be parameterized according to (87) or (88).

Note that §. — 0, A, — 1 for n — 0 (k* > |a|™!) and G — €%, F — 1 for
np = r*/a — 0. So, the two-particle wave function in the absence of the long-
range Coulomb forces is recovered provided r*, fo and 1/k* are much smaller
than the Bohr radius |a.
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Fig. 6. The functions A.(n), Rex(n) = h(n) and Imx(n) = Ac(n)/(2n) defined
in (24), (94), and (95). The solid and dashed curves correspond to the attraction
(n < 0) and repulsion (n > 0), respectively. For two-pion systems, the variable
|n|~™' = |ak*| approximately coincides with the relative three-momentum Q = 2k*
in MeV/e: |n|™! = 0.98Q/(MeV /c). The arrow in panel a indicates the characteris-
tic width |n|™! = 27 of the Coulomb effect

In Fig. 6, we plot A.(n) and x(n) as functions of the variable |n|~! = |ak*|.
For the system of two charged pions, this variable approximately corresponds
to @ = 2k* in MeV/c. At k* — 0, the Coulomb penetration factor A.(n)
respectively tends to O and oo for like and unlike particle charges. With the
increasing k*, this factor slowly approaches unity: A.(n) ~ 1 — 7 for k* >
2m/|al. Note that the quadratic behaviour of Rex(n) = h(n) ~ n72/12 at
In|~! < 1 is changed by a steep quasi-linear rise in the interval 1 < |n|~! < 5;
the corresponding slope being about 0.26. As for Imx(n) = A.(n)/(2n), at
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k* = 0 it equals 0 and —7 for like and unlike charges, respectively, and, for
k* dependence: Imx(n) ~ (n=! —7)/2.

4.1.3. The Small- and Large-r* Limits. Since we are interested in the region
of small relative distances 7* compared with the Bohr radius |a| and small relative
momenta ) = 2k* compared with 1/7*, it is useful to write the first terms in the
expansion of the hypergeometric functions F' and G in r* /a and p = k*r*. We
have (z = cos 0%*):

*

F(—in,1,i€) = 1+ (1 + 2)x
a

X [1—}— %(14—3:) - %(1—1—3:)2 +O(p3)} +0 ((g>2> ;
(98)

2 *
—1-C 4o
G(p,n) g T2 X%

X [m +2C—1+X(77)} (1—5) +O0(p )+O<(%)2>.

For some systems of interest (nm, 7K, 7p), 12 < |fodo| <~ m,"% < 12
one can neglect the ) dependence of the scattering amplitude and, after the
averaging over the uniform z distribution, write the correlation function at a fixed
separation r* as

R(k*577) = ([vxe (1)) =

—Ac(ﬂ)<IF|2+2Re <eik*r*F*Gf ) +o<(f0) >> —

= A.(n ){1+2—+2@+2@ [1+2(1n‘¥‘+20—1+h(n)>] -

(32 48)wo{() wo((2)) rou0).

Note that in the case of an anisotropic r* distribution, Eq. (99) implies the inte-
gration over the direction of the vector k* = Q/2, distributed isotropically for
noncorrelated particles at @ — 0. In the case of the cut Qr < Q3 on the
component of the vector Q transverse to the direction of the pair three-velocity
v and Q > Q5$*, Eq.(99) should be modified by the substitution 2/9 — gcut2/9,

*

ol
a

1/1
Jeut = 1+ B <§(3 cos? O, — 1)> (Cmin + 2n) € (0.5,2), (100)

where 60, is the angle between the vectors r* and v, and cpy, =
[1 — (Q$'*/Q)?]*/? is the minimal absolute value of the cosine of the angle
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Fig. 7. The functions B(p,n) (a) and P(p,n) (b) defined in (92), (93) and calculated for
the 77w~ system. The solid, dashed and dash-dotted curves correspond to r* = 5,15
and 50 fm, respectively. The dotted curves represent the functions B(p,0) = sin p/p and
P(p,0) = cos p corresponding to the case of neutral particles

between the vectors k* and v. For pion pairs containing pions from resonance
decays, one may expect (r2) > (r2) [49] (i.e., (cos®0,) > 1/3) and 80 geut > 1.

In Figs.7, 8, and 9, we show the ) dependence of the functions B(p,n),
P(p,n), G(p,n) and the reduced correlation function R/A., as well as the corre-
sponding main contributions due to the interference term and the modulus squared
of the hypergeometric function for the 77~ system at 7* = 5,15,50 fm. One
may see that the almost universal quasi-linear decrease of R /A, for r* <~ 20 fm
is due to the interference term, and that it is changed, for higher r* values, by a
steep rise due to the |F|? term. It appears that the linear fit of R /A, recovers the
intercept better than to 2 per mil for »* <~ 20 fm and — better than to 2 percent

even for 7* = 50 fm (see Table 2).
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Fig. 8. The function é(p7 n) defined in (91) and calculated for the 7" 7~ system. The
solid, dashed and dash-dotted curves correspond to r* = 5, 15 and 50 fm, respectively

To clarify the origin of the quasi-linear behaviour of the reduced correlation
function R/A., one can use (99) to estimate the slope at small Q:

R\ _d (R . dh 1 2f0\ .o
<A—C) =G (A—c) = E2o g - <*§W§r—*)’“ @ ao

where the sign + (—) corresponds to the Coulomb repulsion (attraction). Us-
ing the fact that dh/d|n|~! ~ 0.26 for 1 < |n|~! < 5, one has (R/A.) ~
—(0.6 + bQ) (GeV/c)~! for the mrn~ system at 1 < @ < 5 MeV/c and
fo = 0.232 fm, where b is small (b <~ 0.03 (MeV/c)~') and positive for
r* <~ 20 fm and, for larger r* values, b is negative and its magnitude rapidly
increases with r*. As a result, the slope of the reduced 77~ correlation
function is negative in this () interval and nearly constant for small r* val-
ues, while it becomes positive and rapidly increases with @ for r* values
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Fig. 9. The 77~ correlation function at a fixed separation r* divided by the Coulomb
penetration factor: R/A. = (Je”™ ™ F + f.G/r*|?), and the corresponding main con-
tributions due to the interference term and the modulus squared of the hypergeometric
function (see (99)). The solid, dashed and dash-dotted curves correspond to r* = 5, 15,
and 50 fm, respectively. The calculation is done in the approximation of a constant scat-
tering amplitude f.(k*) = fo = 0.232 fm, the averaging assumes the uniform distribution
of the cosine of the angle between the vectors r* and k* = Q/2. The dotted curves in
the lower panel represent the s-wave Coulomb contribution B2 (p, n) to the quadratic term

of several tens of fm or larger. For @@ > 5 MeV/c, the absolute value of
the slope due to the h function decreases as ~ 2.35|n|. It appears that, for
the 7F7~ system at r* <~ 20 fm, this decrease is approximately compen-
sated by the () dependence of the functions B, P, and I (i.e., at p < 1,
by the second term in (101)) so that (R/A.) ~ —0.5 (GeV/c)™! up to Q =
50 MeV/e.

Note that the Qp-cut substantially influences the () dependence of the reduced
correlation function only for sufficiently large values of 7*/|a|, leading to the
substitution 7*/|a] — geutr*/|al in (101) at Q > Q. Particularly, for 77~
pairs containing an w-decay pion, one may expect geyt > 1 and so a more steep
rise of the reduced correlation function at Q) > Q.
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Table 2. Results of the linear fits of the reduced 7" 7~ correlation function: R/A. =
co + c1Q in different intervals 0 < @ < Qmax. The function R/A. is calculated
at r* = 5, 15, and 50 fm in the approximation of a constant scattering amplitude
fe(k*) = fo = 0.232 fm and assuming the uniform distribution of the cosine of the
angle between the vectors r* and k™ = Q/2. Also shown are the corresponding values
of R/A. at Q = O (the intercepts)

r*, fm | Intercept | Qmax, MeV/c 10 20 30 40 50
5 1.077 Co 1.077 | 1.077 | 1.077 | 1.077 | 1.078
c1, (GeVie)™' | —0.55 | -0.47 | —-0.48 | —-0.52 | -0.57
15 0.961 o 0.961 | 0.961 | 0.961 | 0.960 | 0.959
c1, (GeVie)™ | —0.59 | —0.56 | -0.55 | —-0.51 | —0.42
50 0.783 Co 0.778 | 0.768 | 0.766 | 0.773 | 0.783
c1, (GeV/ie)™ | 255 4.61 499 | 4.38 3.69

To estimate the behaviour of the correlation function at large r* or k*, one can
exploit the known asymptotic expressions for hypergeometric functions. Thus, at
> 1477,

2
Ac(n)F(—in, 1,if) — (1 _ z%) ei(=dctnn &) 4 gei(5c+£—n1n 9 (102)

and, at p > 14 n?,

G(p,n) — \/Ac(n) e'Cctommin20), (103)

so that both the effects of the Coulomb and strong FSI vanish in the cross
section as 7*~2. In fact, the asymptotic expression for the F function in (102)
cannot be used in the case of nearly opposite directions of the vectors k* and r*
(cos 6* ~ —1) when the variable £ = p(1 + cos 6*) is suppressed even at large
p = k*r*. This leads, after averaging over the angles, to a slower vanishing
of the Coulomb effect, as »*~1, in agreement with the classical Jacobian factor
[1—2/(ar* k)2 ~ 1 — (ar*k*2) L

4.2. Discrete Spectrum. 4.2.1. General s-Wave Solution. Since the Schrodin-
ger equation at a small negative energy —e, = —~?/(2u) practically coincides
with that in continuous spectrum at zero energy, the r* dependence of the
corresponding wave functions at given orbital angular momentum / and r* < x~*
is the same. This important conclusion was first stated by Migdal for the pn sys-
tem [26]. In fact, both solutions (at positive and negative energies) can be written
in the same form for any r*, up to an energy-dependent normalization factor A,
Outside the region of the short-range interaction, r* > d, we can write the s-wave
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solution as a combination of the regular and singular Coulomb functions:

by = N | T2 g gy GO n))] ' (104)

P\ Ac(n) r*

At d <r* < |a| and |p| < 1 it takes on the form:

Yr=o(r™) —N{<1+ %) +O<<%>2> +0(p?) + %x
+2C—1+X> <1+ %>+O<<%>2)+O(p2)]}.

(105)

*

1+20 (m 2l
a a

For positive energies, N' = e“\/A.(n) and at k* — 0, f. = fo/[1—
—2fox(£o0)/al, x(+o00) = 0 (a > 0) or x(—o0) = —im (@ < 0). In the
case of opposite charges (a < 0), (105) yields:

weaa=etva{ (1- ) [1-2 (w5 “0‘1)] o

(1) ool ()00 o

For the discrete levels at negative energies, the substitution k* — ix,, has to be
done, particularly yielding [25,48]:

X(nn):gcot(mjd) 5 |:21n(lin|a|)+’¢( P |) +w( n1| M , (107)

where 7,, = (ikna)~!. A more compact form of (107) follows from the relation
(—z) = (x) + 7eot(mx) + 271

X(1h) = meot(mzn) = (220) " [d(zn) = 3],z = (Kala)™!,  (108)
d(x) =2+ 2z[ln z — (). (109)

4.2.2. Energy Levels. For a pure Coulombic atom (¢ < 0, fo = 0), only
the solution Fy/p, regular at r* — 0, contributes and the requirement of its
exponential damping at large distances fixes the energy levels. The corresponding
k values at a given principle quantum number n are equal to k¢ = (n|al)™?
The wave functions wfb‘l’“l(r*) can then be expressed in terms of the Laguerre

polynomials Lilfrrllil(z). For [ =0,

r* 2r*
o) — 4o (0) exp(—m) L (—) m-n)~l. (110)

nlal
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The square of the wave function 1/$3*(0) at zero separation is given in (25) and
the Laguerre polynomials are defined by the following recurrence relations:

L) = (o) S04 (),
s=0
In1(2) =1, (111)
fale) = -2 ),

At r* < nlal,

* *\ 2
2 = U (0) [1 i +O<(%) )] . (112)

The strong interaction slightly shifts the Coulombic energy levels thus mak-
ing the regular part of the general solution (104) divergent at large distances.
Therefore, the amplitude f. has to have a pole at k* = ik, and so, according

to (97),
la| |a| fodo
=——" ——"" 140 . 113
X() = =556 = "2 |1 O\ (a2 (113)
Using (108) and (113), one can fix the energy levels E,, = —r,%/(2u) in discrete

spectrum with the relative error of O(a™?):

c c c 471—2 f02
Kn = Ky, {1 + 2 foks, {1 + fors[o(n) — 1] — TO<?> +
+O<f°d°>} } kS = (nla])”t. (114)

n2a?

To show this, one can put x,, = k(1 +€), x, = |knal™* = n/(1 +¢€) and use
the equality tan(mz,) = — tan(rz,e) = —(mwne)[l + (72n?/3)O(€?)] and the
inequality |¢p(zy) — ¢(n)| < O(e), the latter following from the fact that ¢'(n)
vanishes faster than n~'. Equation (114) is in agreement with the result of [50]
for the relative energy shift e(n,0) = (2 + €)e = €o(n,0)[1 + €o(n, 0)p1(n,0)],
where ¢y(n,0) = 4fox and p1(n,0) = ¢(n)/4. The function ¢(n) is defined
in (109) with the digamma function for the integer values of the argument given
by the recurrence relation:

Yn+1) =) +1/n, (1) =—-C = —0.5772. (115)

Note that ¢(n) ~ 3 is nearly constant: ¢(1) = 2+2C = 3.15443, ¢(2) = 3.08145,
6(3) = 3.05497, . ., ¢(c0) = 3.
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4.2.3. Normalization. Since N(n,) = 0 (to compensate for the pole of the
amplitude f. at k* = ik,), the s-wave solutions in discrete spectrum are now
given (for r* > d) by the second term in (104), exponentially vanishing at large
distances:

T T n a

(116)
The arguments p,, and 7),, are taken at k* = ix,, and the normalization factor

N(nn)fc (i’@n)
K (iky)

"pnO (T*) = ./\/'/(’I’L)K(Zlin)

N (n) = (117)

is set by the requirement

/W)no [Pd3r* = 1. (118)

Note that the extension in the integral (118) of the asymptotic wave function (116)
into the inner region 7* < d leads to negligible relative errors O(fyd?/(na)?),
O(f2d/(na)?) in the normalization factor N”. Using the expansion of the G func-
tion in the square brackets in (105) and the expression for x(n,) in (113), one
can write for distances d < r* < |al:

fo

bnoty =N { (1= T Y [ =22 (w2 20 -1)] + 22

+O(f°d°) +O(for )} (119)

Comparing (119) with the low-r* expansion (112) of the pure Coulombic wave
function and also taking into account the exponential damping at large distances,
one can approximate the wave function (116) at r* < |a?/ fo| by the expression:

Yo (1) = No(f(lg) no(r >[1—2{—‘)|( ” +2C—§) @] (120)

From the results of calculations for the s-wave 77~ atoms, presented in upper
panel of Fig.10, one can see that the squares of the approximate and exact
expressions (120) and (116) practically coincide for the distances up to several
tens fm and that the agreement is better than percent even at r* ~ |a].

It follows from (120) that the relative difference of the normalization fac-
tors A”(n) and 93" (0) scales as O(fp/a). In fact, this difference can be fixed
when extending the theory to a multichannel case and requiring the equality of the
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total width I';, = —2Im F,, and the sum of the partial widths (see (B.1) and (B.5)
or (B.7), (B.8), and (B.4)). As a result:

2

N'(n) L 2f0
S 1

We have checked (121), calculating A/ from the integral (118) for various val-
ues of the scattering length fj, the Bohr radius |a| and the principle quantum
number 7.

4.3. Universality. Comparing (106) and (119), valid for the distances d <
r* < |a|, one confirms the important conclusion, already stated at the beginning of
Subsec. 4.2, about the universality of the r* behaviour of the moduli squared of the
s-wave solutions in continuous (k* — 0) and discrete spectrum, up to corrections
vanishing as inverse squares of the Bohr radius |a|. Assuming fo <~ d, one has:

T e G Vet u () ]
Ano(r™) = ‘ Yo () /N (n) 1=
f 2 f d *2
— 47r20<%> +o(ngag> +O<22 > +0(p%). (122)

The universality holds with the same accuracy also if the s-wave solution in
continuous spectrum is substituted by the complete wave function (recall that

cqul(0) = yeeul(0) = AL, provided the averaging over the angle between the

vectors r* and k*:
2
Ak’* *) = 1=
» ) <‘ Uno(r*) /N () >

Yoie (r%) /952 (0)
2 *2
_ 47r20<%> +O<£§Z§> +O<r > L O(p?). (123)

a?

This result follows from the fact that, at k* — 0 and typical distances r* < |a],
the total wave function in continuous spectrum almost coincides with the s-wave
amplitude i~ (r*) (see Fig. 9, ¢):

*2

i k* *
Yo (1) Zwk*o(r*)"Fewc\/A_CkTiz—FO(z_Q) +0(p%) (124)

and, that the relatively significant correction term O(r*/a) in the square of the
wave function 9 _x~(r*) vanishes after averaging over the direction of the relative
three-momentum Q = 2k*, or after suppressing the signs of the components @Q;
of the vector Q (assuming a symmetric detector acceptance with respect to the
reflection QQ; — —Q;). From Fig. 10, ¢, one can see that for the 777~ system,
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Fig. 10. Comparison of the approximate 77~ atomic wave function 125P(r*) and the
w77~ wave function in continuous spectrum t_j+(r*) at k* — 0, respectively defined
in (120) and (89) (fo = 0.232 fm), with the exact s-wave solution outside the range of
the strong interaction 1, (r*) given in (116): AP (r*) = [h*PP (r*) /4hno(r*)]? — 1 and
AEZ0(7) = ([ (0°) /452 (0)]/ o () /N7 (m)][2) — 1, k* — 0 the averaging in
the latter expression is done over the uniform distribution of the cosine of the angle between
the vectors r* and k* = Q/2. Figure b shows APP(r*) assuming N’ (n) = <3 (0)
in (120) in correspondence with the ansatz (125). The curves in the increasing order
correspond to n = 1,2, 3,10

the universality holds to better than percent for 7* <~ 50 fm. Note that A%
(not shown in Fig.10) is negative and, contrary to AY, it shows the strongest
deviation from zero for n = 1, achieving a per mil level already at 7* ~ 20 fm.
Comparing (75) and (76), one can see that the number N4 of produced
777~ atoms is determined by the number of nonatomic 77~ pairs in the
region of small k*. So, N4 1is actually proportional to the ratio
(o (r*)*)or/{|1—x= (r*)|*)zp in which the effects of the r* dependence as
well as the corrections due to nonequal emission times (t* # 0) and smoothness
assumption are to a large extent compensated for, being practically the same for
the wave functions in continuous spectrum at k* — 0 and discrete spectrum at
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r* < |a|. In fact, according to (121)—(123), one can write the ratio of the finite-
size correction factors at small relative momenta (k* < (1/7*)*) and moderate
distances between the particle emitters ({r*)* < |a|) as

2

1+6n  _ (Wno(r™)/¥55"(0)2)5p :‘ N'(n) |© 146, _
T46(k%) (e () /05 0) D)5 U551 (0) ] 1+ (k%)

[1+¢( )Qfo] {1+O <<T;2>SL> + O (k**(r* >SL)} (125)

|al
thus leading to (42) up to a small correction due to the transition 7070 — 7+7~
(see (154)). Recall that though the k* dependence of the correction factor in
braces is quadratic at very low values of £*, in fact, in a wider k* interval and
for sufficiently small values (r*)* <~ 10 fm, it shows a quasi-linear and almost
universal behaviour (see Fig.9 and [1]).

4.4. The n Dependence. Neglecting the production of the 77~ atoms with
the orbital angular momentum [ > 0, suppressed by powers of the 7+7~ Bohr
radius |a|, the pionium production probability is given in (34) and depends on
the main quantum number n as

(1+6,)
nd

o (14 6,)[e™ (0)]? o (126)

The correction factor (1 + 4,,) slightly modifies the n~2 law of a simple ansatz
in (23). It follows from (125) that the n dependence of the short-distance part
of the correction d,, is dominated by the renormalization effect of the strong FSI
on the two-pion atomic wave function and that the renormalized correction (see

also (42))
%2\ Sk
5. =6§(0)+ 0O <<2—2> ) . (127)

Figure 12, ¢ confirms that the short-distance part of the correction ¢/, is prac-
tically independent of n and equal to §(0). The renormalization correction
2¢(n) fo/(nla]) ~ 6fo/(n|a]) is the largest for low values of n. For exam-
ple, for pionium at n = 1 it composes ~ 0.3% (see also Fig. 10,b). As for the
w and 7’ contributions to ¢/, their n dependence is not negligible and the shifts
from §(0) compose up to ~ —0.004 and ~ —0.1, respectively.

In [51,52], the effect of the strong interaction on the n dependence of the
pionium wave function has been studied numerically, solving the corresponding
Schrodinger equations. Thus, in [51], the ratio R,, = ¥y0/ 1/100“1 and the difference
AR, = Ry — R, have been calculated for n = 1 — 3 using an exponential form
of the short-range potential. According to (112), (119), and (121), one has, up to
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corrections O(fo/a) and O(r*?/a?):

R, = 7w”°l(r*) Ep )
ot (1) r (128)
_ . Jo 1 fo
AR, =R; — R, = 7 {¢(1) n(b(n)} <1+r*).

From Fig.1 of [51], one can deduce a value of ~ 0.15 fm for the scattering
length fo to achieve an agreement with the prediction of (128) for the ratio R,
at d < r* < |a|]. The differences AR, presented in Fig.1 of [51] for n = 2
and 3, are however by a factor of 1.6 higher than the corresponding predictions
of (128). For example, for 103AR,, at r* = 8 fm, n = 2 and 3, one can read
from this figure the values® 1.0 and 1.3, while (128) respectively predicts 0.6 and
0.8. This discrepancy may indicate that the calculation error, declared in [51] to
be better than 10~%, was underestimated by a factor of 5.

In [52], a more refined numerical study of the n dependence has been done
accounting for the second channel (7°7°) and extended charges. The hadronic 7w
potentials have been chosen to reproduce the phase shifts given by two-loop chiral
perturbation theory. The quantity d,, = nd/ 29n0 /110 — 1 has been calculated for
n = 1—4. Similar to (128), one has for d < r* < |a]

— 3/2%0(7'*)_ ;_E{ _l }
dn =n Pro (™) 1 a] o(1) n¢(n) ) (129)

up to corrections O(for*/a?) and O(r*?/a?). The results of numerical calcu-
lations presented in Fig.2 of [52] are in qualitative agreement with (129), d,
being almost constant (except for the region of very small 7*) and showing the
right n dependence: d,, ~ —(1 — 1/n). Similar to [51], the numerical results for
|d,,| are however higher, now by a factor of 2.5, than the predictions of (129)
calculated with fo = 0.2 fm which should correspond within ~ 10% to the
choice of the potentials in [52]. Since the presence of the second channel leads
to a negligible modification of (129) (fo — Re A** =~ fy; see next chapter)
and the correction due to the extended charges is also expected to be negligible
(~ —1/6 (r?),/a?), the discrepancy in the size of the correction d,, has to be
attributed to the insufficient calculation accuracy, or to the incorrect matching of
the scattering length.

*One should correct the figure by interchanging the curves. The author is grateful to O. Voskre-
senskaya for pointing out this misprint.
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5. TWO-CHANNEL WAVE FUNCTIONS

5.1. Continuous Spectrum in Both Channels. It was implied until now
that a long-time FSI takes place and can be separated in the Bethe—Salpeter
amplitudes in the near-threshold final-state elastic transitions 1 + 2 — 1 + 2,
only. In principle, however, it can be separated also in the inelastic transitions,
14 2 — 3 + 4, characterized by a slow relative motion in both entrance and exit
channels. The necessary condition for such a separation is an approximate equality
of the sums of particle masses in the intermediate (1m3+ m4) and final (my +ms)
states. Some examples are the transitions 777~ < 7979 7Kt < 7°K°, or
7~ p « mn. For such processes only the second term in the upper diagram
in Fig.1 contributes, now with the particles 3,4 in the intermediate state. In
the equal-time approximation, the corresponding amplitudes reduce to the wave
functions describing a two-channel scattering of the particles 1,2 with the inverse
direction of the relative three-momentum: k* — —k* (the scattering is viewed
in the diagram from right to left so that the final-state particles 1,2 are in the
entrance scattering channel). We will denote the channels as « = {1 + 2} and
8 = {3 + 4}, and the corresponding wave functions describing the scattering
a — aand a — [ — as 1) and P, respectively. Outside the range of the
strong FSI, »* > d, they can be written, for the a- and (-channel continuous
spectrum, as [48]:

G(Pm 7704)

r*

e () = N(1a) [e_ik*r*F(—ina,Lifa) + fe (k) 1 ;
(130)

W 5°) = N o) £2067) B2 I . ) g2 2 2000,

Ho T r*

where N (1,) = e(2) /A (n,), k* = k% and

2 _ 2 * *\212
[ma® —m3® + (W] + w3)?] —my? = N_ﬁk;;Q

If* 2 _
? A(wf + ws)? e

+2p8(m1 +mg—mz—may).

(131)
The approximate equality in (131) corresponds to the nonrelativistic expressions
for the energies: w? = m; + k%?/(2m;), j = 1,2. We consider here the systems
with the Coulomb interaction absent in the channel 3, so ag = oo, ng = 0,
Ac(ng) = 1, G(pg,np) = exp (ipg), and x(ng)/as = ik}; the amplitude ”
in (130) then reduces to the expression indicated by the arrow. The [-channel
momenta at the a-channel thresholds (k) = 0) for nn-, 7K-, nN-, KK-, KN-
and N N-systems are given in Table 3. This table also demonstrates that even
close to the a-channel threshold, the use of the nonrelativistic approximation can
lead to noticeable shifts in k.
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Table 3. The 3-channel momenta k calculated at the o-channel thresholds k7, = 0. Also
shown are the relative shifts Ak} /k; arising from the nonrelativistic approximation in
the second formula in (131)

a— B atn - | K - |7 p— | KTK-— | Kp— | pp—
— 7970 — 79K° — 7% | - K°K° — K% | - @an

kj, MeVlc 355 11.3 28.0 162.9 1 58.6 1493

k', fm 5.6 17.5 7.0 —i 3.1 —i34 | —i40
Ak k5, % -0.84 -0.07 -0.46 0.20 0.13 0.03

Similar to equation (96) in the single-channel case, the amplitudes

FN = PN A Ac ()] V2, (132)

where f are the amplitudes of the low-energy s-wave scattering due to the
short-range interaction renormalized by the long-range Coulomb forces,
A\, N = a, 3. The time-reversal invariance requires f* = fA*. It is conve-
nient to consider the amplitudes 2" and f*"" as the elements of the symmetric
matrices fc and f related by the matrix equation

FO) = [A@)]2 fe (k) [Ac()] 2. (133)

The single-channel expression (97) for the amplitude f. can then be rewritten in

a matrix form: L
. . 2v(H)\ ~
k™) = (K‘l - M) : (134)
a
where a, 7, x(7), and A.(7)) are diagonal matrices in the (o, (3)-channel repre-
sentation, for example, [A.(7)]ax = Ac(nx)daxn. The symmetric matrix K has
to be real for the energies above both thresholds due to the two-channel s-wave
unitarity condition [25] o o
Imf = ftRek f, (135)

where the diagonal matrix kxy = k}dan. Usually, the K matrix is real also
for negative kinetic energies (provided sufficiently fast vanishing of the short-
range potential with the distance), and so it can be expanded in even powers
of k* = k}, similar to (87) or (88) with the parameters substituted by the
corresponding matrices (e.g., fo — fo).

Since, in the cases of practical interest, the particles (pions, kaons, nucleons)
in the channels o and 3 are members of the corresponding isotopic multiplets,
one can assume the parameter matrices diagonal in the representation of the
total isospin [48]. The elements of the parameter or K (K ~1) matrices in the
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channel representation are then given by the corresponding isospin projections.
Particularly, for a = {7*7~}, 3 = {7x°7°}, one has

2.0 ,1.
6ya=§(§)+§fé)v
V2

o =1 = ()~ £, (136)
1o 2.0
9L+ 1

Analogous relations, with the substitutions (0) — (1/2) and (2) — (3/2), take
place for the channels o = {7 p, 7" K", 7t K~}, 3 = {n°n,n°K% n°K"}.
For the channels o = {KTK~, K~p,pp}, 3= {K°K", K%, nn}, one has

1 1

5o =107 =507+ 1) 1= =5

(77 = £57), a3
where the parameters féo) and fél) have now positive imaginary parts due to
the effective inclusion of the additional channels opened at the energies of the
elastic thresholds (k7 = 0) in the reactions KK — 7w, m, KN — 7/sA, 7's¥,
NN — mesons.

Note that the use of the isospin relations (136) and (137) implies that the vio-
lation of isotopic invariance is solely associated with the Coulomb factors A.(7;)
(strongly deviating from unity at k; < 27/|a;|) and with the mass differences be-
tween the members of the same multiplets (k) # k;). These relations, however,
neglect the direct violation of isotopic invariance of the order of O(fp/a) due to
the renormalization effect of the Coulomb interaction on the scattering lengths,
usually leading to the shifts on the level of several percent. Within this uncer-
tainty, one can also use (136) or (137) directly for the elements of the matrices
KlorK.

The difference between the channel momenta can be neglected sufficiently
far from the threshold. Then, one can apply (136) or (137) to the amplitudes
fjj/ in the absence of the Coulomb interaction and switch on this interaction in a
similar way as in the single-channel case [53]:

£ (1% ~ :V— * .7 2X ) ! ~

Fo) = a2 { 7w ik - 20 e as
One may note that (136), (137) correspond to the two-dimensional unitary trans-
formation fo = UL fU, Uy; = Uy = cos ¢, Uja = —Us = singp. Since it
applies also to the dy matrix, one immediately arrives at the same transforma-

tion of the complete amplitude f in the case of the absent Coulomb interaction
and k = k*1.
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5.2. Discrete Spectrum in the o Channel. One can repeat the same argu-
ments as for the single-channel case, starting from the general solution in (104)
with the substitution f. — f&®. For a discrete energy level E, = —r,%/(2u),
the amplitude f. has to have a pole or, equivalently, det f;*(ik,) = 0. Follow-
ing [50] and introducing the matrix

(A*l)AA’ _ (K—fl))\y B Z'(S)\A/(S)\,gk;, (139)

one can rewrite this requirement in the form of Eq.(113) modified by the sub-
stitution K (ik,) — A““(iky,) and thus, fix the discrete energy levels similar
to (114):

ki = K5 {1+ 2465 [1+ A%k [p(n) — 1] + O(a™?)] }, (140)

Koo —ikhdet K ikp(KP)?

Ao — — S —
L~ ik K07 1~ ik Ko9

(141)

where @ = a,. Since K(ik,) = K(0)[1 + Tr O(fodo(na)~2)] and K (ikin)
k5(0)[1 + O((nakg)_Q)], one can safely make the substitutions K (ik,) — fo =

K(0) and kj(ikn) — k5(0) and write, with the relative errors O(a™?) less than
a fraction of per mil,

KM — ikt det Koy ona . fo — ik det fodan Oxa

AN = __ = , (142)
1— ik} KPP 1—ik; fy°
particularly,
* Ba)2 * a2
Re A% — oo _ Kﬁﬁ (kﬁK O() - paa _ BB (kﬁfo )
1+(k>[;m35)2 0 0 1+(kg éﬂﬁ)z’

(143)
kE(Kﬁa)Q . k?}(fo 0()2

Im A% — - .
m L+ (R5EPP)2 1 4 (ke f00)2

In (142) and (143), kj simply denotes kj(0) or kj(irn). It can be seen
from Table 3 that k;';*l represents a scale which is intermediate between the

Bohr radius |a| and the elements of the matrix fo. As a result, the terms like
O(kj5( )2 /a) or O((ak[’g)_Q) contribute less than a fraction of per mil and can

be omitted. As for the terms O((k}f3*")?), their contribution is on a per mil
level and is retained.

The s-wave solutions corresponding to the a-channel discrete spectrum are
again given by the second term in (104) (N (n,,) = 0) with the finite normalization
N = Nfe*/A* introduced in the same way as in (117) modified by the
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substitution KX — A**. As for the corresponding (§-channel s-wave solutions
1/)50(7"*), they are given by the second of equations (130) with

fcﬁ(y _ ! Kﬁa — !
foo =N 1 —iky KPP =N

NfI% = N' A% APe (144)
the second equality following from (141) and the explicit inversion of the sym-
metric matrix f; '

Dfe = K —ikjdet K, Dffe = KPe,
2 N N
DMEKM+ﬁMK, det K = K*“K%% — (KP)2, (145
a
2x

D =det f; ' det K =1 — ik KPP + al
a

(K — ik} det K),
where X denotes here x(7q); recall that x(ns)/ag = ik} due to the absent

Coulomb interaction in the channel 5. Note that the product D fc’\)‘/ is finite since
the amplitude pole for a bound state is compensated by the corresponding zero of
the factor D oc det f 1. For the continuous spectrum at the a-channel threshold,
K = foand D =1— ik} [y — (2in/|al)(f§ — ik} det fo).

As a result,
fodo
+TrO <n2a2 ,
ikgr*

WO (r*) = N'(n)APe [EEZ (146)

Ha T
i fed ikgr™ Ad
=N(n)f0ﬁﬁ1/“—ﬁe 1pmrof Lo )|
L —ikpyfo" V Ha 77 na

where G = é(pn,nn) with the arguments p,, and 7, taken at kY = ik, (K, is
expressed through fo in (140) and (143)), and N’ (n) = ¢¥<3(0)[1 + O(f$ /a)]
is fixed by the normalization integral (118) for the wave function 5§ . It can be

calculated also analytically using (121) with the substitution fy — Re A** =~ f§**
(see Appendix B):

G ¢ —iksdet fo G
2 = M) a2e & — ) RN G

N'(n) |? B 2Re A% 9 Re A2\ ?
‘ ey O T O ( a ) S

Using (145), one can express the amplitudes f2 (k*) at kX = 0 (y = —im,
K = fp) through the elements of the A-matrix (related to the scattering lengths
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M in (142)) with the relative error O(a~2) less than a fraction of per mil:

F2X0) =AM 1+ %Aw +0(a™?)

5.3. Universality. Comparing (130) and (146), one may see that the univer-
sal r* behaviour of the s-wave amplitudes ¢* in continuous (k* — 0) and
discrete spectrum takes place with similar accuracy as in the single-channel case.
Thus, using the expansions (106) and (119) for the amplitudes ¥, modified by
the substitutions fo — f&*(0) and fo — A*®, respectively, one has, for the
measures of the universality violation defined as in (122),

* )2 ao
Azbk*(r*) = 47r0<7k6({: ) ) +47T20<—( 0 )2> +

2 det f
- —%ft)wéM/éw. (148)
la| 1 — k5 fo

a?

d *2
7{25) +0(22 ) +0(p%),  (149)

. AdA *2
AR () = TrO(ZZa(;) +O<r > +0(p?).

+TrO

a?

The presence of the second channel manifests itself through a new scale kj
(see Table 3), basically leading to the additional correction of 47O (kj( (’)3 “)?/a)
which is still on the negligible level less than a fraction of per mil.

For the production cross sections, instead of (75) and (76), we now have:

dSo dbo s 2
= Gs,a <‘ e (r* > +
Y172 Bp1d3pa Y172 d3p1 d®pa ES: S, P2 (x7) ops
+ 737 2oy dg <\Wf (r*) 2> (150)
3Y4 33— s, T ;
M dpg dPpy 3 ’ 8 aPs
d3oy d®

b 3 og Siaq |2
=27 Gs,a <‘ - \r > +
R d*Py, S d*p1d®pe 7 :/’bﬁ ) 0PS

d°c
3 0 S,B(,.*
+ 2 g 0 (|05

2
> , (151)
0PS

where p; = Pym;/(m1 + mz2) in (151) and b = {n0}. Since the particles 1,3
and 2,4 are usually the members of the same isospin multiplets, assuming isospin
equilibration (justified for multiple hadron production at midrapidities), we can
take y1y2dS0f = 7374d605 as a common factor in (150) and (151) and also put
Gs,a = Us,p-
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The two-channel effects in the production cross section, being quadratic in
the amplitude fg ®, usually represent less than several percent of the strong FSI
contribution (a fraction of percent in the cross section). Thus, for a near-threshold
two-pion system produced according to a Gaussian r* distribution (159) with the
characteristic radius rg = 3 fm and, taking the two-pion s-wave amplitudes
from [8] (f&* = 0.186 fm, fj* = —0.176 fm), the contributions of the FSI
transitions 777~ < 7t7~ and 7t7~ — 797Y to the 7t 7~ production cross
section respectively compose 7.72 and 0.16%; these contributions are somewhat
higher, 9.66 and 0.20%, for the amplitudes from [5] (f§** = 0.232 fm, foa =
—0.192 fm). At large rg, the elastic and inelastic contributions vanish as f§/rg
and | £ /rg|2, respectively. One should also account for the correction due to
the deviation of the solutions in (130) and (146) from the exact ones in the inner
region r* < d. Though this correction vanishes as rg 3, at rg = 3 fm, it is still
comparable to the contribution of the inelastic two-pion transition, composing
0.25 and 0.20% for the amplitudes from [8] and [5], respectively.

Note that assuming ymd%ggs,a = 7374d605 Gs 3, the correction to the
correlation function at a given total spin .S, total four-momentum P, and a small
generalized relative four-momentum g = {0, 2k*} — 0 can be written as

AR = /d3r*WP(r*) { [|¢2k* () [¢7 (r*)ﬂ _

= [[7me )  [Pe)

2
}} » (152)

where Wp(r*) = [dt*gp(t*,r*;0)/ [ d*zgp(x;0) is the normalized distribution
of the vector r* of the relative distances between the emission points in the
pair c.m. system and 1 denotes the solutions in (130) extended to the inner
region 7* < d. In the case of only two open channels o and f3, the leading
part of the correction scaled by Wp(0) is expressed through bilinear products of
the amplitudes f’\)‘/ in Eq. (44) of [48]. After a straightforward though lengthy
algebra, it can be written in a more explicit form:

d - —1\aa
AR % —AxWp(0) Aclna) |72 5y (R0
d - d
Ba|2 —1\68 aa pBax —1\Ba | .
PP (R 4 9Re (2 00 o (R |5 153)

at k* = 0, twice the derivatives of the inverse K -matrix elements coincide with
the effective radii d())‘A'. Similarly, in the case of discrete spectrum, the leading
correction to (|12 (r*)|2+[¢2, (r*)|2) is also given by (153) with the substitutions
A.(no) — N'(n) and f2 — A’ For the Gaussian r* distribution, (153) is
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valid up to subleading contributions O(k*2a1/rg) (see a discussion after (88))
and O(fg>d*/r).

It is important that the presence of the second channel does not practically
modify the ratio (125) of the finite-size correction factors in discrete and contin-
uous (k* — 0) spectrum at moderate distances r* < |a|. The only modifications
are the substitution fy — Re A“* ~ f§'* and the appearance of the negligible
correction 47O(k5(fy*)?/lal):

480 _[Gallusn ) + Gollvan )P lIves" 02 _

L0k [Gal [ () 2) 8 + Ga ([0 i (925 w525 (0) | =2
2

| N'(n) 1+6, 2Re A
“ o1 (0) 1+5<k*>{”¢’(") nla] ]

X {1 +0 ( <r;22>SL> + O(k**(r*2)*) 4 47O <%°|a)2> } . (154)

6. FINITE-SIZE EFFECT IN THE DIRAC EXPERIMENT

6.1. 77~ System. We will use the results of the UrQMD transport code
simulations of the pion production in pNi interactions at 24 GeV in the conditions
of the DIRAC experiment at CERN [29]. Since we are interested in the region of
very small relative momenta () = 2k* < 20 MeV/c, where the angular distribution
of the vector Q is isotropic for noncorrelated pions and, for < 10 MeV/c, the
detector acceptance is practically independent of the direction of the vector Q,
one can simplify the analysis integrating over this direction. The finite-size effect
is then determined by the distribution of the relative distance r* between the pion
production points in the pair c.m. system, irrespective of the angular distribution
of the vector r*. In fact, due to the applied cut Qr < Q5 = 4 MeV/e [4],
this is true for Q@ < Q5 only, see the discussion after (99) and (101)). For
larger @ values or, in the case of a two-dimensional (Qr,Q) analysis, one
needs two-dimensional (r%., 77 )- or (r*,cos 6,«)-distributions. We will neglect
this complication here.

The simulated r* distribution is shown in Fig.2. The tail of this distribution
(r* > 50 fm) is dominated by pion pairs containing a pion from the decays of w
and 7 resonances, except for the pairs with both pions from one and the same
decay. The respective decay lengths in the rest frame of the decay pion are about
30 and 900 fm; the decay length ! & 7(pdec)/mr is determined by the resonance
lifetime 7 and the four-velocity pgec/m, of the decay pion. As a consequence
of the exponential decay law, the form of the corresponding r* distributions is
nearly exponential, except for the region of small 7* dominated by the phase
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space suppression factor oc 7*2. The exponential form is also distorted due to

the averaging over the continuous spectrum of the decay momenta and over the
emission points of the second pion. For * less than 2000-3000 fm, the simulated
7’ contribution (~ 1% of pion pairs at ) < 50 MeV/c) can be sufficiently well
parametrized by an exponential-like formula interpolating between the phase space
and exponential behaviour:

dN T T3 . «
> % = Ny F(r*5 1, Ly ), (155)
Fresry, by) i {1 exp[ 22 (1+02x21+0'15x2y)]}e_y
yI'm's ) = 574 - 2 . T . 5 /19 )
2.2 T 1+a5/125 (156)
7’* 7"*
T = y= )
Ty Ly
where r,y = 2 fm, I,y = 790 fm. At the same time, a good description of

the w contribution (~ 19% of low-(Q pion pairs) requires a superposition of two
exponential-like expressions:

3 % = F (5 10y ) + o F (5 rau, o). (157)

i#n’ "
The parameters ry, = 1.07 fm, 13, = 43.0 fm, r9,, = 2.65 fm, Iz, = 25.5 fm,
N1w/now = 0.991 in the interval 2-200 fm and r1,, = 1.00 fm, [;,, = 44.0 fm,
ro, = 2.55 fm, Iy, = 25.8 fm, ny,, /N2, = 0.845 in the interval 2-350 fm. We
will use the former parameter set, but we have checked that the use of the latter
one leads to a negligible change (< 0.1%) of the breakup probability. The rest
of the r* distribution due to the pions produced directly in the collision, in the
rescatterings or in the decays of resonances with the decay lengths shorter than [,
is peaked at ~ 3 fm and its main part (~ 60% of low-@ pion pairs) including the
tail for r* = 10—100 fm can be effectively described by a power-like expression:

£ \ 2« —28
1+(7” ) ] , (158)
M

where rp¢ = 9.20 fm, o = 0.656, 8 = 2.86; note that the tail vanishes as
(r*)755, i.e., much faster than the Lorentzian (o = 3 = 1). The remaining short-
distance part of the r* distribution (~ 20% of low-Q) pion pairs) is strongly shifted
towards the origin because the UrQMD code assumes the point-like regions of
the decays and rescatterings; particularly, r* = 0 for ~ 8% of low-Q 77~ pairs.
Therefore, we will represent this part by a Gaussian distribution:

M(T*;T‘M)a)/@) = T*Q

. ) 7'*2
G(reirg) =r Qexp(—%) : (159)
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where the Gaussian radius rg ~ 1—2 fm. As a result,

N(mim;) .
Z %:nM./\/l(r*;rM,oz,B)—l—ngg(r*;rg). (160)
i, jF#w,n’

We will also represent the short-distance part of the r* distribution by the Gaussian
contribution alone, i.e., put nys = 0 and 7g = 3 and 2 fm in (160).

The correction factors 1 + §(k*) and 1 + 4,, corresponding to the r* distri-
butions 7', w, M, G, required to calculate the 7+ 7~ -production cross section in
the continuous and discrete spectrum, are shown in Fig. 11. The two sets of his-
tograms denoted by the same lines (dotted, solid, dash-dotted, dashed and solid)
correspond to the two-pion scattering amplitudes from [8] (lower) and [5] (upper).
In increasing order, they correspond to the r* distributions 7', w, G(r*;3 fm),
M(r*;9.20 fm, 0.656,2.86) and G(r*;2 fm). One may see that the correction
factors corresponding to the n’ contribution are practically independent of the
two-pion scattering amplitudes, and noticeably deviate from the infinite-size cor-
rection factors 1+ 0°°(k*) = 1/A.(n) (the curve) and 1 + 65° = 0. We thus do
not include the ' meson in the class of LL emitters, unlike the  meson with the
decay length of ~ 10° fm.

The calculation of the correction factors was done according to the two-
channel expressions given in the numerator and denominator of the first equality
in (154):

SL

1400 = ([0 0"+ [0 )7) 1A 6D

qP

SL
L+ = (050 + [0i@) ), es’ @] a)
where o and 3 respectively denote the channels 7t7~ and 7°7°. However,
the account of the coupled 77" channel and of the leading correction due to
the approximate treatment of the wave function inside the range of the strong
interaction, does not practically influence the results corresponding to the 7’
and w contributions and only slightly (< 1%) shifts up the correction factors
corresponding to the short-distance M and G ones. A shift of the correction
factors can arise also from the uncertainty in the s-wave elastic 7~ -scattering
length fo. The shift due to ~ 20% difference of the two-pion scattering amplitudes
from [8] (fo = 0.186 fm) and [5] (fp = 0.232 fm) is ~ 2—3% for the short-
distance M and G contributions and ~ 1% for the w one. The global shifts are
however not important since they can be absorbed in the product A\g = A in (33)
and (34).
In accordance with the results in Table 2 and Fig.9, one may see in Fig. 11
the nearly universal slope of the factors 1 4+ §(k*) corresponding to the short-
distance M and G contributions. In accordance with (101), the slope scales with
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Fig. 11. The correction factors 1 + §(k*) (a) and 1 + §,, (b) as functions of the relative
momentum @ = 2k* and the main atomic quantum number n, respectively. They are
required to calculate the w7~ -production cross sections in the continuous and discrete
spectrum according to (33) and (34). The two sets of histograms denoted by the same
lines (dotted, solid, dash-dotted, dashed and solid) correspond to the two-pion scattering
amplitudes from [8] (lower) and [5] (upper). In increasing order, they correspond to the
r* distributions n’, w, G(r*; 3 fm), M(r*;9.20 fm, 0.656,2.86) and G(r*;2 fm) defined
in (155)—(159). The calculation was done according to the two-channel expressions given
in (161) and (162), taking into account the correction in (153). Note that the infinite-size
correction factors 1+ §°°(k*) = 1/A.(n) (the curve) and 1 4 46;° =0

fo and is ~ 20% steeper when using the two-pion amplitudes from [5] instead of
those from [8]. This is clearly seen in Fig. 12, where we plot the same correction
factors as in Fig. 11 in a larger scale and with the subtracted intercepts 1+9(0). At
@ > 20 MeV/ec, there is also seen ~ 5—10% variation of the slope corresponding
to different short-distance distributions.
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Fig. 12. The differences 6(k*) — 6(0) (a), 6» — 6(0) (b) and &, — 6(0) (c) calculated
from the m™m~ correction factors given in Fig.11. The latter difference is corrected
for the effect of the strong interaction on the normalization of the pionium wave function
according to (41). The differences corresponding to the 1’ contribution (dotted histograms)
are not seen except for the first bin in plot a; in plots b and ¢ they compose ~ —0.1

Figures 11 and 12 also demonstrate the violation of the universality relation
dn, = 6(0) up to ~ 0.4% for the short-distance and w contributions and up to
~ 9% for the i’ one. Figure 12,c shows that, in the case of the short-distance
contribution, this violation is mainly related to the effect of the strong interaction
on the normalization of the pionium wave function. Indeed, the difference 4/, —
5(0), corrected for this effect according to (41), practically vanishes.
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Fig. 13. The 7+~ correction factors 14 §(k*) (a) and 14 6, (b) calculated in the same
way as in Fig. 11 assuming the mixtures of 1% 7', 19% w, and 80% G contributions with
rg = 3 fm (lower and middle) and r¢ = 2 fm (upper). The lower and upper histograms
correspond to the two-pion scattering amplitudes from [8], the middle one — to those
from [5]

In Fig. 13 we plot the correction factors corresponding to the mixture of
1% 1, 19% w and 80% short-distance contributions, as expected from the UrQMD
simulation of low-@) pairs of charged pions in conditions of the DIRAC exper-
iment. We neglect here the dependence of the contributions on @, as well
as the dependence on the pion charges. In fact, within the analysis region of
@ < 15 MeV/e, the simulated w contribution increases with decreasing () by
~ 0.01 and its average value for 7™ 7~ pairs composes ~ 0.15 [29].

To show the effect of a possible uncertainty in the short-distance part, we
describe it by the Gaussians with different characteristic radii 7¢ = 3 and 2 fm.
To account for the uncertainty in the two-pion scattering amplitudes, we have
used those from [8] (fo = 0.186 fm) and from [5] (fo = 0.232 fm). One may see
that the corresponding global variations of the correction factors compose ~ 5
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Fig. 14. The differences §(k™) —6(0) (a) and 6, —(0) (b) corresponding to the correction
factors in Fig. 13

and ~ 2%, respectively. In Fig. 14, we plot the same factors with the subtracted
values of the intercept 1 4+ §(0). One may see that after the subtraction, the
correction factors calculated for the same two-pion scattering amplitude but at
different values of rg practically coincide for any n in discrete spectrum and for
@ < 20 MeV/c in continuous spectrum. Since the subtraction can be included
in the overall normalization factor, one may conclude that the uncertainty in the
short-distance part of the r* distribution is of minor importance for the relative
momenta ) < 20 MeV/c. As for the effect of ~ 20% increase of the s-wave
elastic 777~ -scattering length, it leads to ~ 20% increase of §,, — do, and to
~ 20% decrease of §(k*) — 6(0) at Q = 12 MeV/ec.

To estimate the effect of the uncertainties in the w and 7’ contributions, we
plot in Fig. 15 the differences 6 — 6(0), varying these contributions by ~ 30%.
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Fig. 15. The differences §(k*) —6(0) (a) and &, —(0) (b). The solid histogram coincides
with that in Fig. 14. The dashed ones correspond to the 0.19 £ 0.06 w contributions and
the dotted ones — to the 0.010 & 0.003 1’ contributions

One may see that the corresponding variations of the differences respectively
compose ~ 30 and ~ 20% for §(k*) — §(0) at @ = 12 MeV/c and, they are
quite small (< 0.0003) for J,, — §(0). It should be noted that the »’ contribution
to the correction factor at () > (). is quite close to the infinite-size contribution
1/A.. The latter is included in the fit of the nonatomic 7+ 7~ correlation function
thus essentially reducing the corresponding uncertainty in the breakup probabil-
ity. This is demonstrated in Table 4, where the contributions —AN4 /N4 and
ANET/NE to the relative shifts AP, /P,y = —AN4/Ng + ANK /N5 of the
breakup probability due to the neglect of finite-size corrections, corresponding to
different mixtures of the 7', w, and G contributions and different fit and signal
intervals, are presented (see (43)—(47)). One may see that the 30% uncertainty in
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Table 4. The contributions —AN 4 /N4 and AN /N%" to the relative shift APy, /Py, =
—ANA/Na+ ANY /NS of the breakup probability (1) due to the neglect of finite-size
corrections. The nonatomic 77~ correlation functions, calculated according to (44)
for different mixtures of the n’, w, and G(rg) contributions, were fitted by (45) (fits
t=1-T7),and ANs/N4 and ANY /N5' were calculated according to (46) and (47). In
approximate correspondence with [4], a uniform population of noncorrelated pion pairs
in ) was assumed in the considered fit intervals (Q1,Q2), and the ratios N°5° _ /NK
in the signal intervals (0, Qc.t) were set equal to 16, 9, and 4 for Q... =4, 3, and
2 MeV/c, respectively

FIT i 1 2 3 4 5 6 7 . .

Fit Signal
rg, fm 3 3 3 3 3 3 2 | region cut
w, % 19 | 25 | 13 ] 19 | 19 | 19 | 19 | Q1,Q2 | Qeus
n', % 1.0 | 1.0 | 1.0 | 1.3 | 07 | 1.0 | 1.0 | MeVic | MeV/c
Phase shifts (81| (81| [81 | [81 | (81| [51] I[8]

—ANA/Na, % | 1.09 | 1.61 | 0.58 | 1.11 | 1.06 | 0.89 | 1.14 | 4,20

ANK/NET, % | 4.06 | 6.77 | 1.30 | 4.22 | 3.86 | 2.69 | 4.48 4
334 | 546 | 1.18 | 3.47 | 3.18 | 2.26 | 3.63 3
208 | 337 | 0.80 | 2.17 | 1.98 | 1.44 | 2.24 2
—ANa/Na, % | 1.02 | 1.43 | 0.61 | 1.04 | 0.99 | 0.90 | 1.03 | 4,15 —
ANK/NE % | 3.62 | 5.57 | 1.50 | 3.70 | 3.42 | 2.66 | 3.82 4
3.00 | 459 | 1.32 | 3.09 | 2.85 | 2.25 | 3.14 3
1.89 | 2.88 | 0.88 | 1.96 | 1.80 | 1.44 | 1.96 2
—~ANa/Na, % | 0.83 | 1.11 | 0.55 | 0.85 | 0.81 | 0.78 | 0.83 | 4, 10 —
ANK/NET, % | 243 | 3.62 | 1.16 | 2.53 | 2.35 | 1.92 | 2.51 4
212 | 3.14 | 1.06 | 221 | 2.04 | 1.70 | 2.17 3
139 [ 2.05 | 072 | 1.46 | 133 | 1.12 | 1.41 2

the 7’ contribution leads to negligible variations in the relative shifts AN, /N4
(< 0.03%) and ANBT/NE (< 0.2%).

As for the uncertainty of the short-distance part of the r* distribution, in-
troduced by 30% decrease of the Gaussian radius from 3 to 2 fm, it also
leads to negligible changes of the relative shifts AN4/Na (< 0.05%) and
ANE/NB (< 0.4%) that rapidly decrease with decreasing upper boundaries
of the fit and signal intervals.

One can also neglect the present ~ 5% uncertainty in the 77~ -scattering
length fo. Thus even the variation of fy by 20% leads to rather small variations
of the relative shifts AN4/N, and ANEY/Nbr; e.g., for Qcyy = 4 MeV/c and
the fit interval (4, 15) MeV/c they compose only 0.12 and 0.96%, respectively.

The dominant uncertainty in the finite-size correction to the breakup probabil-
ity arises from the uncertainty in the w contribution. One may see from Fig. 16 that
the correction AP, almost linearly increases with the fraction f,, of 7+ 7~ pairs
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Fig. 16. Relative shift of the breakup probability APy, /Poy = —ANa/Na + AN /N5
(solid curve) due to the neglect of the finite-size effect as a function of the fraction f,,
of 77~ pairs containing a pion from w decay and the other pion from any short-lived
source, except for pion pairs from one and the same w decay. The fit and signal intervals
are (4,15) and (0,4) MeV/c, respectively (see Table 4). Also shown are contributions
of the relative shifts —AN4/Na (dotted curve) and ANY /N,'Kr (dashed curve) in the
calculated numbers of produced atoms and breakup atoms, respectively

containing a pion from w decay and the other pion from any short-lived source, ex-
cept for pion pairs from one and the same w decay; AP, /Py, ~ —0.032+0.41f,
for Qcut = 4 MeV/c and the fit interval (4,15) MeV/e. Thus, taking f, = 0.19,
a 30% (£0.06) variation in f,, leads to ~ 50% (£0.024) variation in AP,/ P,,.

The correction rapidly decreases with decreasing upper boundaries of the fit
and signal intervals. A decrease of the boundaries is however limited due to
the increase of statistical errors. Also, the decrease of Q.u; below 3 MeV/c
introduces a systematic shift of ~ 5% in the breakup probability due to possibly
insufficiently accurate description of the shape of the ) spectrum of the atomic
breakup 77~ pairs [4]. The optimal choice seems to be Q.ut = 4 MeV/c and
the fit interval (4, 15) MeV/c.

Taking f, = 0.15, the overestimation of the breakup probability in these
fit and signal intervals composes 3% and corresponds to ~ 7.5% overestimation
of the pionium lifetime. Correcting for this overestimation and assuming rather
conservative 30% uncertainty in the w contribution, the uncertainty in the breakup
probability composes 2%, corresponding to ~ 5% uncertainty in the extracted
pionium lifetime.
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One may expect an increase of the finite-size correction and its uncertainty
when taking into account the increased slope of §(k*) at Q > Q5" = 4 MeV/e.
On the other hand, one may expect a reduction of the correction when extending
the fit region down to Q = 0 and performing a more constrained 2-dimensional
fit of the (Qr, Q1) distribution taking into account also the shape of the spectrum
of atomic pion pairs.

6.2. 7—7~ and 77T Systems. As a by-product, the DIRAC experiment pro-
vides data on the correlation functions of identical charged pions which contains
the information on the space-time characteristics of pion production and can be
used to check the results of the UrQMD simulations. Thus, ~ 5-10% 7~ 7~ pairs
have been collected in pNi interactions in 2001, representing ~ 40% of the avail-
able statistics [29]. The @ distribution of these pairs is peaked at ~ 60 MeV/c
and drops essentially outside the interval (20,120) MeV/c due to a decrease of
the phase space and detector acceptance at small and large (), respectively.

Contrary to the case of the 77~ system, the correlation effect in the sys-
tem of identical pions extends and is measured up to the relative momenta
@ ~ 200 MeV/e, so neither the distribution of the vector Q nor the detector
acceptance can be considered independent of the direction of this vector. Since
further the angular distribution of the vector r* is not isotropic (particularly, the
characteristic width of the out component of the r* distribution increases with
the transverse momentum while those of the side and longitudinal ones decrease),
the required space-time information does not reduce to the distribution of the
relative distance r* between the pion production points in the pair c.m. system;
generally, the 3-dimensional distribution of the vector r* is required. Here we,
however, neglect this complication and calculate the 1-dimensional correlation
function of two identical charged pions in the same way as for the previously
considered case of the near-threshold 7+ 7~ system, i.e., assuming the uniform
distribution of the cosine of the angle between the vectors Q and r* for the
noncorrelated pions.

The calculated 7~ 7~ correlation functions R;ﬁ, R,™, Ry, and R; -
corresponding to the r* distributions 7', w, M(r*;9.20 fm,0.656,2.86), and
G(r*;rg), r¢ = 3,2,1.5 fm, are shown in Fig. 17. In Fig. 18, we show the corre-
lation function corresponding to 1% 7', 19% w, 60% M (r*;9.20 fm, 0.656, 2.86)
and 20% G(r*; 1.5 fm) contributions, as expected for the pairs of charged pions
from the UrQMD simulations; the errors are taken from the DIRAC pNi 2001
data. To demonstrate the sensitivity to the relative w contribution, f,, we show
in this figure also the correlation functions calculated with f,, varied by ~ 30%.
One can conclude that the different shape of the w contribution as compared with
the shapes of the short-distance ones (M and G) allows one, in principle, to
determine f, — the most critical parameter required to calculate the finite-size
7T~ correction factors. To estimate the statistics required to determine f,, better
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Fig. 17. The 7~ 7w~ correlation functions. The histograms in the increasing order of
the peak values correspond to the 7* distributions 1’, w, M(r*;9.20 fm, 0.656, 2.86),
G(r*;3 fm), G(r*;2 fm) and G(r*; 1.5 fm), respectively

than to 30%, we have fitted the correlation function in Fig. 18 by

R(Q) = N {A[foRy™ (@) + foRS(Q) + foRG ™ (Qiro)+
(1= for = fo = fRAG (@ ratscn B)] + (1= N} (1+1Q). (163)

The parameter N cares for possible normalization mismatch, the correlation
strength parameter A\ takes into account the contribution of LL emitters, parti-
cle misidentification as well as coherence effects, and the slope parameter b cares
for a possible mismatch in the @ dependence of the reference sample in the de-
nominator of the correlation function. Equation (163) does not take into account
a decrease of the fractions f,» and f, with increasing () which can amount to
~ 20% in the interval 0-200 MeV/c [29].

The dependence of the correlation function on the parameters rg, 74, @, 3 is
calculated with the help of quadratic interpolation. For example, to calculate the
rg dependence, three values of this parameter are chosen and the corresponding
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Fig. 18. The 7~ 7w~ correlation functions. The middle histogram and the fit curve cor-
respond to 1% 7', 19% w, 60% M(r*; 9.20 fm,0.656,2.86) and 20% G(r*;1.5 fm)
contributions. The errors are taken from the DIRAC pNi 2001 data [29]. The upper and
lower histograms correspond to the 1% 7, (19 +6)% w contributions and the unchanged
ratio 3:1 of the M and G contributions (unchanged form of the short-distance contribution)

correlation functions R *(Q;ré), i = 1,2,3, are used to interpolate to the
correlation function at a given value of rg according to (82) with the substitutions
Rrqup — Rg ™ and s, — rg. Similarly, the quadratic interpolation in the three-
parameter space 7, a, (3 requires the calculation of 33 correlation functions
Rog (Qiriv, ol ), i, j.k = 1,2,3.

The fit recovers the input parameters with rather small parabolic errors, partic-
ularly, f, = 0.18940.048. It appears, however, that the real error, corresponding
to the increase of the x? by one unit, is one order of magnitude larger. Thus,
to achieve the error in f,, smaller than 30%, one has to collect the statistics of
~ 5-107 7~ 7~ pairs. The fit results corresponding to such a statistics are shown
in Table 5, fits 1-6. Comparing fits 1-3, one may see that they are practically
insensitive to the nearly flat ' contribution to the correlation function, except for
~ 20% drop in the first 5 MeV/c bin. Since the drop contribution of 0.2 - 0.01 is
much smaller than the correlation function error of 0.02 in the first bin, the 0.01
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Table 5. The results of the fits according to (163) of the 7~ 7~ correlation function
corresponding to the mixture of the 1% 7', 19% w, 60% M(rm,a, 3), and 20%
G(rg) contributions with r¢ = 1.5 fm, rp = 9.2 fm, « = 0.656, 3 = 2.863. The
errors correspond to the statistics of 5 - 10” 7~ 7~ pairs from pNi interactions in the
conditions of the DIRAC experiment. Only the parabolic errors are shown, absent
error means a fixed parameter

FIT ¢ 1 2 3 4 5 6

N 1.000 0.999 1.000 1.002 0.998 1.017
+0.001 | +0.001 | 40.001 | 40.001 | 40.001 | 40.001

A 1.001 0.993 0.999 0.973 1.024 0.984
40.004 | +0.003 | 40.004 | 4+0.003 | 40.003 | 40.003

7, fm 9.253 9.239 9.161 7.381 10.844 | 6.322
+0.048 | +0.049 | 40.048 | +0.045 | 40.065 | 40.032

a 0.657 0.651 0.655 0.611 0.746 0.561
40.003 | £0.003 | 40.003 | +0.002 | +0.004 | 40.001

J¢] 2.864 2.893 2.853 2.717 2.813 3.001
40.010 | +0.010 | 40.009 | 40.008 | 40.013 | 40.006

rg, fm 1.495 1.492 1.496 1.505 1.554 1.5
+0.016 | +0.016 | 40.015 | £0.022 | +£0.013

fo 0.202 0.199 0.200 0.147 0.261 0
+0.003 | +0.003 | £0.003 | +0.004 | 40.003

fo 0.187 0.190 0.184 0.131 0.238 0.234
40.004 | +0.005 | 40.005 4+0.004

for 0.010 0 0.01 0.01 0.01 0.01
+0.004

b, (GeV/c)™' | 0.001 0.000 0.000 -0.033 | 0.036 | -0.162
+0.008 | +0.008 | +0.007 | 40.008 | 40.008 | 40.006

X2 0.01 0.02 0.01 1.01 1.01 33.9

shift in f, in fit 2 (f,; = 0) leaves the parameters and 2 practically unchanged,
except for the compensating ~ 0.01 shift in the correlation strength parameter
A. Comparing further fits 3-5, one can conclude that the true error in f,,, corre-
sponding to the increase of x2 by one unit, composes ~ 25% (~ 0.05). Finally,
fit 6 (f¢g = 0) shows that the oversimplified description of the short-distance
contribution could lead to ~ 25% systematic shift of f,,.

To infer the fraction f}~ for 7+ 7~ pairs at Q — 0 from the fitted f** for
identical charged pions, one has to take into account its () dependence as well as
the fact that, due to a lower multiplicity of the pairs of identical charged pions,
the fraction f=* is ~ 40% higher than £}~ [29].
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CONCLUSIONS

We have developed a practical formalism allowing one to quantify the ef-
fect of a finite space-time extent of particle emission region on the two-particle
production in continuous and discrete spectrum. We have shown that one can
usually neglect the nonequal emission times in the pair c.m. system, the space-
time coherence and the residual charge. The developed formalism is in the basis
of the femtoscopy techniques allowing one to measure space-time characteristics
of particle production as well as the low-energy strong interaction between spe-
cific particles. We have applied it to the problem of lifetime measurement of
hadronic atoms produced by a high-energy beam in a thin target, particularly, to
the measurement of pionium lifetime in the DIRAC experiment at CERN. Based
on the transport code simulations, we have calculated the so-called correction
factors that can be used to take into account the finite size of the production
region by multiplying the point-like Coulomb production cross sections of the
free and bound 7+ 7~ pairs. We have shown that the short-distance contribution
is of minor importance for the lifetime measurement since it leads to practically
the same and nearly constant correction factors for free and bound pairs which
cancel in the breakup probability. The most important is the fraction f,, of 7+~
pairs containing a pion from w decay and the other pion from any short-lived
source, except for pion pairs from one and the same w decay. Besides leading
to slightly different global shifts of the correction factors, it also affects their
- and n-dependence. The resulting correction to the «point-like» pionium life-
time composes ~ —7.5%. Assuming rather conservative 30% uncertainty in f,,,
due to the uncertainty in the w production and a simplified treatment of the
correction (e.g., the neglect of f,, variation in the analyzed () interval), one ar-
rives at ~ 5% uncertainty in the extracted pionium lifetime. It is shown that
this uncertainty could be diminished if the high statistics data on correlations of
identical charged pions were collected in the DIRAC experiment. The statistics
required to determine f,, to 10% and control the finite-size effect on the lifetime
to ~ 2% composes ~ 3 - 108 7~ 7~ pairs. The uncertainty in f,, can be also
reduced by tuning the transport simulations with the help of experimental data
on particle (resonance) spectra and femtoscopic correlations in proton—nucleus
collisions at the beam energy of ~ 20 GeV. The lifetime uncertainty can be
essentially reduced in future experiments using the multilayer targets [2] since
it will be basically determined by the uncertainty in the calculated number N4
of produced atoms only; even for the conservative 30% uncertainty in f,, the
corresponding uncertainty in the lifetime will be ~ 1% only. The above esti-
mates of the finite-size correction to the pionium lifetime and its uncertainty are
based on a 1-dimensional fit of the @ distribution in the interval (4,15) MeV/c.
One may expect their underestimation due to the neglected increase of the slope
of @ distribution for @ > Q5" =4 MeV/c. On the other hand, one may expect
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their reduction when extending the fit interval down to @ = 0 and performing
a more constrained 2-dimensional fit of the (Qr, @) distribution. The effect
of the finite-size uncertainty on the breakup probability of other hadronic atoms
remains to be studied. For 7K and 7wp atoms, it is expected similar to the one
for 7t~ atoms since ~ 50% decrease of the w contribution is compensated by
about the same decrease of the Bohr radius |a| thus retaining a similar finite-size
Coulomb FSI effect ~ (r*)*/a. As for K*K~, K~ p, and pp atoms, there is no
w contribution to the corresponding hadron pairs though, due to the smaller Bohr
radii, its effect can be partly substituted by the contribution of ¢ meson and other
sufficiently narrow resonances.
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was supported by the Grant Agency of the Czech Republic under contracts
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Appendix A
NONEQUAL EMISSION TIMES
We consider here the role of nonequal emission times in the Bethe—Salpeter
amplitude ¢z(z) = e%/2 + A?/J((;_)({E), where the correction Ay to the plane
wave is given in (10). We will consider the amplitude in the pair c.m. system,
in which the plane wave e/4%/2 = e=k"r" jg independent of the emission times.
First, we will prove the integral relation between the Bethe—Salpeter amplitude
and the corresponding nonrelativistic wave function, derived on the condition
k2 < p? [12]:

P (z) = /d‘gr’ék*(r* — ) e (1), (A.1)
* * 1 3 —ir(r*—r’ "{"’2 — k*? *
O (vF — 1/ 1) = (277)3/d el )exp<—zm|t |> ., (A2)

where m(t* > 0) = mg and m(t* < 0) = m;.

We start by splitting the product of the propagators into four terms, each
containing only two poles in the complex kg plane, situated in the opposite upper
and lower half-planes. Taking into account that in the pair c.m. system P = 0
and that the pair energy coincides with its effective mass: Py = mq2, we get

{(K% = m2 +i0)[(P — K)? —ma? +i0]} ! =
= [(ko — @1 +10) (ko + @1 — i0) (kg — M12 — @a + 10) (Ko — M2 + e —i0)] 1 =
= [m122 - ((711 - &32)2]_1{[(/60 — w1 + iO)(KQ + w1 — iO)]_1+
+ [(Iio — Mg — W + iO)(FLO —mig + Wy — Z'O)]il—
— [(ko — @1 +90) (Ko — Mg + o — i0)] "' —

— (ko + @1 —i0) (ko — M2 — @2 +i0)] 71}, (A3)
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where @; = (m;2+rx2)1/2. Assuming now that the amplitude f° = f5(kg, mi2—
Ko) is an analytical function in the complex k¢ plane, we can integrate over kg
using the residue theorem. Consider first t* > 0. In this case the integration
contour has to be closed in the upper half-plane, equation (10) then giving

1 ) 5 R . dBKe—im‘*
A (~+) —_ —z[mlg—i-(ml —mao )/mlg]t /2 X
va ()= gz e~ @ - G
X eiiwlt* f(—a)l mio + C:)l) —1 - ! -
’ mip 4@+ 20

, SO o 1 1
_ez(mlz—u&)t f(m12 _ WQ,WQ) ( + T):| . (A4)

mi2 — LT)l - &2 + 10 2w2
Since we are interested in the limit of small particle momenta in the pair c.m.
system: k*2 < p? and since the integral (A.4) is dominated by k2 ~ k*2, we can
use the following nonrelativistic approximations (recall that y = mimso/(mq +
mg) is the reduced mass of the two-particle system):

) *2 m12 _ m22 ) Mo k*2

miz2 = mi +mg + , Mg+ ——— =2(mi + ——— )
2u mio my1 +mao 20

(A.5)

2 *2 2

. K ~ g -~ - k75

w; = Mmy + -, m122 — (w1 —WQ)Q = 4m1m2, mig — W1 — Wy = ———
2m; 2u

Retaining in the integral (A.4) only the dominant pole term ~ [mqo — &1 — W2 +
i0]71, we get

+) _ 1 dSI%e—im‘* ,Ii2—k*2 . L
2w = 55 [ g e (i gy 1) Soma — B,
(A.6)

Using now the equalities Awéf)(r*,t* =0) = AY_+(r*) and 0@ (k — K') =
(2m) 73 [ d3r exp [i(k — K/)r'], we can write:

1 d3r e~inr”
M) = 5o [ RO s )
2 _ k*2
X exp<—i"€2T2t*> f(mig — &5, Ws) =

. d3 . . 2 _ k*2
:/d‘SI"/—He*“‘(’r ) exp LA BV
(2m)3 2m(t*)

Y
1 d?’ﬂlei“{ r SO
22 | wE T —qpd M2 T ) =

- / @G (1 — v ) A (), (AT)
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where the i~ function is given in (A.2). Noting that the Jy« function in the
integral (A.7) acts on the plane wave e~ T a5 a § function, we finally arrive
at the integral relation in (A.1) for ¢t* > 0. The prove of this relation in the
case of t* < 0 is done in a similar way, the integration ko contour being now
closed in the lower half-plane. The result is the same as in (A.4)—(A.7), up to the
substitutions mo — —my in the time-dependent phase factor and Wo — M2 — W1
in the arguments of the scattering amplitude f.
At t* = 0, the function &y~ (r* —r/,0) = 6@ (r* — 1) and, at t* > 0,

3/2 k*Qt* (I'* _ I'/)ng
5**—’t*:(m2) ; . (A8
w0 =(55r) @i\, T o (A-8)

For negative t* values, the substitution my — —m; has to be done in (A.8). It
is clear from (A.8) that, at small £* (k* < m(t*)r*/|t*|), the function - (r* —
r’/,t*) practically coincides with the § function 6®) (r* — r’) on condition (73).
Since the particles start to feel each other only after both of them are cre-
ated, it is clear that a large difference in the emission times generally leads to

a suppression of particle interaction at small k*: |Az/1((7+)(x)| < |AY i+ (r%)];

Awt(;)(a:) — 0 at [t*| — oco. Particularly instructive is the case when one of the
two particles is very heavy, say my > mj. Then the two-particle interaction is
suppressed provided the light particle is emitted prior the emission of the heavy
one (m(t* < 0) = my in (A.2)). Otherwise, the large mass m(t* > 0) = mq
prevents the suppression even if the light particle is emitted much later than
the heavy one. Below we consider the effect of nonequal emission times on
two-particle production in some detail.

We start with the FSI due to the short-range forces only. Inserting the
spherical wave (85) into the integral relation (A.1) or (A.7), we get [12]

1—1

El(z_) etk T + El(z+) e—ik’*r*} ,
(A9)
where z4 = (m(t*)/2[t*)"/? (r* £ (k*[t*|/m(t*))) and By (z) = \/2/7 [ dy e’
0

is the Fresnel integral. Note that the length k*|¢*|/m(t*) = [+ can be interpreted
classically, for large k*r*, as a distance traveled by the first emitted particle
until the creation moment of the second one. The absolute value of the factor
(r* £ lp+) in the argument z; (z_) thus corresponds to the maximal (minimal)
possible distance between the particles in their c.m. system at the later of the
two creation moments. The effect of nonequal emission times however does not
reduce to the modification of the distance r*, it survives even at k* = 0. This
effect vanishes in the limit of small |¢*|, when z_ > 1, Ei(z24) — (1 +14)/2
and (A.9) reduces to the spherical wave (85). In the opposite limit of large |¢*],

AP (z) = —fgff) {z’sin(k*r*) -
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when [m/(t*)r*?/(2]t*])] /2 < 1, the interaction is suppressed and the scattered

wave Awt(;)(a:) tends to zero for arbitrary k* values.

In the simple static Gaussian model of independent one-particle emitters
described by the amplitude (51), the applicability condition (73) of the equal-
time approximation can be roughly written in the form (74). Clearly, the latter
condition is not satisfied for very slow particles emitted by the emitters of a long
lifetime. This is demonstrated in Figs. 3 and 4 for the FSI contribution in the
7979 correlation function.

Note that the change of the character of the effect of nonequal times at v =~ 0.6
and its increase with the increasing velocity is not expected from condition (74).
The increase of the effect for relativistic particles (v — 1) is specific for the
systems of not very large sizes and lifetimes 79 ~ 79, when the population
of the light-cone region r ~ vt is not negligible. Indeed, in this region the
arguments of the Fresnel integrals at k* = 0 can be small even at large ~:
21 ~ (ym|ry, — t|/2)"/2, leading to the modification of the spherical wave.

Consider finally the effect of nonequal emission times on the correlations
of two charged particles. Since, at not very large |t*|, the function Jg«(r* —
r’ t*) is close to the ¢ function, we can neglect the terms of higher powers of
(r'/a) in (A.1)*. The nonequal time correction is thus mainly generated by the
subleading term ~ r*/a and so can be expected rather small, similar to the case
of strong FSI, where it arises from a small finite-size contribution ~ f/r*. It
concerns also the case of hadronic atoms since the Schrodinger equation at a small
negative energy —e, = —k2/(2u) practically coincides with that in continuous
spectrum at zero energy. As a result, for 7* < k=1 = n|a|] (n being the main
atomic quantum number), the r* dependence of the corresponding wave functions
at a given orbital angular momentum is the same.

Appendix B
DECAY RATE AND NORMALIZATION

The decay rate (partial width) I'2 of a bound a-channel state decay into the
(3 channel is given by the square of the wave function 1/)50 in (146) (at a distance
r* > d), multiplied by the product of the surface 47r*? and the relative velocity

vp = kj/ s

k* k* (K,Ba)Q
T2 = 47r*2 L 1B 12 — 47 LN (n) P —rL . B.1

*The account of these terms is however important at large time separations to guarantee vanishing
of the Coulomb interaction at |t*| — co.
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Note that for two identical bosons in the channel 3, the twice as large square
of the symmetrized wave function is compensated by twice as small surface so
that the result is the same as for two nonidentical particles. In the considered
two-channel case, the 3 channel is the only open one, so the decay rate coincides
with the inverse lifetime (total width) of the bound a-channel state which can be
calculated from the imaginary part of the energy E,, = —r,2/(2pa):

1/, =T, = —2Im E,, = 2Rek,Im Ky, / o (B.2)

Using (140), one has (neglecting Im A*“ as compared with the Re A*® in the
correction terms)

Rer = 14280270 1 0o A7) o

ao(,.c\2 ao,.c 2 Re A ?
Im &y, = 2Im A%*(k;,)* < 1 4 2[p(n) — 1]Re A%k, — 470 ,

a

Re A%~
a

4
r, =— {1 + 2¢(n)Re Ak — 47720(

2
) } (k)3 Tm A, (B.4)
Mo

Using the relation (k€)% = m[1So¥|? and (143) for Im A““, one finally gets, in
agreement with [50,54]:

k* ao aa\ 2
T, = dr -2 jycoul]2 {1 +2om A 420 (ReA > y
Ha nlal

L (P
Lt (kpKPo)

(B.5)

Inserting (B.1) and (B.5) into the equality I';, = 1“5, one proves the relation (147)
between the normalization factors A”(n) and 1S3 (0).

In the case of two or more open decay channels, the two-channel (a, 3)
matrix K is no more real, particularly, in the presence of one additional channel 7,
one has:

Koo _ oo ik;‘(lea)Q
1-— ik;‘lej ’
ik ICIB I
Ba _ yBa J -
KPY = KP* + 1—Z'k;;-‘Iij’ (B.6)
< 7.% 62
K9P _ 86 ik} (K79)

1 — ik} K9 ’
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where K" are the elements of a real three-channel matrix K. Note that in the
case of a two-pion system (o = 7t7~, B = 797Y), the third channel is j = vy
so that the elements K77 and IC77 can be safely neglected. Then, only the element
K> acquires the imaginary part: K = %Y + ik} (K72,

Generally, one has to account for the possible imaginary parts of the elements
of the two-channel K matrix, as well as for a possibility of a pure imaginary value
of the momentum k; in the case of a closed channel 3 (/4:;2 <0, k; = z'(—kEQ)l/Q,

'3 = 0). Then

Re A** = Re K** — {Im k} Re (K”*)? + Re kj Im (K°*)* +
? [Re K77 Re (K7)2 4 Tm K% T (K7)2] | |1 = ik K77, (B.7)

Im A% = Im K** — {Im k Im (K”*)? — Re k}j Re (K”%)? +

+ |k3[° [Re K77 Im (%)% + Im K% Re (%) }}\1 ik K0P =
k* Kﬁa ’ k fja
o 1—z’k;§Kﬁﬁ +Z 1—ikyKo8| —

Mo 8
— | 1“] B.8
= N + Z , (B.)

where 6(z) = 1 for z > 0, (z) = 0 for z < 0. The second expression for
Im A** in (B.8) follows from a straightforward though lengthy matrix algebra
and, the last one — from an obvious generalization of (B.1) using the relation
KPe = chﬁa. Inserting the last equality in (B.8) into (B.4), one proves (147)
for the case of any number of open decay channels.
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