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We consider the high-energy processes in QED frames in peripheral kinematics. The key feature
of this kinematics is that processes have large cross sections which do not decrease with the increasing
of the initial center-of-mass energy. Two purposes to study peripheral processes are: the background
processes with large total cross sections and the structure of jets in the fragmentation region.

We describe various QED peripheral processes in terms of Impact Factors (IF) and give the
explicit expressions for the differential distributions and spin correlation effects, as well as estimates
of the total cross section of peripheral processes in photon—photon, photon—lepton, and lepton—lepton
collisions.

A special attention is paid to the small-angle Bhabha scattering process which is relevant for
beam monitoring at LEP I, LEP II.

Based on analytical properties of the amplitudes, some relations (QED sum rules) between the
high-energy asymptotics of the cross sections of inelastic processes in et e~ collisions and higher-
order perturbative contributions to the electron Dirac and Pauli form factors are derived.

For practical using we present some loop momentum integrals.
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INTRODUCTION

The increasing accuracy of modern experiments which investigate the mani-
festations of weak and strong interactions require an adequate knowledge of the
background reactions. The origin of the background is mainly due to electro-
dynamics interaction. As a rule, it is sizable and can imitate the characteristic
features of the predictions from the SM (for the complete list of abbreviations
see the end of Introduction) and the strong interaction of hadrons.

Modern methods developed in the frames of QCD, when applied to the
problems of QED, allow one to take into account the contributions of QED
nature with sufficient accuracy to be used in experiments.

In the study of processes at high energies, two expansion parameters are
relevant; firstly, the power corrections in the variable (m?/s)", where m is the
electron mass. Here +/s is the total energy in the center of mass of initial colliding
particles, which is supposed to be much larger than the characteristic masses of
particles taking part in the process.

The second important parameter which enters in the description of processes
at high energies is the so-called «large logarithm» L = In(s/m?), where m is
the smallest mass of charged particle (lepton or pion) taking part in the process.
This logarithm for modern experimental facilities can reach a value of 20. In
high-energy QED, the quantity («/7)L plays the role of expansion parameter in
a perturbative expansion on the fine structure constant « = 1/137, therefore it
appears unavoidable to take into account higher powers of the expansion.

A wide class of processes at high energy of initial colliding particles has a
cross section which does not decrease with \/s. These processes (called peripheral
processes) correspond to large values of orbital momentum of the initial state.
Main purpose of this investigation is rigorous estimation of background processes
of QED origin at colliders in experiments on «new physics» searching. The other
possibility is to investigate the jet content in QED as a realistic model for similar
problems in QCD.

These processes have a large cross section and have a practical interest for
precision measurements as monitoring the intensity of the beam and its polariza-
tion properties.

In 1966, the picture of these processes was built by H. Cheng and T.T. Wu,
describing high-energy small transfer momentum (peripheral) kinematics of the
elastic scattering amplitudes in terms of Impact Factors (IF). These universal
quantities describe the fragmentation property of each individual particle. For the
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subprocesses of yy* — ete™, nT 7™, electron—photon scattering with additional
lepton and pion pair creation the relevant cross sections and matrix element in
terms of chiral amplitudes are calculated. In Sec. 1 the radiative corrections to the
IF for photon, electron with taking into account additional soft and hard-photon
emission are presented. All leading logarithm contributions are taken into account
in the frames of structure function approach.

For small-angle Bhabha scattering the estimation of the cross section in two-
loop approximation is done.

At the end of Introduction we put the sum rules for processes of electron—
positron and closely related electron—proton scattering. Using the analytical prop-
erties of the amplitudes we put the relation between nucleon form factors and a
difference of proton and neutron differential electroproduction cross sections. In
particular, for the case of small transferred momenta, one finally derives a sum
rule, relating the Dirac proton mean square radius and anomalous magnetic mo-
ments of proton and neutron to the integral over a difference of the total proton
and neutron photoproduction cross sections

In Sec.2 we give the tables for one-loop Feynman integrals of scalar, vector,
and tensor types, with two, three, four, and five denominators. All formulae
are presented with the accuracy up to the terms of the order of the ratio of the
electron to the muon masses squared, and the kinematic invariants are assumed
to be large compared to the electron mass squared.

Throughout our paper we use the next designations:

FD — Feynman diagram

IF — impact factor

LBL — light-by-light

LC — light-cone

LLA — leading logarithmic approximation

QCD — quantum chromodynamics

QED — quantum electrodynamics

RC — radiative corrections

SM — Standard Model.

1. PERIPHERAL PROCESSES

1.1. QED Processes in Peripheral Kinematics at Polarized v, e*v, ee™

Colliders. QED processes with production of two up to six particles by high-
energy colliding beams have attracted both theoretical and experimental attention
during the last four decades. Accelerators with high-energy colliding eTe™, ~e,
~v7v, and p*p~ beams are now widely used or designed to study fundamen-
tal interactions [1]. Some processes of QED might play an important role at
these colliders, especially those inelastic processes which cross section does not
decrease with increasing energy. Polarization is also included in future plans,
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therefore these QED processes have to be described in more detail, including
the calculation of cross sections with definite helicities of the initial particles —
leptons (¢ = e or u) and photons . These reactions have the form of a two-jet
process with exchange of a virtual photon v* in the ¢ channel (see Fig. 1).

A lot of attention was paid in the literature to the calculation of helicity
amplitudes of QED processes at high-energy colliders (see [2] and references
therein). Keeping in mind the possible physical programme at vy and lepton-v
colliders, a precise knowledge of calibration and monitoring processes is needed,
as suggested, for example, in [3]. The calibration processes are known QED
processes with sufficiently large cross sections, which have clear signatures for the
detection. A wide domain of physics can be investigated in peripheral processes
such as heavy leptons and mesons (scalar and pseudoscalar) production, where
the relevant QED monitoring processes have to be measured.

The general feature of peripheral processes is the important property of their
nondecreasing cross sections in the limit of high total energy /s in CMS of the
initial particles. It is then possible to produce and measure jets containing two or
three particles.

The helicity amplitudes for subprocesses of type 2 — 3 have in general a
complicated form. We do not give explicit expressions for the corresponding
cross sections, indicating only the general procedure for deriving them.

Keeping in mind the increasing accuracy of the experiments, RC must be
taken into account. For this aim the subprocess of pair creation by real and virtual
photon with one-loop RC is considered, as well as the crossing subprocess — the
real photon emission in virtual photon—electron collisions.

1.1.1. Kinematics in Quasi-Peripheral Region. Throughout the Section it is
implied that the energy fractions of the jet components are positive quantities
with values of the order of unity (the sum of the energy fractions of each jet is
unity) and that the values of the components of the three-momentum transversal
to the beam direction are much larger compared to their rest masses. Therefore
the mass of the jet particles can be neglected.

y jetl y jet1

Y jety l jety

Fig. 1. Exchange of a virtual photon v* in the ¢ channel of the processes -7y, and ~I
(l=-e,p)
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The corresponding amplitudes include several FD. Fortunately, in the high-
energy limit the number of essential FD contributing to the «leading» approxima-
tion greatly reduces. The method that we use here, has the advantage to estimate
the uncertainty due to «nonleading» contributions which are of the order of

— -, —, —Inh— (1.1)
m

where s1 » are the invariant masses squared of the jets 1,2. The last term in (1.1)
corresponds to the lowest RC, which will not be considered in this Section. The
angles 0; between the emitted particles and the corresponding projectile directions
(see Fig.2) are assumed to be of the order:

m; \/Si
o~ 1, 1.2
\/§<<9 Nz < (1.2)

where m; is the typical mass of the jet particle.

In this approach we can consider the initial particles (with four-momenta p;,
p2) as massless and use the Sudakov parameterization of four-momenta of the
particles as [4]:

¢ =aipa+Bip1 +qiL, Gip2=0, ¢ =-q;°<0. (1.3)

The Sudakov parameters [3; are quantities of the order of unity for the momenta of
the particles belonging to the jet1 and obeying the conservation law Zjetl B; = 1.
The components of the particle momenta of jetl along the four-momentum po
are small positive numbers which can be determined from the on-mass-shell
conditions of the jetl particles:

_a
50;

Here q is the transverse part of 4-momentum vector ¢, and in this Section we
will imply this designation for all 2-fold vectors.

0
P X P2
Fig. 2. Scheme of collision of initial beams with detection of two jets moving in cones
within the angle 0

¢ = saifi —af =0, «a <L (1.4
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Similar considerations hold for the 4-momenta of the particles belonging to
the jet2, namely, o ~ 1, Yo a5 = 1, B = q}/(say) < 1.

Among all possible FD, describing the process in the lowest (Born) order
of PT, only one should be considered, the one which gives a contribution to the
cross section which does not decrease with increasing s. It corresponds to a
photon ¢-channel one-particle state.

It is known [5, 6] that the matrix elements of the peripheral processes have
a factorized form and the cross section can be written in terms of the so-called
IF, which describe the subprocess where the interaction of the internal virtual
photon with one of the initial particles produces a jet along a direction close
to the projectile momentum. Therefore the problem can be formulated in terms
of computation of IF. For processes with initial photons in a definite state of
polarization (described in terms of Stoke’s parameters) we construct the relevant
chiral matrices from bilinear combinations of chiral amplitudes. The last step
consists in the calculation of the differential cross sections.

The matrix element, which corresponds to the main («leading») contribution
to the cross section, has the form

M =gt e gy (1.5)
q
where J!' and JY are the currents of the upper (associated with jet1) and of the
lower blocks of the relevant FD, respectively, and g,,,, is the metric tensor. The
current J{* describes the scattering of an incoming particle of momentum p; with
a virtual photon and the subsequent transition to the first jet (similar to J§). The
matrix elements (1.5) can be written in the form (see the Appendices in [4])

] 1 1.,
M = 22q—211-72, I = ngpzu, I, = ngplu, (1.6)
which follows from the Gribov representation of the metric tensor,
nz 2 w, v v, 1 pv 2 "o v
g = ;(prl +pspt) + 90" = SPapi- (L.7)

I, and I will be referred to as LC projections. The invariant mass squared of the
jets can be also expressed in terms of the Sudakov parameters of the exchanged
photon

qg=aps+0p1 +qi, (¢+p1)?=s=—q+sa, a8

(—g+p2)® =s0=—-a’—s0, ¢=saf-a’~-d’

q is the momentum of virtual photon (photon exchange between particles with
impulses p; and py). Here and below we use the symbol = for the approximation
where we neglect the terms which do not contribute in the limit s — oo.
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The singularity of the matrix element (1.6) at q = 0 is fictitious (excluding
the elastic scattering case). Indeed, one can see that it cancels due to the current
conservation

. s
Qi = (ap2 +q1),Ji =0, pouJi = 5(1317
< (1.9)
(]ng ~ (ﬁpl + (IJ_)VJQD =0, pluJé) = ﬁq‘]%
We obtain the modified form of the matrix element for peripheral processes:
. . . nitng 28 m 72
Mla(p1,m) + b(p2,m2) — jetyy, +jetyy,] = i(dma) ™2 —miy mo3
(1.10)

niz2 2 2, 77,)\ = ﬁ:l,

where 7); describe the polarization states of the projectile ¢ = a, b; A; describes
the polarization states of participants of the corresponding jet. The numbers of
the QED vertices in the upper and lower blocks of FD (see Fig. 1) are denoted
by ni,2.

For the matrix elements mj o of the subprocesses v*(q) + a(pi,m1) —
jet1(A1) and v*(q) + b(p2, m2) — jeta(A2) we give here two alternative forms:

A
1 qJ
mo_ 1K mo_ 1\
miy = —payd myy, = .
1 s 2D I 11 S1 _|_ q2

(1.11)

Similar expressions hold for the lower block. The second representation is used
below. Equation(1.11) can be used as a check of validity of gauge invariance,
verifying that the matrix elements vanish in the limit q — 0.

Let us verify that the differential cross section of peripheral processes does
not depend on the total CMS energy +/s. For that we rewrite the phase volume
of the final two-jet kinematical state in a more convenient form:

dF = 2m)*5" [ pr+po =Y pl" = > pf? | dPWdF® =
i J

= (2m)*d*q6 ()0t dF D dF ),

5ty =o* <p1+q—2p5”>, Sy =0 [p2—a =2 0P|, 12
i J

dgp(172)
2e1%) (273

9

dFt2) =11,
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Using Sudakov’s parameterization for the transferred four-momentum ¢
1
diq = %da df d*q. = S—dsy dsy d*q.. (1.13)
S

where s1 2 is the invariant mass squared of the jets, the phase volume can be
written in a factorized form:

2 4
dF = (27;) d*qy dsy dF V6 dsy dF 5y, (1.14)

Using Eq.(1.14) for the matrix element and the phase volume for the cross
section of the peripheral process in the case of polarized initial particles (photons
or electrons), the cross section is

a™ “+no 71.2 (47T)2+n1 “+no d2QL

do™™ = CAE d®7 (q) d® (q), (1.15)
where the differential IF d®]" are defined as:
A7 (q) = /dsiZ|mZ{j 2dF;sfy, i=1,2. (1.16)
Aj

Below we use the term «impact factor» or «chiral amplitudes of subprocess»
instead of «differential impact factor» for simplicity. The «impact factor» as
defined in the paper of Cheng—Wu [5] is introduced to describe elastic amplitudes
for the process a + b — a + b in the case of small angle high-energy scattering.
This will be considered in Subsec. 1.3.

The matrix elements for definite chiral states of all particles m?("/\), where the
subscript (\) denotes the set of chiral parameters of the final state, are calculated
and listed below.

In the case of initial polarized photons, a description in terms of Stoke’s
parameters &123, &7 + €2 + €5 < 1 is commonly used. The matrix element
squared in the right-hand side (r.h.s.) of Eq.(1.16) should be replaced by [7,8]

gt e
T, = Tr(mp) = %Tr< 2—+ z—— > ( _;£TE2§3 Zﬁl_ gig ) o (L17)

where the elements of the spin matrix m are:
++ + |2 +- _ + — \*
mtt =3 imi 1 mtT =3 mbme)"
A

m = 3 Imgy mt = (m* )",
A

(1.18)
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In the case of initial fermion we choose its polarization equal to 7; = +1.
The matrix element squared for electron scattering must be summed over the
polarization of the final particles:

T, = Z|m?}\)\2. (1.19)
A

The cross section doy,, », of the process of type 2 — nq + ng with production of
two jets

a(p1,m) + b(p2,m2) —
— a1(r1,)\1) + ... +an1(rn1,)\m) +b1((]1,01) + ...+ bn2(qn2,0'n2), (1.20)

where the energy fractions z1,...,Zn,, y_ x; = 1, the transversal components of
momenta ry,...,r,,, ».r; = q of jet a and similar quantities y;,q;, Y. y; =
1,3~ q; = —q for the other jet b, are:

4 d? dry d
« (1) T(z) q d2r1 2 ) X1 ayi1

d = 1.21
022 92,747 a—27 b2 (q2)2 £1I2y1y27 ( )
o ) 2 4% dw1dy; dys

d =—"T",T d?ry d?qy Ao ——22 2% 1.22

023 24776 a—2"b—3 (q2)2 1 q1 q2 T1T2Y1Y2Y3 ) ( )
0(6 (1) (2) d2q dl‘l dJZQ dyl dy2

dosz = —— d?qy d?god?ry d*r _— 1.23

83 = 555 la—3lb s ()2 q1d°qad 1 d"r2 T TaTaY1Yals (1.23)

a,b=-e,.

1.1.2. The Subprocesses vy* — eTe™, mTw~. Let us consider first the
contribution of the lepton pair production subprocess to the photon IF:

(k1 m) +7*(q) = e (g—, A) + €T (g4, —N). (1.24)

The matrix element of the subprocess has the form (we omit the factor 47a)

- G- —k —Go + k.
mi} = —tx(q-) [6"(] Lyp gy 2T 15"} v_x(q4),
K1— K1+
(1.25)
Uy = UW_), U\ = W_AV, kit = 2k1q+, wy = 5(1 + Avs).

We imply that all the particles are massless. A definite chiral state of the initial
photon polarization vector has the form [9, 10]:

R . A 2
€} = M[G-Grkiw_x—ki1G-qrws]), Nf= P s1 = 2q¢4q-. (1.26)
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The chiral amplitudes m = (1/ s)m?é‘/\)pgﬂ have the form:

+ Nl — A an + Nl A An
myy = —?uququerv, my_ = —?upgqq,w,v,
(1.27)
_ Ny . .. _ Ny . ..
mi_ = =+ {haw-v, My = ——~UP2Gg-w+v.

The elements of spin matrix m (see Eq. (1.18)) in the case of lepton pair produc-
tion are:

++ R 2q2 2 2
me*e* = me*e* = ﬁ£+$_(£+ —|—JZ‘7),
q39-”
(1.28)
4 b e 49> 2 2i0
mi=(my )" = —W(Qfﬂf—) e,

where 1 are the energy fractions carried out by the components of the pair, with
ry +x_ =1, 0 is the angle between two Euclidean vectors q = q_ + g4 and
Q=1r1q- —z_qy4.

In the case of charged pion pair production

Y(p1,m) +7(q) = 7 (q1) + 7 (q-) (1.29)
we have
. Ty T_ 2
m = Selyppmy = Jm —ela-+ m el — S(elp) (1.30)

Using the photon polarization vector written as

el = Nil(qep1)d—p — (4-p1)dsp + inEpapra®d’pi], (1.31)

we obtain the chiral amplitude of the pion pair production process (here we use
eam(;p?pg a7 q% = (s/2)[a—q4]., with €qp,6 being the antisymmetric tensor,
with €0123 = 1)

m" = —Ni(Qq +#[Q.ql:) = =Mlq| Q[¢"’, §=qQ,  (132)
where we imply that the direction of the z axis is along the photon three-
momentum and use the relation [q—,q+]. = [Q,q].. The pion chiral matrix
can be written as

__ 2q°
m‘ltj‘lr_ = Mt - 2 42 (374_33_)2,
q;q9q-
) (1.33)
_ p oy 24 i
m‘l—:'_‘f"/r_ = ( T{";‘rﬂ'_) = q%’_qQ_ (374_33_)2 e2 o
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For the two-pair production process
M(p1,€1) +72(p2, &2) — alg-) +algs) +b(p-) + b(p+),
g+ = 4p2 +T4p1 + g1, P+ =Y+pP2 + Pap1 + D41,

(1.34)

the differential cross section (assuming that the pair aa moves along the direction
of the photon 1 and the pair bb moves along the direction of the photon 2) has
the form (1.21), (1.22) with:

2

T __4d

N2 = W(:mrx,f[l — &5 c08(20) + & sin(20)] for 7,7, (1.35)
+ —_

2
TéBQ = 012(17(x+m_){xi + 2% + 2z, 0 [¢5c08(20) + & sin(20)]} for e, e
+ —_

(1.36)

with a similar expression for 7(2*, We remind that the formulae obtained here
are valid at large transverse component of the jet particle momentum, compared
to the masses of the particles,

@ ~qi ~pi ~p>>m’, qy=d-q-, pr=-q—-p_, (1.37)

and for finite energy fractions x4 ~ yi ~ 1, which correspond to emission angles
of jet particles ; = |q;|/(x;€) > m/e which are considerably larger than the
mass-to-energy ratio (¢ is the energy of the initial particle in CMS).

1.1.3. Subprocesses vy* — eTe™v, mTn~~. Here and below for sub-
processes of type 2 — 3 we restrict ourselves to the calculation of the chiral
amplitudes and to the check of their gauge invariance properties.

The subprocess

Y(k,N) + 7" (q) = e (g4, = A=) + e (g=, A=) + y(k1, A1) (1.38)

is described by six FD. A standard calculation of chiral amplitudes m§1 N
leads to

s1NN i —
mi, = - - B S )qy dpaw i v(gy) = (m=_)",
s1NN- _ A An — *
mi_ =-= . “i(g-)padd-w-v(gs) = (m=,)",
(1.39)
NNy _ BN
mJLr = 1U(Q—)AJI+W+U(Q+) = (my )",
NN; _ — %
mt_ = lu(qf)AJ—r—va((IJr) = (my,)",

S

*In paper [12] Eq.(2.36) contains a misprint in the sign of 5;1'2),
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with AT _(k, k1) = AT (—k1, —k),

2 2
, Nf= ————,
S1K—Kk4 S1KR14+K1—

N? =
(1.40)
51 =2q+q—, k+ =2kqs, K1+ =2ki1qs

and the following expression for AT 4

s A . . o o o
Ai_-i,- = mkq-‘rkl(_Q-‘r + q)p2 — q+(q_ — k-)p2(q+ 4 kl)q—
S A N OIS
B mpz(qf —Qkq-ki. (1.41)
Substituting
. 1. . s ) A R )
P2 (4= q1) = [+ + k1 + (G- — k) = qu]

in the second term of r.h.s. of Eq. (1.41), we have

x 1] - €T_ 17 -
AT, = — Sk SRR . | —+—k
4 S§S1K1+ {(% 47 + sa] S$S1K {(q_ 7 + sa} 1+

+ 712/?(#/’?1%_}?2 + 712172611_/?(]—]?1-#
(¢+ —q) (- —q)
+ 5%((1— —k)4L(qy + k)G, (1.42)
with
k2 2 2
(¢+ —9)° = -’ +2qq+ — sazy, sa=— + RS,
3 T A

(1.43)
q2i 1 2
r1tax-+xy =1, kKr= E’ K1+ = PN ($1Qi —inkl) )
1

and x4 = 2poq+/s, 1 = 2p2ky/s. The gauge invariance property (the chiral
amplitudes must vanish as q — 0) can be seen explicitly.

The procedure of constructing the chiral matrix is straightforward and can be
performed in terms of simple traces. We will not explicate it here.

Let us consider the subprocess

Yk, A) +7(q) = 7 () + 7 (q-) + y(k1, Av). (1.44)

The matrix element is described by 12 FD. Its expression can be considerably
simplified following the formalism of [15] for the photon polarization vectors
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(compare with (1.31)):

N . N .
Eﬁ(k)ngp(wqfq%wx), €2l(k1)=715p(wq7q+k1wx), (1.45)

with similar expressions for N, N7 as in the case of the yyv* — eTe™~y sub-
process. The polarization vectors are chosen in such a form, that to satisfy the
Lorentz conditions ¢(k)k = 0, (k1)k1 = 0 and the gauge condition e(k)q_ =
=¢e(ki1)g- =0.

The matrix element has the form (at this stage the Bose symmetry is lost):

m§1 = épgg#(k)’fia(kl)()pw =
_ A [(€1q+)(€q) _ (€1q)(€q+)} L Alepr)(erg)
(- —q)? K1+ K+ SK14
4(e1p2)(eqy) . T_
- SRBE 1 a(ee) [(q+ T ) (140

where we imply ¢ = ¢*, ; = 61\1 and x4 = 2paq+/s, x1 = 2pok1/s, where
e +z_ 421 =1

For A1 = X\ we have

my = s1NN1[A1 +iAB;], A = —-Qq,

(1.47)

Bl:[QXq]Zv Q=q7x+—q+x,.

For the case of opposite chiralities we have
m}y = siNNi[A +iAB],
1
= _2x1x7x+ [Q2k% - q3($1q+ - $+k1)2 — qf(xlq_ _ x_kl)Q] X

Ty X _—

x - - Qq, (1.43)
((q+ -q)? (¢-— (I)2>

b= ((czqu)2 i (qfx—_ q)2> )

X (salg- x qi]. —sa_[g x a4]: + sar[g x g-]:) +2[q- xaq4]: —[Qxd];,

2 2
q k

saiz—i, sa=—1+sa+—|—sa_.
Tt 1

We can see that the Bose symmetry is restored.
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1.1.4. Subprocesses ey* — ey, e + v + 7. Consider first the Compton
subprocess™

e(p, M) +77(q) = v(k, A) +e(@’, A1) (1.49)

For the chiral matrix elements we have (we choose A\; = +1)

N _ PPV, PPN
mi = ;u(p’)[—pwx (0" + k)p2 — p2(p — k)p'w_»]wiu(p),
N
m = ——u(p)pipawu(p), (1.50)
N 1
+ 2 = I\a AR 2 _
mI = ——a(p)p2gp'wiu(p), N o)

and x, k' are defined in (1.52). The sum of module squared of the matrix
elements is

T. :2—/[1+x’2], (1.51)
KK
with
k2 / / 1 ! /\2
k=2kp=—, K =2kp'=—(p'v-ka'), (1.52)
T T

and © = 2kpa/2pp2, @' = 1 — x are the energy fractions of the photon and the
electron in the final state.
Consider now the double Compton subprocess (see Fig. 3, a):

e(p,n) +7"(q) = e(@',n) + v(k1, A1) + v(k2, A2). (1.53)

The chiral matrix elements m} , are

o $1N1No _ An
miy = (m” )" = —=—=a(p)pdpawu(p),
s s1N{Ny _ PR
mt_ = (mi )" = ———"2a(p )p2qp'wsu(p),
(1.54)
_ w  NiINs _
mi_=(m”Z.)" = 18 2a(p')AT_wiu(p),
_ w«  NiNo_
m*, = (mi_ )" = . u(p') AL wiu(p),

*The case of real initial photons was considered in paper [12].
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a b c

Fig. 3. Feynman diagrams describing: the subprocess v*e~ — ~yye™~ (a); the subprocesses
of pair production y*e — eaa by bremsstrahlung (b) and double photon mechanisms (c)

with Ai_Jr(kl, k‘g) = Aii(kQ, kl) and

s FPDV P NV P
AT (k1 k2) = mm(l)' — Q)k1p'k2 + p(p' + k1)p2(p — k2)p'+

S1 2T A
+ ———Skipka(p + , (1.55
T 2(p+ q)p2, (1.55)

with
/ 2 2 / /
s1=2pp, Nf= -, ki = 2pk;, K =2p'k;. (1.56)
S1KRiK;

To check the gauge invariance property of two last amplitudes, let us substitute
p2 = (¢ — q1)/ay in the r.hs. of Eq.(1.55) and obtain:

! 1 .- 1 1 .
AT (k1, ko) = ss1K) T Y 4 ssika( e — — Yt
+- ko) ' 1((1?/_‘1)2 So‘q) ’ ' 2((p+Q)2 Saq) '
S1 TAT A oA S1 N ) oAl T NA (A 5oNar S
+ ——k1Dk2qLp2 — ———5P2q k1D ke — p(P' + k1)qL(p — k2)p —.
0+ q)? 1PR241 D2 0 — q)? 241 R1P K2 ( 1)4( 2) sag
(1.57)

We can verify that this expression vanishes at q = 0, using the following relations:

M —q)=—a’+2pq—s'a,, (p+q)°=—-q”+saq,

/ / / (p )2 k2
ag=a +ar+ay, TH+rt+r2=1sa =-"- sa;=—", (1.58)
X Z;
Ki = sqq, K, = T(kix/ —p ),

z'x;

here we use Sudakov decomposition (1.3), and x1 2 = 2k1 2p/2ppe, ' =1 —
x1 — x9 are the energy fractions of photons and scattered electron.

One can proceed further in the calculation of the chiral matrix, with a similar
procedure as detailed in the previous Section.
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1.1.5. Subprocesses ey* — entm~, ept u~. The matrix element of the pion
pair production subprocess

e(p,n) +7*(q) = 7" (q1) + 7 (q-) +e(p,n) (1.59)
can be written in the form
m" = a(p')[B + Dw,u(p), (1.60)

where B and D arise respectively from the bremsstrahlung and the double photon
mechanisms (see Fig.3,b, ¢):

A 1 1 1
B=—=|Bji + —=q14p2 — 7152@@1] ;
at { s(p+ q)? s(p' — q)?
2

_ 2 —2qq_
{D(24—+dz)—2(qfq)zdL+ (;q_qq; )ﬁz], (1.61)

n=qr+q-, @=p —p,

with B and D given by

x’ 1 x_ T
B= + , D= - ,
(0 —q)? (p+9)? (- —q)* (g—q+)?
, (1.62)
2 2
xi:%’ 1-/: p2p’ .’E++.’E,+ZE/:1.
S S

For the squares of modulo of the chiral amplitudes, which enter in (1.22), (1.23),
we have for et 7~ :

TV, = |m*|? = Sp (5 (B + D)p(B + D)w.). (1.63)

e—3

For the subprocess of the muon pair production

e(p,n) +v(q) = p*(qr) +u(q-) +e(@,n), (1.64)

the bremsstrahlung and the two-photon mechanisms as well must be taken into
account (see Fig.3,b,c)

1

m} = < u(p') Buwyu(p) x a(q-)y"wrv(g)+
1

)

+ = u(p')ywiu(p) x @(g-)Dywrv(gy), (1.65)

)
oo =
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with the double photon mechanism contribution
1 o 1 .
Dy = Dy + —————%p2 — ————— 207, (1.66)
s(q = q4) s(¢—q-)
and the bremsstrahlung mechanism

1 1
B, = By — ———— o 4+ ————ipa, 1.67
7 Ve s — q)2p2q% + s( )2 VudP2 (1.67)

ptq

B and D are defined in Eq. (1.62).

To perform the conversion to the Lorentz indices pu, v in Eq. (1.65), one can
use the projection operators. For the case of equal chiralities n = A = +1, we
choose the projection operator as

u(p)G+wu(g-)
u(p)d4w+u(q-)
Inserting it in Eq. (1.65) and using the relation wu(p)u(p) = w4p, we obtain

it = a5+ B ) ddit
o a(p)grwiu(g-) g @)

Py = (1.68)

§-q:PiLp2 1

+ +
s [qg(q—qHQ q?(p+q)2}
P2414—4+p 1 1 ] }
+ — wiv(ge) =
s [QE(Q— —R T g — e Jer )

B -2

u(p)qwulq)-

For the case of opposite chiralities n = —\ = 41, we use the projection operator

u(p)ATwiv(gy). (1.69)

u(p)w-u(g-)
u(p)w-u(g-)
Similar calculations lead to the result

mt = mﬂ(ﬂ) {(% + %) 2(pg-) +

P_:

DG—q4 1 P2 1 1 }
+o [ + _
s g —q0)? @ —q-)?
b L, } B
E alg—q-)*  ¢i(p+9q)?
G4-p2G1D 1 1 ] }
— + w_v(g+) =
5 [(J%(Q—Q—)Q a3(p+q)? (@)
2

—— %  a(Atw v . '
= T ulg) P AZw-v(ar). (170)
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The property, following from gauge invariance, that AT, AT vanish when |q| — 0
can be explicitly seen from (1.69), (1.70).

For the sum of chiral amplitudes squared, one finds for eu™ ™ subsystem

My = ;SP (P ATG ATwy) + iSP(ﬁ'A+Q+A+W+) - (L7

0 (pg+)(g-9+) A Pq- e

The magnitude of the cross sections of Egs. (1.21)—(1.23) is of the order of
a™/u? > a"/s, n = 4,5,6 where u? = max(sy, s2). It is large enough to be
measured, and does not depend on s. The strategy of calculation of cross section,
using the helicity amplitudes of subprocesses 2 — 3, described above, can be
implemented to numerical programmes for a realistic simulation of experiments.

1.1.6. Subprocess ey* — eece. The particle momenta for the subprocess
ev* — eee are defined as

e(pv lp) + 7*((]) - e(p17 ll) + e(p27 ZQ) + é(p+7t)7

where [;,t = + are the chiralities of initial and final fermions. Without loss of
generality we will consider below [, = +. For the sum on the chiral states of the
module squared of the relevant matrix elements we obtain

lP
SOIME P =2 M P M MY P (1.72)

Eight Feynman diagrams enter in the description of this subprocess, which
form four gauge-invariant sets of amplitudes. The general form of the chiral
amplitudes is

1
MlTth = _5(47@)3/2 { 610 400,—1, [0 (p2) A" (p4)a" (p1) Asu™ (p)+

+ 1" (p)vou™ (p)u' (p2) Bov' (p4 )] —
— 1y, 40,1, [0 (p1) 70" (1) 8" (p2) Dyu™t (p)+
+ @' (p2)ysu™ ()" (p1)Csv'(p4)] }. (1.73)

Applying projection operators to provide the contraction on vector indices
we have

(Ara)* [ 1 1., @) . 1
2sipp+ [p2p+ ZSp(plm(*i‘p+(mi)+‘)+) +

‘Mi_-i-—‘Q =

1 ) N )
p+D1 1P (o', _p (m )F) —

2 L 5m) 5 (2) .4
—MZSp( 1myy Py (miy ) heps) |
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dra)® 1 R R
‘Mi—+|2 = (282p;2 ZSp(p1m+7+p+(m+7+)+),
1

4ra)? 1 . .
(252]7]31 ZSP(p2m7++P+(m7++)+)a
1

\Mj++|2 =

with
My = VoPP2Bo + AxDP2vn, M-ty = Y50p1Cs + Dypp1yy,

1 An A An A 2 An A An A
mil, = A\PP+D2VA + Vo PP+P2Bo, mil, = YoPP+P1Co + Dnpp+P17n,

quA_CA(@—(i)WA WO+DdL  op  GL(P2=9DVo | VolG—D4)dL
24, = _

(pr—a? = (+e? T T (p2—q)? (p+—a)?
gc, =l —q)2% N %(q—p+)2(u @D, =i (p2—41)2’7n T (p+q)2(n ’
(p1—0q) (4=p+) (p2—0q) (r+4)

Gd=m2+ar)? E=0-m)? éE=m+a)’ @& =0m-p)

1.2. Radiative Corrections to Chiral Amplitudes. 1.2.1. Photon Impact
Factor: Virtual and Real Soft-Photon Emission Contribution. In the Born ap-
proximation there present two Feynman diagrams describing the subprocess

Y(p1) +7*(q) — e (q-) + e (gqy).

The one-loop level radiative correction to the corresponding amplitude is de-
scribed in terms of eight Feynman diagrams. The whole set of them can be
separated in two classes: one corresponds to the case when the virtual photon is
absorbed by electron line, and the second when the photon is absorbed by the
positron line. One can restrict oneself to consideration of one of them, as well
as the other can be obtained by exchanges of chirality and four-momenta of the
particles:

VT = T (g qy). (1.74)

Here the subscript describes the absorbtion of the virtual photon by the elect-
ron (—) or the positron (+) line, superscript denotes polarizations of initial photon
and final electron.

One class of RC to the electron IF consists of the renormalized electron
mass operator and the vertex function with only one off-mass-shell electron. Its
contribution can be written in the form [11]:

dra)?/? D2 P1 — 44
g, = U M3 — 20 +1
- Vs 1672 5 —x4 € ( 1+ +)+

wu(qy), (1.75)
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where the x denominators (0), (2), (¢q) are defined in Subsec.2.1 and I, =
In(x4/m?), I = In(m?/)\?).

After multiplying with the corresponding Born amplitude and integrating over
the four-momentum % we obtain

2
2075 (R ) = 80" (aa) (l+ — 1) : (1.76)
’ X+X— 2

when the polarization of the final electron is positive. Here we used the Sudakov
parameterization:

g=oap1+P0Bp2+4qL, @+ =x4p1+ PBep2+q+L, an

¢t =-d’, ¢i.=-dl.
The contribution of the other polarization (when the virtual photon is absorbed
by the electron line) is equal to zero. All other contributions with different
polarization and absorbtion of virtual photon by positron line can be obtained
with the substitution (1.74).
The contribution of the vertex function with a virtual photon can be written
in the form:

1A — (4ma)3/? /d4k 1

Ve T Tiery, ) i (00@)(g)

)= (G- — G — k)b — 44)e*w7v(gy). (1.78)

=
“ [P

Using the tables of integrals (see Subsec.2.1) we obtain

20017 (® ) = 24 [@ TP,

a 1 1 x4 +2q? 3q? 9
iy Pty A i s Ty 1.
27T|: 2" 1 5a U+ T g la T 4 o s (1.79)
2 2
q A
a’:X+_q27 lq:lnm’ LZIHW’

with A-ultraviolet cut-off parameter. We remind that we work in the frame
of unrenormalized field theory. The regularization procedure consists in the
replacement L — 21; — 9/2 [7,8].

The most complicated case is the calculation of box-type contribution. It can
be written in the form:

v (47ra)3/2/d4_k 1
in? (0)(1)(2)(q)
2

—bor T 162 1
P 3 .

xi(g-)(G- = k)= (a- —d— k)M =y — k)wv(qy). (1.80)

X
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All the details about loop calculation and relevant integrals can be found in
Subsec.2.1. It is worth to mention that in the case of box-type contribution all
polarizations have nonzero value.

The contribution of additional real soft-photon emission to the light cone
projector has a standard form

D = PpViTa (q— - q—*) e(k). (1.81)

-k g4k

The corresponding contribution to the differential IF d77 is

&k T2
Town3 Z D go | (1.82)

for w < Ae < e. The result can be expressed in terms of the Born differential
IF d7}, as

2 2
S _ A lp_lyeze ™
deoft - ﬂ.dTB {(ls 1) |:ll + In .I‘+$_:| + 2l9 2 In T 6 ) (183)

A=2 mm
€ m
We took into account the fact that the emission angle between the three-momenta
of the pair components in the center-of-mass frame of the colliding particles
is small.
After summing all contributions (1.75), (1.78), (1.80), including the soft-
photon contribution (1.83), we explicitly see the cancellation of the auxiliary
parameter A and of the large logarithm squared:

v+t vtE v+t yE _
2 (dT:I:,box + dT¥,V+2 + dT¥,V + deoft -

— nggi {(ls — 1) |:21I1A—|— g —1In (.’E+£L’):| +Kg"f} .
m

The analytic form of K g‘;—L is rather complicated (see [11]). The leading logarithm

contribution is proportional to the Born cross section, which is in agreement with
the predictions of the structure function approach, namely the leading logarithm
contribution is exactly the A part of the evolution equation kernel. All nonleading
terms are gathered in the so-called K-factor, a smooth function of the order of
magnitude of about unity.

The contribution from the emission of hard photon can be presented as the
sum of two parts, corresponding to collinear and noncollinear kinematics. It will
be considered below.
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1.2.2. Electron Impact Factor: Virtual and Real Soft-Photon Contribution. Sub-
process of the Compton scattering in the Born approximation

e(p1) +7"(q) — e(py) + (k) (1.84)

is described by two Feynman diagrams, whereas in 1-loop approximation one
must take into account eight Feynman diagrams. All the relevant amplitudes can
be classified into six sets, the contribution of three of them to the light cone
projector can be obtained by the substitution:

O = 09 (- —ph), (1.85)

where the subscript corresponds to the interaction of the virtual photon with the
initial 7 or the scattered f electron.

We take into account the contributions from self-energy, vertex, and
box-type FD:

von ()2 [t BP0 (b1 — K (5~ k= e (1~ ) u(p)

W 0)2)(0) ’
ai = ST 0 oty 4yl 25, — )Pl

N (1.86)

Peth (4mar)3/? /ci‘*_k“(pﬁ)w(ﬁﬁ—]%)%(25/1—]%—@)%(131 — k1)erwiu(py)

A L (0)(1)(a) ’
petn _ (me)¥/2 [t B 5 - B2 — k= e uwru(p)

AT i (0)(1)(2)(q) ’

k=2pik', K =2pik.
The first three contributions are (see details in Subsec. 2.1)
20, (25")" = 24|0% 1|,
3¢

/{’—2q2l
2d K|

I+
2d
) (1.87)

K .
d=r'—q? lﬁ/zlnm——m,

o 1 1 9
A—% |:_§L_Z_q I()]q+

2

8a? 1
= — (5~ 1)K —api]a, K +p=aq.

The soft photon contribution has a standard form

20,,(25)"

KK/

2

1, 1
drE=drit2 {(zu ~ Dli+2 Il A-In(a)]+ 512 -2 ln2(x')—%}, (1.88)
h ™
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where [, = Inu/m?, u = 2p|p1, E, E' = 2'E are the energies of the initial and
the scattered electrons. We can write the contribution to the electron IFs with
definite chiral state:

i,box

2 [dT{j’Ji + dTZg_i + dT;’Ji + dT?’+i} + de‘gfit =

= dTgi% {(lu —1) (2 InA + g — lnx/> + K;Siv] . (1.89)

Again here we can see the cancellation of auxiliary «photon mass» parameter A
and the agreement with the predictions of the structure functions approach.

The analytic expressions of K} &, K5, can be found in [11].

1.2.3. Hard-Photon Emission in Collinear Kinematics. For appropriate con-
sideration of RC to chiral amplitudes, we have to consider additional
hard collinear photon emission. It is convenient to distinguish the collinear
and noncollinear kinematics of emission of a hard photon. For this aim we in-
troduce an auxiliary small parameter §; < 1. Collinear kinematics corresponds
to the case when the photon is emitted by the charged particle at an angle of
0 < 6y with respect to the direction of motion of the (initial or final) charged
particle. Noncollinear kinematics corresponds to larger emission angles: 6 > 6.
The chiral amplitudes in noncollinear kinematics can be calculated using the
methods developed by the CALCUL Collaboration [9]. The contribution from
collinear kinematics can be obtained using the quasi-real electron method de-
veloped in [13,14]. The total sum does not depend on the parameter 6,. The
cancellation of the 6y dependence constitutes also a check of the calculations. The
nonleading contributions from additional hard-photon emission essentially depend
on the experimental setup. These are included as K factors in the structure func-
tion picture of IFs.

The contribution to the photon IF in collinear kinematics is

1
(1442 -
PR / dL[ +x(ls+7"_—|—ln98—1)—|-1—53_}dﬂé’w* (Z—,q+>+

veoll = 97 . |1-7_
z_(14+A)
1
o dzy [1+3% 2 . Ay 4+
— —t I 62 —1)+1—z, |dry" (¢, =
+3- / - [1_5;+( +ry +In6f —1)+1-24 |drg -5 )
o4 (1+A4)
(1.90)

where the first term in square brackets corresponds to the emission of the hard
photon along the electron and the second one along the positron (from the created
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pair). Moreover, we use the notations

2¢.4q— 2%, v (1 —
F= TE o 2 ryr_(1—cy)

T+
2 2 I
24 m m

= In————m—
20+ (1—cq)’

(1.91)

where the quantity cy is the cosine of the angle between the pair momenta in

CMS of the colliding beams. The «shifted» photon IF (the conservation law reads

as p1+q=q-/z2— +q4/z4) is

y T+

. _ 402 - - .
@i (g_i Cz]__’xi> N Wfﬂid%fdxﬂ Ip+zo=1,
SN
4= a4+ v

(1.92)

A similar method can be applied to the problem of the calculation of the
contribution to the IF of electron of collinear photon emission with the result

21

1
« d22 + (2 /29)? 9 Ney* 1
_ " (1, 1 —1 ey s
+ / S |: 1_ ( //22) (l + l2 + HGO )dTB P1, 22p1 )

a y 22 o
ecoll 2_/ { A (lu, +l1+ln98—1)+1—21} dTg7 (p121,p1) +
0

(1.93)

where the first term in the square brackets describes the emission from the initial
electron and the second term describes the emission from the scattered electron.
Here we use the next definitions:
/ 2./ 2 /
e 2By s, P
22/(1 — ¢) 223(1 —¢)
(1.94)
where c is the cosine of the angle between the initial and the scattered electrons
momenta in CMS of the initial particles.
The «shifted» electron IF in the Born approximation (the four-momentum
conservation law reads as z1p1 + ¢ = p) /22 + k1) is

402q? | zod%kdx _ 2\ 2
dTei (lelaz;> = cllni 2 7 17 77+:Z%7 n = <_> )

r1T Z2

I\ 2
x
Zz( piz1 — k1—> ,
Zlk2 ’ z92 X

1 /
k=—ki K = r1+—=1 q=ki +—p}.
x Z2 22

(1.95)

/ )
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The terms containing «large» logarithms /s — 1, [, — 1 will be included in the
lepton nonsinglet structure functions in the form of the Drell-Yan IFs, whereas the
remaining terms contribute to the relevant K factors. The results for the electron
IF can therefore be rewritten in the frame of the structure function approach (the
chiral indices are suppressed)

[ [ i i
drecoll = [ dz |:P9(Zl)_(lu -1)+ —Kéoll} dr"*(z1p1, P1) + dTeomp+
27 m

1

d / /
+/ﬁ |:P9 (x—) 2l —1)+ KCO“} drfe <p1,p )+chomp (1.96)
z9 z9 21 z2

0

For the photon IF we have

N dz_ o q
dr H /—P0 ( > %(ZS - 1) Kéfoll dr (Z_ 7qu> +d7—comp

d
+ /ﬁpg (x_+>2 (Is — 1)+ KCOH dr (q Z+)—|—d7':fm'zp, (1.97)
0

Z4 Z4

where

Py(z) = 0(1—2z—A), (1.98)

and

dr 7

comp(coll) — %

dz—_Pg (x__) drp, (q—_,q+) mé(r— +1—3_),

+,7 —
chomp(coll) T or

dZ—JrPG (x_+> drp <Q—, q—+> 63 (ry — 1 — i),
(1.99)

dT(:oinp(coll /dz1P9 21)d75 (z1p1, p) O3 (1 + 1 — 21),

1
b [ () )
chomp(coll) 21t / P9 (2,2) dTB (ph Iné (ZQ +1 .132)
0
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1.2.4. Noncollinear Hard-Photon Emission Contribution to the Electron and
Photon Impact Factor. Contribution to electron IF from the channel of double
Compton scattering process

e(pr, M) +77(q) = v(k1, A1) + v (kaA2) + e(®], Ae),

(1.100)
w=2pipy, ki =2kip1, K= 2k;p},

with emission of both the final electrons outside a narrow cone defined by 6 > 6,
can be calculated using the chiral amplitudes technique [9]. The result is

27, 12
ey _ « Ae 2d /ﬁd kgdljdl’g
ATy N = ﬁ|mxlxz| Whﬁ,p@m
/ / (1.101)
¥ =1-1z1—x3, q=ki+ks+p,
with
2 = L
o k1KoK RS
‘m-&- ‘2 _ 4(x’)2q2u
- k1KoK Kb
N . ) (1.102)
Im™ (k1, k2)|” = [mI_(k2, k1)]7,
4 -
+ 2 _ ~ 1+ A +
imZ_ (ko k)" = msp[plBJﬁwﬂhlﬁ,],
and
L ey D2
Bf =——— piipiprk P2_
+— (p1+q)2p1 11 P1k2(P1 + q) p
I N v VISV - DU I
— ———5 — (B — k1P Pk pr () + k1) = (p1 — k2)py.  (1.103)
Py —q)* s S

It was explicitly shown [11] that the quantity B _ (k1 k2, ¢) vanishes at |g| — 0.
This property is the consequence of gauge invariance implement for the virtual
photon with momentum gq.

For the aim of checking the cancellation of the 6y dependence of the sum of
the contributions of collinear and noncollinear kinematics, we write the limiting
expressions for \mj; 2 for the emission of real photons kinematics

01 > 90, 0, — 90, 0o > 90, (1.104)
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where 60, is the angle of emission of a photon with momentum k; with respect to
the initial or final electron momentum. These limiting values are

4q® [(2/)* + (1 —21)?]
k1 x1(1 —x1)2kok)h

4q? 2

(ImI_1? + [mi*)i—0 =

(‘mi_‘z"‘ ‘mi+‘2)m'14>0 = [1+(1 —.’EQ)Q],

/ /
K1 T1k2ky

, (1.105)
4q 1
+ 2 Ry = N2 4 (] — 1)
(P Phama = L f2 4 (- a2
4 2 J?/ 3
(24 fmt P =24 @ g,

Ky x1(1 — 22)? koK)

For small emission angles we can express all the invariants in terms of angular
two-dimensional vectors in the plane transversal to the beam axis:

d*k 1
klemlgl, pllex'G’, / —1:71'.13‘11H—2—|—...7
K1 90
01>00
(1.106)
d2k1 € d291 UEa! 1
7 = — Qs — 11’1 vl + .

K1 z (6, —6)? 0

|0170">90

One can be convinced that explicitly the sum of collinear and noncollinear contri-
butions to the electron IF, summed over the chiral states of the final hard photon,
is independent of 6y:

i ne = O (AT, + drisn, + drliey). (1.107)
)\1 )\2

Its value, however, depends essentially on the experimental photon detection
setup.

Similar calculations for the hard photon emitted in noncollinear kinematics
for photon impact factor:

Yk, A) +7%(q) = e (g— A=) + T (g, =A-) + (ki M),

(1.108)
$1=20-q4, K+ =2kqt, Fi+=2k1q4,
with chiral amplitudes defined as m3 ., gives
3 2, g2
etemy y pdg-dfqydridx_
ATy = ?|m,\1,\_‘ PATA T )
(1.109)

r1=1—-2z4y—2_, q=9q-+4g+ +ki,
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with
+ 2 Ag?s 2}
bl = e
—R1—K4K14+
T2 4925122
Imi_|* = ————,
K_R1—K4+KRi14+
4 (1.110)
fP=——"——Sp[G_AT w G AT
|m7+| S%lﬁ,lﬁ,/@rl{pr p[q WG+ 7+]a
im*_(k, k)|? = [mE (—k1, —k) [,
and
51 s D2 51 P2, Np o n
Ai— = ——Sk{ k(=4 + @)= — ———5— (G- — @kd_k1—
LN T it W=+ O (qf—q)2s( -k
SR ~ D2, . Al
—Q+(Q——k);(9++k1)(1—- (1.111)

Again it was demonstrated in [11] the proportionality A, ~ |qg| at small |q].

To check the cancellation of 6y dependence let us consider the limiting values
of [my A |2 for emission angles close to the direction of the momentum of one
of charged particles.

4q> (v4)%x_
+ 12 + 2 _ + 2 1— 2
(\m++| + |m+_\ p— 1o 21(1 — 20 ) 2Rk 22+ ( w4 )7,
4q? x_
+ 2 + 12 _ T 2 1— 2
(|m—+‘ + ‘m——‘ )meO Ki_ T1kig [x— + ( er) }’
, (1.112)
4q T4T_
(|mt+‘2 + ‘mt_‘2)51+~>0 = [ZL'%’_ + (1 - x*)Q]v

ki— 21(1 — )%k k_

i @ 2

(|mi+|2 + |mi—‘2)f€1+ﬂo = [x+ +(1- x*)Q]'

R1— T1R4+K—
One can verify the cancellation of the 6y dependence in the sum of the collinear
kinematics of the noncollinear contributions to the photon IF, summed on hard-
photon chiral states:
+ - —
AT rd, me = AT\ T+ drgl, +drhil . (1.113)

The numerical value of dr,. , .. depends also on the experimental setup and will
not be considered here.
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1.2.5. Drell-Yan Picture of Process. We have obtained that the IFs of both
electron and photon in LLA can be written in the partonic form of the Drell-Yan
process, in terms of structure functions for any chiral states of initial and final
particles (the chiral indices are suppressed):

(drp +drsy + ZdThard (q-,q+) =

1 1
e (2) () (2 2)-
zZ_ Z4 Z4 Z— Z4
X ( [KgV+Kcoll+Kncol])’ (1114)

(drg + dtsy + dThard)e(plap/l) =

/
/dzl/—D )D( )dTB (zlpl,&) X
29
% (14 2[KSy + Kéon + Kineal )+ (1115)

where D(z) = D(z,ls) is the nonsinglet structure function of a fermion (the
defintion could be find in [58]). Ko can be derived from Eq.(1.96), where the
terms containing In fy are eliminated. The form of K, (after proper regular-
ization, compensating the divergent terms in the limit 8y — 0) strongly depends
on the details of experiment — tagging the additional hard photon.

The contributions from pairs production channels to the electron IF are not
discussed here.

1.3. Radiative Corrections to the Cheng—Wu Electron Impact Factor. It
is well known (see [4-6]) that the QED peripheral scattering amplitude for the
process A+ B — A’ + B’ (with internal quantum numbers a, b, a’,b’) at high
energy

A(pa,a) + B(pg,b) — A(py,d’) + B(plz, V),

(1.116)
s=(pa+pp)*>—t=—(pa—py)?~m?
can be written in the form
- 2 A k B k
A(s 1) = s / d°k 2 (k,r) 77 (k, 1)
(2m)?2 [(k+1r)2+ X[k — )2+ \?]
(1.117)

t
<1+(’)(;)>, 4r? = —t > 0,
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where 77 is the so-called Cheng—Wau IF, associated with the particle 7. This form
was found to be valid in the first nontrivial order of the perturbation theory. Here
A is the photon mass and the two-dimensional vectors r and k are orthogonal to
the momenta p 4, pp of the initial particles. The IF 7 describes the inner structure
of the colliding particles. For the electron 7¢ = 4mad;;, where indices %, j define
its polarization states. The expression for the impact factor of an on-mass-shell
photon can be written in the form [5]:

1 1
5 = 8a’ /dy/dx+ de_6(zy + 2 —1)(Aij — Bij), (1.118)
0 0
with
Aij:4 55 1 2{8xix_y(l—y)rirj—x2+r2 {1—8x+3§_< - 1)1 (5ij},
r’ziy(l—y)+m 2

1 1
Bij= 4Q2y(1—y)+m2 {8$+$_y(l—y)Qin _Q2 |:1—8$+$_ ( - 5) 2] 6ij}a
Q=glktr) o,

where 1, 7 describe the photon polarization states.
In the case of small angle eTe™ scattering, the amplitude for the diagrams
with the multiphoton exchange has the eikonal representation

A(s,t) = Ag(s, 1) ),

2 A _ N 2s
Ao(s,t) = 47704311(17'1)pzu(pl)v(pz)plv(pé) = 477047N1N2, (1.119)

. —1
Z IN;J> =2, 6(t) = —ialn -
pol
Here we use the fact, that at high energies only the longitudinal polarizations of

the ¢-channel virtual photons are important:

1 2phpY

2 s ¢ =t. (1.120)

a(p))vuu(p1)v(p2) 1o (py) G (¢), G*(q) =

)

Radiative corrections to Ay due to the so-called «decorated boxes» diagrams are
assumed to lead to a generalized eikonal representation:

A= Ao(s, t)[1 ()] @) (1.121)
where I'y (¢) is the Dirac form factor of electron

LV
aq,

() — A
V() =T () + S

To(t), r1<t):1+%r52><t)+... (1.122)
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Note, that one should include in §(¢) also corrections to the virtual photon Green
function, leading in particular to the electric charge renormalization.

In the next Subsection we verify the generalized eikonal representation for
the so-called «decorated boxes» amplitudes [16].

1.3.1. One-Loop Correction to the Electron IF. Keeping in mind that the
amplitude for the near forward scattering with the two-photon exchange is pure
imaginary (we omit the corrections of the order of m?/s), we can calculate its
s-channel discontinuity. There are RC to this discontinuity from the virtual
photons and from the emission of the real photon in the intermediate state. We
will separate the last contribution in two parts corresponding to the emission of
soft and hard photons.

The virtual photon contribution contains the electron vertex function for the
case when the initial and final electrons are on mass shell:

vir o !
Artt = —r O () + B2 (),

FOu) = -Gt m% —Gi(t) —T(),

1 1+ 242
G(t) = ;a Inb—1, Gi(t)=1- Zalnb,
@ (1.123)
b
1
T(t +“ { S2ptmbn +6) — [ Ewa+o)],
X
1
am? 1
a= 1oyt
t a—1

k:p_pla kll:pl_pllv
where the momenta of initial and final electrons are p, pj and the momentum of

electron in the intermediate state is p.

The contribution from the emission of a soft photon has the classical form:

_&/(m _L)(pl B pﬁ) (0) Pk
4m? piki  pk piki  piki w1

SE < E =/s/2.

w1 <OE

(1.124)

The energies of initial, intermediate, and final particles are approximately equal
(but large in comparison with the electron mass), and for small scattering angles
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we can use the relations:

5 | e
2m wi (pik1)?

1 [Pk pip; 1+a? 1, /dm
= Lelnb—=1n"b+InbIn(1+b)— [ —In(1+2)|,
2r ) wi (pik1)(pjk1) a 4 ( ) o ( )

1
(1.125)

FE
LezlnA—Hn%, tz(pi—pj)Q, A=%<<1,

with the quantities a, b defined above. Thus, we obtain
AT = S ((G(R?) + G(K?) — G(t)) Lo + T(K) + T(K?) — T(1)],
™

where T'(t), G(t) are defined above.

At last we consider the hard-photon emission. Its contribution to the imag-
inary part of the electron—electron scattering amplitude can be presented in the
form

3

« A2k d%k1dx
Im,A(s, t) = —sm/ k2k/2N1N2x(1 — x)f(ib,/ﬁ,k), A<z <],
(1.126)

where z is the energy fraction of the hard photon. We obtain

1 1
I(x, k1, k) = m(—4m2 +2t12) + m(—4m2x2(1 —x)+ 2t2(1 — x))+
1 1 8m? 1
—4m? 4 292) — 22— —dz— + —— — 22—
+d2d’1( m* + 2tyz) Zdl Zd2+d§ Zd’l’
z=1+(1-1x)% (1.127)

where

1
d1z(p—k1)2—m2=—5[m2x2+k%],
1
— 2 _ 2 _ 2,2 ERTRY
do=(p1+k1)°—m x(l—x)[m x4+ (zk — k1)7],

1
dh = (ph — k0)? = m? = —~[m?0® + (0q — k1)?), (1.128)

1
2pp1 = tl = m[?’?’ﬂz + (k — k1)2],

1
2p1p/1 = t2 = m[m?z + (:Uq + k1 — k)2}
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The subsequent integration is straightforward and gives the result:

Arhord = T§0>% [(G(k2)+G(k'2) - G(t)) m% +G1(k?) + G1(k?) — G1 (1) -

The interference of two amplitudes with the photon emitted by two initial
particles is small ~ O(t/s). This fact is known in literature as the up-down
cancellation. The contribution of the diagrams with the two-photon exchange is
pure imaginary and, consequently, does not interfere with the real Born amplitude.
Adding together all contributions we obtain the final result for one-loop RC to
the electron IF

Ar, = 2 OF®D ), 7O = 4na. (1.129)
0
This result agrees with the generalized eikonal form of the small-angle scattering
amplitude. But in the upper orders the eikonal representation is violated, as it
will be shown below.

1.3.2. Generalized Eikonal Representation. The above result for RC to the
electron IF can be obtained in a simple way. Let us consider again the case of the
decorated box, when the positron block corresponds to the Born diagram whereas
the electron one contains the set of four Feynman’s graphs with a virtual photon.
We express the components of the exchanged photon momentum in terms of
the squared invariant energies si, s2 for electron and positron blocks using the
Sudakov parameters

1
k=aps+Bp1+ ki, d'k= 2—d81d82d2/u, k= -k,
s
s1=(k—p1)?=—sa—Kk*+m? sy=(k+p)?=s8—-k>+m?
Performing the sy integration by residue from the propagator of the inter-

mediate positron (it takes into account also the diagram with the crossed photon
lines), we obtain the following expression for the total RC:

4o / d*k
s(2m)2 ) (K2 +2%)((a —k)* + %)

/dswé‘pgﬂ(p’l)flwu(pl), (1.130)
C

where @(p})A,u(pi) is the Compton scattering amplitude, corresponding to
the Feynman diagrams having only s-channel singularities and the contour C' is
situated above these singularities. The amplitude has the pole at s; = m?, which
corresponds to the electron intermediate state, and the right-hand cut starting from
s1 = (m + A\)?, which corresponds to one-electron and one-photon intermediate
state.
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Using the Sudakov parameterization for the photon momentum k£ we can
present p4 in the form

S

m(k—kl)# (1.131)

1
Py = —(k—ki—fBp1) = —
@
omitting the small contribution ~ 1/s proportional to Gp;.
Let us consider the product of two terms in the right-hand side of this equation
with the Compton amplitude A,,. The contribution of the term ~ & is zero:

dsi kY
v} | = A 1. KK () = 0 (1132)
c
This conclusion follows from the convergence of the integral over the large circle
in the s; plane and the absence of the left cut. This property is valid for the
planar Feynman graphs. The convergence of the integral is a consequence of
the fact that for the physical (transverse) polarizations of the virtual photon the
quantity e*p5A,,,,e =k, /|k| behaves at large s; as m?/s;.
Applying the Ward identity for the first contribution ~ k* we obtain:

2
vV se” - v
phpsu(py) A (s1)ulpr) = e pya(p)I (q)u(pr), s1>m?  (1.133)

Now the integral over the large semicircle gives the generalized eikonal result
~ T',, which means, in particular, that for physical ¢ < 0 the total contribution
of the various intermediate states is not zero. In particular, we see that RC to IF
of electron containing infrared divergences cancel only in the total cross section
with the contribution of the inelastic process — the photon emission.

In the case of the n-photon exchange, the eikonal result for the scattering
amplitude corresponds to the classical picture in which all intermediate fermions
are on their mass shell. It is a consequence of the fact, that the Born amplitude for
the ¢-channel photon interactions with external particles tends to zero as (pa k;) >
when (pa k;) — oo, which gives a possibility of calculating all integrals over
(pa k;) by residues. For RC corresponding to the decorated diagrams with one
additional virtual photon we can use the arguments similar to the two-photon case.
The physical reason for the generalized eikonal result for their total contribution
is that the integration over the invariant s;, corresponding to the virtuality of the
inner fermion line, to which the virtual gluon line is attached, gives zero because
after the cancellation of the renormalization effects due to the Ward identity the
amplitude at large s; behaves as 1/s?. The nonvanishing result is obtained only
from the diagrams in which the virtual gluon line is attached to the external
fermion lines but in this case we obtain the generalized eikonal result. This
argument is not valid for nonplanar diagrams because they have the left and right
singularities in s; planes.
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1.3.3. Impact Factors in the Two-Loop Approximation. In RC to the photon
IF the infrared divergencies are cancelled in the sum of contributions from the
eTe vy and eTe™ intermediate states. With the use of the crossing relations for
t = 0 [17] one can express the contribution to 77 from the e*e™ v intermediate
state in terms of the contribution to 7¢ from the ey intermediate state which
was investigated in papers [18-20]. We estimate here RC for ¢ = 0 only at small
virtualities of the exchanged photon k2. Their value can be extracted from the
results of paper [21], where the one-loop correction to the cross section of pair
production by photon on the coulomb field of nuclei was calculated:

2
2 k2 2
Sl + Ak, 0) = E 146, K < m?,
i=1
(1.134)

a9 (1128 6971
P =11 (3)

RC to the photon IF can be found easily also in the region k? > m? where one
can use the DGLAP evolution equations [22,23].

Let us consider now RC to the electron IF. The generalized eikonal (GE)
hypothesis is violated in the 2-loop approximation. (This fact was verified ex-
plicitly for ¢ = 0.) Indeed, if the GE hypothesis would be valid, the complete
compensation of contributions from the transition of the initial electron to the
intermediate states e, ey and ey would take place. However, it was shown,
that the total contribution is not zero and is equal to an interference term for the
e e -pair production amplitudes.

To clarify this result, let us write down the impact factor in the form

A_ [dsi 1 oy

™= 5wl PEDB, (1.135)

c

where the quantity (1/ 32)J/([y4) p'ypY% is expressed in terms of amplitudes J(4) for
the scattering of the virtual photon on the initial particles and does not depend on
s at s — oo. Jj, corresponds to contributions of all possible diagrams contrary
to the planar amplitude A, discussed in the previous section. The integration
contour C'is displaced in correspondence with the Feynman prescription between
the right- and left-hand side singularities of the amplitude. The right singularities
are the poles at s; = m? and the cuts at s; > (m+\)?, s; > (m+2))?, and 51 >
9m?2. There are also left singularities at the same points for the crossing variable
uy = —81 —t —2m? +k? 4 (q — k). The additional e*e~ pair can be produced
according to the Bethe—Heitler or bremsstrahlung mechanisms. There are also
interference terms taking into account the identity of the final electrons. The most
important contribution is from the Bethe—Heitler mechanism, corresponding to the



1148 ARBUZOV A.B. ET AL.

etTe™ pair production by two virtual photons. The corresponding impact factor
contains the divergency in s; related to the presence of two-photon intermediate
states in the crossing channel. For the case of ¢ = 0 this contribution was
calculated in [26]. We write down it here only in the Weizsacker—Williams
approximation, where it has the form of the sum rule for the Borselino formulae
for the total cross section o(s1) for the ete™ pair production in the electron—
photon collisions through the Bethe—Heitler mechanism:

S

dsyo(sy)ve~eee  o3k?2 s s

ey =k | —— (51) = 2(aln2—2+b1n—2+c),
¢ s S1 ™M m m

(1.136)
14 218 418 13

a=g b= =g m o
As it was discussed above, the logarithmic dependence on the upper limit s
in the integral over s; should be subtracted in a self-consistent way to avoid
the double counting, because the logarithmic contributions are summed by the
Bethe—Saltpeter equation (cf. the analogous procedure for the BFKL Pomeron in
the next-to-leading approximation [24] (and references therein)).

For the muon production we have
. a?k?
TBH, = Ve (a1 In? M2 +b; In— e +cl)

(1.137)
14 218 28 M 3011 28 107 M
m=g bi=-grtyh (m) 1= @i (m>

Here m and M are masses of electron and muon, correspondingly.

In the case of the bremsstrahlung mechanism of the e*e™ pair production its
contribution should be added with the corresponding two-loop RC to the electron
form factor for the elastic intermediate state and leads to the result corresponding
to the generalized eikonal approximation due to the fact, that the corresponding
diagrams are planar.

Among many Feynman’s graphs obtained from the interference between the
various amplitudes for the pair production there are only four nonplanar diagrams
corresponding to the identity of electrons in the final state in the Bethe—Heitler
mechanism. Only they give nonvanishing result for 7¢ at ¢ = 0. The corre-
sponding contribution in the Weizsacker—Williams approximation was calculated
in [17]:

2 3
(o, K a® (221 41549 - 216 792 00 o) o
Tint N 2 (315 5300 ¢P) ~ 105 ~ gzt (A
k2
~ (357) (1.138)

m2 T
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It leads to the sum rules for the integrals from the one- and two-photon bremsstrah-
lung cross sections and the slope of the Dirac form factor at ¢ = 0 [20].

Finally, the total two-loop contribution to the electron impact factor can be
written as follows:

2
r¢ = S50 B 4 . (1.139)

Here F1(4) is the full two-loop correction to the Dirac form factor (including
nonplanar diagrams and the diagrams with the inner fermion loop). The term
Ty 18 the total contribution from the imaginary part corresponding to the Bethe—
Heitler mechanism of the pair production including the interference effects, related
with the identity of the produced electrons (75y = 7gy, + 7gu, + Ti(rft)
t=k?=0).

The physical meaning of this formula is obvious: the nontrivial corrections
to IF are related only with the charged particle production in the intermediate
states.

for

1.3.4. Higher Order Radiative Corrections to Impact Factor. In the three-
loop approximation to the photon impact factor the most important contribution
corresponds to the diagram with two fermion loops connected in the ¢ channel
by two photons. It contains the logarithmic divergency ~ In(s/m?) because of
the imaginary part of the corresponding amplitude proportional to s; for large
s1. In particular, for ¢t = k? = 0 the impact factor can be expressed in terms of
the integral from the cross section for the transition of two real photons into two
eTe™ pairs.

The growth of the impact factor ~ In(s/m?) is related to the logarithmic
increase of the number of the dipoles (lepton pairs) at large energies. The effect
of fermion’s identity in the intermediate state does not have any influence on this
growth. Also the contribution from the diagrams with one eTe™ pair and several
photons gives a finite contribution to the photon impact factor.

Let us consider now three-loop corrections to the electron impact factor.
The most important contribution ~ In”(s/m?) appears from one-loop RC to the
Bethe—Heitler mechanism of the ete™ production. Other diagrams lead to finite
terms. The generalized eikonal representation is violated due to the nonplanar
diagrams related to the eTe™ pair production, but there is another reason for
its violation. It is related with the charge parity conservation in QED. Indeed,
two external photons with their momenta k and ¢ — k cannot pass through the
fermion loop to the three-photon intermediate state in the ¢ channel. Therefore
the generalized eikonal representation, containing in particular the form factor
corresponding to the transition of the external photon through the fermion loop
into the three-photon state, cannot be valid in three-loop approximation.

The methods, which were developed above for QED, can be used also for
QCD, where we urgently need to calculate the radiative corrections to impact
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factors of the virtual photon and other particles to find the energy region of
applicability of the BFKL theory in the next-to-leading approximation [24].

1.4. Small Angle Processes. [.4.1. Bremsstrahlung at Bhabha Scattering
and Crossed Process. For the case when one of projectile is elastically scattered,
differential cross sections are logarithmically enhanced. It is well-known phenom-
enon called Weizsacker—Williams approximation. Using the infinite momentum
technique one can calculate the cross section with power accuracy-improving the
logarithmical ones.

Let us demonstrate this method considering the bremsstrahlung in electron—
positron (electron) scattering (see [4,7,8,33] and references therein)

e (p1) + € (p2) — (e~ () + (k1)) + et (ph),
s = (pl +p2)2 > m27 —t= _k2 = _(pQ _p/2)2 ~ m27 m = Me,
k=py—p2, q=p1—pi.

The main contribution, nondecreasing with energy, arises from the kinematical
region when the scattered electron with photon form a jet moving close to the
direction of motion of the initial electron (the center of mass of initial electron
and positron is implied). The typical scattering angles are of the order of m/E,
4FE? = 5. The spectator-positron scattered in backward direction as well moves
close to the direction of initial positron.

Let us write down the 4-momenta of particles and the momentum transferred
between fermions & in terms of Sudakov’s variables (closely related to infinite
momentum approach):

k=apy+0p1+kr, pi=adp+8P+pl,, af =-a"><Q0,
(1.140)

m2

k1 = a1ps + B1pr + k11, aipr=a1p2=0, Pi12=pi2— P21~

Although the fine structure constant and part of momentum k have the same
designation o, we do not think they can be mixed.

Four-vectors py,» are almost light-like ones pf, = O(mf/s?). Using the
on-mass-shell condition of the scattered positron

p —m? = (py + k)> —m? = m?a+ sf(1 +a) — k> =0,
one can see that the square of momentum transferred

k2 + o®m?
1+«

k2 = <0

is nonzero negative quantity. Components of jet particles momenta along p;
(quantities of the order of unity) as well as transversal ones obey the conser-
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vation low
k+p,+ki=0, S+0 =1 z=1-0. (1.141)

Small components of jet particles momenta (ones along p3) can be found using
the on-mass-shell conditions p}? = m?, k% = 0:
k? (1 —2)m? + o>

, Slata)=——"——— q=k+k;. (1.142)
1—=x x

S =

The value of Sudakov parameter o can be related with invariant mass square of
jet s1 = (p1 — k)2 = (p) + k1)? = m? — sa — k2.

We note that the square of momentum transfer is negative and is restricted
by the magnitude below |k%| > m?y~% v = m/E, as well as the jet invariant
mass in the region of maximal contribution to the cross section is of the order of
electron mass.

The phase volume of the final particles can be expressed in terms of Su-
dakov’s variables in full analogy with the previous section and has the form:

T — d3p| d3ky dBply (2m)?
Bl o B (27)

54(171 +p2 — k1 —pi —phy) =

_ 11 dxd?’kd?q
45 (27)5 2(1 —x)

(1.143)

Matrix element of the process of radiative Bhabha scattering has a contribution
from eight Feynman diagrams. Contribution of only two of them, of scattering
type survive in the region of high energies. Using Gribov’s prescription for the
Green function of the virtual photon we can write it in the form:

- - 2s(4ma)3/?
b et e = B ) NV,
1 .
Ny = gﬁ(pz)plv(plz)’ (1.144)
j—k+m po | po pi—h
Ve — D1 +m P2 P2 P 1+m

P(pr — k)2 —m? s ?(pl—k1)2—m2%’

with e(k1) — the polarization vector of photon. Denominators of the electron
Green functions can be expressed in terms of Sudakov’s variables:
(1—2)m*+q*>  (q—k)? d

2 2 2
— k)2 —m?=_k -
(1= k)" —m * T + 1—=z x(1 —

(1= k1)’ =’ = (@ =K’ = (1= a)m’ — ——(q—k)* = -
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Further manipulations to obtain the differential cross section are standard. Differ-
ential cross section of radiative Bhabha scattering with emission of hard photon
along the initial electron is

2031 —z d?>qd’k dx
72 A2 (k2 + m2a?)?’
d=(1-2z)’m?+ (q— zk)?, di = (1 —2)’m*+ (q—k)?,  (1.146)
_ q®+ (1 —x)*m?

sz(l —x)

dae+ef—>e+(e"y) _

[k (14+22)dd; — 2x(d — dy)*m?]

In the case of radiative scattering of electron on a heavy nuclei, k is the momentum
transferred to it in the rest frame of nuclei and the quantity o must be re-
placed by

(1—-2)2m?+q?
mo = 2Ea(l—a) (1.147)
with £ — the energy of the initial electron in the nuclei rest frame.

The differential cross section in this form is convenient both for further
numerical or analytical investigation. For instance, we can obtain, by integrating
it on momentum transferred to the nuclei, the distribution on photon transversal
momentum and its energy fraction (in agreement with the result of paper [27]):

3
gete —et (e 20 1 —z
mm? 2
4r(1—2)?  da(l—2)* s
x |21+ 2? — 1 —
[l += c + 2 ]n(l—x)mQ
162(1 —z)®2  16z(1 —xz)*
(1) 20 m2) 16 _ O ded?hy. (1.148)
¢ ¢
-9 —q_ape M
z=1 oL c=(1-2) —|—m2.

The same form has the distribution on photon parameters emitted along the
initial positron. The total spectrum can be obtained by integration on transversal
momentum of photon and further multiplying on factor 2:

do.e+e_4>e+e_'y
dx
T
1—x

- m2(1 —2)

10 [4
¢ |Zo+(1-2)? 2 42 —1|. (1.149)
3 m2
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In the same way one can obtain the inclusive distribution on the scattered electron
(in agreement with [28]):

do’e+e_H6+(e_’7) 4a3(1 — ZL’) 2 4%(1 — x)2q2 S
= d2q — 71-m2a2 |:|:]. + a7 — W] |:h’1 W + 11'11':| +
zlnz 42%(3 — 1)q? (1+2%)?  8z(l-=z+2%)q?
1+ 22 - -
LTl L 2(1 —z)? m?a?
el ta? pdatfa)) a2 —z) —adr) 5
1 —2)2r 20(1—x)+a+r
2
r= a(a+4$), a:(l_x)2+q

m2’

For the case of scattering on a heavy nuclei Y the logarithmical term In s/m?

must be replaced by In2F/m. This formula can be considerably simplified for

sufficiently large electron scattering angle 6 = |q|/zE > m/E = 1/v and

l—z~1:

do®“F= ()" 4a3(1 42 4E? 1 6>
TR = 332941(?2—(’_1—13) [(1—:3—&—:32) In W—an— §(l+x2)+xln Z} ,

(1.151)

G om 1 -
dxdf? 2204 E2(1 — ) [( —|—x)<nm 2>+le—|—.rn4]

We put for completeness the distribution on angles of emission of both the scat-
tered electron and the positron assuming them to be large compared
with 1/7:

o 4a®  F(p,c)+ F(1/p,c)
6% d6% dp ~ ws 0202 (0% + 0% +20,0_c)’

(1.152)

where p = 0,/0_, ¢ = cosp, ¢ is the azimuthal angle between the planes
containing the beam axes and the scattered electron and positron, 6 is the polar
angle of scattered positron and electron. The function F' has the form:

1 1 24+ 2cp+1
F(p,c) = ——|—2cp—|——(—1+p2—20p—4c2p2)1n%+

2 2 p?
Vv1—¢c?
arctan
+ (14 cp+2(cp)® + 4(cp)® — p* — 3cp?) pre (1.153)
pV1—c? ’

we suppose here 64 > 1/~.
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Quite similar calculation can be applied to the problem of the double bremss-
trahlung process for the case of emission by electron and positive(negative)
charged muon (photons are emitted in opposite directions in the center-of-mass
reference frame). The relevant cross section has the form:

+

doe e =) Cofl-2)(1-y) RiR,

d2k d2q1 d2q2 dx dy B 7T4(k2)2 (d1d2d3d4)2 ’
Ry = K?dydy(1 +
Ry = K2dsds(1 + o>

dy :mf(l—x

)+
b2l 2 (1.154)
o =mi(l—x)* +

)Y+

ds =mj(1—y
dy =m3(1—y)* + (a2 + k)*.

Here z, —q; are the energy fraction and the transversal momentum of the scattered
electron, y, —qs — the corresponding values for muon, m; o — their masses.

Differential cross section of double photon emission in the same direction
has much more complicated form [29]. It will be considered in kinematics of
large angles emission later.

In the similar way the mechanisms of electroproduction of electron or muon
pairs at colliding ete* were investigated.

The two-photon mechanism of electroproduction was considered first in [30,
31], and later in more detail in [26,32,33]; bremsstrahlung ones — in [29]. The
effect of identity of fermions in the final state was considered in [17]. Spectra in
fragmentation region including the charge-odd contributions as well as fermion
statistics were investigated in [34]. We refer for details to the cited papers.

Differential cross sections of different processes in fragmentation region with
the same content of initial and final particles are connected with each other due
to crossing relation. Cross sections of processes one of which can be obtained
from another by rearrangement of initial particle with one of final ones from its
jet with the subsequent replacing them by antiparticles, turns out to be related by
some algebraical transformation [35]. Namely, the summed on spin states of all
particles matrix element squared are connected by relation

Z |Ma—c(k, By ki, Bis s)|> =

k Bi B 2
= Nca ‘ME%(_I <_71 /B;ki_k_v__;_sﬁ>
2 5!/ A
with k, 3 — transversal momentum and the energy fraction of particle ¢; k;, 3; —
the similar quantities for other particles from that jet; 7,. equals +1, if both

. (1.155)
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touched particles are of the same statistic, and —1 in the case when one of them
is fermion and the other is boson. In particular the spectra related as

dg B

For instance, starting from the spectral distribution on the photon energy fraction
in the process of photon emission along electron in electron—positron scattering
inferred above we have

doea—(ev)a 203 4 s(1—y w
———— =¢(y,s) = o [—(1—y)+y2] [21]&% —1} . Y=

do.b+a—>c+... 1
— 15 = ‘pa—»e(ﬁa 8) = _/677(108064»6, <_, _Sﬁ) . (1156)

dy 3 m2y E’
dora—e eta B ~ 2a? ! 4 ! 91 sz(1—z) 1 (_125_7)
7 =1Y(z) = 3 32( z) n—_ , B=

One can be convinced in the validity of the relation ¢ (z,s) = zp(1/z, —sz).
Let us consider now the spectrum of emission of two photons by electron and
positron [36]:

doo—ct (e (e )

dy1 dyz
_ 8o (1 —y))(d —y2)m +m2lyi (1 —y2) +y5(1 — y1)] +Msyiys
Tm? Y192 ’
5 7 17 7 = 1
_5.7 _ 1T S =3 2 ~1.202...
m=gtgls m=5+58% =gl & > 3 :

1
with y1 2 = wq,2/E — the energy fractions of photons. Multiplying the right-
hand part of this equation on 12 and performing the substitution y; o — 1/ 2,
we obtain the spectral distribution on the energy fractions x1, x2 of electrons in
the process of two-pair production at photons collision:
yr—(e (z1)et) (e (z2)et) 4

do = 8042 [.131(1 - .731).132(1 - 332)771—

Tm

— 772[.%1(1 — xg) + 1’2(1 — 1’1)} -l—’l]g}. (1.158)

dl’l dSL'Q

Integration of this spectrum on the energy fractions gives the known result for
the total cross section of the process of two electron—positron pairs production in
two-photon high energy collisions [37]:

at {175 19]

’y'y—>2€+2(37 _ Y Y 1.159
7 36 5% 18 (1.159)

mm?2

Starting from the double emission in opposite directions spectrum, one can ob-
tain the spectrum of bremsstrahlung at pair creation in the high-energy photon
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electron collisions:

dove—(e et)(er) _ 8at

{[772 —my(1—-y)] (i - 1) +n3y1—n2y1y(1 —y)] ;

(1.160)
with y; = w/E, y = E_/E — the energy fractions of the emitted photon and
the electron from the pair created.

It must be noted that the crossing relation discussed above is violated beyond
Born approximation since the amplitudes become in general complex.

1.4.2. Inclusive Distributions for Two-Pair Production Processes at Photon
Collisions. Starting from early 70th the processes with colliding photon beams
become close interest. In papers [37] the total cross sections of processes vy —
2et2e”;eTe T~ were calculated. These QED processes can be used as a
calibration ones for the planned photon colliding beams in full analogy with the
double-photon emission process at electron collisions. Besides, such a type of
processes is an essential background in any physical processes to be studied.
More possibilities can be obtained using the polarized beams.

For calibration purposes the differential inclusive cross sections for the case
of large scattered angles of the final particles become relevant. In paper [38]
it was shown that the inclusive cross sections weakly depend on the circular
polarization of initial photon beams, but the effects of linear polarization can be
rather big (~ 19%). The polarization effects weakly manifest themselves in the
total cross sections.

Let us consider the process of two-pair production at photon collisions

Y(k2) + (k1) = (uF (pr) + 1~ (p-) + (e—(q-) + e (qy)).  (1.161)

There present many Feynman diagrammes contributing to matrix element
(about 40). In high-energy limit only eight of them survive (i.e, give the nonvan-
ishing contribution in high-energy limit); restricting ourselves with the case when
muon pair moves along photon with momentum %, and electron pair moves in op-
posite direction, only four Feynman diagrams become relevant. Using Sudakov’s
parameterization of 4-momenta of the problem

dyy dy - m?

p-=a-ketzki+p_1, q-=yks+ -k +q-1,

k=aky+ Bk +k1, ki=Ek2=0,
(1.162)

45192 2p Aty = %da, da d®p_ |,
S
d'q. = gdp_dydq .,

where k is the momentum transferred between pairs, energy fractions x,y are
the positive quantities of the order of unity, s; = (k; + k)2 = —k? + sa,
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= (ko — k)? = —k? — 53 are the invariant masses squared of jets which
are supposed to be much smaller compared with the total CMS energy square
s = (k1 +k2)?. Using the arguments given above the cross section can be written
in the frames of impact picture form of H. Cheng and T.T. Wu as

4

2
dori—eenn — & [ TR e AD" 1.163
g 471- (k2) ( Z,€1,P— l) ( y7€27Q—L)7 ( . )

with €; o — polarization vectors of photons and the impact factors defined as

d d? 2
qpe = 4P LZ‘ ST ek kY

mz(l — x) ’
) (1.164)

AdPH — dyd®q_, T’Y’Y —ppt kf

my(1 —y) oh
In the lowest order of PT we have
2
S Rtk = 81— )
y k’(eief)  (ewpi)(eip+)  (ep-)(efp-)
4z(1 — z)aya_ a? a?
1

((eip+)(eip-) + (elp—)(e’{m))] ;
a+a,

_ 2 2 _
ax =pi+m’, p+ +p- =k

The similar expression can be obtained for the muon impact factor. Performing
the integration on the transversal momenta of pair component at fixed momentum
transfer k, we obtain the spectral distribution:

4 2
dorr—ete it _ 16a / d°k o
m ) m((k)?)?

x [(ere](—¢ +2z(1 —z)(p —¥)) + 2 (1 —)(2¢ — ¢))
xler = e =y > i — ¢ m — M], (1.165)
with ¢ = =1+ (1 +22)L,, ¥ = zL,, z = k?>/(4m?); m, M are the masses of

(e1k)(eik)
k2

1 2V 1
electron and muon, and L, = n(Vzt Vet ) Functions ¢, 1)’ are defined as
z(z+1)
k2
o' =), ¥ =v3F), I=-—0:. (1.166)

4M?
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Introducing the spin density matrix of photons
* 1 *
> eneyt = 5A+08as,  elea=1, (1.167)
A

with &, &2, £3 — Stokes parameters, using the relations

dk? o1
4/ et @) = P2,

dk? 2, 14, 154
4/ (k2)24p(z)cp(z) = §l + ?l + o7

(1.168)

dk? 1 13 80

4| = B =124 214 2
[ G e = 3+ i+ g
dk? - 1 M?

and performing the integration on the energy fractions, we obtain for the total
cross section

4 4 2
yy—etemptum _ 8 ll2 @l 485 20 [ — 1 o™
7 PV {54 162 e Tamaarz ' T 3) MY\ a2 )

a = lyl2 cos(27),

with [ = [¢2 +£2]"/2 — the degree of polarization of the photon with momentum
k1; lo — the similar quantity for the photon with momentum ko; v is the angle
between the directions of their maximal polarization.

The similar results can be obtained for the process of electron—positron pair
creation with a pair of charged pions (we suggest pions to be point-like or
structureless)

dor (e2q-)(e3q-) | (e2q+)(e3q+)
L _4y(1—
’/Tqu_Ldy y( y)( CL% + a2+ +
1 * *
+ ((e2a+)(e3a-) + (e2q-)(e3qa+)) |,
a4a—
ax =qi + M2, g+ +q- = -k
For the total cross section we have
o 40 16 163 3L,—1 M2
yy—eenT _ 2 —Lﬂ- Y ™ LT{' — lnp /==,
7 Tz Vel R R T 12 a} ’ B2

(1.169)
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The integrated over muon 4-impulses (moving along photon with momentum
k1) distribution has the form [38]

do 20
d?q, dx 371'2M4

[Fo+ F3Ss + F_X_ + FyS, + Fj4), (1.170)

with
23 = ll COS (2’}/1), Ei = l1l2 COS (2(’}/1 + ’}/2)), Eg = l2 COS (2’}/2), (1171)

~v1(7y2) is the azimuthal angle between transversal vectors of meson momentum
q and the direction of maximal polarization of photon with momentum £k (k2).
The coefficient functions are

R 2z(1 — x)

Fy = — 1+ p)R— 2L+ 1)(p?> —4p+1)—
—21(p* = 8p+3) — 4p),
4px(l — 1
F3 = px( 4) [R 6L —3+ — ( 9p2+4p+1)l———p],
(1+p) p? p
z(1 x){ 1 2}
F_= L+2l-3+3p+ =p°|,
1+ o)t PP
z(1 x[ 17 3 (3 10 2)]
F, = L=3)+ 5 +8p +——z =4+ =+ 124 6p— ,
e [P P P
+1l—p z(1- )[ 1
Fy=— (p 2pL +4p* —5p+2 =21 =4+34+p+p*) |,
’ plp+ 1?2 (1+p) p
with
2 2
q M
p:W’ l:hl(l—Fp), LZIHW,

) (1.172)

R=IL>+20QL+1)+L+4>+ % — 24 2Lis(—p).

The dependence of the inclusive cross section on the parameters of the «alien»
photon with momentum %, is defined by the ratio Fiy/Fy, Fy/F, and is weak
(of the order of 3%). The dependence on the polarization of «his» photon (k1) is
defined by the ratio F3/Fy. At p = 1.2, x = 0.5 this quantity equals 0.19.

1.4.3. Small-Angle Bhabha Scattering. An accurate verification of the SM
was one of the primary aims of LEP facility [39]. The small-angle Bhabha scatter-
ing process was used to measure the luminosity of electron—positron colliders. At
LEP, an experimental accuracy on the luminosity of the order of |do|/o < 0.001
has been reached. However, to obtain the total accuracy, a systematic theoretical
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error must also be added. This precision calls for an equally accurate theoretical
expression for the Bhabha scattering cross section in order to extract the SM pa-
rameters from the observed distributions. The knowledge of Bhabha cross section
in the Born approximation

d 2 2\ 2
%:%(31+C> . c=cosf (1.173)
S — C

becomes insufficient. For small scattering angle 6 (scattering angle of electron),
taking into account the electroweak corrections, we have

dog _ 8ma’?

1, 9.,
do _ Sne [1_ S0 g +5Weak] . (1.174)

For the pure QED case the lowest order RC was calculated a long time ago [40,
41]. Taking into account a contribution from soft-photon emission with photon
energy not exceeding (CMS implied) some small quantity w/E < A < 1, we
have doM) /dc = dop /dc(1 + v + ds), with [40,41,43]:

2c S 0 1
6V+6S:7[2 (1—1HW—|—21H<COt§>>1HZ+

. (1+4+c . [1—c 23 11 S
Lir( —°) —L il P
+12<2> 12(2) 96 M2

2 0
71-?(2(:4 —3c¢®—15¢) +2(2¢* =3¢ +9¢% + 3¢+ 21) In? (sin 5) -

_|_

+a 1
(3 +¢?)?

0 0
—4(* + % —2¢)In? (cos 5) — 4(c® + 4¢? + 5¢ + 6) In®(tan §)+

0
(11¢® + 33¢2 + 21c + 111) In(sin 3+

Wl N

+

+2(c* =32 +7c—5)In (cos g) +2(c® +3c% + 3¢+ 9)6;—
—2(c® +3¢)(1 - c)éS] . (1.175)

where d;(Js) is defined by contributions to vacuum polarization II(¢), I1(s)

1 2 —t
H(t)zg[5t+—Lt—§]+a—Lt, Li=ln—, Q*=—t=2E%*1-¢),
™ 3 9 47‘(’2 m2
, ) (1.176)
a 1 5, «a 4E
(s) = —[6s + 3Ls = 5]+ 75Lsy Ls=In—7.
Rell(s) 71_[5( + 31 9] + 12k n—s
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In the Standard Model §; contains contributions of muons, tau-leptons, W bosons,
and hadrons:

Se =0+ 67+, + 6, 6s=Red(Q* — —s), (1.177)

and the first three contributions are theoretically calculable:

1. @ 5 1 1 v+1 1 8
M=-In= -2, 6 =-v(l -0l —v?— =
e M A R L S L Y

(1.178)
4m?2 w 1 9 w+l 1 5, 11 4m2,

The contribution of the hadrons § can be expressed in terms of the experi-
mentally measurable cross section of the ete™ annihilation

2 ete™ —h(x)
H g
5! _47?@2 / — e (1.179)

2
4m?2

In the small scattering angle limit we obtain from (1.176):

de® dop 1
_— 1
de = de a-mmeEt T

o 1 3

Qo Bp T, 19 1.
+-0 [lnA+16l + 5l 5+ 70— 8. (1.180)
2
l=1n—.
"

This representation gives a possibility of verifying explicitly that the terms
of relative order #2 in RC are really small. Large contribution proportional to
In A will disappear when adding the cross section of hard-photon emission.

Further simplification follows from the generalized eikonal representation of
small-angle scattering amplitude

2
A(s, t) = Ag(s, t)Fy(t)? ete® {1 +0 (gQ—ﬂ, 5> Q% (1.181)

1 —TI(¢) TS

1. %pm aN? (2) , ,
where Fi(t) =1+ —F; ' (t)+ (=) F;™(t)+...is the Dirac form factor of the
m m

electron, ¢(t) = —aln(—t/\?) is the Coulomb phase. These arguments permit
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one to omit the contributions from annihilation channel as well as multiple-photon
exchange ones in the scattering channel.

In the lowest order of RC we also have to consider additional hard-photon
emission. Single hard-photon emission contribution strongly depends on the
experimental setup. The differential cross section has the form [43]

ey 3

L
doy © 7° 200
2

d.]?l d2q1 dJZQ d2QQ a 71'—

R(z1;q1,q2)0(1 — 22)
(a3)(1 - II(—a3))?

R($2§Q2,ql)5(1 —501)

+ 1+0(6%), (1.182
(@2 - T-gpye | O (L
with 2 2 2 2 2 2
_1+27 fgg(1—2)®  2m*(1 — )%z (di — d)
R(z,q1,q2) = T { i a2 Gh)? | (1.183)
and

di =m?*(1—xz)? + (q1 —q2)? do =m*(1 —2)* + (a1 — zq2)?, (1.184)

here x12,¢1,2 are the energy fractions and the transverse components of the
momenta of electron and positron.

The two-loop level RC consists of virtual two-loop vertex function contribu-
tion, RC to a single bremsstrahlung amplitude (which we put in the form of sum
soft and hard real photon emission parts) and two real photons contribution which
as well we will separate as soft and hard parts. The first one can be expressed in
the form

dovy _ dop (ay® 1 (2 4 4p®

= —2 (=) 7= 6F () +4F 1.185

de dc <7r) (1—H(t))2[ L () + 4R, ( )
with )
W) = (L, - D> 42, L2 1.

Fi7 () = (Lo = 1)In =4 2Ly — 2 L7 =14 . (1.186)

It is convenient to separate the photons and virtual pair intermediate state contri-
butions as Fl(z) =F"7 + Fe+e—,

1 3 17 1 21 3 3
Fri= L0 23y (G le Py (o - ey 26
1 1 3 1
+ 5 (L= 1w’ % + (L= D=7 L7 + 5L~ 1+ & ln% +0(1),
(1.187)
e 1 19 25 1
e = —%Lf + EL? - (ﬂ + 552)Lt +O(1);
2 =1
=" &= —~1202

1
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Cross section of emission of two soft photons, the energy of which does not
exceed AF, is:

dJSS:dJBL (g

2
(1-11(¢))2 7T)Q{(Lt—l) (ln%+lnA)+iLf — %gg} . (1.188)

The contribution of virtual correction to the single soft-photon emission is

16

dO’SV:dO'Bm

(0% 2 1 m 1 1
(;) F >(t){(Lt—1)(1n X+IHA)+ZL5_§§2}
(1.189)

The contribution from F¢ ¢ contains cubic on large logarithm term L3 which

is cancelled when we take into account the soft-pair production contribution [42]

~ 1 2 ~
dag+e =dop———— (g) R§+e ,

(1-TI(¥))% \ &
r- 1 1 5 2 10 28 1
RG® =L+ (zlnA— |24+ SIn® A= —InA+ - —~& | Li+0(1
s 18t<3n 18)t<3n 9 "TTar 3£2>t0()’

here A = (e +¢€_)/E < 1, ex are c.m.s. energies of pair components. As a
result, we obtain RS, = RS ¢ +2FF ¢

2

- 1 1 10 2 17
RE.S =L?<§ lnA+Z> +Lt<3 In” A A= 26~

— ]+ 0(1). (1.190
13 ) -0 1L190)

When evaluating the corrections arising from virtual and real soft photon
accompanied by emission of hard ones, we consider two cases. The first one
corresponds to emission of the photons by the same fermion, the second one
occurs when the hard photon is emitted by another fermion:

dolrsivy = do"STV) - doy sy +dolh ) +do ™0 (1191
In the case when both photons are emitting we have

-~ 3
€ ”?O‘ (L= DA+ 7L —1,(1192)

S+V ete” —et
da{éJrV) + dagq ) = do'g

with dagei_)ﬁew given above. A more complicated expression arises when
the same fermion emits virtual, soft, and hard photons. In this case the cross
section can be expressed in terms of Compton tensor with heavy photon [18],
which describe the subprocess v*(q) + e(p1) — (k) + e(q1). In the limit of
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small-angle photon emission kinematics we have:

Ydx d*qy d*qy
dot(5+V) = 2 Bui(s1,t1) + 22B 2B (t T
o To(l = ) (q)? [(Bi1(s1,t1) 4+ 2zB12 + 2 B11(t1,51))p + T,
T =Ti1(s1,t1) + 2°T11(t1, 81) + 2(Th2(s1,t1) + Tha(t, 51)), (1.193)
2
p=2 (Lt—ln& - )(2lnA—1nx)+3Lt—ln2x— 9,
—U1 2
where Bi1(s1,%1) is the Born tensor component
2 2 2
a5 8m 8m
11(51, 1) 51t s% s 12 81151’

(1.194)
s1=2qk, t1=-2pik, ui=(p1—q)?, sit+ti+tu=—qs.

Quantities 7%, 712 are finite in zero electron mass limit. Their explicit form can
be found in [18].

The double hard-photon bremsstrahlung in opposite directions gives the con-
tribution (see (1.182)):

e+(37—>(€+'¥)(‘377) 4 2 k —k
do o / d“k R(-rlaqlv )R(I‘2,q27 ) (1195)
™

dzy 2q1 dzs g 1 ) 7(k2)2 (1—T(—Kk2))2

Now we consider small-angle Bhabha scattering in the frames of the Drell-
Yan picture.

Let us introduce the dimensionless quantity ¥ = 0exp/00, 09 = 4ma?/Q3,

Q3% = E*0% with 0; — the scattering angle of electron and 0.y, representing the
experimentally observable cross section:

1
Y=— [ dr /dmﬁ(mxz — Zc)X
oo
d ete™—et (q2,z2)e™ (qu,z1)+X
x/d2qle§/d2qzeg 7 . (1.196)

dzq d291 dzs d2Q2

where z1 2,q1 2 are defined after Eq. (1.184); sz is the experimental cut-off on
their invariant mass squared and angular cuts are

|qu | |qu| |q2| |q2|
0f=0(03—— |0 —=—0 05=0(0,—— )0 —=—0
1 ( 3 xlE xlE L 2 4 LUQE LUQE 2 )
(1.197)
O(x) =1,x >0, 8(x) = 0, z < 0 is the step function. In the case of symmetrical

angular acceptance (our case below)

92:91, 93:94, p:Z—S > 1. (1.198)
1
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We will present X as the sum of various contributions:

N o= N4 4x2 pyete oy metery (1.199)
6§ d92
where Xy = 67 [ F(l — TI(t)) "% + Sw + Xy stands for the modified Born
07
contribution,
03 )
dz 1 920
_ 2 i 2\y—2
sw =0t [ % (-5 + 50 ) (- ey,
07
(1.200)
63
dz
EW = 9%/ 52 6weak
03

In the Born level the contribution from Z boson exchange does not exceed 0.3;
37 is one-photon contribution (real and virtual) and so on. Explicit calculations
(see details in [44]) give:

2
P
27_9/
_71'

1 Te

1
dz(1 — H(—zQ%))_2 X

%l &

.’E2
<[P+ o2 - )+

k(z,z) — d(x — 1)] , (1.201)

)2
k(z,z) = %[1 +0((xp)? — 2)] + L1 + 0((zp)?* — 2) Lo + 0(z — (zp)?)Ls,

(2= 1)(p* - 2)
(x = 2)(zp? = 2)

(: = 2%)(a%0® — 2)
w?(x — 2)(xp? — 2)
(z — 2?)(xp® — 2)
(z — 2)(2?p? = 2)
and P(x) is the kernel of evolution equation for nonsinglet structure function:

(2.
{1—%902

L1:1H

b

L2:1H

, (1.202)

L3:1H

b

= lim
A—0

01—z —A)+ (g + 21nA> 5(1 —m)} . (1.203)
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The quantity ¥27 collects both virtual and real two-photon emission contributions.
It can be put in the form:
Q7

2
Y2 = 4 23 + (g) ¢’ In =, (1.204)
7r m

where

o

1
1 /a2 dz
v - (& 2
=3 (77) /22(1—H(—ZQ§))2Lt/d”

1
1

X %P@)(x)[a((xp)? —z)+1]+/%P(t)P(f) 0((tp)* — 2)|, (1.205)

t
with 1
PO () = ﬂP(t)P(E) = lim 2In A+ 3 2 —4& | 6(1 — )+
A t’ " Ao 2 2
2
+2 {11t3; (2 ln(l—x)—lnm+g> —|—%(1—|—x) lnx—1—|—x] x0(1—x—A)|;
(1.206)
and , % 1 1
27 = % (%) /gLf(l _H(_fo))—2/dx1 / dzs X (1.207)
0 Tc Te/T1
% P(e1)Pa2)[0(z — D5 — ) +0(z — 22)0(a0? — 2)]x
x [0(z — 1)0(p* — 2) + 0(z — x3)0(x3p* — 2)]. (1.208)

We see that the leading contributions to 27 can be expressed in terms of kernels
of evolution equation for structure functions.

The function ¢?7 collects the next-to-leading contributions which cannot be
obtained by the structure functions method (see [58]). Its form can be deduced
from comparison of the calculation with logarithmical accuracy performed above
with the structure functions approach.

Contribution from pairs production (we restrict ourselves by consideration of
only ete™ pairs as well muon or pion pairs contribute too small) consists of the
mentioned above virtual, soft pairs, and the hard pair creation. Restricting only
by leading terms we have [45]:

1

1+ % In(1—z,) - 2 / ld_“””x 1 6((zp)? — 2]+

o

¥ - 1 /aN\2 [dz
ye'e :_(_) /_L2
2\m 227t

1 Te

1
+/dx{16_mx(4+7x+4x2)+(1+x) <—§+1nx>} +O<ng_z>],
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Let us consider the contributions of the order (wL)3. The relevant iteration
of master equations leads to

37 % (gl ) /dz /dml/dxgﬁ T1T2 —xp)[ 0(1 — zo)X
™

<P e )0(at =)+ g PO )P0 (- 2) e(%f—z)](wui)),

1 1

dt
with PG (z) = "

Bo—

PO )P (%) In the similar way we obtain:

3
- 1
Z€+e Y — = (gl > / /dxl/dl'g Xexl.fL'Q_xc)
4\ 7

X % (Rp(xl) + %P@) (z1) + %R(m)) 6(1 — 22)0((x1p)? — 2)+
+ Qx%P(xQ)R(m)G (z - i—%) 0 (—%p2 z) 1 (1.209)
with
Rlz) = ;P(x) + R(2),
Ria) = 1= L4 Tr 4 42%) 4201+ 2)

( +21In(1 — x)) R*(z) + %P(2>(:c)+
+

1
(1+ z)(—In? :E+4L12(1—x))+3( 9 — 3z + 8z%)+

+2<—§—8+8x+3x2>. (1.210)
3 T

1.5. QED Sum Rules. Due to analyticity of the amplitudes some relations
between the high-energy asymptotics of the cross sections of inelastic processes in
eTe™ collisions and higher order perturbative contributions to the electron Dirac
and Pauli form factors, can be derived. In particular, the total cross sections
turn out to be related to the slope of the Dirac form factor at zero momentum
transfer [20]. Applying the similar reasons to electron—proton scattering the
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photoproduction cross sections on nucleons and deuteron can be expressed in
terms of radii and their anomalous magnetic momentum [12,46].

Let us consider forward Compton scattering of virtual photon on some
charged particle. For definiteness we believe it will be an electron on the mass
shell:

Y (q, 1) +e(p1) = v (q.v) +e(p1), ¢ >0, ¢*<0, pi=m? (1.211)

Among Feynman diagrams let us choose only those (nonsinglet ones) where the
world line of charged particle contains both vertices of absorption and emission of
virtual photon, besides, the absorption vertex is situated before the emission one
when moving along charged particle world line. It contains in general arbitrary
number of vertices of emission of virtual photons and fermion closed loops which
corresponds to higher orders of QED PT contributions.

The relevant part of Compton tensor I, is not in general gauge invariant
R,,q. # 0; Ruq, # 0, but it indeed does not depend on the choice of virtual
photon Green functions as well as the complete set of all possible Feynman
diagrams in the given order of PT is implied to be considered.

We introduce further light-cone vector P, Py > 0, P2 = 0, and build another
light-cone vector p = p; — P(m?/s), p> = 0,s = 2Pp;. Consider now the
light-cone projection of tensor R in the limit of large values of scalar product of
these light-cone vectors:

1
J(s1,9) = lim SR BBy (1.212)

oo

Consider now the contour integral [20]

Hm=/wumax (1.213)
C

where the integration contour in s; is situated below the real axes at negative
values of s, intersects the real axes in the region s; = 0 and then lies along
real axes having small imaginary part. The singularities of light-cone projection
J(s1,q) are situated on the real axes of physical sheet: the part of Riemann
surface restricted by left and right cuts in s; plane.

Let us discuss the kinds of singularities of J(s1,q). Set of Feynman (con-
nected) diagrams with one-particle intermediate state in s; channel (p; +q)? = m?
produces a pole situated at s; = —q2. Cuts corresponding to inelastic intermedi-
ate states such as electron and photon, electron and an additional pair particle and
antiparticle produce the cuts situated at positive s;, corresponding to threshold
of inelastic processes (p; + ¢q)? = (m + \)?; (m + 2M)? with A\, M — fictitious
photon mass and mass of a particle from a pair.
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The general arguments used in proving the dispersion relation is that all
singularities are situated on the real axes. They have a physical interpretation as
a poles and thresholds of concrete reactions. In particular for Compton scattering
on hadrons such singularities as baryon and meson resonances correspond to the
poles situated on the second physical sheets beyond the real axes, so they do not
contribute to sum rules considered here.

Left cut singularities of J(s1,q) as well can be associated with physical
processes, but with rather nontrivial interpretation, which will be touched later.

Sum rule appears when we calculate the value I(q) for the case, when the
contour is closed to left cut singularities and to the right one including pole
contribution, and imply the zero contribution of large circle and convergence of
s1 integral.

First, we note that cuts contributions can be expressed in terms of cross
sections of physical processes. So the relevant contribution to the Compton
tensor is gauge invariant

R g, = Rq, = 0. (1.214)
Using Sudakov parameterization ¢ = aqP + 3qp + q1,q1. P = q1p = 0 and the
fact that main components of tensor K" are ones along 4-vector p, we obtain
from gauge condition

qu Ry = (P +qu)u Ry = 0.

For light-cone projection J(q) we have
1 1
SjR/LyP/LPy = 8_2q2€i€jRij-
1

Here we use expression of invariant mass square s; in terms of Sudakov para-
meters s1 = 2gp1 = sy, ¢> ~ ¢ = —q? < 0 and introduce two-dimensional
polarization vectors of virtual photon e = q/|q|. Discontinuity of amplitude on
the right cut, i.e., the difference of its values on opposite sides of right cut equals
to the double imaginary part of amplitude, which can be expressed in terms of

total cross section with the help of the optical theorem.

1.5.1. Electron Target. Consider now the zero angle elastic scattering of
some charged particle on electron with large total energy +/s in the center-of-
mass frame:

eF(p2) +e(pr) — eX(p2) +e(p), s=(p2+p1)?>m?, (1215

where m; is the typical mass of particles in the process. The nontrivial con-
sequences can be extracted from amplitude corresponding to two virtual photon
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exchange between projectile and target particle. Amplitude turns out to be almost
completely imaginary and proportional to s. It can be expressed in terms of
conversion of projectile tensor P, which we will suppose to be written in the
Born approximation with the target ones 7' which is supposed to be a series in
QED coupling constant a.

Main contribution to amplitude A2 (s) ~ [ d*q/(q*)? Py (p2) Ty, (1) %
X Gupy 9oy, arises from the so-called «nonsense» components of metrics tensors

2 2
Gupr Gvvy ™~ gp2u1plugp2p,1plp,~ (1.216)

Expressing loop momentum phase volume as diq = (s/2)da,dB,d*q. =
= dsyds2d®q/(2s) and performing the integration on projectile e® invariant mass
squared sy = s, and applying optical theorem, we can express the imaginary
part of zero angles scattering amplitude in terms of differential cross section of
inelastic scattering projectile on target:

do @ 1
qu = W/dsls?pgupgyﬂw. (1217)

In the third order of PT considering projectile and target to be positron and
electron, respectively, and taking into account the lowest order radiative correc-
tions to electron part of amplitude, we can work with flat Feynman diagrams. It
is known that the corresponding amplitudes do not have left-cut singularities. In
this case sum rule has the form:

dog —do®  do?
L = (1.218)

dq dq
where dop is the electron—positron elastic scattering differential cross section
calculated with structureless leptons; do® — cross section with electron form

factors taken into account, and do” is the electron—positron scattering cross section
with additional photon emission. The relevant vertex function has the form:

1 R
T, =F(¢*)v. + %R(CIQ)[%»QL
(1.219)

! @
F=1+-FP4+. .., FBR=SF?4. .
s 0
The left-hand side of the sum rule can be expressed in terms of Dirac form factor:

dop — do®

1
2
d2q — —80[3F1( )(t)t_2’ t = —q2, (1220)
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Contribution of Pauli form factor is absent in this order of PT. The lowest order
contribution to the Dirac form factor is [7, 8]:

2 2
1+0 ln9>1n@_3+29+30 n o

@) _ 3+20 436
& (t)_<1+1—92 N A=)

2
1 j_gz (%# = imeQ +1nfln(1 - 6) + Liz(—9)> , (1.22D)

g L= V1—am?ft

1++/1—4m?/t
Right-hand part of Eq. (1.218) can be described in terms of real photon emission
by electron cross section. It is convenient to distinguish that the emission of soft
photon with energy fraction does not exceed some small quantity w/FE < n < 1

and hard-photon n < w/E < 1 emission: do” = do ; + do}, 4.
For soft-photon contribution one has:

do] 4 403 . -1
R (v

I(y) = 2(1 — 2y cothy) In % + coth (2y) [ — yIn(4 cosh® y)+
1 h 1 — tanh
+Li2<W) ~ Liy (#)] . (1.222)

Hard-photon emission contribution has the form [32]:
1

do—gard 80[3 q2
gz oz ) W) 2=
n
1 14222 z
=l—-——1)|-14+——=1 1 1 1 .
flz,z) (m >[ —1—2@ n(z++v —&-z)} —&—x\/m n(z+v1+z)

(1.223)

Performing algebraic transformations one can be convinced in validity of the
lowest order sum rule given above.

The similar reasons (absence of the left-hand cut) can be applied to the sum
rule connecting the cross sections of ee — eujie. Muon-pair production with the
relevant contribution (which takes into account the vacuum polarization due to
muon—photon self-energy insertion) is connected to the slope of Dirac form factor
of electron. Really in the Weizsacker—Williams approximation we have [37]:

2.2 2
oeeeniie _ 20778 m( s ) (775 B 1099)7 € = % (1.224)

™ m2 ) \ 18 > 162
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This result must be compared with the one obtained in [47,48]:

, 2 1099
257 (0) = fim -2 _ @ 1.225
me B 0) = i S )~ 82 52 162 (1.225)

Several similar QED sum rules connecting the inelastic cross sections in
electron—positron scattering with the higher contributions to electron form factors
were considered in [4]. Considering the processes in the fourth order of PT such
as production of lepton—antilepton pairs at electron—positron periphery collisions
and double bremsstrahlung processes, the left-cut contributions to the sum rule
become important. For the case of pair productions it can be interpreted as
contribution to the cross section arising from taking into account identity of
produced lepton with the initial one.

Contribution to the sum rules from large circle in s; integration as a rule is
zero due to convergence of integral [(dsi/s1)o(s1), which is valid for decreas-
ing cross sections o(s1). In the case of nondecreasing cross sections, a linear
combination of different sum rules in which the corresponding divergent terms
are cancelled can be constructed.

1.5.2. Nuclon Target. Starting from very high energy inelastic electron—
nucleon scattering with a production of a hadronic state X moving closely to
the direction of the initial nucleon, then utilizing analytic properties of parts of
forward virtual Compton scattering amplitudes on proton and neutron, one obtains
the relation between nucleon form factors and a difference of proton and neutron
differential electroproduction cross sections. In particular, for the case of small
transferred momenta, one finally derives sum rule, relating Dirac proton mean
square radius and anomalous magnetic moments of proton and neutron to the
integral over a difference of the total proton and neutron photoproduction cross
sections [53-55].

At the end of sixties of the last century, Kurt Gottfried, by consideration
of the very high-energy electron—proton scattering and the nonrelativistic quark
model of hadrons, has found [49] a sum rule relating to the proton mean square
charge radius <r%p> and the proton magnetic moment 1, = 1 + x, to the integral
over the total proton photoproduction cross section o/ % (v) in the form

Oodl/ o [4
— )= |3 m2(ry,) +1— 5|, (1.226)
p
0

where v is the photon energy in the laboratory frame; « is the fine structure
constant, and m,, is the proton mass.

Nowadays it is well known, that the Gottfried sum rule cannot be satisfied
since the corresponding integral diverges due to the known rise of the total proton
photoproduction cross section at high energies.
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In this Subsection by means of a distinct way from the Gottfried approach and
considering the nucleon isodoublet (proton and neutron) simultaneously, a new
sum rule is derived, which relates Dirac proton mean square radius and anomalous
magnetic moments of proton and neutron to the integral over a difference of
the total proton and neutron photoproduction cross sections. Thus the rise of
both photoproduction cross sections at high energies mutually cancels and the
corresponding integral converges.

In derivation of the new sum rule we start also with consideration of the very
high-energy electron—nucleon scattering

e (p1) + N(p) — e (p}) + X, (1.227)

with production of a hadronic state X moving closely to the direction of initial
nucleon. The corresponding one-photon exchange approximation matrix element
takes the form

VAT _ , »
M = i=——a(p)yau(p)(X | I3 | NO)g™, (1.228)

where (r) means a spin state of the nucleon.
The Gribov representation of the metric tensor in the photon propagator
of (1.228) is

2, . o 2_
G = Gy + < (PubPrv + Dubrn) = “Pubrv, 5= (P14 1),

where ) )
~ mep - myp1
PL=pi—5—, p=p— "

2p1p 2p1p

are almost light-like vectors. According to the Sudakov expansion of the virtual
photon transferred four-momentum ¢ = p; — pj

q= ﬂqﬁl + O‘qﬁ"’ ql1, q1L = (anvq)a [)QL = p~1QL = Oa Qi = _q27

(1.229)
for the corresponding cross section one obtains:
4 1/2
T
do = =55 s@2” pipy Yo D (N JFEP X)X [ J2FP | N
X#N r=—1/2
(1.230)

where summations through the created hadronic states X and the spin states of the
initial nucleon are carried out and dI' denotes the final state phase space volume.
Further, approximating square momentum of virtual photon

[ ()]
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with

s1.= 2(qp) = sfq;
i.e., it is related to the invariant square mass of the final hadronic state by the
relation

mi = s1 + ¢ +my, (1.231)
and transforming the phase space volume of the final electron into the form
1 dpp 1 1 dsy 4

5. a4 q1,

=d'¢b[(p1 — )*] = @r)® 25

(2m)3 2¢)  (2m)

one gets the final state phase-space volume in the form

_ o dsi _ 44 _ dgpj
dr = 28(2ﬂ)3d qudlx, dlx = (2n)** [q+p zj:pj ];[26]_(%)3.
(1.232)

Besides, using the current conservation condition
(X | TP | N & (Bgpr + qu )" (X | JREP | N0 =0 (1.233)

(agp gives a negligible contribution) one can write

1/2
/ pipt 33 (N0 | JFOED | X)(x | JQEP | NOYT . = plipt AAD) =
X#Nr=—1/2

_ 5° 2 i jA FIN) _ 52 2 (V) _ %

= sqe'ed AA; =2i—5q Im AV (s1,q), e =—, (1.234)
51 ! S1 [E1

where just Cutkosky rule for s-channel discontinuity AAM) = 2iIm A®) of the

corresponding Feynman amplitude was applied.

Here we would like to note that the amplitude fl(sl, q) by a construction is
only a part of the total forward virtual Compton scattering amplitude A(s1,q),
which doesn’t contain (unlike the amplitude A(s1,q)) any crossing Feynman
diagram contributions. As a result there is no u-channel pole in A(sy,q), which
is a crucial point in a derivation of the new sum rule by using the analytic
properties of the latter amplitude.

Since the imaginary part of the crossing Feynman diagrams is starting to be
different from zero only above

s = 8m} + o,

one can write down an equality relation

ImA(s1,q) =ImA(sy,q) = 4slaggtpax(sl,q) (1.235)
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for 2mym. + mZ + q? < s; < 8m% + q?. Fortunately, above the threshold,
total proton and neutron photoproduction cross sections are almost equal and at
the new sum rule one can integrate over them up to infinity.

Using expression (1.230) and integrating over the phase-space volume of the
final hadronic state X, as well as over the invariant mass squared mg(, i.e., over
the variable s; (see (1.231)), for a difference of corresponding differential proton
and neutron electroproduction cross sections one finds

(daep—mX(s’ q) do_e’n—>efX(S7 q)> B Olq2 y

d%q d?q T 4n?
X 7 dsy X (Im A®) (s1,9) —Im A (51 q)) .
stla® + (mes1/s)?]? ’ ’
2mpyma.+m2+q?

(1.236)

If one neglects the second term in square brackets of the denominator of the
integral (1.236) (due to the small value of m. and high s in comparison with s;)
and takes into account (1.235) for q> — 0 together with the relation d*>q = wdq?,
one comes to the expression

9 dae_pae_x do_e_nae_x
q _

dq? dq? @0
T4 . -
=2 [ (e - o M) 237
™ S1
2mymay+m2

similar to the difference of the total cross sections of the electroproduction
processes on proton and neutron in the Weizsacker—Williams approximation

_ — — - [e% S
N = ot ) =25 ()

MMy
oo d - B
x / %(oﬁé’t X(s1) — o X(Sl)), (1.238)
1
2myma+m2

The analytic properties of the amplitude fi(sl, q) in s; plane are consisting
of the one-nucleon intermediate state pole at s; = g2, the right-hand cut starting
at the pion—nucleon threshold s; = 2mym, + mfr + q? and the left-hand cut
starting from s = —q* — 8m%.
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If one defines the path integral I in s; plane as presented in Fig.4,a
Mo v
pp i T(n
I= / ds1=5+ (Affy)(sl,q) - AEJ(sl,q)) : (1.239)
c

then once the contour C' is closed to upper half-plane and the other one to lower
half-plane (Fig. 4, b), the following sum rule

oo

. (Res(") - Res(”)) _ / % (ImA@) (s1,q) — Im A®™ (sl,q)) (1.240)

1
r.h

appears with (an averaging through the initial nucleon and photon spins is per-
formed)

2
Res™ = 2701 (FfN + Jl—%F§N> (1.241)

to be the one-nucleon intermediate state pole contribution and the left-hand
(Lh.) cut contributions from the difference (Im A®) —Im A(”)) are mutually

annulated.
Substituting (1.241) into (1.240) and taking into account (1.236) one comes
to the relation

2 2
q q
F12n(_q2) + 4m?2 F22n(_q2)F12p(_q2) - Wﬁgp(_q2) =
n p
2\2 e p—e X e " n—e X
_ o) (do _do . (1.242)
T dg? dg?

For q? = 0 the right-hand side is equal to zero, but the left-hand side is —1.
This is caused by the following reasons. On the right-hand side we take into

s1 plane ‘

a

— —
\ \

b

Fig. 4. Sum rule interpretation in s; plane. On plot a is drawn the contour C, on the plot
b is the contour C' closed to the upper and lower half-plane
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account only strong interaction effects and on the left-hand side the —1 is given
by nonzero proton charge, i.e., pure electromagnetic effect. In order to separate
the pure strong interactions from electromagnetic ones on the left-hand side of
the sum rule, one has to regularize the latter by adding +1 in order to achieve
the zero also there. As a result the sum rule takes the final form:

2 2
14 F2 (—q2 D 2 o) F2 () — L2 (o2 =
+ 1n( q)+4m% 2n( q) 1p( q) 477’1127 2p( q)
2\2 d e " p—e X d e n—e X
:2(‘]‘)2 7z T (1.243)
T dq dq

giving into a relation nucleon electromagnetic form factors with a difference of
the differential cross sections of deep inelastic electron—proton scattering. There
is a challenge to specialized experimental groups to verify the sum rule (1.243).

Now, taking a derivative of both sides in (1.243) according to g2 for q> — 0
and employing relation (1.237), one comes to the new sum rule relating Dirac
proton mean square radius and anomalous magnetic moments of proton and

neutron d
2 2
<7"1p> = 6d—q2F1p(q )
to the integral over a difference of the total proton and neutron photoproduction
cross sections (we used for laboratory frame s; = 2Mpyw)

L wy = Fan (@) (1.244)

q2 =0 —

1 52 I{% 2 T d(.d —X n—X
§<r%p> - 47,;:2 + 4m2 = 20 / w |:0-gopt (w) - o—;yot (w):| (1245)
P n
WN

with wy = m, + mfr /2Mp, in which just a mutual cancellation of the rise
of these total proton and neutron photoproduction cross sections for w — oo,
created by the Pomeron exchanges, is achieved. It is straightforward to see that
this final sum rule is not influenced at all by a renormalization of the left-hand
side in (1.243) by +1.

Using the Dirac proton mean square radius from [50] and proton and neutron
anomalous magnetic moments from [51], the evaluation of the left-hand side
in (1.245) gives (1.93 + 0.18) mb [54].

On the other hand, the data on photoproduction cross section on the neutron
are not so known as for the proton case up to now. Nevertheless, taking compi-
lation of both of them from [52], and assuming that both total cross sections are
starting at the pion mass and are equal above the last neutron experimental point
at w = 17.84 GeV, one gets on the right-hand side the value (1.92 £ 0.32) mb.
So, the sum rule (1.245) can be considered to be satisfied.

Radiative corrections to virtual photon impact factor in the frames of QCD
were considered in paper [59].
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1.5.3. Photon Target. Sum rules connecting the high-energy asymptotic cross
sections of peripheral processes of QED type with the fermion form factors (in
particular, with the slope of Dirac form factor) have been found in 1973 [20].
Applications to more complicated two-loop level QED processes have been inves-
tigated (see Appendix of the review paper [4]). In a set of the papers [12,46,53,54]
some applications to baryon, deuteron, and meson form factors were considered,
where connection of these electromagnetic form factors with Q2-dependent differ-
ential cross section of deep inelastic electron—hadron scattering in the peripheral
kinematics was investigated.

In this Subsubsection we consider the scattering of electron on photon target
with creation of 2 jets in the fragmentation region of the photon [55]. Such kind
of problems can be searched at photon—electron colliders constructed on the base
of linear electron—positron colliders.

Let us consider the two-photon exchange electron—photon zero-angle scatter-
ing amplitude in the process

e(p,\) +7(k,e) — e(p,A) +v(k,€), (1.246)

in two-loop (o) approximation as presented in Fig. 5, with p? = m?2, k? = 0 and
assuming that s = 2p, k > m?2. Averaging over the initial electron and photon
spin states (initial and final spin states are supposed to coincide), one can write

down the amplitude of the process (1.246) in the following form:

Vo k3

_ d .
AT (5, = 0) = 4?2 / ! dslegzaﬁww, (1.247)

where the light-cone projection of the LBL scattering tensor takes the form

vV %3 80&2 S S. S.
A'w—va pee %> [ p _[_1 22 28 1.248
a3 52 2 D, + Dy + D3 ( )
P P1
q q
k k

Fig. 5. Feynman diagram of ey — e scattering with LBL mechanism to be realized by
quark-loops
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with (see Fig.5)

S1 1Sp[p(d- +mg)p(d- — 4+ mg)E* (@ = d+k+mg)é(d- —d+my)]

Dy 4 (@2 —=m2)((¢- —a)* =m2)*((¢- —q+k)* —m2) ’
So _ 1Sp[Pd- +mg)p(d— — G+ mg)e'd- — G~k +mg)e*(d- — -+ my)]
Dy 4 (¢ - )((qf —q)* —=m3)*((g- —q—k)* —mg) ’
Ss_ 1Sp[p(d- +mg)2(G- — k+mg)p(G- +q — k +mg)E* (G- +G+my)]
D3 4 (¢ —m2)((q- + q) —mg)((a- + ¢+ k)? —m3)((q- —k)> —mg) ’
where ¢g_ means the quark four-momentum in the quark loop of the process
Yy = Y-

Regularization of LBL tensor is implied to provide the gauge invariance,
which consists in removing some constant symmetrical tensor and the latter has
no influence on the final results.

Now, taking a derivative of relation (1.247) according to d?q, one gets rid
of the corresponding integral. The analytic properties of the obtained expression
in s1 = say plane are presented in Fig. 6, where also the path C' of the integral

expression
dAP’y—>e’y
I= /ds1 (s1.9) (1.249)

is drawn. When the integratlon contour is closed to the right (on s-channel cut),
and to the left (on the u-channel cut), one comes to the relation

dﬁe’y—m’y(sh q) dAey—»e'y(sl’ q)
uThe& = AST\right, (1.250)

where the right s-cannel discontinuity is related, due to optical theorem in a
differential form

dAeY—eY do¢r—ead
A, _ (s1,9) _, do — (1.251)
d’q d’q
s plane
C
—4m2-q?
dm2+ o

Fig. 6. The path C' of an integration in (1.249)
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with the 0¢7—¢ differential cross section of g pair creation by electron on
photon to be well known in the framework of QED [56] for [T~ pair creation:

dae’y%eq(j _ 4&3 q2 q2
dg? 3(g?)*" "m2 m2

4 2 2
RN S q_2+¢1+q_2 |
a%(q? +4m§) amg dmg

But the right-hand cut concerns real two-quark production for s; > 4m3, which
is associated wit 2 jets production.

The left-hand cut contribution has the same form as in QED case with
constituent quark masses.

As a result, one obtains

do.e'y—>e2jets

43 4 q2
s X () - T 0w

where N, is the number of colors in QCD, and @, is the charge of the quark
q in electron charge units. Finally, for the case of small g% and applying the
Weizsacker—Williams relation, one comes to the sum rule for photon target as
follows:

oo

14 Q3 1 ds1 y~y—2jet
? W = @ ;0’30’1 1€ (81). (1253)
q g Am2
q
The quantity o7~ *“**(s;) is assumed to decrease for large values of s;.

It corresponds to the events in 7 collisions with creation of two jets, which
are not separated by rapidity gaps and for which till the present days there is
no experimental information. The latter complicates a verification of the sum
rule (1.253).

An evaluation of the left-hand side with the constituent quark masses m,, =
mq = 280 MeV and mg = 405 MeV (the contribution of heavy quarks c, b, is
negligible and can be disregarded) gives 5 mb.

The saturation of the right-hand side of the photon sum rule (1.253) with the
help of the data on o7, (s1) [51] on the level of 5 mb is achieved with the
upper bound of the corresponding integral to be 2-3 GeV2.

Unfortunately, the used data are charged by rather large uncertainties and in
order to achieve more reliable verification of the sum rule (1.253) the data on

o172 9% (g1 ) are highly desirable.
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2. TABLE OF INTEGRALS. ONE-LOOP FEYNMAN INTEGRALS

2.1. Loop-Momentum Integrals for Subprocess 7v*y — e¢te~. Here we
put the asymptotic expressions for a part of scalar, vector, and tensor integrals,
corresponding to the absorption of virtual photon by electron from the pair created
in subprocess

(1) +97(q) — e (q-) +eT(g4), ¢i =m? pi=0, o
$1=2q4q—, X+ =2p1gx 51~ Xz >m’.

We give first the scalar integrals with two, three, and four (different) denom-
inators, defined as

(q) = (p1 — g+ — k)*> —m* + 0. (22)

The loop-momentum integrals with the denominator (¢) = (q_ —p; —k)?—m?
instead of (q) = (p1 — g+ — k)? — m?, including scalar, vector, and tensor ones,
can be obtained from the ones listed below by means of the replacement:

G- — =G+, 4+ = —¢—, P1— =P, X+ —Xg. (2)—(2), (@) = (@)
(2.3)
So we can restrict ourselves by consideration of only the integrals with denomi-

nators (0), (2), (2), (¢).
We note the relation:

s1+q 7 =x1+x— (2.4)

Two denominator scalar integrals are defined as

k1

The explicit expressions for them are

Ipo=L+1, IQq:L_lq+1, I()q:L—l++1,
Is=L+1, Is =L—Ls+1, IQqZL—l.
Here and below we use the notation
A? X+ q?
LZIHW7 lizlnwy lqzlnma

2

Lszln%—iﬂ':l‘g—iﬂ', llzlnv.
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Remind once more that we imply all the kinematic invariants to be greater
than electron mass squared s1 ~ q> ~ y+ >> m? and present below the asymp-
totic expressions systematically omitting the terms of the order of m?/s; and
similar ones.

d*k
The tree-denominator scalar integrals I;;;, = | ———~———~<—~ are
=) @ H®
1 [, 2n2
Tozg = =5~ [Z+ M T}
1 472
Ioos = 5— 12 + 20l — = — im(2L, +20)]
281 3
. (2.5)
Iy = —5——— |12 = 12+ 7 + 2irl, |,
22q 2051+ q2) LT s T 7+ 2wl
1 1 - X+
Iozg = ——— [ty = 1) + 5 — 1) +2Li (1 - 2 )],
02q Xt —q2 a(lq +)+2(q +)°+ 12( qz)
The four-denominator integral I Ik 'k has the form
- 0229 = J T2 oo\
T ir(0)(2)(2)(e)
1 2 2
J@%:___V—2HQ—UH4521+3— + 24
s1xa LY 51 6

Q

2
+m<m++h—mn0+-s>>] (2.6)

Now we describe the vector integrals

- ‘

d* kM
M:/—T—:@ﬁ+@ﬁ+@m, 2.7

with 7 = (ij), (ijk), (ijkl), where i, j, k, 1 = (0), (2), (2), (q)-
For the vector integrals with two denominators we have (we put only nonzero
coefficients)

- 1 1 1 1
a2q—a%q:—a§"q: —(L—lq—|—§), a(l)q:—agq:—(L—l++§),

2 2
1 1 1 1 3
- _ + _ 1 _ +
a2§——a2§—§(L—Ls+§)7 aiq——gaéq—§<L—§), (28)
1 1 1
- +
a02—§L—Z, aoé——iL—Fz,
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and the coefficients for the vector integrals with three denominators are

1 2x+ qa’+xs
a02q = E (XJrIOQq + P l+ - a lq),

1
1
agzq = —Qg2q = P <l+ - lq)v

1
a’OQq:_(_l++2)a a:X+_q27

X+
1
+
a5, = —lozg — — Lt
02q q X+ ’
: (2.9
-~ = _—qf. =21
Q23 Q23 Pt

_ 1
= (L),

1
Uy5q = ~o3g + E(Ls - lq)’
S1 1 281
G2z = ?I”‘IJFE(_Z‘”LQ) a CT(LS_Z‘Z)’ c=s1+q°=x4+x-

Finally, the coefficient of the vector integral with 4 denominators has the form

a' = %1 (X+A +x-B-— 510),
at = % (X+A —Xx-B+ 510),
- _ X+ A _
a” =" —x+A+x-B +s51C), d=2s1x+X-,
(2.10)
A= IQ?q - IOqu
B = IO2‘Z - IQqu
C = Iozqg — Ingz — X+1o224-
We parameterized the second rank tensor integrals in the form
v d'k kyuky 11 ++ ——
LY== [aﬂgﬂlr piprtay qeqy +a. g+
+at (pras +arp) + 0, (pra- +gop1) +af T (gra- Fagy)| o (201)

Nz
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The coefficients for tensor integral with four denominators are (we suppressed
the index 022¢)

1 1
a1+:—<A6+A7—A10), at™ = —<A2+A6—A10),
X+ 51
1- 1 11 1 1+
a :X—(A2+A7—A1o), a Z—(Al—sla ),
1 L (2.12)
a = _(A5 _X_t,_Cll_), Cl++ = _<A3 _X—a1+)a
S1 S1
1
ag = 5 (AIO — A2 — X+a1+),
with
1 1
A= A93q — Qo3¢ Ag = agzq - a;gqa
Ay = gy A = a(l)Qq — x4at
A3 = a;iq - ag§q7 A8 = a’a2q - a’ggi - X+CL—, (213)
Ay = a(l)Qq - a’%?q’ Ag = agzq - a&g —xta”,

A5 = a02q - a22q, A10 = IQQq.

One can verify that the checking relations

Ay =xyatt + 5107, Ag=x_a " +xyrat, Ag=xia"T+x_aT

(2.14)
for the above coefficients (2.13) are fulfilled.
The coefficients entering into the tensor integral Ij,, are
1.3 4, x+
g _
Gozg = gL T g+ gl = e
_ _ 1 rx
e = —aty = — |2l —1,) — 1
Qo2 Ap2q Qa[ a I+ —1lg) )
1
a(TzZ = a’(l)%q = _a(lJ;_q = %(lq - l+)a
1 G, (@ 49y -3, | g® -3«
Go5g = — [Xifogq + a* I+ + 5 1+ 5 1. @15

The coefficients entering into the tensor integral Igg’é are
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and the coefficients for the tensor integral I(‘)‘Q”q are

1 3 w1 5
aggq = Z(L =)+ 3 Qoag = - <l+ - 5),
1 2.17)
11
aOQq 9 +( l+ + 2) QS_Q—Z = IOQq + E(3l+ — 1)
In the case of the tensor integral I f’ they have the form
171 3 5 q? L
L L R S O _
D e Tt v N> 2c(l La), (2.18)
_ 1
afsy = Iaag + 5 (lg = L), 05y = 500 = L),
1 1 s S
1 1 1
%= 5|3 —s——l}, 2.19
224 c[ 2 + 2¢ 2¢ 1 (2.19)
1 5 5s 292 — 3s
1+ _ _ 1 q 1
o = ol 7 g e e S,
1 352 352 — (q?)? — 451>
a3, = = [4s1 +Q* + sl — 1L, + = 9 2)C L] @20

The checkmg equations for the coefficients (2.18) could
plying I,

by 2(q+ + q-)" or 2p¥, using the relations 2k(qy +q_) =

be obtained after multi-

(2) = (2),

2pmk = ( ) —(q) — x+ and using the vector integrals (2.7). They have the form:
+ _ —_ —_
2 —|— 81a22q + ca22q + 851055, = Ggq — U5,
2a;, + sla;;; + ca;;q +s107T = a3, — a3, (2.21)
- 1 1
Ca22q + 51a22q T 81055, = Agq — a5

Integrals for calculation of the electron impact factor with the denominators

(0)e = k% — )2,

(1)e = (p1 — k)* —m? +10,
(2)e = (py — k)> —m? +i0,

(@)e = (p1 — k1 — k) —m? +40

can be obtained from the cited above by the substitution

/

d*k 1, k, kk

0@, - TPt T

</

'k 1,k kk_
in? (0)(2)2)()’

(2.22)

. _klvq_) Q)X

1, k, kk

(2.23)
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An additional set of relevant integrals for the electron impact factor can be
obtained by the relevant substitution.
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