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Large-angle Bhabha scattering cross section and related processes are considered. Standard
procedure of calculation of radiative corrections (RC) with emission of one and two real photons as
well as lepton pairs is considered in detail. Special attention is paid to the case of radiative large-angle
Bhabha scattering, where we show the validity of factorization theorem for one-loop level RC. This is
the basic assumption of the DrellÄYan form of the cross sections when hard particles are detected at
large angles. The cases of collinear and semicollinear kinematics for the ˇnal particles are considered
explicitly. At the end of the review we consider some contributions to the large-angle Bhabha elastic
scattering cross section at two-loop level. Among them, the emission of two hard photons in collinear
and semicollinear kinematics regions and the contribution of a set of gauge-invariant FD of two-loop
level were calculated.
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INTRODUCTION

Nowadays we could see the renewal of interest to Bhabha scattering. For
example, at BEPC facility (Bejing, China), the e+e− collider with extremely high
luminosity (1033 cm−1 · s−1) is build, which gives us the possibility of obtaining
with much more accuracy J/Ψ decays and maybe some new physics such as
4-quark resonances, heavy quarkonia.
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For such a precise measurements we have to know with accuracy at the
level of 0.1% the beam luminosity and background processes such as Bhabha
scattering at small angles, with additional soft and hard photon or lepton pair
emission. All these processes are considered at this review. At the end of
each Section we give the explicit expression of the processes in the frames of
DrellÄYan picture.

At the beginning we consider the well-known lowest order RC to the large-
angle Bhabha scattering and put the ˇnal answer in terms of DGLAP evolution
equation kernels.

Then we put the expressions for the large-angle Bhabha scattering accom-
panied with the soft, hard photon and soft real lepton pair. The relevant virtual
one-loop corrections are also considered. The ˇnal answer is given in the form of
explicit leading logarithm contribution and the so-called K factor, which includes
nonleading RC corrections. Due to its cumbersome form we put some numerical
estimations of it. In the next Section we consider also the hard real lepton pair
emission, and we provide the check that the ˇnal answer is in accordance with
the renorm-group predictions.

The remainig part is devoted to the radiative Bhabha scattering. In Sub-
sec. 1.4 we start with the consideration of one-loop RC (box-type, vertex-type,
vacuum polarization, etc.). Again, we convince that our ˇnal result is con-
sistent with the DrellÄYan picture of this process. The nonleading terms are
presented in the numerical form. In Subsecs. 1.5, 1.6 we consider the emis-
sion of one and two real hard photons in collinear and semicollinear
kinematics.

At the end of the review we put some parts of two-loop calculation for
Bhabha scattering. All two-loop contributions are divided to the gauge-invariant
classes, and addition soft photon emission is also included.

In Sec. 2 we give the tables for one-loop Feynman integrals of scalar, vector,
and tensor types, with two, three, four, and ˇve denominators. All formulae
are presented with the accuracy up to the terms of the order of the ratio of the
electron to the muon masses squared, and the kinematic invariants are assumed
to be large compared to the electron mass squared.

Throughout our paper we use the next designations:

DIS Å deep inelastic scattering

FD Å Feynman diagram

LLA Å leading logarithmic approximation

NLO Å next-to-leading order

QCD Å quantum chromodynamics

QED Å quantum electrodynamics

RC Å radiative corrections.
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1. LARGE-ANGLE BHABHA SCATTERING

The cross section of Bhabha scattering (corrected by the vacuum polarization
factor), which enters into the DrellÄYan form of corrected cross section, has a bit
more complicated form, as far as the scattering and annihilation amplitudes and
their interference are to be taken into account. We remind here the form of the
Lorentz-invariant matrix element module squared in the Born approximation:

R0(s, t, u) =
1

16(4πα)4
∑
spins

∣∣M(e−(p−) + e+(p+) → e−(p′−) + e+(p′+))
∣∣2 =

=
s2 + u2

2t2
+

u2 + t2

2s2
+

u2

st
, (1.1)

s = (p− + p+)2, t = (p− − p′−)2, u = (p− − p′+)2,
(1.2)

s + t + u = O(m2
e),

here and below we neglect the terms of order m2
e/s ∼ m2

e/(−t) ∼ m2
e/(−u)

compared with ones of order of unity.
The ˇrst term in the right-hand side of Eq. (1.1) describes the scattering-

type Feynman diagram square. The second one corresponds to the square of
the annihilation-type diagram. And the third one deals with the interference
of the two diagrams. A more compact representation of R0 is also useful,
R0 = (1 + s/t + t/s)2. In the center of mass of initial particles (further
implied) we have

s = 4ε2, t = −2ε2(1 − c), u = −2ε2(1 + c),

where c = cos θ, and the scattering angle θ is the angle between the initial and
the scattered electron momenta, ε is the energy of initial electron.

The differential cross section in the Born approximation has the form

dσBorn
0

dΩ−
=

α2

4s

(
3 + c2

1 − c

)2

. (1.3)

Consider the case when the initial electron and positron lost certain energy frac-
tions. Supposing the scattering angle remains the same and using the conservation
laws, we will obtain the value of R0 in terms of the relevant invariants.

The corresponding kinematics is deˇned as follows:

e−(z1p−) + e+(z2p+) −→ e−(p̃−) + e+(p̃+),

s̃ = sz1z2, t̃ = −1
2
sz1Y1(1 − c), ũ = −1

2
sz2Y1(1 + c),

Y1 =
p̃0
−
ε

=
2z1z2

a
, a = z1 + z2 − (z1 − z2)c.
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For deˇniteness we put here the shifted Born cross section of two types:

dσ0((1 − x)p−, p+)
dc

=
2πα2

ε2

{
3 − 3x + x2 + 2x(2 − x)c + c2(1 − x + x2)

(1 − x)(1 − c)(2 − x + xc)2

}2

,

(1.4)

dσ0(p−, (1 − x)p+)
dc

=
2πα2

ε2

{
3 − 3x + x2 − 2x(2 − x)c + c2(1 − x + x2)

(1 − x)(1 − c)(2 − x − xc)2

}2

.

The shifted Born cross section corrected by vacuum polarization insertions
into virtual photon propagators reads

dσ̃0(z1, z2) =
4α2

sa2

{
1

|1 − Π(t̃)|2
a2 + z2

2(1 + c)2

2z2
1(1 − c)2

+

+
1

|1 − Π(s̃)|2
z2
1(1 − c)2 + z2

2(1 + c)2

2a2
−

− Re
1

(1 − Π(t̃))(1 − Π(s̃))∗
z2
2(1 + c)2

az1(1 − c)

}
dΩ−. (1.5)

Quantities Π(s) and Π(t) are the vacuum polarization operators in the s and t
channels.

1.1. Lowest Order Radiative Corrections and the Leading Logarithmic
Approximation. Rewriting the known results [14] (see as well [16]) for the cross
section in the Born approximation with one-loop virtual corrections to it and with
the other ones arising due to soft photon emission, we obtain

dσB+S+V

dΩ−
=

dσ̃0(1, 1)
dΩ−

{
1 +

2α

π
(L − 1)

[
2 ln

Δε

ε
+

3
2

]
−

− 8α

π
ln
(

cot
θ

2

)
ln

Δε

ε
+

α

π
KSV

}
, L = ln

s

m2
e

, (1.6)

where

KSV = −1−2Li2

(
sin2 θ

2

)
+2Li2

(
cos2

θ

2

)
+

1
(3 + c2)2

[
π2

3
(2c4−3c3−15c)+

+ 2(2c4 − 3c3 + 9c2 + 3c + 21) ln2

(
sin

θ

2

)
− 4(c4 + c2 − 2c) ln2

(
cos

θ

2

)
−

− 4(c3 + 4c2 + 5c + 6) ln2

(
tan

θ

2

)
+ 2(c3 − 3c2 + 7c − 5) ln

(
cos

θ

2

)
+

+ 2(3c3 + 9c2 + 5c + 31) ln
(

sin
θ

2

)]
(1.7)
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is the part of the K factor coming from soft and virtual photon corrections,
dσ̃0(1, 1) is deˇned in (1.5). Quantity Δε in Eq. (1.6) is the maximal energy of
emitted soft photons.

Consider now the process of hard photon (with the energy ω = k0 > Δε in
the center-of-mass system) emission

e+(p+) + e−(p−) → e+(p′+) + e−(p′−) + γ(k).

We start with the differential cross section in the form suggested by F. A. Be-
rends et al. [4, 5] which is valid for scattering angles being large compared with
me/ε (the case of extremely small scattering angles was treated in [32]):

dσhard =
α3

2π2s
Reēγ dΓ, dΓ =

d3p′+d3p′−d3k

ε′+ε′−k0
δ(4)(p+ + p− − p′+ − p′− − k),

Reēγ =
WT

4
− m2

e

(χ′
+)2

(
s

t
+

t

s
+ 1
)2

− m2
e

(χ′
−)2

(
s

t1
+

t1
s

+ 1
)2

−

− m2
e

χ2
+

(
s1

t
+

t

s1
+ 1
)2

− m2
e

χ2
−

(
s1

t1
+

t1
s1

+ 1
)2

, (1.8)

where

W =
s

χ+χ−
+

s1

χ′
+χ′

−
− t1

χ′
+χ+

− t

χ′
−χ−

+
u

χ′
+χ−

+
u1

χ′
−χ+

,

T =
ss1(s2 + s2

1) + tt1(t2 + t21) + uu1(u2 + u2
1)

ss1tt1
,

and the invariants are deˇned as

s = 2p−p+, s1 = 2p′−p′+, t = −2p−p′−, t1 = −2p+p′+,

u = −2p−p′+, u1 = −2p+p′−, χ± = kp±, χ′
± = kp′±.

It is convenient to extract the contribution of the collinear kinematics. We do
that for the following reasons. First, it is natural to separate the region with a very
sharp behavior of the cross section and to consider it carefully. Second, we keep in
mind the idea of the leading logarithm factorization, which is valid in all orders
of the perturbation theory. We will evaluate the collinear kinematical regions
in two different ways. The ˇrst one (the quasi-real electron approximation) is
suitable for generalization in order to account higher order leading corrections by
means of the structure function method. In this way we will obtain below the
leading logarithmic contributions and the compensating terms, which will provide
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the cancellation of auxiliary parameters. The second one (the direct calculation)
is more rigorous, it can be used as a check of the ˇrst one. We discuss it in detail
in Subsubsec. 1.1.1.

To obtain explicit formulae for compensators it is needed to consider four
kinematical regions corresponding to hard photon emission inside narrow cones,
surrounding the initial and ˇnal charged particle momenta. The vertices of the
cones are taken in the interaction point. We introduce a small auxiliary parame-
ter θ0, it should obey the restriction

me√
s
� θ0 � 1. (1.9)

So, we deˇne a collinear kinematical region, as a part of the whole phase space,
in which the hard photon is emitted within the cone of θ0 polar angle with respect
to the direction of motion of one of the charged particles.

Using the method of quasi-real electrons [6, 7], the matrix element M
(squared and summed up over polarization states) of the process of hard pho-
ton emission can be expressed through a shifted matrix element of the process
without photon emission:∑

|M(p1, k, p′1,X )|2 =

= 4πα

[
1 + (1 − x)2

x(1 − x)
1

kp1
− m2

(kp1)2

]∑
|M0(p1 − k, p′1,X )|2,

∑
|M(p1, p

′
1, k,X )|2 =

4πα

[
y2 + Y 2

ωY

ε

kp′1
− m2

(kp′1)2

]∑
|M0(p1, p

′
1 + k,X )|2, (1.10)

x =
ω

ε
, p0

1 = ε, y =
p′1

0

ε
, Y = x + y,

where X denotes the momenta of nonradiating incoming and outgoing particles in
the given process. The integration over the phase volume of the emitted photon
inside the narrow cone, surrounding its parent charged particle momentum, gives
the following factors:

4α

16π2

∫
d3k

ω

[
1 + (1 − x)2

x(1 − x)
1

kp1
− m2

(kp1)2

]
=

=
α

2π

dz1

z1

[
P

(1)
Θ (z1)

(
L − 1 + ln

θ2
0

4

)
+ 1 − z1

]
, z1 = 1 − x,
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4α

16π2

∫
d3k

ω

[
y2 + Y 2

xY

1
kp′1

− m2

(kp′1)2

]
=

=
α

2π

dz3

z3

[
P

(1)
Θ (z3)

(
L − 1 + ln

θ2
0

4
+ 2 ln z3

)
+ 1 − z3

]
, (1.11)

z3 = 1 − ω

p′1
0 + ω

= 1 − x

Y
.

Note that the terms proportional to (L − 1) contain the Θ-part of the kernel

P (1) = P
(1)
Δ + P

(1)
Θ of AltarelliÄParisiÄLipatov evolution equations:

P
(1)
Θ (z) =

1 + z2

1 − z
Θ(1 − z − Δ).

Collecting the contributions of the four collinear regions, we obtain

dσcoll

dΩ−
=

α

π

1∫
Δ

dx

x

{[(
1 − x +

x2

2

)(
L − 1 + ln

θ2
0

4
+ 2 ln (1 − x)

)
+

x2

2

]
×

× 2
dσ̃0(1, 1)

dΩ−
+
[(

1 − x +
x2

2

)(
L − 1 + ln

θ2
0

4

)
+

x2

2

]
×

×
[
dσ̃0(1 − x, 1)

dΩ−
+

dσ̃0(1, 1 − x)
dΩ−

]}
, (1.12)

where the shifted Born cross section is deˇned in Eq. (1.5).
Adding the contributions of virtual and soft photon emission, we restore the

complete kernel. Generalizing the procedure for the case of photon emission by
all charged particles, we come to the representation of the cross section in the
leading logarithmic approximation. The ˇnal expression for the cross section
therefore has the form

dσe+e−→e+e−(γ)

dΩ−
=

1∫
z̄1

dz1

1∫
z̄2

dz2 D(z1)D(z2)
dσ̃0(z1, z2)

dΩ−

(
1 +

α

π
KSV

)
Θ×

×
Y1∫

yth

dy1

Y1

Y2∫
yth

dy2

Y2
D
(

y1

Y1

)
D
(

y2

Y2

)
+

+
α

π

1∫
Δ

dx

x

{[(
1 − x +

x2

2

)
ln

θ2
0(1 − x)2

4
+

x2

2

]
2
dσBorn

0

dΩ−
+
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+

[(
1 − x +

x2

2

)
ln

θ2
0

4
+

x2

2

][
4α2

s(1 − x)2[2 − x(1 − c)]4
×

×
(

3 − 3x + x2 + 2x(2 − x)c + c2(1 − x + x2)
1 − c

)2

+

+
4α2

s[2 − x(1 + c)]4

(
3 − 3x + x2 − 2x(2 − x)c + c2(1 − x + x2)

1 − c

)2
]}

Θ−

− α2

4s

(
3 + c2

1 − c

)2 8α

π
ln
(

cot
θ

2

)
ln

Δε

ε
+

α3

2π2s

∫
k0>Δε

π−θ0>θ>θ0

WT

4
Θ

dΓ
dΩ−

, (1.13)

Y1 =
2z1z2

z1 + z2 − c(z1 − z2)
, Y2 =

z2
1 + z2

2 − (z2
1 − z2

2)c
z1 + z2 − c(z1 − z2)

,

z̄1 =
yth(1 + c)

2 − yth(1 − c)
, z̄2 =

z1yth(1 − c)
2z1 − yth(1 + c)

.

Symbol Θ denotes above possible experimental cuts on the ˇnal state particle
phase space. The last term describes hard photon emission process, provided that
the photon energy fraction x is larger than Δ = Δε/ε, and its emission angle
with respect to any charged particle direction is larger than some small quantity
θ0. The sum of the last three terms in Eq. (1.13) does not depend on the auxiliary
parameters Δ and θ0, if they are sufˇciently small. We omitted the effects due
to vacuum polarization in the last three terms which describe real hard photon
emission; because the theoretical uncertainty, coming from this approximation,
has the order δ(dσ)/dσ ∼ (α/π)2L <∼ 10−4. Nevertheless, if the center-of-
mass energy is close to some resonance mass (say to mϕ), the effect due to
vacuum polarization may become visible. According to the master formula (1.13)
a Monte Carlo event generator [33] was created. The generator is applied to
data simulation and analysis at electronÄpositron colliders such as VEPP-2M and
VEPP-2000.

1.1.1. Calculation of Real Collinear Photon Radiation. Here we present the
direct evaluation of the collinear region contribution to the Bhabha scattering
cross section. Let us write the contribution of the collinear kinematics in the
form:

(dσ)coll = dσk‖p− + dσk‖p+ + dσk‖p′
−

+ dσk‖p′
+
≡

≡ dσa + dσb + dσc + dσd. (1.14)
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For the case of photon emission along the initial electron we have (see Eqs. (1.4),
(1.8)):

Wa =
2
ω2

1
1 − βc2

, Ta =
1 + (1 − x)2

1 − x
R(s1, t

a, ua), dΓa =
d3k

ω

ya
1

aa
dΩ−,

c2 = cos (k̂p−), β =

√
1 − m2

e

ε2
, ω = k0 = xε, s1 = s(1 − x), ta1 = ta(1 − x),

(1.15)

ua
1 = ua(1 − x), ta = −s

(1 − x)2(1 − c)
aa

, ua = −s
(1 − x)(1 + c)

aa
, s = 4ε2,

aa = 2 − x(1 − c), ya
1 =

2(1 − x)
aa

, c = cos (p̂−p′
−).

Performing the angular integration over photon angles inside the narrow cone,
surrounding the direction of the initial electron beam, we get∫

WadΓa = 4π
dω

ω
dΩ−×

×
1∫

1−θ2
0/2

dc2

1 − βc2
= 4π

dx

x
dΩ−

ya
1

a2
a

(
L + ln

θ2
0

4
+ O(θ2

0)
)

. (1.16)

We neglect the terms proportional to θ2
0 . Collecting all the factors and reminding

the contribution of the terms proportional to m2
e (see Eq. (1.8)), we obtain the

contribution of the ˇrst collinear region:

dσa

dΩ−
=

4α2

s

α

π

1∫
Δ

dx

x

[(
1 − x +

x2

2

)(
L − 1 + ln

θ2

4

)
+

x2

2

]
1
a2

a

×

× [a2
a + (1 − c)2(1 − x)2 − aa(1 − c)(1 − x)]2

a2
a(1 − x)2(1 − c)2

. (1.17)

For the case of photon emission inside the narrow cone, surrounding p+, in a
similar way one gets

dσb

dΩ−
=

4α2

s

α

π

1∫
Δ

dx

x

[(
1 − x +

x2

2

)(
L − 1 + ln

θ2

4

)
+

x2

2

]
1
a2

b

×

× [a2
b + (1 − c)2(1 − x)2 − ab(1 − c)(1 − x)]2

a2
b(1 − c)2

, ab = 2 − x(1 + c). (1.18)
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For the cases k ‖ p′
− and k ‖ p′

+, quantity R (if suppose Π = 0) is simple:

Rc = Rd =
1
4

(
3 + c2

1 − c

)2

, Tc = Td =
1 + (1 − x)2

1 − x
Rc,

dΓc,d = ε2dx dΩ− dϕ1 dc1
xyc,d

2 − x + xc1
, c1 = cos k̂p′

−,

yc =
p′0−
ε

∣∣∣∣
k‖p′

−

≈ 2(1 − x)
2 − x + xc1

∣∣∣∣
c1→1

= 1 − x,

yd =
p′0−
ε

∣∣∣∣
k‖p′

+

≈ 2(1 − x)
2 − x + xc1

+ c1
m2

e

4ε2

x

1 − x
,

Wc(kp′−) = Wd(kp′+) =
2(1 − x)

x
.

Note that kp′+ = 2ε2(1 − y). In the evaluation of the rest multipliers for these
cases one has to be careful:∫

Wc dΓc

∣∣∣∣
1−θ2

0/2�c1�1

=
∫

Wd dΓd

∣∣∣∣
−1+θ2

0(1−x)2/2�c1�−1

=

= 2π
dx

x
dΩ−

1 − x

2

[
L + ln

θ2
0

4
+ 2 ln (1 − x)

]
.

Note that the collinear region d is deˇned by the condition 1 − θ2
0/2 �

cos k̂p′
+ � 1, which leads to the bounds on c1 shown above. So, the con-

tributions of these two collinear regions are

dσc + dσd

dΩ−
= 2

α2

4s

(
3 + c2

1 − c

)2
α

π

1∫
Δ

dx

x

[(
1 − x +

x2

2

)
×

×
(

L − 1 + ln
θ2
0

4
+ 2 ln (1 − x)

)
+

x2

2

]
. (1.19)

Note that there is an asymmetry between the contributions due to the emission
along the directions of the (initial or ˇnal) electron and the ones due to pro-
duction of collinear photons along the positron momenta. The symmetry was
broken when we decided to write a differential cross section with respect to the

electron scattering angles (dΩ− = d cos (̂p−p′
−) dϕ). After an integration over
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a symmetrical angular acceptance, the contributions would become equal. Com-
pensating terms are to be extracted from Eqs. (1.17)Ä(1.19) by omitting the terms
proportional to (L − 1).

1.2. Virtual and Soft Real Pair Production in Large-Angle Bhabha Scat-
tering. This Subsection is devoted to the calculations of the QED O(α2) RC to
the LABS process accompanied by the production of a virtual or a soft real e+e−

pair. We work within the logarithmic accuracy and drop all the terms of the
order α2 which are not reinforced by the large logarithm L = ln (4ε2/m2

e) (ε is
the beam energy in the center-of-mass reference frame). We consider here only
the contribution of e+e− pairs. The contributions of muon and other pairs are
less than the latter (they contain only linear in L terms), they will be considered
separately.

Recently analytic calculations for complete two-loop virtual pair corrections
to Bhabha scattering have been completed including the contributions of electronÄ
positron loop [38] and those of heavier leptons and hadrons [34Ä37].

The general expression for the cross section with the corrections under con-
sideration can be presented in the form

dσ = dσ0

{
1 +
(α

π

)2
[

7∑
i=1

δi + δγ
soft + δγ

hard + δe+e−

soft

]}
, (1.20)

where dσ0 is the Born cross section, δi arises from virtual corrections, δγ
soft Å

from soft photon emission, δγ
hard Å from hard photon emission, and δe+e−

soft Å
from soft pair production.

1.2.1. Virtual Corrections. The Feynman diagrams describing the O(α2)
order RC to LABS process

e−(p1) + e+(p2) → e−(q1) + e+(q2), (1.21)

which contain a vacuum polarization bubble, can be split into seven classes. In
Fig. 1, one can see some representatives of the diagrams from different classes
(any multiplication of diagrams has to be considered as a multiplication of a
diagram by a conjugated one).

The ˇrst ˇve contributions δ1,5 can be written down using the known expres-
sions for vacuum polarization operators and vertex functions (only the Dirac form
factor is relevant: the contribution of the Pauli one is proportional to m2

e/ε2). In
the scattering channel one has for the vacuum polarization operators Π1t (for a
one-loop bubble) and Π2t (for a two-loop bubble):

Π1t =
1
3
lt −

5
9
, Π2t =

1
4
lt + O(1), lt = ln

(
−t

m2
e

)
,

(1.22)

t = −2p1q1, s = 2p1p2, u = −2p1q2, −t ∼ s 	 m2
e,
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Fig. 1. Representatives of Feynman diagrams for virtual pair production

and for the vertex functions F1t (for a one-loop vertex correction) and F2t (for
a two-loop vertex correction which includes a vacuum polarization insertion (see
Fig. 5.(4, 5)):

F1t = (lt − 1)(lλ + 1) − 1
4
lt −

1
4
l2t +

π2

12
, lλ = ln

(
λ

me

)
,

(1.23)

F2t = − 1
36

l3t +
19
72

l2t −
(

π2

36
+

265
216

)
lt + O(1),
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λ is an auxiliary parameter Å the ˇctitious photon mass. Similar expressions can
be written in the annihilation channel (for Π1s,2s and F1s,2s) using the substitution

lt → l̃s = ls − iπ, ls = ln
(

s

m2
e

)
. (1.24)

After simple algebraic transformations within the logarithmic accuracy we obtain

5∑
i=1

δi =
[
2
(

s

t
+

t

s
+ 1
)2]−1{

s2 + u2

t2
Φt +

t2 + u2

s2
Φs +

2u2

st
Φst

}
, (1.25)

Φt = 3Π2
1t + 2Π2t + 8Π1tF1t + 4F2t =

=
8
3
lt

(
lt −

8
3

)
lλ − 7

9
l3t +

9
2
l2t + lt

(
π2

9
− 311

27

)
,

Φs = 3|Π1s|2 + 2Re Π2s + 8 ReΠ∗
1sF1s + 4 ReF2s =

=
8
3
ls

(
ls −

8
3

)
lλ − 7

9
l3s +

9
2
l2s + ls

(
−2π2

9
− 311

27

)
,

Φst = Re
{
Π2

1t + Π2
1s + Π1tΠ1s + 2(Π1t + Π1s)(F1t + F1s) + Π2t + Π2s+

+ 2(F2t + F2s)
}

=
[
2
3
(ls + lt)2 −

32
9

(ls + lt)
]
lλ − 2

9
(l3t + l3s)−

− 1
6
ltls(lt + ls) +

61
36

(l2t + l2s) +
10
9

ltls +
(

17
36

π2 − 311
54

)
(lt + ls).

Consider now the virtual corrections of the sixth class: the ones due to the
interference of the Born amplitude corrected by a vacuum polarization insertion
with the box amplitude. One has to consider the scalar, vector, and tensor loop
integrals over the box virtual momentum k. As an example we present here
the integrals for scattering channel box diagram with uncrossed photon lines (see
Fig. 1(6)):

b, Jσ, Jρσ =
∫

d4k

iπ2

1, kσ, kρkσ

(k2 − λ2 + i0)((q − k)2 − λ2 + i0)
×

× 1
((p1 + k)2 − m2

e + i0)((−p2 + k)2 − m2
e + i0)

, (1.26)
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Jσ = b1Δσ + b2qσ,

Jρσ = b3ΔρΔσ + b4PρPσ + b5(Δρqσ + Δσqρ) + b6qρqσ + b7gρσ,

q = q1 − p1 = p2 − q2, Δ =
1
2
(p2 − p1), P =

1
2
(p1 + p2).

The explicit expressions for the coefˇcients b − b7 are given in Subsec. 2.1.
After some algebraic work with traces one gets

δ6 =
[
2
(

s

t
+

t

s
+ 1
)2]−1

Re
(
1 + P (s, t)

)
×

×
{

Π1t

t

(
1 − P (s, u)

)
f1(s, t) −

Π∗
1s

s
(f2(s, t) + f3(u, t))

}
, (1.27)

where

f1(s, t) = −s(s2 + u2)[b − b1] + 2s2t[−b2 + b5 + b6]+

+
s

4
(2s2 + u2)[−b3 + b4] + 2(4s2 + u2)b7,

f2(s, t) = u2

(
s

[
b − b1 +

1
4
b3 −

1
4
b4

]
− b7

)
,

f3(u, t) = u2

(
u

[
−b̃ + b̃1 −

1
2
b̃3 −

1
2
b̃4

]
+ 2t[−b̃2 + b̃5 + b̃6] + 8b̃7

)
,

b̃, b̃i = P (s, u)b, bi Π∗
1s =

1
3
(ls + iπ) − 5

9
.

The interchange operators P (s, t) and P (s, u) act in the following way:

P (s, t)f(s, t, u; l̃s, lt, lu) = f(t, s, u; lt, l̃s, lu),

P (s, u)f(s, t, u; l̃s, lt, lu) = f(u, t, s; lu, lt, l̃s).
(1.28)

Consider now the corrections of the seventh class. In the calculations we
use the substitution suggested by J. Schwinger for the photon propagator (with
4-momentum k) corrected by a one-loop vacuum polarization insertion (see Sub-
sec. 2.2 for implementation of this method):

1
k2 − λ2 + i0

→ α

π

1∫
0

dvϕi(v)
1 − v2

1
k2 − M2

i

, M2
i =

4m2
i

1 − v2
. (1.29)

For contribution of leptons we have

ϕl(v) =
1
3
(2 − (1 − v2)(2 − v2)), mi = ml, l = e, μ, τ. (1.30)
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The interference of the eight box diagrams with the Born ones gives the
following contribution to the summed over spin states matrix element square:

∑
spin

|M|2 = α428

1∫
0

dvϕ(v)
1 − v2

(
1 + P (s, t)

)
×

×
∫

d4k

iπ2

1
(k2 − λ2 + i0)((k + q)2 − M2)

×

×
{(

S1

t
− A1

4s

)
1

a1a2
+
(

S2

t
− A2

4s

)
1

a1a3

}
, (1.31)

a1 = (k + q1)2 − m2
e + i0,

a2 = (k − q2)2 − m2
e + i0,

a3 = (k + p2)2 − m2
e + i0,

where S1,2 and A1,2 are relevant traces of γ matrixes.
Some scalar, vector, and tensor integrals calculated within the logarithmic

accuracy are necessary. We use the notations

I(aba1a2), Iρ, Iρσ =

1∫
0

dvϕ(v)
1 − v2

∫
d4k

iπ2

1, kρ, kρkσ

aba1a2
, (1.32)

I(aba2) =

1∫
0

dvϕ(v)
1 − v2

∫
d4k

iπ2

1
aba2

, I(ba1a2) =

1∫
0

dvϕ(v)
1 − v2

∫
d4k

iπ2

1
ba1a2

,

a = k2 − λ2 + i0, b = (k + q)2 − M2,

Iρ = α(p2ρ − p1ρ) + β(p1ρ − q1ρ), α =
1
2u

[
−I − 2I(aba2) + I(ba1a2)

]
,

β =
1

2tu

[
(t − u)I + sI(ba1a2) + 2tI(aba2)

]
,

I =
1
3s

Re
{
−1

6
l̃3s +

5
6
l̃2s + l̃s

[
l2t − 10

3
lt +

28
9

+
8
9
π2

]
+ O(1)

}
,

Iρσ = f0gρσ + f1(q1ρq1σ + q2ρq2σ) + f3qρqσ + f4(q1ρq2σ + q2ρq1σ)+
+ f5(qρ(q2σ − q1σ) + qσ(q2ρ − q1ρ)).

In Subsec. 2.1 we give the list of scalar integrals. It appears that only two tensor
coefˇcients, namely f0 and f4, are relevant. They contain only the ˇrst power of
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the large logarithm. Infrared parameter λ is contained only in I(aba1a2):

I(aba1a2) =
1

3st
Re×

×
{
−1

6
l̃3s +

1
2
l̃2s lt + l̃sl

2
t − 10

3
l̃slt −

28
9

ls −
π2

6
lt − 2l̃s

(
lt −

5
3

)
lλ

}
. (1.33)

1.2.2. The Soft Photon Emission. To eliminate the dependence on the ˇctitious
photon mass λ we have to consider also the cross section of the additional
emission of a soft photon with the energy

ω < dε, d � 1, (1.34)

corrected by vacuum polarization insertion into the virtual photon propagator. The
correction can be obtained using the standard technique [2,3], where we use the
same reference frame to calculate the soft and hard photon emission contribution:

δγ =
[
2
(

s

t
+

t

s
+ 1
)2]−1

Re
[
s2 + u2

t2
Π1t +

t2 + u2

s2
Π1s+

+
u2

st
(Π1s + Π1t)

]{
4(lnd − lλ)(ls + lt − lu − 1) + l2s + l2t−

− l2u − 2
3
π2 − 2Li2

(
1 − c

2

)
+ 2Li2

(
1 + c

2

)}
, (1.35)

c = cos θ, θ = p̂1,q1.

1.2.3. The Semicollinear Kinematics of Hard Photon Emission. To cancel
the auxiliary parameter d we have to consider also the case of a hard photon
(with the energy ω > dε) emission. Our method of calculation here consists in a
splitting of the total kinematical region of the emitted photon into two ones: the
collinear one, when the photon is emitted within a small cone with respect to one
charged particle, and the semicollinear one, when the photon moves outside of
any such a cone. Then we show explicitly that the small auxiliary parameter θ0,
describing that cones, cancels in the sum of the contributions of two regions. The
procedure allows us to extract explicitly the radiative corrections to the process
under considerations of the orders O(α2L2) and O(α2L).

Consider at ˇrst the case, when the photon moves in respect to the directions
of the charged particles (as of the initial ones as well as of the ˇnal ones) with
the angles satisfying the following conditions:

k̂p1,2 > θ0, k̂q1,2 > θ0. (1.36)

Here the matrix element of the process is not singular and the contribution of this
region in the O(α) order does not contain the large logarithm. In the next order
in α we can just write down the contribution in the next-to-leading approximation
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multiplying the well-known differential cross section of a single hard photon
emission by the factor 2αL/(3π), coming from the vacuum polarization insertion
into the virtual photon propagator:

dσγ
semi−coll =

α3

4sπ2

α

3π
L

d3q1 d3q2 d3k
q0
1q

0
2k0

WBδ(4)(p1 + p2 − q1 − q2 − k),

W =
s

p1k p2k
+

s1

q1k q2k
− t

p1k q1k
− t1

p2k q2k
+

u

p1k q2k
+

u1

p2k q1k
,

B =
ss1(s2 + s2

1) + tt1(t2 + t21) + uu1(u2 + u2
1)

ss1tt1
, (1.37)

s = 2p1p2, t = −2p1q1, u = −2p1q2, p2
i = q2

i = 0,

s1 = 2q1q2, t1 = −2p2q2, u1 = −2p2q1.

The contribution should be integrated over the phase volume of the ˇnal particles,
which is deˇned by experimental conditions, restrictions (1.36) should be fulˇlled.

1.2.4. The Collinear Kinematics of Hard Photon Emission. The contribution
of the collinear kinematics of a photon emission is divided naturally into four ones
(in the correspondence with the cases of the photon motion in the four directions
of the charged particles): 1) k ‖ p1, 2) k ‖ p2, 3) k ‖ q1, 4) k ‖ q2. So, we
write the differential cross section in the form

dσγ
coll

dy1 dc−
=

dσ1 + dσ2 + dσ3 + dσ4

dy1 dc−
, (1.38)

where y1 = q0
1/ε is the energy fraction of the scattered electron; c− = cos θ−,

θ− = p̂1q1 is the electron scattering angle in the CM reference frame of the
initial particles; subscripts in σi denote correspondent kinematical regions.

In the ˇrst region we get

dσ1

dy1 dc−
=

α3y1

sx(1 − x)(2 − y1(1 − c−))
[
(1 + (1 − x)2)L0 − 2(1 − x)

]
×

×
[
P 2

t1

4 + (2 − y1(1 − c−))2

(y1(1 − c−))2
+ |Ps1 |2

1
4
[
(y1(1 − c−))2+

+ (2 − y1(1 − c−))2
]
− Re (Pt1Ps1)

(2 − y1(1 − c−))2

y1(1 − c−)

]
, (1.39)

Pt1 =
(

1 − α

3π

(
lt1 −

5
3
))−1

, Ps1 =
(

1 − α

3π

(
ls1 −

5
3
− iπ

))−1

,

lt1 = ln
(

2y1(1 − c−)(1 − x)ε2

m2
e

)
, ls1 = ln

(
4ε2(1 − x)

m2
e

)
,

x =
2(1 − y1)

2 − y1(1 − c−)
, L0 = ln

(
εθ0

me

)2

	 1,
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x is the energy fraction of the emitted photon. The energy fraction and the
scattering angle of the positron in this kinematical region are

y2 =
q0
2

ε
=

1 + (1 − y1)2 + y1(2 − y1)c−
2 − y1(1 − c−)

, y2c+ = −x − y1c−,

(1.40)

c+ = cos (p̂1q2), y2

√
1 − c2

+ = y1

√
1 − c2

−.

One can check that in the sum of the above contribution with the one of the
semicollinear region, when the photon is emitted close to the cone of the angle θ0

around the initial electron beam direction, the terms of the order ∼ L ln θ2
0 will

disappear.
The contribution of the second collinear region has the form

dσ2

dy1 dc−
=

α3y1

sx(1 − x)(2 − y1(1 + c−))
[
(1 + (1 − x)2)L0 − 2(1 − x)

]
×

×
[
P 2

t

4 + (2 − y1(1 − c−))2

(y1(1 − c−))2
+ |Ps1 |2

1
4
[
(y1(1 − c−))2+

+ (2 − y1(1 − c−))2
]
− Re (PtPs1)

(2 − y1(1 − c−))2

y1(1 − c−)

]
, (1.41)

Pt =
(

1 − α

3π

(
lt −

5
3
))−1

, lt = ln
(

2y1(1 − c−)ε2

m2
e

)
.

We put here also the expressions for the photon and positron energy fractions
and for the positron scattering angle:

1 − x =
y1(1 − c−)

2 − y1(1 + c−)
, y2 =

1 + (1 − y1)2 − y1(2 − y1)c−
2 − y1(1 + c−)

,

(1.42)
y2c+ = x − y1c−.

The contribution of the third collinear region and the parameters of the
scattered positron are:

dσ3

dy1 dc−
=

α3y2
1

2sx(1 − x)

[
1 + (1 − x)2

1 − x

(
L0 + 2 ln (1 − x)

)
− 2
]
×

×
[
P 2

t

4 + (1 + c−)2

(1 − c−)2
+ |Ps|2

(1 − c−)2 + (1 + c−)2

4
−

− Re (PtPs)
(1 + c−)2

1 − c−

]
, Ps =

(
1 − α

3π

(
ls −

5
3
− iπ

))−1

, (1.43)

ls = ln
(

4ε2

m2
e

)
, y2 = 1, 1 − x = y1, c+ = −c−.
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Finally, in the fourth collinear region the energy fraction of the scattered
electron is unity and the ˇnal particles move back to back as well as in the third
region. The correspondent contribution reads

dσ4

dy1 dc−
=
∫

α3δ(1 − y1)
2sx(1 − x)

y2
2 dy2

[
1 + (1 − x)2

1 − x

(
L0 + 2 ln (1 − x)

)
− 2
]
×

×
[
P 2

t

4 + (1 + c−)2

(1 − c−)2
+ |Ps|2

(1 − c−)2 + (1 + c−)2

4
−

− Re (PtPs)
(1 + c−)2

1 − c−

]
, 1 − x = y2, c+ = −c−. (1.44)

In all cases one can be convinced in the cancellation of L ln θ2
0 in the sum with

the relevant terms of the semicollinear contributions.
So, the total contribution to the LABS process differential cross section due

to a hard photon emission with the vacuum polarization correction of the virtual
photon propagator reads

δγ
hard =

(
dσ0

dy1 dc−

)−1[
dσγ

semi-coll

dy1 dc−
+

dσγ
coll

dy1 dc−

]
. (1.45)

The auxiliary parameter d (see Eq. (1.34)) cancels in the above sum.
1.2.5. Soft Pair Production. Here we consider the process

e−(p1) + e+(p2) → e−(q1) + e+(q2) + e−(p−) + e+(p+), (1.46)

where e−(p−) + e+(p+) is the created soft pair. It gives to the cross section
an important contribution, which contains terms cubic in the large logarithm.
The maximum energy of the soft pair is taken as Dε, it is assumed to be large
compared with the electron mass:

2me < Dε � ε. (1.47)

The contributions containing L3 will cancel with the terms due to virtual correc-
tions, and the dependence on the auxiliary parameter D will disappear in the sum
with the contribution of the hard (with the energy of pair components larger than
Dε) pair emission.

Recently the contribution of the soft pair production was calculated in two
limiting cases: for the process of e+e− annihilation into hadrons [11] and for the
case of small-angle Bhabha scattering [1, 9]. Here we carry out the calculations
for arbitrary scattering angles.

Due to the smallness of the energy of the pair components, the matrix element
M of a hard process with the charged particles with momenta p1, q1, accompanied
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by soft pair emission, can be expressed through the matrix element of the hard
subprocess M0 without pair production in the way

M = M0
4πα

k2
v̄(p+)γμu(p−)Jμ, k = p+ + p−. (1.48)

The classic accompanied radiation current approximation can be applied to put
Jμ in the form:

Jμ = − p1μ

p1k +
1
2
k2

+
q1μ

q1k − 1
2
k2

+
p2μ

p2k − 1
2
k2

− q2μ

q2k +
1
2
k2

. (1.49)

Performing the covariant integration of the summed over spin states modulus
of the matrix element over the pair components momenta, we obtain∑

spin

|v̄(p+)γμu(p−)|2 = 4
(

pμ
+pν

− + pν
+pμ

− − k2

2
gμν

)
,

∫
d3p+ d3p−

p0
+p0

−
δ4(p+ + p− − k)

(
pμ
+pν

− + pν
+pμ

− − k2

2
gμν

)
=

=

(
−2π

3
(k2 + 2m2

e)

√
1 − 4m2

e

k2

)(
gμν − 1

k2
kμkν

)
. (1.50)

At ˇrst, we parameterize the phase volume of the pair momentum as

d4k = dk0(k)2d |k| dΩk = dk0 dk2
√

k2
0 − k2π dck. (1.51)

Neglecting the invariant mass of the pair
√

k2 compared with the energies
of its components and omitting the terms of order m2

e/(p1k)2 (this simpliˇcation
does not violate the logarithmical accuracy that we keep here) we perform the
angular integration:

I =
∫

dΩk

2π

2p1q1

2p1k 2q1k
=

1∫
0

dx

1∫
−1

dck 2p1q1

4ε2(k0 − |k||n|ck)2
=

2p1q1

2ε2

1∫
0

dx

k2
0 − (k)2(n)2

,

n = x
p1

ε
+ (1 − x)

q1

ε
, (n)2 = 1 − 4x(1 − x)z2, z =

√
1 − c

2
, (1.52)

c = cos θ, θ = p̂1q1.
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Integrating over auxiliary variable x we obtain

I =
2J

k2
0(1 − y)

,

J =
(

1 +
y

(1 − y)z2

)−1/2

×

×
[
ln z − 1

2
ln y + ln 2 + ln

(√
1 − y +

√
1 + y(z−2 − 1)
2

)]
. (1.53)

The result can be expressed as a ratio of the cross sections of the processes
of electron scattering in an external ˇeld with soft pair production to the Born
one:

dσsp

dσ0
=

α2

3π2

N∫
1

dt

t

1∫
1/t

dy

y2
(y +

1
2t

)
√

1 − 1
yt

(1 + y(z−2 − 1))−1/2×

×
[
2 ln z + 2 ln 2 − ln y + 2 ln

(√
1 − y +

√
1 + y(z−2 − 1)
2

)]
, (1.54)

N =
(

Dε

2m

)2

	 1, t =
k2
0

4m2
, y =

k2

k2
0

.

At ˇrst integrating over t we omit terms of the order N−1. Then we introduce
variable x = 1/(Ny) and split the integration using parameter η (1 	 η 	 N−1).
Within the logarithmic accuracy we obtain

dσsp

dσ0
=

α2

3π2

⎧⎪⎨⎪⎩
η∫

1/N

dx√
x(x + N−1(z−2 − 1))

(
−5

3
+ 2 ln 2 − ln x

)
×

×
[
2 ln z + ln N + 2 ln 2 + ln x+

+ 2 ln
(√

1 − (Nx)−1 +
√

1 + (Nx)−1(z−2 − 1)
2

)]
+

+ ln N

1∫
η

dx

x

[(
−5

3
− 1

3
x

)√
1 − x + ln

(1 +
√

1 − x)2

x

]⎫⎬⎭ . (1.55)
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The ˇnal expression reads

dσsp

dσ0
=

α2

6π2

{
1
3
L3 + L2

(
2 ln D − 5

3

)
+

L

[
4 ln2 D − 20

3
ln D +

56
9

− 2
3
π2 + 2Li2

(
1 + c

2

)]
+ O(1)

}
, (1.56)

where

L = ln
2ε2(1 − c)

m2
e

	 1, z =

√
1 − c

2
. (1.57)

Using general expression (1.56) we reproduce the results [11] obtained earlier
in the annihilation channel (c = −1, z = 1):

dσsp

dσ0

∣∣∣∣∣
z=1

=
α2

6π2

{
1
3
(ρ + 2 lnD)3−

− 5
3
(ρ + 2 lnD)2 + 4(ρ + 2 lnD)

(
14
9

− π2

6

)}
, (1.58)

ρ = ln
(

4ε2

m2
e

)
,

and in the small-angle scattering channel (c → 1) [8]:

dσsp

dσ0

∣∣∣
z�1

=
α2

6π2

{
1
3
(L + 2 lnD)3 − 5

3
(L + 2 lnD)2+

+ 4(L + 2 lnD)
(

14
9

− π2

12

)}
, (1.59)

L = ln
(

ε2θ2

m2
e

)
, z ≈ θ

2
→ 0, L 	 1.

To obtain the total contribution of the soft pair production we have to multiply
by a factor of 2 (to account the pair emission from the positron line) and to add
the t- and u-channel contributions, which can be obtained by simple substitutions.
In this way one gets

δe+e−
=

1
3

{
1
3
l3s + l2s

(
2 ln D − 5

3

)
+ ls

(
4 ln2 D − 20

3
ln D + As

)
+

+
1
3
l3t + l2t

(
2 ln D − 5

3

)
+ lt

(
4 ln2 D − 20

3
ln D + At

)
−

− 1
3
l3u − l2u

(
2 ln D − 5

3

)
− lu

(
4 ln2 D − 20

3
ln D + Au

)}
, (1.60)
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where

As =
56
9

− 2
3
π2,

At =
56
9

− 2
3
π2 + 2Li2

(
1 + c

2

)
, (1.61)

Au =
56
9

− 2
3
π2 + 2Li2

(
1 − c

2

)
.

1.2.6. Total Sum of the Contributions and Numerical Estimation. The total
sum of the considered corrections does not contain parameter λ and cubic in large
logarithm terms. It reads

dσ = dσ0

{
1 +
(α

π

)2

(δ + δγ
hard)

}
,

δ = ls

[
8
3
ls ln d − 64

9
ln d +

8
3

ln d ln
(

s

−u

)
+

4
3

ln2 D+

+ ln D

(
4
3

ln
(

t

u

)
+

2
3
ls −

20
9

)
+

17
6

ls−

− 4
3

Li2

(
1 − c

2

)
+

4
3

Li2

(
1 + c

2

)
− 311

27
+

1
3
(As + At − Au)−

− 4
3

ln d ln
(

s

−t

)(
1 +

s

t
+

t

s

)−2(
4
s2

t2
+ 7

s

t
+ 5

t

s
+ 9
)

+ H(c)
]
, (1.62)

where H(c) is a function of the scattering angle (for analytical exression see
Subsec. 2.1), the table of values in several points in Table 1 shows us that H(c)
is not small. That convinces us in the importance of the nonleading terms.
Parameters d and D will cancel in the sum with the contributions due to the
emission of a hard photon δγ

hard and a hard pair [29].

Table 1. H(c) as a function of c

c −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

H(c) −13.9 −12.7 −12.2 −12.2 −12.5 −13.0 −13.7 −14.7 −17.1

In this Subsection we calculated the correction within the logarithmic accu-
racy due to all mechanisms of virtual and soft pair production to the large-angle
Bhabha differential cross section. The correction is one of the important contri-
butions, which are to be taken in an analysis of experimental data.
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1.3. Hard Pair Production in Large-Angle Bhabha Scattering. In this
Subsection we calculate the cross section of hard pair production in large-angle
Bhabha scattering in the leading and next-to-leading logarithmic approximations.

Eight regions of the collinear kinematics, when the ˇnal particles imitate a
process of the 2 → 2 type, three semicollinear regions, when the ˇnal particles
imitate a process of the 2 → 3 type, are considered. Analytical formulae for
differential cross sections are presented in [15].

Large-angle Bhabha scattering (LABS) process e+e− → e+e− is used for
mobile luminosity measurements at electronÄpositron colliders of intermediate
energies (

√
s ∼ 1−3 GeV). The experimental accuracy is estimated to be better

than 0.5% [18, 19]. Adequate calculations of the cross section in the framework
of the Standard electroweak theory are in general rather poor. We perform
systematic analytical calculations of RC to the process at the O(α2) level. Due to
the complexity of the problem we separate it into several parts. Here we consider
the process of the 2 → 4 type:

e−(p1) + e+(p2) → e−(q1) + e+(q2) + e−(p−) + e+(p+). (1.63)

We assume for deˇniteness that two ˇnal particles e−(q1) and e+(q2) hit the
detectors, allowing the following angular aperture and energy thresholds:

Ψ0 < θ1, θ2 < π − Ψ0, θ1,2 = q̂1,2p1,
(1.64)

yth < y1,2 < 1, y1,2 =
q0
1,2

ε
,

where the dead angle Ψ0 depends on the detector (Ψ0 ∼ 20◦ for DAFNE and
Ψ0 ∼ 35◦ for CMD-1 [18]), yth >∼ 0.1, ε is the beam energy in the center-of-mass
(CM) reference frame of the initial particles.

In paper [15] similar problems were considered for the case of small-angle
Bhabha scattering (SABS). We have there at least three simpliˇcations: i) the
generalized eikonal form of the amplitude allowed to omit all scattering-type
Feynman diagrams with more than one exchanged photons in the t channel; ii) at
the O(α2) level it was possible to omit all annihilation-type Feynman diagrams
and contributions connected with heavy Z, W , and H bosons; iii) the interference
of the emission from the positron line with the emission from the electron line
was suppressed for real photon or pair production. Calculations for the LABS
case are considerably more complicated. Only the possibility to omit heavy-boson
contributions in the O(α2) order remains here.

1.3.1. Deˇnitions of Kinematical Regions. There are 36 tree-type Feynman
(Fig. 2) diagrams which describe e+e− pair production in the LABS process. A
lot of attention was paid to this process in the literature [10,20], where different
cross sections were obtained in terms of chiral amplitudes. It was found that in the
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Fig. 2. Kinematical diagrams for collinear pair production

general kinematics the cross section has a rather complicated form. Fortunately
in the general case, when the angles between each of two ˇnal particles are not
small, the correspondent RC contribution to the Born cross section will have the
value (α/π)2 ∼ 10−5):

dσeē→2e2ē ∼ α2

π2
dσeē→eē

0 . (1.65)

It can be safely omitted working within an accuracy of 0.1%. In RC contributions
due to pair production some enhancements appear in the cases when one or two
ˇnal particles move within a small angle θi ∼ me/ε to the direction of one of
the tagged (initial or ˇnal registered) particles. In these cases one will have
logarithmical enhanced contributions of the orders (αL/π)2 and (α/π)2L, where
L = ln s/m2

e is the large logarithm, s = 4ε2 (L ∼ 15 for
√

s ∼ 1 GeV). The aim
is to extract contributions of that sort because of their importance at the 0.1%
accuracy level.

Our method of calculation is to separate the contributions of the collinear
and semicollinear kinematical regions. In the collinear kinematics two of the ˇnal
particles (which are not registered) go within the narrow cone about the direction
of one of the initial particles or about the direction of one of the registered ˇnal
particles:

θi < θ0,
m2

e

ε2
� θ0 � 1, (1.66)

where θi, i = 1, 2 are the polar angles of the two particles with respect to the
chosen direction. As the semicollinear case we deˇne the kinematics when only
one of the nonregistered ˇnal particles moves within this cone and the second one
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does not (with respect to all tagged directions). The contribution of the collinear
kinematics has the form

a

(
α

π
(L + ln θ2

0)
)2

+ b

(
α

π

)2

(L + ln θ2
0), (1.67)

while the semicollinear one reads(
α

π

)2

f(θ0)L, f(θ0) = −2a ln θ2
0 + C, (1.68)

where C is ˇnite for θ0 → 0. The sum of the contributions does not depend on
the auxiliary parameter θ0 within the logarithmic accuracy (we omit the terms
(α/π)2 ln2 θ2

0 and (α/π)2 ln θ2
0). The cancellation of the dependence provides a

test of our calculations.
Consider now the structure of the collinear region contribution to the cross

section. It could be presented as a sum of the cross sections of hard subprocesses
multiplied by the so-called collinear factors. In the case of the emission of one or
two hard collinear photons, the hard subprocess is just the Bhabha scattering. This
is the manifestation of the known factorization theorem in the simplest form [15].
In the case of pair production, besides Bhabha scattering there three other types
of hard subprocesses appear: Compton scattering, two-quantum annihilation of
the initial particles, and the subprocess of the creation of the ˇnal registered
particles by two photons moving close to the directions of the initial beams. Note
that this rather complicated form of the factorization theorem appears for Bhabha
scattering ˇrst in the process under consideration.

The contributions of semicollinear regions could as well be expressed in
terms of hard subprocesses of the 2 → 3 type [4]: a single-photon emission in
e+e− scattering, and the process of pair creation in a photonÄelectron (Äpositron)
scattering. In Figs. 2 and 3 we show the kinematical schemes for the collinear
and semicollinear regions (empty circles denote the production of a collinear
undetected pair; the full ones, hard subprocesses).

Fig. 3. Kinematical diagrams for semicollinear pair production

Our method, we believe, saves a lot of computation work. Really, instead
of 8-fold integration of very complicated expressions with sharp singularities it
provides 2(3)-fold integrals of smooth functions within the same accuracy.
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1.3.2. Collinear Regions. Consider ˇrst the set of the collinear kinematics.
We will see that there are eight different cases. As we underlined above, the
experimental criterion of an event consists in the kinematics of the ˇnal particles
with at least one electron and one positron moving at large angles to the beam
direction in the opposite hemispheres. In the case of the emission of a particle
with momentum k, moving along the direction of its parent particle with momen-
tum p, a small quantity 2pk appears in the denominator of the matrix element.
Evidently, at least, two such small denominators are necessary to obtain a nonzero
contribution integrating over the small phase volume of the two emitted particles
in the collinear kinematics (dΓ2 ∼ θ4

0). Our criterion of the Feynman-diagram
selection from the total 36 ones (or from 18 gauge-invariant pairs of diagrams)
is to choose such gauge-invariant sets which have one diagram with two small
denominators.

We veriˇed explicitly the validity of the criterion for the ˇrst kinematics con-
sidering the full set of 36 diagrams. Note that collinear regions (5Ä8) (see Fig. 2)
are speciˇc for the pair-production process and arise due to the presence of
identical particles in the ˇnal state.

Calculation of the collinear factors for regions (1Ä4) (see Fig. 2) was de-
scribed in detail in papers [21, 22], so here we present only the main points
of the derivations. We start with the general form of the cross section in re-
gion 1:

dσ
(1)
coll =

α4

8π4s

∑
spin

∣∣∣M (1)
∣∣∣2 d3q1 d3q2

4q0
1q

0
2

d3p− d3p+

4p0
−p0

+

×

× δ(4)(yp1 + p2 − q1 − q2), (1.69)

y = 1 − x− − x+, x± =
p0
±
ε

,

where

∑
spin

|M (1)|2 =
4
y

I(1)

m4
e

16
(

s1

t1
+

t1
s1

+ 1
)2

,

s1 = ys = 4yε2, t1 = yt = −2yy1ε
2(1 − c−), (1.70)

c− = cos q̂1p1, y1,2 =
q0
1,2

ε
,

and quantity I(1) is a rather complicated function of z± = ε2θ2
±/m2

e and x±, it
is given explicitly in [19,21].
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Transforming the phase volume of the created pair into the form

∫
dΦ =

∫
d3p− d3p+

4p0
−p0

+

=
π2

4
m4

e

2π∫
0

dϕ

2π

z0∫
0

dz+

z0∫
0

dz−

1−y∫
0

dx+

1−y−x−∫
0

x−x+dx−,

(1.71)

z0 =
(

εθ0

me

)2

	 1

and performing all integrations over variables of pair components except its total
energy fraction (1 − y), one obtains

dσ
(1)
coll =

2α4

π2s

dy

y
F (1)(y)

(
s1

t1
+

t1
s1

+ 1
)2

d3q1 d3q2

4q0
1q

0
2

×

× δ(4)(yp1 + p2 − q1 − q2). (1.72)

The next step is to rewrite the contribution in terms of the scattered-electron
observable variables c− and y1.

The conservation law gives

1 + y = y1 + y2, −1 + y = y1c− + y2c+,
(1.73)

y1 sin θ− = y2 sin θ+, c+ = cos q̂2p1 = cos θ+.

The ˇnal result for the contribution of the ˇrst collinear kinematics region reads

dσ(1)

dy1 dc−
=

α4

sπ

F (1)(y, z0)
y

y1

[2 − y1(1 − c−)]

(
1 − y1

1 − c−
2

− 2
y1(1 − c−)

)2

,

(1.74)

y =
y1(1 + c−)

2 − y1(1 − c−)
.

The quantity F (1)(y, z0) could be found in papers [19,21] and it has the following
form:

F (1)(y, z0) = L

(
1
2
R(y)L + f(y)

)
, L = ln z0,

R(y) =
2
3

1 + y2

1 − y
+

1 − y

3y
(4 + 7y + 4y2) + 2(1 + y) ln y,
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f(y) =
1
9

(
−107 + 136y − 6y2 − 12

y
− 20

1 − y

)
+

2
3

(
−4y2 − 5y + 1+

+
4

y(1 − y)

)
ln (1 − y) +

1
3

(
8y2 + 5y − 7 − 13

1 − y

)
ln y−

− 2
1 − y

ln2 y + 4(1 + y) ln y ln (1 − y) +
2(1 − 3y2)

1 − y
Li2(1 − y). (1.75)

Remind the way in which this differential cross section enters into the experi-
mentally observable one:

Δσ(1)
exp =

c0∫
−c0

dc−

1∫
yth

dy1Θ(c2
0 − c2

+)Θ(y2 − yth)Θ(1 − y2)
dσ

(1)
coll

dy1 dc−
, (1.76)

where

y2 =
1 + (1 − y1)2 + y1(2 − y1)c−

2 − y1(1 − c−)
,

(1.77)

c+ =
−1 + y − y1c−

y2
, c0 = cos Ψ0.

Let us consider as a check that our formula for dσ
(1)
c agrees with the corresponding

contribution to the case of small-angle Bhabha scattering cross section. Really,
the correspondence would take place if we took the small-angle limit:

c− = 1 −
θ2
−
2

, θ+ = yθ−, z =
θ2
+

θ2
1

, Q2
1 = ε2θ2

1. (1.78)

In this way we obtain

dσ(1) =
α2

4π2

4πα2

Q2
1

F (1)(y, z0) dy
dz

z2
. (1.79)

This formula agrees with Eq. (39) from [15], where two directions were taken
into account (we have to note that the expression for f(y) in this paper contains
some misprints, they are corrected above).

The third collinear region gives the same contribution:

Δσ(3)
exp = Δσ(1)

exp. (1.80)
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Also, the contributions of the collinear regions 2 and 4 are equal:

Δσ(2)
exp = Δσ(4)

exp, (1.81)

Δσ(2)
exp =

c0∫
−c0

dc−

1∫
yth

dy1
dσ

(2)
coll

dy1 dc−
, y2 = 1, c+ = −c−, y1 = y,

dσ(2)

dy1 dc−
=

α4

2sπ
F (2)(y, z0)

(
1 − 1 − c−

2
− 2

1 − c−

)2

,

F (2)(y, z0) = −yF (1)

(
1
y
, z0y

2

)
= L

(
1
2
R(y)L + 2R(y) ln y + f1(y)

)
,

f1(y) =
1
9

(
−116 + 127y + 12y2 +

6
y
− 20

1 − y

)
+

2
3

(
−4y2 − 5y + 1+

+
4

y(1 − y)

)
ln (1 − y) +

1
3

(
8y2 − 10y − 10 +

5
1 − y

)
ln y − (1 + y) ln2 y+

+ 4(1 + y) ln y ln (1 − y) +
2(3 − y2)

1 − y
Li2 (1 − y).

Again one can check the correspondence of this result with the case of SABS
(see Eq. (39) in [15]).

We underline that neglecting terms of order α2/π2 permits us within the
accuracy of 0.1% to express the contribution to σexp in terms of two-fold integrals
of smooth functions.

Fig. 4. Diagrams for collinear factors in a space-like kinematics (1) and in a time-like
one (2)

Consider now the collinear region (see Fig. 2(5)) in which two of the ˇnal
particles move close to the directions of the initial beams and the registered
pair is created by two almost real photons moving also very close to the initial
particle directions. The method of the collinear-factor calculations in this case
can be considered as an essential generalization of the WeizsaeckerÄWilliams
approximation [6, 7]. Let us consider the block of the kinematical diagram,
Fig. 2(5), that describes the emission of an undetected fermion and an almost real
photon (both close to the initial direction). The photon enters then into a hard
block (see Fig. 4(1)). The corresponding matrix element reads

M =
1
q2

JνgμνIμ, Jν = ū(p′1)γνu(p1), (1.82)
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where Iμ is the current corresponding to the hard block. Let us expand, following
V. Sudakov [23], the 4-momentum of the emitted fermion:

p′1 = αp̃2 + βp̃1 + p′1⊥, p′1⊥p1 = p′1⊥p2 = 0,
(1.83)

p̃1,2 = p1,2 − p2,1
m2

s
, s = 2p1p2 	 m2.

The 4-momentum p̃1,2 is almost light-like. The parameter β here is the quantity
of an order of unity. It has the meaning of energy fraction of the scattered
electron; 1 − β is the energy fraction of our almost real photon; p′1⊥ is the two-
dimensional vector describing the components of the scattered electron momentum
transverse with respect to the initial direction (and further we denote transverse
momentum components by symbol ®⊥¯). Parameter α = ((p1)2 + m2)/(sβ) is
small: α � 1. It could be found from the mass shell condition for the scattered
electron: p′1

2 = m2. In that way we obtain also the useful equation

q2 = − (p′
1)

2 + m2(1 − β)2

β
< 0. (1.84)

Representing identically the metric tensor, entering into the photon Green func-
tion, in the form

gμν = gμν
⊥ +

2
s
(pμ

1pν
2 + pν

1pμ
2 ), (1.85)

we note it could be effectively written as

gμν ≈ gμν
⊥ +

2
s

pμ
1pν

2 , (1.86)

since the contribution of the omitted term is suppressed by an additional factor
of order q2/s. Taking that into account, one obtains

M =
1
q2

{
(JI)⊥ +

2
s
(Jp2)

(
− Ip′1⊥

1 − β

)}
, (1.87)

where the current conservation condition

Iq = I(α1p2 + (1 − β)p1 + q⊥) ≈ I((1 − β)p1 + q⊥) = 0 (1.88)

was used. Now we sum up over fermion spin states:∑
spin

|(JI)⊥|2 = Tr (p̂′1 + m)I⊥(p̂1 + m)I⊥ = −2q2I2
⊥ > 0,

∑
spin

|Jp2|2 = 2s2β, (1.89)

∑
spin

(Jp2)(JI)∗⊥ = 2s(q⊥I⊥), q⊥ = −p′1⊥.
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And we obtain∑
spin

|M |2 =
1

(q2)2

[
−2q2I2

⊥ +
8

(1 − β)2
(p′1⊥I⊥)2

]
, (1.90)

where q2 are to be taken from Eq. (1.84). The phase volume of the scattered
electron can be presented in the form

∫
d3p′1
2ε′1

=
∫

dβ

2β

∫
dϕ

2π
2π

(εβθ0)
2∫

0

d(p′
1)

2

2
. (1.91)

Then we carry out a simple integration and obtain∫ ∑
spin

|M |2 d3p′1
2ε′1

= π(I⊥)2Q(β, z0) dβ, (1.92)

where the collinear factor Q(β, z0) for a space-like virtual photon reads

Q(β, z0) =
1 + β2

1 − β

[
L + 2 ln

β

1 − β

]
− 2β

(1 − β)2
. (1.93)

Now we are ready to calculate the cross section in the collinear region (see
Fig. 2 (5)), where we have two collinear factors Q(β, z0). We need also the
matrix element squared of the hard block describing hard e+e− pair creation by
two photons:

γ((1 − β1)p1) + γ((1 − β2)p2) → e+(q2) + e−(q1). (1.94)

Taking the phase volume in terms of the detected electron as follows:

dβ2
d3q1 d3q2

2q0
12q0

2

δ(4)(q1 + q2 − p1(1 − β1) − p2(1 − β2)) =

=
(π/2)y1 dy1 dc−
2β1 − y1(1 + c−)

, (1.95)

we obtain for the cross section

dσ
(5)
coll

dy1 dc−
=

α4

πs

1∫
0

dβ1y2(1 − c−c+)
β2

1β2
2(2β1 − y1(1 + c−))y1(1 − c2

−)
×

×
{

(1 + (1 − β1)2)
(

L + 2 ln
1 − β1

β1

)
− 2(1 − β1)

}
×

×
{

(1 + (1 − β2)2)
(

L + 2 ln
1 − β2

β2

)
− 2(1 − β2)

}
, (1.96)
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where

2β1 − y1(1 + c−) > 0, β2 =
y1β1(1 − c−)

2β1 − y1(1 + c−)
,

(1.97)

y2 =
2β2

1 + y1(y1 − 2β1)(1 + c−)
2β1 − y1(1 + c−)

, c+ =
1
y2

(β1 − β2 − y1c−).

For the hard block we used the following expression:

∑
spin

|Mγγ→e+e− |2 ∼ t1
u1

+
u1

t1
=

y1(1 − c−)
y2(1 − c+)

+
y2(1 − c+)
y1(1 − c−)

=

=
2y2(1 − c+c−)

y1(1 − c2
−)

. (1.98)

And for the contribution to the experimental cross section we get

Δσ(5) =

1∫
yth

dy1

c0∫
−c0

dc−
dσ

(5)
coll

dy1 dc−
Θ(y2 − yth)Θ(1 − y2)Θ(c2

0 − c2
+). (1.99)

A similar situation takes place for the collinear kinematics (see Fig. 2(6)),
when the initial electron and positron annihilate into two almost real photons, that
convert then into two electronÄpositron pairs.

The matrix element describing the emission of a time-like almost real photon
with its subsequent conversion into a pair (see Fig. 3(2)) has the form

M =
gμν

k2
IμJν , Jν = v̄(p−)γνu(q+). (1.100)

We use again the Sudakov representation for the momenta of the pair components
and the photon:

gμν ≈ gμν
⊥ +

2
s1

qνqμ
+, q2 = 0, 2qq+ = s1,

p− = α1q + β1q̃+ + (p−)⊥, q̃+ = q+ − q
m2

s1
, (1.101)

k = q+ + p− = α2q + β2q̃+ + k⊥, β1 = β2 − 1 > 0.

The current conservation condition here reads

kI ≈ (β1q̃+ + p⊥−)I = 0. (1.102)
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Using the above deˇnitions we get the matrix element squared summed over spin
states in the following form:∑

spin

|M |2 = 2
(I⊥)2

(k2)2
[(1 + (β2 − 1)2)(k⊥)2 + m2β4

2 ]
β2

2(β2 − 1)
,

(1.103)

k2 =
(k⊥)2 + m2β2

2

β2 − 1
> 0.

Integrating over the transverse momentum components (p−)⊥ of the electron
from the created pair, we obtain∫

d2p⊥−
2p0

−

∑
spin

|M |2 =
π(I⊥)2dβ2

β2
2

×

×
{

(1 + (β2 − 1)2)
(

L + 2 ln
(

y2

(
1 − 1

β2

)))
+ 2(β2 − 1)

}
. (1.104)

Note that due to the character of the hard e+e− → γγ block we have k0
1 = k0

2 = ε,
and the relation between the detected positron energy fraction y2 = q0

+/ε and
parameter β2 reads:

β2 = 1/y2. (1.105)

The cross section for the collinear region 6 takes the form

dσ
(6)
coll

dy1 dc− dy2
=

=
α4

4πs

1 + c2
−

1 − c−

{
(y2

1 + (1 − y1)2)
(
L + 2 ln

(
y1(1 − y1)

))
+ 2y1(1 − y1)

}
×

×
{
(y2

2 + (1 − y2)2)
(
L + 2 ln

(
y2(1 − y2)

))
+ 2y2(1 − y2)

}
. (1.106)

The corresponding contribution to the experimentally observable cross section has
the following form:

Δσ(6) = N

1∫
yth

dy1

1∫
yth

dy2

c0∫
−c0

dc−
dσ

(6)
coll

dy1 dc− dy2
, c+ = −c−. (1.107)

Quantity N depends on the concrete experimental set-up. Namely, N = 1/2
when one requires registration of two leptons with opposite charges going back
to back. In a charge-blind set-up one would have N = 1.
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Consider now two remaining collinear regions (Fig. 2 (7, 8)). They contain,
as a hard block, the Compton scattering amplitude. Combining the expressions
for the collinear factors for time-like and space-like photons one obtains

Δσ(7) = Δσ(8) =

1∫
yth

dy1

c0∫
−c0

dc−
σ(8)

dy1dc−
Θ(1 − y2)Θ(y2 − yth)Θ(c2

0 − c2
+),

σ(8)

dy1 dc−
=

α4

2πs

1∫
β1min

dβ1

β2
1β2

2(1 + β1 + c−(1 − β1))
×

×
(

y2(1 − c+)
2

+
2

y2(1 − c+)

){
(1+(1−β1)2)

(
L+2 ln

1 − β1

β1

)
−2(1−β1)

}
×

×
{

(1 + (β2 − 1)2)
(

L + 2 ln
(

y2
(β2 − 1)

β2

))
+ 2(β2 − 1)

}
, (1.108)

β2 =
2β1

y1(1 + β1 + (1 − β1)c−)
, y2 =

1 + β2
1 + c−(1 − β2

1)
1 + β1 + c−(1 − β1)

,

c+ =
1
y2

[β1 − 1 − β2y1c−], β1min =
y1(1 + c−)

2 − y1(1 − c−)
.

1.3.3. Semicollinear Regions. The differential cross section of the pair pro-
duction process in large-angle Bhabha scattering (see Fig. 2) has the following
form:

Δσs−coll = 2
α

2π
L

1−β0∫
0

dβ(1 + β2)
1 − β

Σ1(Ω1, Ω2, Ω+, θ0)×

× dσ(γ(p1(1 − β)) + e+(p2) → e+(p+) + e+(q2) + e−(q1))+

+
α

2π
L

1/y∫
1

dβ

β2
(1 + (β − 1)2)Σ2(Ω1, Ω2, θ0)×

× dσ(e−(p1) + e+(p2) → e−(q1) + e+(q2) + γ(βp+)), (1.109)

where we used the collinear factors considered above within the logarithmic
accuracy, y = p0

+/ε, and the hard subprocess cross sections [15,20] are

dσγ(q)+e+(p2)→e+(p+)+e+(q2)+e−(q1) =

=
(4πα)3

16(2π)52(qp2)
1

(p2p+)(p2q2)(q1q2)(p+q1)
(
(p2q2)(q1p+)((p2q2)2+(q1p+)2)+
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+ (p2p+)(q1q2)((q1q2)2 + (p2p+)2) + (p2q1)(q2p+)((p2q1)2 + (q2p+)2)
)
×

×
(

2p2p+

(p2q)(p+q)
+

2p2q2

(p2q)(q2q)
+

2q1p+

(q1q)(p+q)
+

2q1q2

(q1q)(q2q)
− 2p2q1

(p2q)(q1q)
−

− 2p+q2

(p+q)(q2q)

)
δ(4)(q + p2 − p+ − q1 − q2)

d3q1 d3q2 d3p+

q0
1q

0
2p

0
+

, (1.110)

dσe−(p1)+e+(p2)→e−(q1)+e+(q2)+γ(q) =

=
(4πα)3

16(2π)52(p1p2)
1

(p1p2)(q1q2)(p1q1)(p2q2)
(
(p1p2)(q1q2)((p1p2)2+(q1q2)2)+

+ (p1q1)(p2q2)((p1q1)2 + (p2q2)2) + (p1q2)(p2q1)((p1q2)2 + (p2q1)2)
)
×

×
(

2p1p2

(p1q)(p2q)
+

2q1q2

(q1q)(q2q)
+

2p1q1

(p1q)(q1q)
+

2p2q2

(p2q)(q2q)
− 2p1q2

(p1q)(q2q)
−

− 2p2q1

(p2q)(q1q)

)
δ(4)(p1 + p2 − q − q1 − q2)

d3q1 d3q2 d3q

q0
1q

0
2q0

. (1.111)

The quantity 1 − β0 in Eq. (1.109) is the minimum energy fraction of the virtual
photon in the pair creation process γ∗ē → eēē provided that fermions with
momenta q1 and q2 are to be detected. Multipliers Σ1 and Σ2 provide the emission
angles of every ˇnal state of a fermion with respect to the beam directions; also
with respect to each other in order the angles to be larger than θ0. Note that
because of the integration over the phase space of the ˇnal particles, the identity
of two positrons is taken into account automatically. The numerical integration
of Δσs−coll (1.109) and different contributions to Δσcoll (see Eqs. (1.76), (1.81),
(1.99), (1.107), (1.108)) will show that the total sum does not depend on the
auxiliary parameter θ0.

1.3.4. Renormalization Group Approach. In the leading logarithmic approxi-
mation, i.e., for the terms of order (αL)2, the parton picture of the cross section
is valid: that could be just seen from the above expressions for different collinear
kinematics.

Radiative corrections to the considered process, i.e., terms of order (αL)3

could be obtained using the renormalization group methods. But their contribution
is beyond the required accuracy.

1.4. Large-Angle Radiative Bhabha Scattering. Let us consider the calcu-
lation of RC to a single hard-photon emission process [25]. We consider the
kinematics essentially of type 2 → 3, in which all possible scalar products of
4-momenta of external particles are large compared to the electron mass squared.

Considering virtual corrections, we identify several gauge-invariant sets of FD.
Loop corrections associated with emission and absorption of virtual photons by
the same fermion line are called as Glass-type (G) corrections. The case in which
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a loop involves exchange of two virtual photons between different fermion lines
is called Box-type (B) FD. The third class includes the vertex function and vac-
uum polarization contributions (ΓΠ-type). We see explicitly that all terms that
contain the square of large logarithms ln (s/m2), as well as those that contain the
infrared singularity parameter (ˇctitious photon mass λ), are cancelled out in the
total sum, where the emission of an additional soft photon is also considered.

We note here that the part of the general result associated with scattering-type
diagrams (see Fig. 5(1, 5)) was used to describe radiative DIS with RC taken into
account in [16]. A similar set of FD can be used to describe the annihilation
channel [25].

The problem of virtual RC calculations at the one-loop level is cumbersome
for the process

e+(p2) + e−(p1) −→ e+(p′2) + e−(p′1) + γ(k1). (1.112)

Fig. 5. G- and B-type Feynman diagrams for radiative Bhabha scattering. For designations
see Fig. 6
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Speciˇcally, if at the Born level we need to consider eight FD, then at the one-loop
level we have as many as 72. Furthermore, performing loop momentum integra-
tion, we introduce scalar, vector, and tensor integrals up to the third rank with 2,
3, 4, and 5 denominators (a set of relevant integrals is given in Subsec. 2.3). A
high degree of topological symmetry of FD for a cross section can be exploited
to calculate the matrix element squared. Using them, we can restrict ourselves to
the consideration of interferences of the Born-level amplitudes (Fig. 5(1Ä4)) with
those that contain one-loop integrals (Fig. 5(5Ä16)). Our calculation is simpliˇed
since we omit the electron mass m in evaluating the corresponding traces due to
the kinematic region under consideration:

s ∼ s1 ∼ −t1 ∼ −t ∼ −u ∼ −u1 ∼ χ1,2 ∼ χ′
1,2 	 m2,

s = 2p1p2, t = −2p2p
′
2, u = −2p1p

′
2, s1 = 2p′1p

′
2,

t1 = −2p1p
′
1, u1 = −2p2p

′
1, χ1,2 = 2k1p1,2, χ′

1,2 = 2k1p
′
1,2, (1.113)

s + s1 + t + t1 + u + u1 = 0, s + t + u = χ′
1,

s1 + t + u1 = −χ1, t + χ1 = t1 + χ′
1.

We found that some kind of local factorization took place both for the G- and
B-type FD: the leading logarithmic contribution to the matrix element squared,
summed over spin states, arising from interference of one of the four FD at the
Born level (Fig. 5(1Ä4)) with some one-loop corrected FD (Fig. 5(5Ä16)), turns
out to be proportional to the interference of the corresponding amplitudes at the
Born level. The latter has the form

E0 = (4πα)−3
∑

|M1|2 = −16
t2

1
4

Tr (p̂′1O11′ p̂1Õ11′ )
1
4

Tr (p̂2γσp̂′2γρ) =

= − 16
tχ1χ′

1

(u2 + u2
1 + s2 + s2

1),

O0 = (4πα)−3
∑

M1M
∗
2 =

8
tt1

(
s

χ1χ2
+

s1

χ′
1χ

′
2

+
u

χ1χ′
2

+
u1

χ2χ′
1

)
×

× (u2 + u2
1 + s2 + s2

1), (1.114)

I0 = (4πα)−3
∑

M1(M∗
3 + M∗

4 ) = −(1 + Ẑ)
4

ts1

{
−4u1χ

′
2

χ1
+

+
4u(s1 + t1)(s + t)

χ2χ′
1

− 2
χ1χ2

[2suu1 + (u + u1)(uu1 + ss1 − tt1)]+

+
2

χ1χ′
1

[2t1uu1 + (u + u1)(uu1 + tt1 − ss1)]
}

,

O11′ = γρ
p̂′1 + k̂1

χ′
1

γμ − γμ
p̂1 − k̂1

χ1
γρ, Õ11′ = O11′(ρ ↔ μ), (1.115)
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where the Ẑ operator acts as follows:

Ẑ =

∣∣∣∣∣∣
p1 ←→ p′1 s ←→ s1

p2 ←→ p′2 u ←→ u1

k1 → −k1 t, t1 → t, t1

∣∣∣∣∣∣ .
It can be shown that the total matrix element squared, summed over spin

states, can be obtained using symmetry properties realized by means of the per-
mutation operations: ∑

|M |2 = (4πα)3F,

F = (1 + P̂ + Q̂ + R̂)Φ = 16
ss1(s2 + s2

1) + tt1(t2 + t21) + uu1(u2 + u2
1)

ss1tt1
×

×
(

s

χ1χ2
+

s1

χ′
1χ

′
2

− t

χ2χ′
2

− t1
χ1χ′

1

+
u

χ1χ′
2

+
u1

χ2χ′
1

)
,

Φ = E0 + O0 − I0. (1.116)

The explicit form of the P̂ , Q̂, R̂ operators is

P̂ =

∣∣∣∣∣∣
p1 ←→ −p′2 s ←→ s1

p2 ←→ −p′1 t ←→ t1
k1 → k1 u, u1 → u, u1

∣∣∣∣∣∣ ,
Q̂ =

∣∣∣∣∣∣
p2 ←→ −p′1 s ←→ t1

p′2 → p′2 s1 ←→ t
p1, k1 → p1, k1 u, u1 → u, u1

∣∣∣∣∣∣ , (1.117)

R̂ =

∣∣∣∣∣∣
p1 ←→ −p′2 s ←→ t

p′1 → p′1 s1 ←→ t1
p2, k1 → p2, k1 u, u1 → u, u1

∣∣∣∣∣∣ .
The differential cross section at the Born level in the case of large-angle kine-
matics (1.113) was found in [4,5]:

dσ0(p1, p2) =
α3

32sπ2
F

d3p′1 d3p′2 d3k1

ε′1ε
′
2ω1

δ(4)(p1 + p2 − p′1 − p′2 − k1), (1.118)

where ε1, ε2, and ω1 are the energies of the outgoing fermions and photon,
respectively. The collinear kinematic regions (real photon emitted in the direction
of one of the charged particles) corresponding to the case in which one of the
invariants χi, χ

′
i is of order m2 yields the main contribution to the total cross

section. These require separate investigation, and will be considered elsewhere.
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Here we consider the cross section in the kinematic region (1.113), in prin-
ciple, with the power-law accuracy, i.e., neglecting terms that are

O
(

α

π

m2

s
L2

s

)
, (1.119)

as compared to O(1) terms calculated in this Section. Note that the terms
in (1.119) are less than 10−4 for typical moderately high energy colliders
(DAΦNE, VEPP-2M, BEPS). Unfortunately, the nonleading terms are too com-
plicated to be presented analytically, so we have estimated them numerically
in Table 2.

1.4.1. Contribution of G-Type Diagrams. The set of FD (Fig. 5 (5Ä8)) we
call glasses here (G-type diagrams). Using crossing symmetry, we can construct
the whole G-type contribution from the gauge-invariant set of FD in Fig. 5(5).
Moreover, only the set of FD depicted in Fig. 6, d can be considered in practical
calculations, due to an additional mirror symmetry in the diagrams of Fig. 6, d, e.
We therefore start by checking the gauge invariance of the Compton tensor
described by the FD of Fig. 6, d, e for all fermions and one of the photons:

ū(p′1)R
σμ
1,1′u(p1). (1.120)

This was done indirectly in [8], where the Compton tensor for a heavy photon
was written in terms of explicitly gauge-invariant tensor structures. We use the
expression

Rσμ
1,1′ = Rχ1 + Rχ′

1 , (1.121)

Rχ1 = A2γσ k̂1γμ +
∫

d4k

iπ2

{
γλ(p̂′1 − k̂)γσ(p̂1 − k̂1 − k̂)γλ(p̂1 − k̂1)γμ

−χ1(0)(2)(q)
+

+
γλ(p̂′1 − k̂)γσ(p̂1 − k̂1 − k̂)γμ(p̂1 − k̂)γλ

(0)(1)(2)(q)

}
, (1.122)

where

(0) = k2 − λ2, (2) = (p′1 − k)2 − m2, (1) = (p1 − k)2 − m2,
(1.123)

(q) = (p1 − k1 − k)2 − m2, A2 =
2
χ1

(
Lχ1 −

1
2

)
, Lχ1 = ln

χ1

m2
.

The quantity Rχ1 corresponds to the FD depicted in Fig. 6, d, while Rχ′
1

corresponds to the FD in Fig. 6, e. The ˇrst term on the right-hand side of
Eq. (1.122) corresponds to the ˇrst two FD of Fig. 6, d. The gauge invariance
condition Rσμ

1,1′kμ = 0 is clearly satisˇed. The gauge invariance condition regard-
ing the heavy photon Lorentz index provides some check of the loop momentum
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Fig. 6. Content of the notation for Fig. 5

integrals, which can be found in Subsubsec. 2.3.1:

ū(p′1)R
σμ
1,1′u(p1)qσeμ(k1) = Akμ

1 eμ(k1),
(1.124)

A = −2
Lχ1 − 2

χ1
− 6

Lχ′
1
− 1

χ′
1

.

The gauge-invariance thus satisˇed due to the Lorentz condition for the on-
shell photon, e(k1)k1 = 0. As stated above, the use of crossing symmetries
of amplitudes permits us to consider only Rχ1 . For interference of amplitudes
at the Born level (see Fig. 5 (1Ä4) and Fig. 5 (5Ä8)), we obtain in terms of the
replacement operators

(Δ|M |2)G =

= 25α4π2(1 + P̂ + Q̂ + R̂)(1 + Ẑ)[Eχ1
15 + Oχ1

25 − Iχ1
35 − Iχ1

45 ], (1.125)

with

Eχ1
15 =

16
t2

1
4

Tr (p̂′1R
χ1 p̂1O11′) · 1

4
Tr (p̂2γρp̂

′
2γσ),

Oχ1
25 =

16
tt1

1
4

Tr(p̂′1R
χ1 p̂1γρ) ·

1
4

Tr (p̂2γσ p̂′2O22′),

Iχ1
35 =

4
ts1

1
4

Tr (p̂′1R
χ1 p̂1O12p̂2γσ p̂′2γρ),

Iχ1
45 =

4
ts

1
4

Tr (p̂′1R
χ1 p̂1γρp̂2γσp̂′2O1′2′),
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O11′ = γρ
p̂′1 + k̂1

χ′
1

γμ − γμ
p̂1 − k̂1

χ1
γρ,

O22′ = γμ
−p̂′2 − k̂1

χ′
2

γρ − γρ
−p̂2 + k̂1

χ2
γμ,

(1.126)

O12 = −γμ
p̂1 − k̂1

χ1
γρ − γρ

−p̂2 + k̂1

χ2
γμ,

O1′2′ = γρ
p̂′1 + k̂1

χ′
1

γμ + γμ
−p̂′2 − k̂1

χ′
2

γρ.

In the logarithmic approximation, the G-type amplitude contribution to the cross
section has the form

dσG =
dσ0

F

α

π
(1 + P̂ + Q̂ + R̂)Φ

[
−1

2
L2

t1 +
3
2
Lt1 + 2Lt1 ln

λ

m

]
,

(1.127)

Lt1 = ln
−t1
m2

.

1.4.2. Vacuum Polarization and Vertex Insertion Contributions. Let us exam-
ine a set of ΓΠ-type FD. The contribution of the Dirac form factor of fermions
and vacuum polarization can be parameterized as (1 + Γt)/(1 − Πt), while the
contribution of the Pauli form factor is proportional to the fermion mass, and is
omitted here. We obtain

dσΓΠ =
dσ0

F

α

π
2(1 + P̂ + Q̂ + R̂)(Γt + Πt)Φ, (1.128)

where

Γt =
α

π

{(
ln

m

λ
− 1
)

(1 − Lt) −
1
4
Lt −

1
4
L2

t +
1
2
ζ2

}
,

(1.129)

Πt =
α

π

(
1
3
Lt −

5
9

)
, Lt = ln

−t

m2
.

In realistic calculations, the vacuum polarization due to hadrons and muons can
be taken into account in a very simple fashion, just by adding it to Πt.

1.4.3. Contribution of the B-Type Set of Feynman Diagrams. The contribution
of FD with virtual two-photon exchange, shown in Fig. 5(9Ä12) are called boxes
here (B-type diagrams). Again, using the crossing symmetry of FD, we can use
only the FD of Fig. 5(9) in calculations.

A procedure resembling the one used in the Subsubsec. 1.4.1, applied to the
B-type set of FD, enables us to use only one-loop diagrams in the scattering
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channel with uncrossed exchanged photon legs:

(Δ|M |2)B =

= 25α4π2 Re (1 + P̂ + Q̂ + R̂)[(1 − P̂22′)Iχ1
19 + (1 + P̂22′)Iχ1

29 − I], (1.130)

where

P̂22′ =

∣∣∣∣∣∣
p2 ←→ −p′2 s ←→ u
p1 ←→ p1 s1 ←→ u1

p′1, k1 → p′1, k1 t, t1 → t, t1

∣∣∣∣∣∣ (1.131)

and

Iχ1
19 =

∫
d4k

iπ2

1
(0)(q)((p2 + k)2 − m2)

16
t

1
4
Tr(p̂′1B

χ1 p̂1O11′)×

× 1
4

Tr (p̂2γσ(−p̂2 − k̂)γλp̂′2γρ),

Iχ1
29 =

∫
d4k

iπ2

1
(0)(q)((p2 + k)2 − m2)

16
t1

1
4

Tr (p̂′1B
χ1 p̂1γρ)×

× 1
4

Tr (p̂2γσ(−p̂2 − k̂)γλp̂′2O22′ ), (1.132)

I =
∫

d4k

iπ2

1
(0)(q)

{
4
s1

1
4

Tr (p̂′2γρp̂
′
1B

χ1 p̂1O12p̂2(Â + B̂)+

+
4
s

1
4

Tr (p̂′2O1′2′ p̂1B
χ1 p̂1γρp̂2(Â + B̂))

}
,

Â =
γσ(−p̂2 − k̂)γλ

(p2 + k)2 − m2
, B̂ =

γλ(−p̂′2 + k̂)γσ

(−p′2 + k)2 − m2
.

Here

Bχ1 =
γλ(p̂1 − k̂1 − k̂)γσ(p̂1 − k̂1)γμ

−χ1(d)
+

γλ(p̂1 − k̂1 − k̂)γμ(p̂1 − k̂)γσ

(d)(1)
+

+
γμ(p̂′1 + k̂1)γλ(p̂1 − k̂)γσ

χ′
1(1)

, (1.133)

(q) = (p2 − p′2 + k)2 − λ2,

(d) = (p1 − k1 − k)2 − m2,

(1) = (p1 − k)2 − m2, (0) = k2 − λ2.

Box contribution does not contain double logarithm (∼ L2
s) and infrared logarithm

(∼ ln (λ/m)L) terms. The correction coming from the B-type FD is:

dσB = dσ0
α

π
LsΔB , ΔB =

1
F

[
(Φ+ΦP ) ln

uu1

ss1
+(ΦQ+ΦR) ln

uu1

tt1

]
. (1.134)
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The total virtual correction to the cross section has the form:

dσvirt = dσG + dσΓΠ + dσB =

=
α

π

[
−L2

s + Ls

(
11
3

+ 4 ln
λ

m
+ ΔG + ΔΓΠ + ΔB

)
+ O(1)

]
, (1.135)

ΔG + ΔΓΠ =
1
F

(
(Φ + ΦP ) ln

s2

tt1
+ (ΦR + ΦQ) ln

s

s1

)
,

where ΦP = P̂Φ, ΦQ = Q̂Φ, and ΦR = R̂Φ.
1.4.4. Contribution from Additional Soft Photon Emission. Consider now

radiative Bhabha scattering accompanied by emission of an additional soft photon
in the center-of-mass reference frame. By soft we mean that its energy does not
exceed some small quantity Δε, compared to the energy ε of the initial beams.
The corresponding cross section has the form

dσsoft = dσ0δ
soft,

(1.136)

δsoft = − 4πα

16π3

∫
d3k2

ω2

(
− p1

p1k2
+

p′1
p′1k2

+
p2

p2k2
− p′2

p′2k2

)2∣∣∣∣∣
ω2<Δε

.

The soft photon energy does not exceed Δε � ε1 = ε2 ≡ ε ∼ ε′1 ∼ ε′2. In
order to calculate the right-hand side of Eq. (1.136), we use [25]:

− 4πα

16π3

∫
d3k

ω

(qi)2

(qik)2

∣∣∣∣∣
ω<Δε

= −α

π
ln

(
Δεm

λεi

)
, ω =

√
k2 + λ2,

4πα

16π3

∫
d3k

ω

2q1q2

(kq1)(kq2)

∣∣∣∣∣
ω<Δε

=
α

π

[
Lq ln

(
m2(Δε)2

λ2ε1ε2

)
+

1
2
L2

q− (1.137)

− 1
2

ln2

(
ε1

ε2

)
− π2

3
+ Li2

(
cos2

θ

2

)]
.

Here we used the notation

Lq = ln
−q2

m2
, q2

1 = q2
2 = m2, −q2 = −(q1 − q2)2 	 m2,

(1.138)
q1,2 = (ε1,2,q1,2), θ = q̂1q2,

where ε1, ε2, and θ are the energies and angle between the three-momenta q1, q2,
respectively, and λ is the ˇctitious photon mass (all deˇned in the center-of-mass
system).
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Factorized out the large logarithms, we obtain

δsoft =
α

π

{
(Ls − 1)

[
4 ln

m

λ
+ 2 ln

Δε

ε
+ ln

Δε

ε′1
+ ln

Δε

ε′2

]
+

+ L2
s + Ls ln

tt1s1

uu1s
+ O(1)

}
. (1.139)

This can be written in another form, using experimentally measurable quantities,
the relative energies of the scattered leptons and the scattering angles:

yi =
ε′i
ε

, ci = cos θ′i, θ′i = p̂1,p
′
i,

− t

s
= y2

1 + c2

2
, −u

s
= y2

1 − c2

2
, − t1

s
= y1

1 − c1

2
, (1.140)

s1

s
= y1 + y2 − 1, −u1

s
= y1

1 + c1

2
,

1
2
(1 − c1′2′) =

y1 + y2 − 1
y1y2

.

1.4.5. Renormalization Group Approach. The double logarithmic terms of
type L2

s and those proportional to Ls ln (λ/m) cancel in the overall sum with the
corresponding terms from the soft photon contribution (1.139). Omitting vacuum
polarization, we obtain in the logarithmic approximation

dσsoft+virt = dσ0
α

π

[
Ls

(
ln

(Δε)4

ε2ε′1ε
′
2

+ 3
)

+ Δ(y1, y2, c1, c2)
]
. (1.141)

The function Δ(y1, y2, c1, c2) is quite complicated. We give the numerical
values in Table 2 (omitting vacuum polarization) for a certain set of points from
physical regions:

y1 + y2 > 1, D > 0, 0 < yi < 1, −1 < c1,2 < 1. (1.142)

Table 2. Numerical estimates of Δ versus y1, y2, c1, c2 (see (1.141))

y1 y2 c1 c2 Δ

0.36 0.89 −0.70 −0.10 −8.89

0.59 0.66 0.29 −0.06 2.00

0.67 0.67 0.50 0.30 −1.47

0.68 0.65 0.60 −0.50 7.80

After performing loop integration and shifting of logarithm argument (Li =
Ls +Lis), one can see that the terms containing infrared singularities and double
logarithmic terms ∼ L2

s, are associated with a factor equal to the corresponding
Born contribution. This is true of all types of contributions.
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The phase volume

dΓ =
d3p′1d

3p′2d
3k1

ε′1ε
′
2ω1

δ(4)(p1 + p2 − p′1 − p′2 − k1)

can be transformed in various ways. The phase volume then takes the form in
the variables (1.140):

dΓ =
πs dy1 dy2 dc1 dc2

2
√

D(y1, y2, c1, c2)
Θ(y1 + y2 − 1)Θ(D(y1, y2, c1, c2)),

D(y1, y2, c1, c2) = ρ2 − c2
1 − c2

2 − 2c1′2′c1c2, (1.143)

ρ2 = 2(1 − c1′2′)
(1 − y1)(1 − y2)

y1y2
.

The allowed region of integration is a triangle in the y1, y2 plane and the interior
of the ellipse D > 0 in the c1, c2 plane.

We now discuss the relation of our result to the renormalization group ap-
proach. The dependence on Δε/ε in (1.141) disappears when one takes into
account hard two-photon emission. The leading contribution arises from the
kinematics when the second hard photon (with the energy ω2) is emitted close to
the direction of motion of one of the incoming or outgoing particles:

dσhard =
α

2π
Ls

[
1 + z2

1 − z

(
dσ0(zp1, p2, p

′
1, p

′
2) + dσ0(p1, zp2, p

′
1, p

′
2)
)

dz+

+
1 + z2

1

1 − z1
dσ0

(
p1, p2,

p′1
z1

, p′2

)
dz1 +

1 + z2
2

1 − z2
dσ0

(
p1, p2, p

′
1,

p′2
z2

)
dz2

]
,

(1.144)

z = 1 − x2, zi =
yi

yi + x2
, x2 =

ω2

ε
.

The fractional energy of the additional photon varies within the limits Δε/ε <
x2 = ω2/ε < 1. This formula agrees with the DrellÄYan form of radiative
Bhabha scattering (with switched-off vacuum polarization)

dσ(p1, p2, p
′
1, p

′
2) =

∫
dx1 dx2 dz1 dz2 D(x1, β)D(x2, β)D(z1, β)D(z2, β)×

× dσ0

(
x1p1, x2p2,

p′1
z1

,
p′2
z2

)
, (1.145)

where the nonsinglet structure functions D(x, β), β = α/(2π)(Ls − 1) are ex-
plicitly given in [17].
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1.5. Radiative Large-Angle Bhabha Scattering in Collinear Kinematics.
In this Subsection we consider the process of large-angle high-energy electronÄ
positron scattering with emission of one hard photon almost collinear to one
of the charged particles momenta. We derive the differential cross section with
radiative corrections due to emission of virtual and soft real photons with a power
accuracy. At the end of Subsection we consider the emission of two hard photons
and total expressions for radiative correction in LLA [25].

1.5.1. Born Expressions in Collinear Kinematics. Physical Gauge. Let us
begin with revising the radiative Bhabha scattering process

e−(p1) + e+(p2) → e−(p′1) + e+(p′2) + γ(k1) (1.146)

at the tree level. We deˇne the collinear kinematical domains as those in which
the hard photon is emitted close (within a narrow cone with opening angle θ0 �
1) to the incident (θ1(2) = ̂p1(2)k1 < θ0) or the outgoing electron (positron)

(θ′1(2) = ̂p′
1(2)k1 < θ0) direction of motion. Because of the symmetry between

electron and positron, we may restrict ourselves to a consideration of only two
collinear regions, which correspond to the emission of the photon along the
electron momenta. The two remaining contributions to the differential cross
section of the process (1.146) can be obtained by the substitution Q:

dσcoll =
[
1 + Q

(
p1 ↔ p2

p′1 ↔ p′2

)]{
dσγ(k1 ‖ p1) + dσγ(k1 ‖ p′

1)
}

. (1.147)

In the collinear kinematical domain in which k1 ‖ p1, the above formula
takes the form

dσγ
0 (k1 ‖ p1) =

α3

π2s

d3k1

ω1

1
χ1

ΥF
d3p′

1d
3p′

2

ε′1ε
′
2

δ(4)((1 − x)p1 + p2 − p′1 − p′2) =

= dWp1dσ0((1 − x)p1, p2), (1.148)

Υ =
1 + (1 − x)2

x(1 − x)
− 2m2

χ1
, F =

(
s1

t
+

t

s1
+ 1
)2

,

where

s1 = s(1 − x), y1 =
ε′1
ε

= 2
1 − x

a
, y2 =

ε′2
ε

=
2 − 2x + x2 + cx(2 − x)

a
,

a = 2 − x + cx, ω1 = εx, s = 4ε2, χ1 =
s

2
x(1 − c1β), β =

√
1 − m2

ε2
,

(1.149)

t = t1(1 − x) = −s
(1 − x)2(1 − c)

a
, c = cos (̂p1p′

1), c1 = cos (̂p1k1),

dWp1 =
α

2π2

1 − x

χ1
Υ

d3k1

ω1
.
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Here yi are the energy fractions of the scattered leptons and dσ0(p1(1 − x), p2)
is the cross section of the elastic Bhabha scattering process.

Throughout this Subsection we use the following relations among invariants:

s1 + t + u1 = 4m2 − χ1 ≈ 0, s + t1 + u = 4m2 + χ1 ≈ 0.

In the case k1 ‖ p′
1 we have

dσγ
0 (k1 ‖ p′

1) =
α

2π2

1
χ′

1

Υ̃
d3k1

ω1
(1 − x) dσ0(p1, p2),

(1.150)

Υ̃ =
1 + (1 − x)2

x
− 2m2

χ′
1

.

These expressions could also be inferred by using the method of quasi-real elec-
trons [6, 7, 30] and starting from the nonradiative Bhabha cross section.

After integration over a hard collinear (k1 ‖ p1) photon angular phase space,
the cross section of radiative Bhabha scattering in the Born approximation is
found to be

dσγ
0

dx dc

∣∣∣∣∣
k1‖p1

=
4α3

s

[
1 + (1 − x)2

x
L0 − 2

1 − x

x

]
×

×
(

3 − 3x + x2 + 2cx(2 − x) + c2(1 − x(1 − x))
(1 − x)(1 − c)a2

)2

(1 + O(θ2
0)),

where L0 = ln (εθ0/m)2. And in the case k1 ‖ p′
1 it reads

dσγ
0

dx dc

∣∣∣∣∣
k1‖p′

1

=
α3

4s

[
1 + (1 − x)2

x
L′

0 − 2
1 − x

x

](
3 + c2

1 − c

)2

(1 + O(θ2
0)),

(1.151)

L′
0 = ln

(
ε′1θ0

m

)2

, ε′1 = ε(1 − x).

The simplest way to reproduce these results is to use the physical gauge for
the real photon which in the beam cms sets the photon polarization vector to be
a space-like 3-vector eλ having density matrix

∑
λ

eλ
μeλ∗

ν =
{

0, if μ or ν = 0,
δμν − nμnν , μ = ν = 1, 2, 3,

n =
k1

ω1
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with the properties∑
λ

|eλ|2 = −2,
∑

λ

|p1eλ|2 = ε2(1 − c2
1),

(1.152)∑
λ

|p′1eλ|2 =
t1u1

s
,
∑

λ

(p1eλ)(p′1eλ)∗
∣∣∣∣∣
θ→0

∼0.

These properties enable us to omit mass terms in the calculations of traces and, be-
sides, to restrict ourselves to the consideration of singular terms (see Eq. (1.153))
only, both at the Born and one-loop level. As shown in [26], this gauge is proved
useful for a description of jet production in QCD; it is also very well suited to
our case because it allows one to simplify a lot of the calculations with respect,
for instance, to the Feynman gauge. What is more, it possesses another very at-
tractive feature related with the structure of the correction to be mentioned below
(see (2.68)).

With these tools at our disposal, let us turn now to the main point. The
contributions, which survive the limit θ0 → 0, arise from the terms containing

(p1e)2

χ2
1

,
e2

χ1
,

(p′1e)
2

χ1
. (1.153)

Other omitted terms (in particular those which do not contain a factor χ−1
1 ) can be

safely neglected since they give a contribution of the order of θ2
0 which determines

the accuracy of our calculations

1 + O
(α

π
θ2
0Ls

)
,

m

ε
� θ0 � 1, Ls =

s

m2
. (1.154)

In the realistic case this corresponds to an accuracy of the order of per mill.
1.5.2. Crossing Relations. In this and the next Section we shall consider the

case k1 ‖ p1. In the case of photon emission along p′1 one can get the desired
expression by using the left-to-right permutation

|M |2k1‖p′
1

= Q
(

p1 ↔ −p′1
p2 ↔ −p′2

)
|M |2k1‖p1

. (1.155)

From now on, we deal with scattering-type amplitudes (FD) with the emission
of hard photon by initial electron. This is possible due to the properties of the
physical gauge. The contribution of annihilation-type amplitudes may be derived
by applying the momenta replacement operation as follows:

Δ|M |2annihilation =

= {Q(p′1 ↔ −p2)}Δ|M |2scattering ≡ {Q1}Δ|M |2scattering. (1.156)
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When considering FD with two photons in the scattering channel (box FD)
one may examine only those with uncrossed photons because a contribution of
the others may be obtained by the permutation p2 ↔ −p′2. Thus the general
answer becomes

|M |2k1‖p1
= Re

{
(1 + Q1)[G + L] +

1
s1t

(1 + Q1)(1 + Q2)[s1t(B + P )]
}

,

(1.157)
with the permutation operators acting as

Q1F (s1, t1, s, t) = F (t, s, t1, s1), Q2F (s, u, s1, u1) = F (u, s, u1, s1).

1.5.3. Virtual and Soft Photon Emission in k1 ‖ p1 Kinematics. One-loop
QED RC (which are described by seventy two Feynman diagrams) can be classi-
ˇed out into the two gauge-invariant subsets (see Fig. 7):

• single-photon exchange between electron and positron lines (G, L-type);
• double-photon exchange between electron and positron lines (B, P -type).

Fig. 7. Some representatives of FD for radiative Bhabha scattering up to the second order:
1) is the vertex insertion; 2) is the vacuum polarization insertion; graphs denoted by 3),
4) are of the L-type, 5) is of G1-type, 6) is of G2-type, 7) is of B-type and 8) is of P -type

For L-type FD (see Fig. 7(3, 4)) the initial spinor u(p1) is replaced by
(α/(2π))A2k̂1êu(p1), with

A2 =
1
χ1

{
− ρ

2(ρ − 1)
+

2ρ2 − 3ρ + 2
2(ρ − 1)2

Lρ +
1
ρ

[
−Li2(1 − ρ) +

π2

6

]}
,

Lρ = ln ρ, ρ =
χ1

m2
.
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The relevant contribution to the matrix element squared and summed over spin
states reads

Δ|M |2L = 29π2α4 A2

χ1

s3
1 − u3

1

s1t2

[
Y − 2(2 − x)

1 − x
W

]
,

(1.158)
Y = 4(p1e)2 −

x

1 − x
e2χ1, W = (p1e)2.

The contribution of vertex insertion, vacuum polarization∗ and G1-type (see
Fig. 7(1, 2, 5)) has the following form:

Δ|M |2Π,Γ,Γa
= 210π2α4

[
Πt + Γt +

1
4
Γa

]
s3
1 − u3

1

t2s1χ2
1

Y,

Πt =
1
3
Lt −

5
9
, Γt = (Lλ − 1)(1 − Lt) −

1
4
Lt −

1
4
L2

t +
π2

12
,

(1.159)

Γa = −3L2
t + 4LtLρ + 3Lt + 4Lλ − 2 ln (1 − ρ) − π2

3
+ 2Li2(1 − ρ) − 4,

Lλ = ln
m

λ
, Lt = ln

−t

m2
.

Here λ is as usual the IR cut-off parameter to be cancelled at the end of calculus
against a soft photon contribution.

For the contribution of G2-type FD (see Fig. 7(6)) with four denominators
we obtain

Δ|M |2G =

= 29α4π2 s3
1 − u3

1

ts1χ1(1 − x)

[
(J − J1)Y +

2(2 − x)
1 − x

W (J11 − J1 + xJ1k − xJk)
]

.

It turns out that only the scalar integral and the coefˇcients before p1, k1 in the
vector and tensor integrals give nonvanishing contribution in the limit θ0 → 0:∫

d4k

iπ2

(1, kμ, kμkν)
(0)(1)(2)(q)

= (J, J1p
μ
1 + Jkkμ

1 , J11p
μ
1pν

1 + Jkkkμ
1 kν

1 + J1k(p1k1)μν),

(0) = k2 − λ2, (1) = k2 − 2p1k, (2) = k2 − 2p′1k, (1.160)

(q) = k2 − 2k(p1 − k1) − χ1, (ab)μν = aμbν + aνbμ,

and the terms having no p1 or k1 momentum in the decomposition have been
omitted for their unimportance.

∗For realistic applications one should also add to Π the contributions due to μ and τ leptons
and hadrons.
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The B-type FD shown in Fig. 7(7) with uncrossed legs gives

Δ|M |2B = 29π2α4Y
1

s1tχ2
1

[
(u3

1 − s3
1)s1(B + a − b) − u3

1s1×

×
(

c + a1′2′ + a1′2 +
2
s1

ag

)
+ s3

1(c[t − u1] + 2J0)

]
, (1.161)

where the coefˇcients are associated with scalar, vector, and tensor integrals over
the loop momentum∫

d4k

iπ2

(1, kμ, kμkν)
b0b1b2b3

= (B, Bμ, Bμν), J0 =
∫

d4k

iπ2

1
b1b2b3

,

b0 = k2 − λ2, b1 = k2 + 2p′1k, b2 = k2 − 2p′2k,

b3 = k2 − 2qk + t, q = p′2 − p2, Bμ = (ap′1 + bp′2 + cp2)μ,

Bμν = agg
μν + a1′1′p′μ1 p′ν1 + a22p

μ
2pν

2 + a2′2′p′μ2 p′ν2 + a1′2(p′1p2)μν+
+ a1′2′(p′1p

′
2)

μν + a22′(p2p
′
2)

μν .

For (the so-called ®pentagon type¯) P -type FD (see Fig. 7(8)) with uncrossed
photon legs we have

Δ|M |2P = 29π2α4 s3
1 − u3

1

tχ1(1 − x)
×

×
[
Y (E − E1) +

2(2 − x)
1 − x

W (E11 − E1 + xE1k − xEk)
]

. (1.162)

Here we are using the deˇnition (with tensor structures giving no contributions
in the limit θ0 → 0 dropped)∫

d4k

iπ2

(1, kμ, kμkν)
a0a1a2a3a4

=

= (E, E1p
μ
1 + Ekkμ

1 , E11p
μ
1pν

1 + Ekkkμ
1 kν

1 + E1k(pμ
1kν

1 + pν
1kμ

1 )),

a0 = k2 − λ2, a1 = k2 − 2p1k, a2 = k2 − 2k(p1 − k1) − χ1,

a3 = k2 + 2p2k, a4 = k2 − 2qk + t. (1.163)

Note that in the evaluating of P -type FD we are allowed to put k1 = xp1, thus
keeping only p1 momentum containing terms in the decomposition.
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Collecting all the contributions (for the explicit expressions of all the coef-
ˇcients see Subsec. 2.4) given above we arrive at the general expression for the
virtual corrections with ρ = x[1 + (εθ/m)2] � s/m2

2 Re
∑

(M∗
0 M)k1‖p1 =

211α4π2

χ1
FΥ

{
2 − x

1 − x

w

Υ
Φ + 2Lλ(2−Lt −Lt1 −Ls−

− Ls1 + Lu + Lu1) +
π2

3
+ Li2(x) − 101

18
+ ln

∣∣∣∣ ρ

1 − ρ

∣∣∣∣+ L2
u1

− L2
t−

− L2
s1

+ Lρ ln (1 − x) +
11
3

Lt − ϑ + ln2 s1

t
+

1
F

[
Π + 3

t3 − u3
1

s2
1t

ln
s1

t
+

+
2u1(u2

1 + s2
1) − ts2

1

4t2s1
ln2 u1

t
+

2u1(u2
1 + t2) − t2s1

4ts2
1

ln2 u1

s1
+

+
s1

2t
ln

u1

t
+

t

2s1
ln

u1

s1
− 3

4
π2

(
s1

t
+

t

s1

)]}
, (1.164)

where we have used the following deˇnitions:

ϑ =
x

ρ − x

[
Li2(1 − ρ) − π2

6
+ Li2(x) + Lρ ln (1 − x)

]
,

Π =
s3
1 − u3

1

s1t2

[
π

α

(
1

1 − Πt
− 1
)
− 1

3
Lt +

5
9

]
+

+
t3 − u3

1

s2
1t

[
π

α
Re
(

1
1 − Πs1

− 1
)
− 1

3
Ls1 +

5
9

]
,

Πs1 =
1
3

(Ls1 − iπ) − 5
9
, Φ = χ1A2 + t1χ1(J11 − J1 + xJ1k − xJk),

w =
1
x
− 1

ρ
, Ls1 = ln

s1

m2
, Lu = ln

−u

m2
, Lu1 = ln

−u1

m2
,

Lt = ln
−t

m2
, Lt1 = ln

−t1
m2

.

After integration over χ1 one gets additional large logs of the form L0 =
Ls + ln (θ2

0/4). Terms containing the last factor have to be cancelled against
a contribution coming from the emission of hard photon outside a narrow cone
θ < θ0 � 1 (and supplied by the same set of virtual and soft corrections). In the
case of two hard photon emission it is necessary to consider four kinematical re-
gions, namely when both are emitted inside/outside a cone and one inside/another
outside.
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Fortunately enough, the w structure, which obviously violates factorization
feature, does not contribute in LLA due to a cancellation of large logs in Φ. What
for a correction to the above structure coming from P -type graph, it vanishes in
the sum of FD with crossed and uncrossed photon legs.

The total expression can be obtained by summing virtual photon emission
corrections and those arising from the emission of additional soft photon with
energy not exceeding Δε � ε. The soft correction can be written as∑

|M |2hard+soft =
∑

|M |2Bwsoft(k1 ‖ p1),
(1.165)

wsoft(k1 ‖ p1) = − α

4π2

∫
ω<Δε

d3k√
k2 + λ2

(
− p1

p1k
+

p′1
p′1k

+
p2

p2k
− p′2

p′2k

)2

,

where MB denotes the matrix element of the hard photon emission at the Born
level and in the kinematics k1 ‖ p1 it reads∑

|M |2B =
211α3π3

χ1
ΥF. (1.166)

Now let us check the cancellation of the terms containing Lλ. Indeed it takes
place in the sum of contributions arising from emission of virtual and soft real
photons. To show that we put the soft correction into the form:

wsoft(k1 ‖ p1) =
α

π

{
2
(

ln
Δε

ε
+ Lλ

)
(−2+Ls+Ls1 +Lt+Lt1−Lu−Lu1)+

+
1
2
(L2

s + L2
s1

+ L2
t + L2

t1 − L2
u − L2

u1
) + ln y1(Lu1 − Ls1 − Lt1)+

+ ln y2(Lu − Lt − Ls1) + ln (y1y2) −
2π2

3
− 1

2
ln2 y1

y2
+ Li2

(
1 + c1′2′

2

)
+

+ Li2

(
1 + c1′

2

)
+ Li2

(
1 − c2′

2

)
− Li2

(
1 − c1′

2

)
− Li2

(
1 + c2′

2

)}
, (1.167)

where ci are the cosines of emission angles of ith particle with respect to the
beam direction (p1 in cms); c1′2′ is the cosine of the angle between scattered
fermions in cms of the colliding particles and yi are their energy fractions, and
in the case k1 ‖ p1 we have

c′1 = c,
1 + c1′2′

2
= 1 − 1 − x

y1y2
,

1 − c′2
2

=
y1(1 + c)
2y2(1 − x)

. (1.168)

Then the cancellation of infrared singularities in the sum is evident from
comparison of Eqs. (1.164), (1.167). The terms with ln (Δε/ε) should be can-
celled when adding a contribution of a second hard photon having energy above
the registration threshold Δε.
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The complete expression for the correction in the case k1 ‖ p1 reads

R = 2 Re
∑

(M∗
0 M) + |M |2soft =

211α4π2

χ1
FΥ

{
2 − x

1 − x

w

Υ
Φ+

+ 4 ln
(

Δε

ε

)[
−1 + Lt1 +

1
2

(
− ln (1 − x) + 2 ln

s

−u

)]
+

11
3

Lt+

+ (Lρ − Lt) ln (1 − x) − Lt ln (y1y2) + ln2 s1

−t
+ ln y1 ln (1 − x)+

+ ln (y1y2)
(

1 + ln
−u

s

)
− π2

3
+ Li2(x) − 101

18
− ϑ + ln

∣∣∣∣ ρ

1 − ρ

∣∣∣∣−
− 1

2
ln2 y1

y2
+ln (1−x) ln

−u

s
+Li2

(
1 + c1′2′

2

)
+Li2

(
1 + c1′

2

)
+Li2

(
1 − c2′

2

)
−

− Li2

(
1 − c1′

2

)
− Li2

(
1 + c2′

2

)
+

1
F

[
Π + 3

t3 − u3
1

s2
1t

ln
s1

−t
+

+
2u1(u2

1 + s2
1) − ts2

1

4t2s1
ln2 u1

t
+

2u1(u2
1 + t2) − t2s1

4ts2
1

ln2 −u

s
+

+
s1

2t
ln

u1

t
+

t

2s1
ln

−u

s
− 3

4
π2

(
s1

t
+

t

s1

)]}
, (1.169)

dσ(k1 ‖ p1) =
1

211π5s
R dΓ.

The similar expression can be obtained for the case k1||p′
1.

1.5.4. The Results in LLA. It should be noted that all the terms quadratic in
large logarithms Lt1 ∼ Ls1 ∼ Lu 	 Lρ are mutually cancelled out in the total
sum of virtual and real photon contribution. From formula (1.169) it immediately
follows that (upon doing an integration over a hard-photon angular (within a
narrow cone) phase space) the w term that is not proportional to Υ, which is
in fact the kernel of the nonsinglet electron structure function, is not dangerous
in the sense of a feasible violation of the expected DrellÄYan form of the cross
section, because it does contribute only at next-to-leading order.

Performing the above-mentioned integration and conˇning ourselves to LLA
we get for the sum of virtual and soft photons

dσγ(S+V )

dx dc
=

dσγ
0

dx dc

α

π
Ls

[
4 ln

Δε

ε
+

11
3

− 1
2

ln (1 − x) − ln (y1y2)
]

. (1.170)

The LLA contribution coming from the emission of second hard photon with
total energy exceeding Δε consists of a part corresponding to the case in which
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both hard photons (with total energy εx) are emitted by initial electron

dσ2γ

dx dc
=

dσγ
0

dx dc

α

π
Ls

[
xP

(2)
Θ (1 − x)

4(1 + (1 − x)2)
+

1
2

ln (1 − x) − ln
Δε

ε
− 3

4

]
,

(1.171)

P
(2)
Θ (z) = 2

[
1 + z2

1 − z

(
2 ln (1 − z) − ln z +

3
2

)
+

1 + z

2
ln z − 1 + z

]
,

and the remaining part which describes the emission of second hard photon along
scattered electron and positrons. The latter, upon combining with the part of
contributions of soft and virtual photons to our process

dσγ
0

dx dc

3α

π
Ls

[
ln

Δε

ε
+

3
4

]
,

may be represented via electron structure function in the spirit of the DrellÄYan
approach(

dσγ
0

dx dc dy3 dy4

)∣∣∣∣
k1||p1

=

=
α

2π

1 + (1 − x)2

x
Ls

1∫
0

dz2 D (z2, β)
dσ0 (p1 (1 − x) , z2p2, q1, q2)

dc
×

× 1
z3

D

(
y3

z3
, β

)
1
z4

D

(
y4

z4
, β

)
, (1.172)

β =
α

2π
(Ls − 1) ,

where y3,4 is the energy fraction of the scattered leptons and the nonsinglet
structure function D (z, β) could be found in [17], z1 = q10/E, z2 = q20/E are
determined by 2 → 2 subprocess.

These functions describe the emission of (real and virtual) photons both by
ˇnal electron and by positrons. The multiplier before the integral stands for
the emission of a hard photon by the initial electron. Thus Eq. (1.172) actually
represents the partially integrated DrellÄYan form of the cross section. Quite
the same arguments are applicable to the second case in which a hard photon is
emitted by the ˇnal electron.

The cross section of the hard subprocess e(p1z1) + ē(p2z2) → e(q1) + ē(q2)
entering Eq. (1.172) has the form

dσ0(z1p1, z2p2; q1, q2)
dc

=

=
8πα2

s

[
z2
1 + z2

2 + z1z2 + 2c(z2
2 − z2

1) + c2(z2
1 + z2

2 − z1z2)
z1(1 − c)(z1 + z2 + c(z2 − z1))2

]2
.
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The momenta of scattered electron q1 and positron q2 are completely determined
by the energy-momentum conservation law

q0
1 = ε

2z1z2

z1 + z2 + c(z2 − z1)
, q0

1 + q0
2 = ε(z1 + z2),

c = cos q̂1,p1, z1 sin q̂1,p1 = z2 sin q̂2,p1.

In general, their energies differ from those detected in experiment ε′1, ε
′
2, namely

ε′1 = q0
1z3, ε′2 = q0

2z4,

whereas the emission angles are the same in LLA.
Collecting the two expressions presented in Eqs. (1.170), (1.171) one can

rewrite the result in LLA as

dσγ

dx dc dy3 dy4

∣∣∣∣∣
k1‖p1

=

=
(

dσγ
0

dx dc dy3 dy4

)
k1‖p1

{
1 +

α

π
Ls

[
2
3
− ln (z3z4) +

xP
(2)
Θ (1 − x)

4(1 + (1 − x)2)

]}
,

and
dσγ

0

dx dc dy3 dy4
is given in (1.172). For the case k1 ‖ p′

1, the correction is

found to be

dσγ

dx dc dy4

∣∣∣∣∣
k1‖p′

1

=

=
(

dσγ
0

dx dc dy4

)
k1‖p′

1

{
1 +

α

π
Ls

[
2
3

+
xP

(2)
Θ (1 − x)

4(1 + (1 − x)2)

]}
. (1.173)

In terms of 2 → 2 hard subprocess in LLA we have(
dσγ

0

dx dc dy4

)∣∣∣∣
k1||p1

=

=
α

2π

1 + (1 − x)2

x
Ls

1∫
0

dz1

1∫
0

dz2D (z1, β)D (z2, β)×

× dσ0 (z1p1, z2p2, q1, q2)
dc

1
z4

D

(
y4

z4
, β

)
, (1.174)

where z4 = q20/E is determined by the kinematics of e−(p1z1) + e+(p2z2) →
e−(q1) + e+(q2) subprocess.
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1.6. Emission of Two Hard Photons in Large-Angle Bhabha Scattering.
Consider the emission of two real hard photons:

e+(p+) + e−(p−) → e+(q+) + e−(q−) + γ(k1) + γ(k2). (1.175)

The relevant contribution to the experimental cross section has the following
form:

σexp =
∫

dσΘ+Θ−, (1.176)

where Θ+ and Θ− are the experimental restrictions providing the simultaneous
detection of both the scattered electron and positron. First, this means that their
energy fractions should be larger than a certain (small) quantity εth/ε, εth is the
energy threshold of the detectors. The second condition restricts their angles with
respect to the beam axes. They should be larger than a certain ˇnite value ψ0

(ψ0 ∼ 35◦ in the experimental conditions accepted in [18]):

π − ψ0 > θ−, θ+ > ψ0, θ± = q̂±p−, (1.177)

where θ± are the polar angles of the scattered leptons with respect to the beam
axes (p−). We accept the condition on the energy threshold of the charged-
particle registration q0

± > εth. Both photons are assumed to be hard. Their
minimal energy

ωmin = Δε, Δ � 1 (1.178)

could be considered as the threshold of the photon registration.
The main (∼ (αL/π)2, L = ln (s/m2)) contribution to the total cross section

(1.176) comes from the collinear region: when both the emitted photons move
within narrow cones along the charged particle momenta (they may go along the
same particle). So we will distinguish 16 kinematical regions:

âk1 and âk2 < θ0, âk1 and b̂k2 < θ0,
(1.179)

m

ε
� θ0 � 1, a 
= b, a, b = p−, p+, q−, q+.

The matrix element module square summed over spin states in the regions (1.179)
is of the form of the Born matrix element multiplied by the so-called collinear
factors. The contribution to the cross section of each region has also the form of
2 → 2 Bhabha cross sections in the Born approximation multiplied by the factors
of the form

dσcoll
i = dσ0i

[
ai(xj , yj) ln2

(
ε2θ2

0

m2

)
+ bi(xj , yj) ln

(
ε2θ2

0

m2

)]
, (1.180)
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where xj = ωj/ε, y1 = q0
−/ε, y2 = q0

+/ε are the energy fractions of the photons
and of the scattered electron and positron. The dependence on the auxiliary
parameter θ0 will be cancelled in the sum of the contributions of the collinear and
semicollinear regions. The last region corresponds to the kinematics, when only
one photon is emitted inside the narrow cone θ1 < θ0 along one of the charged
particle momenta. And the second photon is emitted outside any cone of that sort
along charged particles (θ2 > θ0):

dσsc
i =

α

π
Ldσγ

0i(k2), (1.181)

where dσγ
0i has the known form of the single hard bremsstrahlung cross section

in the Born approximation.
Below we show explicitly that the result of the integration over the single

hard photon emission in Eq. (1.181) in the kinematical region θi
2 > θ0 (θi

2 is the
emission angle of the second hard photon with respect to the direction of one of
the four charged particles) has the following form:∫

dσγ
0i(k2) = −2 ln

(
θ2
0

4

)
ai(x, y) dσ0i + dσ̃i. (1.182)

The collinear factors in the double bremsstrahlung process were ˇrst consid-
ered in papers of the CALCUL collaboration. Unfortunately, they have a rather
complicated form which is less convenient for further analytical integration in
comparison with the expressions given below. The method of calculation of the
collinear factors may be considered as a generalization of the quasi-real electron
method to the case of multiple bremsstrahlung. Another generalization is required
for the calculations of the cross section of process e+e− → 2e+2e− [24].

It is interesting that the collinear factors for the kinematical region of the two
hard photon emission along the projectile and the scattered electron are found the
same as for the electronÄproton scattering process considered in paper [21].

There are 40 Feynman diagrams of the tree type which describe the double
bremsstrahlung process in e+e− collisions. The differential cross section in terms
of helicity amplitudes has a very complicated form. We note that the contribution
from the kinematical region in which the angles (in the c.m. s.) between any two
ˇnal particles are large compared with m/ε is of the order:

α2r2
0m

2

π2ε2
∼ 10−36 cm2,

√
s = 2ε ∼ 1 GeV (1.183)

(r0 is the classical electron radius). So, the corresponding events will possess
poor statistics at the colliders with the luminosity L ∼ 1031−1032 cm−2 · s−1.
More probable are the cases of double bremsstrahlung imitating the processes
e+e− → e+e− or e+e− → e+e−γ, which corresponds to the emission of one or
two photons along charged-particle momenta.
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1.6.1. Kinematics in the Collinear Region. It is convenient to introduce, in
the collinear region, new variables and transform the phase volume of the ˇnal
state in the following way [29] (from now on we work in the c.m.s.):∫

dΓ =
∫

d3q− d3q+ d3k1 d3k2

16q0
−q0

+ω1ω2(2π)8
δ(4)(p− + p+ − q− − q+ − k1 − k2) =

=
m4π2

4(2π)6

1∫
Δ

dx1

1∫
Δ

dx2x1x2

2π∫
0

dϕ

2π

z0∫
0

dz1

z0∫
0

dz2

∫
dΓq,

(1.184)∫
dΓq =

∫
d3q− d3q+

4q0
−q0

+(2π)2
δ(4)(η1p− + η2p+ − λ1q− − λ2q+),

z1,2 =
(

θ1,2ε

m

)2

, ϕ = ̂k1⊥k2⊥, xi =
ωi

ε
, z0 =

(
θ0ε

m

)2

	 1, Δ =
ωmin

ε
,

where θi (i = 1, 2) is the polar angle of the i-photon emission with respect to the
momentum of the charged particle that emits the photon; η± and λ± depend on
the speciˇc emission kinematics, they are given in Table 3.

Table 3. ηi and λi for different collinear kinematics

η, λ p−p− q−q− p+p+ q+q+ p−p+ q−q+ p−q− p+q+ p−q+ p+q−

η1 y 1 1 1 1 − x1 1 1 − x1 1 1 − x1 1
η2 1 1 y 1 1 − x2 1 1 1 − x1 1 1 − x1

λ1 1
1

y
1 1 1

1

1 − x1
1 +

x2

y1
1 1 1 +

x2

y1

λ2 1 1 1
1

y
1

1

1 − x2
1 1 +

x2

y2
1 +

x2

y2
1

The columns of Table 3 correspond to a certain choice of the kinematics
in the following way: p−p− means the emission of both the photons along
the projectile electron, p+q− means that the ˇrst of the photons goes along the
projectile positron; the second Å along the scattered electron, and so on. The
contributions from 6 remaining kinematical regions (when the photons in the last
6 columns are interchanged) could be found by the simple substitution x1 ↔ x2.
We will use the momentum conservation law

η1p− + η2p+ = λ1q− + λ2q+, (1.185)

and the following relations coming from it:

η1 + η2 = λ1y1 + λ2y2, λ1y1 sin θ− = λ2y2 sin θ+, y1,2 =
q0
1,2

ε
,

(1.186)

λ2y2 =
η2
1 + η2

2 + (η2
2 − η2

1)c
η1 + η2 + (η2 − η1)c

, c = cos θ−, y = 1 − x1 − x2.
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Each of 16 contributions to the cross section of process (1.175) can be
expressed in terms of the corresponding Born-like cross section multiplied by its
collinear factor:

dσcoll =
1
2!

(
α

2π

)2
x1x2

2

∑
(η,λ)

K(η, λ)dσ̃0(η, λ)dx1 dx2,

dσ̃0(η, λ) =
2α2

s
B(η, λ) dI(η, λ), B(η, λ) =

(
s̃2 + t̃2 + s̃t̃

s̃t̃

)2

,

dIi(η, λ) =
∫

d3q−d3q+

q0
−q0

+

δ(4)(η1p− + η2p+ − λ1q− − λ2q+) =

=
4πη1η2 dc

λ2
1λ

2
2[c(η2 − η1) + η1 + η2]2

, (1.187)

K(η, λ) = m4

z0∫
0

dz1

z0∫
0

dz2

2π∫
0

dϕ

2π
K(η, λ),

t̃ = (η1p− − λ1q−)2 = −s̃
η1(1 − c)

η1 + η2 + (η2 − η1)c
,

s̃ = (η1p− + η2p+)2 = 4ε2η1η2 = sη1η2, s̃ + t̃ + ũ = 0.

The sum over (η, λ) means the sum over 16 collinear kinematical regions. The
corresponding (η, λ) could be found in Table 3. The quantities Ki(η, λ) are as
follows:

K(p−p−) =
2
y
A(A1, A2, A, x1, x2, y),

K(q−q−) = 2yA
(

B1, B2, B,
−x1

y
,
−x2

y
,
1
y

)
,

K(p+p+) =
2
y
A(C1, C2, C, x1, x2, y),

K(q+q+) = 2yA
(

D1, D2, D,
−x1

y
,
−x2

y
,
1
y

)
,

A(A1, A2, A, x1, x2) = − yA2

A2A1
− yA1

A2A2
+

1 + y2

x1x2A1A2
+

r3
1 + yr2

AA1x1x2
+

+
r3
2 + yr1

AA2x1x2
+

2m2(y2 + r2
1)

AA2
1x2

+
2m2(y2 + r2

2)
AA2

2x1
, (1.188)
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K(p−p+) = 2K1K2, K(p−q+) = −2K1K3, K(p+q−) = −2K4K5,

K(q−q+) = 2K6K7, K(p−q−) = −2K1K5, K(p+q+) = −2K4K3,

K1 =
g1

A1x1r1
+

2m2

A2
1

, K2 =
g2

C2x2r2
+

2m2

C2
2

, K3 =
g4

D2x2t2
− 2m2

D2
2

,

K4 =
g1

C1x1r1
+

2m2

C2
1

, K5 =
g3

B2x2t1
− 2m2

B2
2

, K6 =
g1

B1x1
− 2m2

B2
1

,

K7 =
g2

D2x2
− 2m2

D2
2

, (1.189)

r1 = 1 − x1, r2 = 1 − x2,

g1 = 1 + r2
1 , g2 = 1 + r2

2 ,

g3 = y2
1 + t21, g4 = y2

2 + t22,

t1 = y1 + x2, t2 = y2 + x2,

y1, , y2 are the energy fractions of the scattered electron and positron deˇned in
Eq. (1.186).

Expressions (1.189) agree with the results of paper [22] except for a simpler
form of K(q−q+). As for Eq. (1.188) it has an evident advantage in comparison
to the corresponding formulae given in paper [22]. Let us note that the remain-
ing factors K(p, q) could be obtained from the ones given in Eq. (1.189) using
relations of the following type:

K(p−q−)(x1, x2, A1, B2) = K(q−p−)(x2, x1, A2, B1). (1.190)

Note also that terms of the kind m4/(B2
2C2

1 ) do not give logarithmic enhanced
contributions, and we will omit them below. The denominators of the propagators
entering into Eqs. (1.188), (1.189) are:

Ai = (p− − ki)2 − m2, A = (p− − k1 − k2)2 − m2,

Bi = (q− + ki)2 − m2, B = (q− + k1 + k2)2 − m2,
(1.191)

Ci = (ki − p+)2 − m2, C = (k1 + k2 − p+)2 − m2,

Di = (q+ + ki)2 − m2, D = (q+ + k1 + k2)2 − m2.

For further integration it is useful to rewrite the denominators in terms of the
photon energy fractions x1,2 and their emission angles. In the case of the emission
of both the photons along p− we would have

A

m2
= −x1(1 + z1) − x2(1 + z2) + x1x2(z1 + z2) + 2x1x2

√
z1z2 cosϕ,

(1.192)
Ai

m2
= −xi(1 + zi),
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where zi = (εθi/m)2, ϕ is the azimuthal angle between the planes containing the
space vector pairs (p−,k1) and (p−,k2). In the same way one can obtain in the
case k1, k2‖q− :

B

m2
=

x1

y1
(1 + y2

1z1) +
x2

y1
(1 + y2

1z2) + x1x2(z1 + z2) + 2x1x2
√

z1z2 cosϕ,

(1.193)
Bi

m2
=

xi

y1
(1 + y2

1zi).

Then we perform the elementary azimuthal angle integration and the integration
over z1, z2 within the logarithmical accuracy [29]:

a = m4

z0∫
0

dz1

z0∫
0

dz2

2π∫
0

dϕ

2π
a. (1.194)

By using the relevant integrals

A2

A2A1
=

L0

x1x2r2
1

[
1
2
L0 + ln

x2r
2
1

x1y
− 1 +

x1x2

y

]
,

1
AA1

=
L0

x1x2r1

[
1
2
L0 + ln

x2r
2
1

x1y

]
,

m2

AA2
1

= − L0

x2
1x2r1

,

(1.195)
1

A1A2
=

L2
0

x1x2
,

1
A1B2

= − L0

y1x1x2
(L0 + 2 ln y1),

L0 = ln z0 ≡ L + l, l = ln
(

θ2
0

4

)
, L = ln

(
4ε2

m2

)
,

where θ0 is the collinear parameter, we obtain the differential cross section in the
collinear region (the remaining integrals could be obtained by simple substitutions
deˇned in Eq. (1.191):

dσcoll =
α4L

4π2s

d3q+ d3q−
q0
+q0

−

dx1 dx2

x1x2

(
1 + P1,2

){ 1
yr2

1

[
1
2
(L + 2l)g1g5+

+ (y2 + r4
1) ln

x2r
2
1

x1y
+ x1x2(y − x1x2) − 2r1g5

]
[Bp−p−δp−p− + Bp+p+δp+p+ ]+

+
1

yr2
1

[
1
2
(L+2l+4 lny)g1g5 +(y2+r4

1) ln
x1r

2
1

x2y
+x1x2(y−x1x2)−2r1g1

]
×
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× [Bq−q−δq−q− + Bq+q+δq+q+ ] + Bp−p+δp−p+

[
(L + 2l)

g1g2

r1r2
− 2

g1

r1
− 2

g2

r2

]
+

+ Bq−q+δq−q+

[
(L + 2l + 2 ln (r1r2))

g1g2

r1r2
− 2

g1

r1
− 2

g2

r2

]
+

+ [Bp−q−δp−q− + Bp+q−δp+q− ]
[
(L + 2l + 2 ln y1)

g1g3

r1y1t1
− 2

g1

r1
− 2

g3

y1t1

]
+

+ [Bp+q+δp+q+ + Bp−q+δp−q+ ]
[
(L + 2l + 2 ln y2)

g1g4

r1y2t2
− 2

g1

r1
− 2

g4

y2t2

]}
.

(1.196)

We used the symbol P1,2 for the interchange operator (P1,2f(x1, x2) = f(x2, x1))
and g5 = y2 + r2

1 . Other variables are deˇned in Eq. (1.189). Delta function δp,q

corresponds to the speciˇc conservation law of the kinematical situation deˇned
by the pair p, q (see Table 1): δp,q = δ(4)(η2p+ + η1p−−λ1q−−λ2q+). Besides,
we imply that the ˇrst photon is emitted along the momentum p; and the second,
along the momentum q (p, q = p−, p+, q−, q+). These δ functions could be
taken into account in the integration as is made in the expression for dI(η, λ)
(see Eq. (1.187)). Finally, we deˇne

Bp,q =
(

η2s

λ1t
+

λ1t

η2s
+ 1
)2

, t = (p− − q−)2. (1.197)

1.6.2. Contribution of the Semicollinear Region. We will suggest for deˇ-
niteness that the photon with momentum k2 moves inside a narrow cone along
the momentum direction of one of the charged particles, while the other photon
moves in any direction outside that cone along any charged particle. This choice
allows us to omit the statistical factor 1/2!. The quasi-real electron method [6,7]
may be used to obtain the cross section:

dσsc =
α4

32sπ4

d3q− d3q+ d3k1

q0
−q0

+k0
1

V
d3k2

k0
2

{ Kp−

p−k2
δp−Rp−+

+
Kp+

p+k2
δp+Rp+ +

Kq−

q−k2
δq−Rq− +

Kq+

q+k2
δq+Rq+

}
. (1.198)

We omitted the terms of the kind m2/(p−k2)2 in Eq. (1.198) because their con-
tribution does not contain the large logarithm L. The quantities entering into
Eq. (1.198) are given by

V =
s

k1p+k1p−
+

s′

k1q+k1q−
− t′

k1p+k1q+
− t

k1p−k1q−
+

+
u′

k1p+k1q−
+

u

k1q+k1p−
. (1.199)
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V is the known accompanying radiation factor; Ki are the single-photon emission
collinear factors:

Kp−=Kp+ =
g2

x2r2
, Kq−=

y2
1+(y1+x2)2

x2(y1+x2)
, Kq+=

y2
2+(y2+x2)2

x2(y2+x2)
. (1.200)

Quantities Ri read:

Rp− = R[sr2, tr2, ur2, s
′, t′, u′], Rp+ = R[sr2, t, u, s′, t′r2, u

′r2],
(1.201)

Rq− = R

[
s, t

t1
y1

, u, s′
t1
y1

, t′, u′ t1
y1

]
, Rq+ = R

[
s, t, u

t2
y2

, s′
t2
y2

, t′
t2
y2

, u′
]

,

with R:

R[s, t, u, s′, t′, u′] =
1

ss′tt′
[
ss′(s2 + s′

2) + tt′(t2 + t′
2) + uu′(u2 + u′2)

]
,

s = (p+ + p−)2, s′ = (q+ + q−)2, t = (p− − q−)2, (1.202)

t′ = (p+ − q+)2, u = (p− − q+)2, u′ = (p+ − q−)2.

Finally, we deˇne

δp− = δ(4)(p−r2 + p+ − q+ − q− − k1),

δp+ = δ(4)(p− + p+r2 − q+ − q− − k1),
(1.203)

δq− = δ(4)

(
p− + p+ − q+ − q−

y1 + x2

y1
− k1

)
,

δq+ = δ(4)

(
p− + p+ − q+

y2 + x2

y2
− q− − k1

)
.

Performing the integration over angular variables of the collinear photon we
obtain

dσsc =
α4L

16sπ3

d3q− d3q+ d3k1

q0
−q0

+k0
1

dx2V

{
Kp− [Rp−δp− + Rp+δp+ ]+

+
1
y2

Kq+Rq+δq+ +
1
y1

Kq−Rq−δq−

}
. (1.204)

To see that the sum of cross sections (1.196) and (1.204)

dσγγ = dσcoll +
∫

dO1

(
dσsc

dO1

)
(1.205)

does not depend on the auxiliary parameter θ0. We verify that terms Ll from
Eq. (1.196) cancel out with the terms

L
k0
1q

0
i

2π

∫
dO1

k1qi
≈ −Ll, (1.206)

which arise from 16 regions in the semicollinear kinematics.
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1.7. Second-Order Contributions to Elastic Large-Angle Bhabha Scatter-
ing. In this Subsection we put some NLO results concerning 2-loop contributions
to the vertex functions, the contributions coming from the squares of 1-loop
Feynman amplitudes which correspond to both the vertex- and box-type Feyn-
man diagrams and the expressions of contributions of two soft photons emission
processes. In this Subsection we do not consider the effects of vacuum polariza-
tion inserted into the virtual photon Green function since it was examined earlier
in [15], see also Subsec. 1.2.

NLO virtual photonic corrections were also found earlier in [40]. Recently the
complete calculation of two-loop photonic corrections to elastic Bhabha scattering
was fulˇlled in [39,41,42].

1.7.1. Two-Loop Vertex Contribution. The corresponding Feynman diagrams
up to two-loop level are depicted in Fig. 8 (there are four more diagrams coming
from cross channels to Fig. 8, g, h, i, j). We use the following asymptotes of the
fermion vertex function in the case of space-like and time-like 4-vectors of virtual
photons [10]:

Γμ(q2) = γμ

[
1 +

α

π
Γ(2)(q2) +

(α

π

)2

Γ(4)(q2)
]
,

where
q2 = s > 0 or q2 = t < 0,

Fig. 8. Vertex diagrams up to 2-loop level
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Γ(2)(s) =
L − 1

2
Lλ − 1

4
L2 +

3
4
L +

π2

3
− 1 + iπ

(
1
2
L − 1

2
Lλ − 3

4

)
,

Γ(2)(t) = (Lt − 1)
(

1
2
Lλ + 1

)
− 1

4
L2

t −
1
4
Lt +

π2

12
,

Re Γ(4)(s) =
1
8
(L2 − 2L + 1 − π2)L2

λ +
1
2
Lλ

[
(L − 1)

(
−1

4
L2 +

3
4
L−

−1 +
π2

3

)
+ π2

(
1
2
L − 3

4

)]
+

1
32

L4 − 3
16

L3 +
(

17
32

− 5π2

24

)
L2+ (1.207)

+
(
−21

32
+

3
2
ζ(3) +

17π2

36

)
L + O(1),

Γ(4)(t) =
1
32

L4
t −

3
16

L3
t +
(

17
32

− π2

48

)
L2

t +
(
−21

32
− π2

16
+

3
2
ζ(3)

)
Lt+

+
1
8
L2

λ(Lt−1)2 +
1
2
Lλ(Lt − 1)

(
−1

4
L2

t +
3
4
Lt−1+

π2

12

)
+O(1),

L = ln
s

m2
, Lt =

−t

m2
, Lλ = ln

λ2

m2
. ζ(3) ≈ 1.2020569.

In these formulae we have retained only the Dirac form factor of electron and
dropped the Pauli one, since its contribution is suppressed by the factor of m2/s.

The second order PT contribution to the matrix element squared reads

Δ|M |2 = 2(Ma + Mb)∗(M2-vertex)+

+ |Mc + Md + Me + Mf + Mm + Mn + Mp + Mq|2, (1.208)

where M2-vertex is the matrix element of ten 2-loop vertex Feynman diagrams.
The matrix element of elastic Bhabha scattering, including relevant contributions
up to the 2-loop level, can be written in the following form:

M = M0t(1 + δ
(1)
t + δ

(2)
t ) − M0s(1 + δ(1)

s + δ(2)
s )+

+ B
(1)
1 + B

(1)
2 − B

(1)
3 − B

(1)
4 + B(2), (1.209)

where

M0t =
4παi

t
ū(p′1)γμu(p1)v̄(p2)γμv(p′2),

M0s =
4παi

t
v̄(p′2)γμu(p1)ū(p′1)γμv(p2).

The quantities B
(1)
i correspond to the 1-loop box-type diagrams (see

Fig. 9,mÄq), whereas B(2) comes from the 2-loop ones (some representatives
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Fig. 9. Box diagrams up to 2-loop level

are drawn in Fig. 9, rÄt). At the Born level we have∑
|M2

0t| = (4πα)2
8
t2

(s2 + u2),
∑

|M2
0s| = (4πα)2

8
s2

(t2 + u2),∑
M0sM

∗
0t = −(4πα)28

u2

st
,
∑

|M0t−M0s|2 = 16(4πα)2
(

s

t
+

t

s
+1
)2

,

(1.210)
s = (p1 + p2)2, t = (p1 − p′1)

2, u = (p1 − p′2)
2,

p1 + p2 = p′1 + p′2, p2
1,2 = p′21,2 = m2.

The quantities δ
(1)
t , δ

(2)
t are real. They read

δ
(1)
t =

α

π

[
2Γ(2)(t) + Π(2)(t)

]
,

(1.211)

δ
(2)
t =

(α

π

)2

[(Γ(2)(t))2 + 2Π(2)(t)Γ(2)(t) + (Π(2)(t))2 + Π(4)(t) + 2Γ(4)(t)].

Here Π(2,4)(t) are the vacuum polarization insertions. Similar expressions are

held for δ
(1)
s , δ

(2)
s and can be derived from (1.211) by using crossing relations

(relevant quantities are, in general, complex valued).
The relevant second order PT contribution to the matrix element, squared and

summed over spin states, can be rewritten as follows:

Δ
∑

|M |2 = α2
(α

π

)2

(Δ1 + Δ2 + Δ3 + Δ4), (1.212)
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where

α4

π2
Δ1 =

∑
|M0t|2(|δ(1)

t |2 + 2δ
(2)
t ) +

∑
|M0s|2((δ(1)

s )2 + 2 Re δ(2)
s )−

− 2 Re
∑

M∗
0sM0t(δ

(1)
t δ(1)

s + δ(2)
s + δ

(2)
t ),

α4

π2
Δ2 = 2 Re

∑
(M0tδ

(1)
t − M0tδ

(1)
t )∗(B(1)

1 + B
(1)
2 − B

(1)
3 − B

(1)
4 ), (1.213)

α4

π2
Δ3 =

∑
|B(1)

1 + B
(1)
2 − B

(1)
3 − B

(1)
4 |2,

α4

π2
Δ4 = 2Re

∑
(M0t − M0s)∗B(2).

Quantity B(2), which enters into the deˇnition of Δ4, in this Subsection is not
calculated. Here we put explicit expressions only for Δ1, Δ2, and Δ3. The ˇrst
term Δ1 was given above. As for Δ2, using the usual notation â = γμaμ, it can
be cast down in the form

Δ2 = (1 + Pst)Re
Γ(2)(t)

t
×

×
∫

d4k

iπ2

{
Tr (γμ(p̂1 + k̂)γν p̂1γρp̂

′
1)Tr (γμ(−p̂2 + k̂)γν p̂2γρp̂

′
2)

A(p1 + k)A(k)A(k − q)A(−p2 + k)
+

+
Tr (γμ(p̂1 + k̂)γν p̂1γρp̂

′
1)Tr (γμ(−p̂′2 − k̂)γν p̂′2γρp̂2)

A(p1 + k)A(k)A(k − q1)A(p′2 + k)
+

+
2Tr (p̂2p̂

′
1(p̂1 + k̂)p̂′2p̂1(p̂′1 + k̂))

A(p1 + k)A(k)A(k − q1)A(p′1 + k)
+

+
2u2(p1 + k)(−p′2 − k)

A(p1 + k)A(k)A(k − q1)A(p′2 + k)

}
+ δΔ2,

A(p1,2 ± k) = (p1,2 ± k)2 − m2, A(p′1,2 ± k) = (p′1,2 ± k)2 − m2,

A(q − k) = (q − k)2 − λ2, A(q1 − k) = (q1 − k)2 − λ2,

q = p′1 − p1, q1 = −p1 − p2,

where the permutation operator Pst acts as follows:

PstA(s, t, u, L, Lt) = A(t, s, u, Lt, L).

Calculating the ˇrst term in Δ2, we have to put

Ls = L, ψ1s =
1
s

(
1
2
L2 +

π2

6

)
. (1.214)
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The second term in the right-hand side (rhs) of Eq. (1.214) δΔ2 arises from the
product of imaginary parts of (Γ(2)(s))∗ and box structures (see Eq. (1.213)). It
can be obtained by applying the following rules:

δ ReΓ(2)(s)∗Ls = −π2

(
1
2
L − 1

2
Lλ − 3

4

)
,

δ Re Γ(2)(s)∗ψ1s = −π2

s
L

(
1
2
L − 1

2
Lλ − 3

4

)
, (1.215)

δ Re L∗
sLs = π2, δ Re L∗

sψ1s =
π2L

s
, δ Reψ∗

1sψ1s =
π2L2

s2
.

By performing the loop-momentum integration one arrives at the result (see
Eq. (1.218)).

Consider now Δ3. The symmetry properties permit us to express it in the
form

Δ3 = |B1 + B2 − B3 − B4|2 = [1 + Psu + (1 + Ptu)Pst]|B1|2+

+ 2(1 + Pst)
[
B1B

∗
2 − B2B

∗
3 − 1

2
B1B

∗
3 − 1

2
B2B

∗
4

]
+ δΔ3, (1.216)

PsuA(s, t, u, L, Lt) = A(u, t, s, Lu, Lt),
PtuA(s, t, u, L, Lt) = A(s, u, t, L, Lu).

The quantity δΔ3 is to be written according to the rules mentioned earlier (1.215).
In calculations of the ˇrst two terms in Δ3 we have to take Ls and ψ1s as
in (1.214). The remaining contributions to Δ3 are

|B1|2 =
∫

d4k1

iπ2

∫
d4k

iπ2

Tr [p̂′1γμ(p̂1 + k̂)γν p̂1γξ(p̂1 + k̂1)γη]
A(p1 + k1)A(k1)A(k1 − q)A(−p2 + k1)

×

× Tr [p̂2γν(−p̂2 − k̂)γμp̂′2γξ(−p̂′2 + k̂1)γη]
A(p1 + k)A(k)A(k − q)A(p2 − k)

(1.217)

and similar expressions for BiB
∗
j (see [27]). Standard but rather tedious compu-

tation gives the following result:

Δi = L2
λ(ai1L

2 + ai2L) + Lλ(ai3L
3 + ai4L

2 + ai5L)+

+ ai6L
4 + ai7L

3 + ai8L
2 + ai9L, i = 1, 2, 3. (1.218)

Coefˇcients aij are functions of θ = p̂1,p
′
1. They look somewhat cumbersome

and are not written here.
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1.7.2. Emission of Soft Photons. Second order corrections to the 1-loop virtual
photon emission corrected cross section, which arise from emission of a single
real soft photon having energy less than Δε, can be written down in the factorized
form:

dσSV

dσ0
=

α

π
δS

α

π
δV =

(
α

π

)2

ΔSV , dσ0 =
α2

s

(
1 − χ + χ2

χ

)2

,

χ =
1
2
(1 − cos θ) = sin2 θ

2
, θ = (p̂1,p

′
1), χ =

−t

s
, 1 − χ =

−u

s
,

δS = 4 ln
mΔε

λε

(
L − 1 + ln

χ

1−χ

)
+ L2 + 2L ln

χ

1−χ
+ ln2 χ − ln2(1−χ)−

− 2π2

3
+ 2Li2(1 − χ) − 2Li2(χ),

δV = 4 ln
m

λ

(
1 − L + ln

1 − χ

χ

)
− L2 + 2L ln

1 − χ

χ
− ln2 χ + ln2(1 − χ)+

+ 3L − 4 + f(χ), (1.219)

f(χ) = (1 − χ + χ2)−2

[
π2

12
(−4 + 8χ + 3χ2 − 10χ3 + 8χ4) +

1
2
(−2 + 5χ−

− 7χ2 + 5χ3 − 2χ4) ln2(1 − χ) +
1
4
χ(3 − χ − 3χ2 + 4χ3) ln2 χ+

+
1
6
(22 − 30χ + 33χ2 − 11χ3) ln χ − 1

2
χ(1 + χ2) ln (1 − χ)+

+
1
2
(4 − 8χ + 7χ2 − 2χ3) ln χ ln (1 − χ)

]
.

The virtual corrections due to vacuum polarization are not taken into account in
the expression for δV . They give an additional contribution to the latter that looks
like

δV Π =
2
3
L − 10

9
− 1

3
(1 − χ + χ2)−2(2 − 3χ + 3χ2 − χ3) ln χ. (1.220)

Consideration of emission of two soft photons having total energy ω1 + ω2 � Δε
requires some caution. The ˇnal result has the following form:

dσSS

dσ0
=

1
2!

(
α

π

)2[
δ2
S − 8

3
π2

(
L − 1 + ln

χ

1 − χ

)2]
≡
(

α

π

)2

ΔSS . (1.221)

Note that in the case photons are emitted independently, i.e., ω1 � Δε and
ω2 � Δε, the second term in square brackets will be absent. The multiplier 1/2!
is due to the identity of the photons.
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1.7.3. Total Sum of Two-Loop Corrections. What one would expect from
the real 2-box amplitudes contribution is that the total correction must be free of
infrared divergences supplying by cancellation of the fourth and third power of
large logarithms. Here we put the 2-loop real and virtual photon contribution:

ΔSV + ΔSS = F 2

{
L2

λL2(−2) + L2
λL4
(

1 − ln
χ

1 − χ

)
+

+ LλL32 + LλL2

(
−8 + 6 ln

χ

1 − χ

)
+ LλLa1−

− L4 1
2

+ L3

(
3 − 2 ln

χ

1 − χ

)
+ L2a2 + Lb+ (1.222)

+ ln
Δε

ε

(
12L2 + z1L

)
+ ln2 Δε

ε

(
8L2 + z2L

)}
(1.223)

and

3∑
i=1

Δi = F 2

[
L2

λL22 + L2
λL4(Lsu − Lst − 1) − LλL32+

+ LλL2

(
6Lst − 6Lsu +

28
3

)
+ L4 1

2
+

+ L3

(
2Lsu − 2Lst −

11
3

)]
+ LλLc1 + L2c2 + Ld, (1.224)

with F =
s

t
+

t

s
+ 1 and coefˇcients ai, b, ci, d, z1 are given in [27].

Here ΔSS and ΔSV denote quasi-elastic contributions, coming from double
soft and soft-virtual photons emission. It immediately follows that all the terms
proportional to L4, L2

λL2, LλL3, and L2
λL disappear in the total sum. One must

expect the cancellation of the third power of large logarithms as well as the rest
of infrared singularities when contribution of 2-box diagrams will be taken into
account. As for the terms containing L2 ln2(Δε/ε) and L2 ln (Δε/ε), they are
explicitly seen to agree with those which could be derived in the renormalization
group approach. To show this, let us write down the expression for cross section
according to the renormalization group:

dσ

dσ0
=
(

1 +
α

2π
LP(1)

Δ +
1
2!

(
α

2π
L

)2

P(2)
Δ

)4

,

(1.225)

P(1)
Δ = 2 lnΔ +

3
2
, P(2)

Δ =
(

2 lnΔ +
3
2

)2

− 4
π2

6
, Δ =

Δε

ε
,
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and somewhat rewrite the main result of this paper:

ΔSS + ΔSV +
3∑

i=1

Δi = F 2L2

[
1
2
P(2)

Δ +
3
2
P(1)

Δ

]
+ F 2 4

3
[
LλL2 − L3

]
+

+ LλL[F 2a1 + c1] + L2

[
F 2

(
a2 + 2

π2

6
− 9

2

)
+ c2

]
+

+ L
[
F 2(b + z1 + z2) + d

]
. (1.226)

Then, one can immediately be convinced that indeed an agreement takes place.
We expect the 2-boxes contribution to compensate the second, third, and fourth
terms on rhs of Eq. (1.226) and to modify the ˇfth one.

2. TABLE OF INTEGRALS. ONE-LOOP FEYNMAN INTEGRALS

2.1. Integrals for Bhabha Scattering with Virtual and Soft Real Pair Pro-
duction. The quantities bi which enter the integral over the virtual 4-momentum
in box diagrams (see Eq. (1.26)) reads:

b =
2
st

l̃s(lt − 2lλ), b1 = − 2
u

(
1
s
l̃s(lt − ls) + Ψs + Ψt

)
,

b2 =
1
2
(b − b1), b3 = − 1

u

(
(t − s)b1 + 4

(
Ψt −

1
t
lt

)
− 4

s
l̃s

)
,

b4 = b1 −
4
st

lt, b5 = − s

u
b1 +

2
u

(
Ψt −

1
t
lt

)
− 2

su
l̃s, (2.1)

b6 =
s − u

2u
b1 +

1
2
b +

t − u

tus
l̃s − 1

u

(
Ψt −

1
t
lt

)
, b7 = −s

4
b1 +

1
2
Ψt,

Ψt =
1
t

(
2π2

3
+

1
2
l2t

)
, Ψs =

1
s

(
2π2

3
+

1
2
l2s

)
.

The integrals for the box diagrams with a vacuum polarization insertion in
one-photon propagator (see notations of Eq. (1.32)) are:

I(ba1a2) =
1
3s

Re
{

1
6
l̃3s − 5

6
l̃2s + l̃s

(
28
9

+
π2

6

)
+ O(1)

}
,

I(aba1) =
1
3t

Re
{

1
3
l3t − 5

6
l2t +

π2

3
lt + O(1)

}
.

(2.2)
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The other integrals with three denominators can be obtained by the following
substitutions:

I(aba2) = I(aba3) = I(aba1),
(2.3)

I(ba1a3) = I(ba1a2)
(
l̃s → lu, s → u

)
.

The integral with four denominators is given in Eq. (1.33).
Fortunately, within the logarithmic accuracy one can present the square of

the matrix element in the form, where only coefˇcients f0 and f4 of the tensor
integral with four denominators enter:

f0 = −1
2

1∫
0

dvϕ(v)
1 − v2

1∫
0

z dz

1∫
0

y dy

1∫
0

dx

z(y2P 2
x + (1 − y)t) − (1 − y)(t − M2)

,

(2.4)
f4 = 2

∂f0

∂s
.

One can see that both f0 and f4 have only the ˇrst power of large logarithm:

f0 ≈ −1
6

1∫
1−σ

dv

∫ ∫ ∫
zy dz dy dx

(1 − v)[zy2P 2
x − (1 − y)(1 − z)t] + 2m2

e(1 − y)
=

=
lt
6t

M

(
s

t

)
,

(2.5)

f4 ≈ − lt
3t2

M1

(
s

t

)
, σ � 1,

where we deˇned

M(ξ) =

1∫
0

1∫
0

1∫
0

zy dz dy dx

zy2x(1 − x)ξ + (1 − y)(1 − z)
,

M1(ξ) =

1∫
0

1∫
0

1∫
0

z2y3x(1 − x) dz dy dx

[zy2x(1 − x)ξ + (1 − y)(1 − z)]2
.

(2.6)

These quantities are convenient for numerical integration for ξ > 0; for ξ < 0 it
is better to use the following expressions:

M(ξ) =

1∫
0

f(x)ϕ(x, ξ) dx, ξ < 0,

f(x) =
(

1 − 1√
1 + 4x

)
ln x +

2√
1 + 4x

ln
(

1 +
2

1 +
√

1 + 4x

)
,
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ϕ(x, ξ) =
ξ

Δ

[
1
x

+
2√
Δ

ln

∣∣∣∣∣−ξ +
√

Δ
−ξ −

√
Δ

∣∣∣∣∣
]

, Δ = ξ2 − 4ξx > 0,

M1(ξ) =

1∫
0

f(x)ψ(x, ξ) dx, ξ < 0, (2.7)

ψ(x, ξ) =
1

Δ2

[
ξ2

x
+ 2ξ +

4(ξ2 − xξ)√
Δ

ln

∣∣∣∣∣−ξ +
√

Δ
−ξ −

√
Δ

∣∣∣∣∣
]

.

Also we put here the explicit expression for function H(c) entering Eq. (1.62):

H(c) =
(

1 +
s

t
+

t

s

)−1{
u3

3t3
f4p +

s2u

3t3
f4up − t2

3s2
h0up +

t2u

3s3
h4up−

− s2

3t2
f0up − u3

3st2
f0p − u3

3s2t
h0p +

u3

3s3
h4p +

π2

6

(
−4t2

s2
+

10t

3s
+

125
18

−

− 2s2

t2
+

7s

3t

)
+ l2st

(
−11s

12t
+

7t

12s
+

t2

s2
− 5

12

)
+ l2su

(
−s2

t2
− 5s

2t
−

− 5t

2s
− t2

s2
− 19

6

)
+ lstlsu

(
2s2

t2
+

4s

t

t

s
+

19
6

)
+

+ lst

(
−17s2

3t2
− 25s

3t
− 17t

6s
− 17

2

)
+ lsu

(
− s

6t
− t

6s

)}
−

− 2Li2

(
1 − c

2

)
+ 2Li2

(
1 + c

2

)
− 2π2

9
, (2.8)

where

f0p = M

(
s

t

)
, f4p = M1

(
s

t

)
, h0p = M

(
t

s

)
, h4p = M1

(
t

s

)
,

f0up = M

(
u

t

)
, f4up = M1

(
u

t

)
, h0up = M

(
t

u

)
, h4up = M1

(
t

u

)
,

(2.9)
t

s
= −1 − c

2
,

u

s
= −1 + c

2
,

t

u
=

1 − c

1 + c
,

lst = ln
(

2
1 − c

)
, lsu = ln

(
2

1 + c

)
.

Functions M and M1 are given in Eq. (2.6) above. For an illustration in Table 1
we give function H(c) for different values of c.

2.2. The Scwinger Substitution. J. Schwinger suggests [13] a representation
for the photon Green function in the second order of perturbation theory which
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takes into account the fermionÄantifermion intermediate state (we use Feynman
gauge):

Gμν(q) = gμν
α

π

1∫
0

dv ϕe(v)
(1 − v2)(q2 − M2(v))

,

(2.10)

ϕe(v) = ϕ(v) =
1
3
[2 − (1 − v2)(2 − v2)], M2(v) =

4m2

1 − v2
,

where m is the fermion mass.
We have the case when in the intermediate state the point-like charged scalar

particle and antiparticle are ([12] of 1959, § 61 and [43]):

ϕπ(v) =
1
3
v4. (2.11)

The known asymptotic of polarization operator in the scattering channel q2 = t
follows

1∫
0

dv ϕ(v)
(1 − v2)(t − M2(v))

=
1
3t

[
ln

−t

m2
− 5

3

]
(2.12)

and

1∫
0

dν ϕ(ν)
1 − v2

1
t − M2(v)

ln
−t + M2(v)

m2
=

1
3t

[
ln2 −t

m2
− 5

3
ln

−t

m2
+ ζ2

]
,

(2.13)
1∫

0

dνϕπ(ν)
1 − v2

1
t − M2(v)

=
1
3t

[
1
2

ln
−t

m2
− 4

3

]
.

Consider ˇrst the vertex function for the scattering channel e(p1) + γ∗(q) →
e(p2) in two-loop approximation, with the photon polarization inserted. We will
consider the case when the fermion in the loop is an electron. The relevant vertex
function is (we are interested in asymptotic behavior −q2 = −t 	 m2):

F1(q2)γμ =
α2

4π2

1∫
0

dv ϕ(v)
(1 − v2)(q2 − M2(v))

×

×
∫

d4k

iπ2

γν(p̂2 − k̂)γμ(p̂1 − k̂)γν

(k2 − M2(v))(k2 − 2p1k)(k2 − 2p2k)
.
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Performing the standard procedure of joining the denominators, loop momentum
integration, we obtain

F1(t) =
α2

2π2

1∫
0

dv ϕ(v)
1 − v2

1∫
0

dx

1∫
0

y dy[f1 + f2], (2.14)

with

f1 =
t

D
(1 − y + y2x(1 − x)), f2 = ln

D + Λ2

D
− 3Λ4 + 2λ2D

2(Λ2 + D)2
, (2.15)

Λ is the ultraviolet cut-off parameter and

D = y2p2
x+(1−y)M2(v), px = xp1+(1−x)p2, p2

x = m2−x(1−x)t. (2.16)

Integration of the f2 leads to

α2

6π2

[
−1

4
ln2 Λ2

m2
− 5

6
ln

Λ2

m2
− 1

4
l2t +

19
12

lt + O(∞)
]

, lt = ln
−t

m2
. (2.17)

Terms containing the logarithms of the cut-off parameter Λ will be removed by
applying the renormalization procedure.

The integration of other terms of f1 leads to

α2

6π2

⎡⎣ 1∫
0

tdx

p2
x

[
1
4

ln
p2

x

m2
− 11

6
ln

p2
x

m2
+

π2

6
+

38
9

]
− 1

2
lt + O(∞)

⎤⎦ . (2.18)

Using the relations

t

1∫
0

dx

p2
x

[
1; ln

p2
x

m2
; ln2 p2

x

m2

]
=
[
−2lt;−l2t +

π2

3
;−2

3
l3t +

2π2

3
lt − 8ξ3

]
, (2.19)

and adding the contribution of the f2 we obtain

F1(t) =
α2

4π2

[
−1

9
l3t +

19
18

l2t −
(

π2

18
+

265
54

)
lt + O(∞)

]
, (2.20)

in agreement with the more general result obtained in paper of Barbieri, Mignaco,
and Remiddi [10].

Let us consider, for example, the vacuum polarization insertion to Box-type
Feynman diagrams in the Bhabha scattering process. The relevant 3- and 4-
denominator Feynman integrals are:[

J(aba1a2); J(aba1); J(ba1a2)
]

=

=
∫

dv ϕ(v)
1 − v2

∫
d4k

iπ2

[
1

aba1a2
;

1
aba1

;
1

ba1a2

]
(2.21)
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with

a = k2 − λ2, a1 = (k + q1)2 − m2, a2 = (k − q2)2 − m2,
(2.22)

b = (k − q)2 − M2(v), s = (q1 + q2)2, q2
1 = q2

2 = m2, q2 = (q1 − p1)2 = t,

see also designations (1.31), (1.32). The standard procedure leads:

J(aba1a2) =

1∫
0

dvϕ(v)
1 − v2

1∫
0

dx

p2
x(t − M2(v))

×

×

⎡⎣−1
2

ln
(t − M2(v))2

p2
xλ2

−
1∫

0

(yp2
x − M2(v)) dy

y2p2
x + (1 − y)M2(v)

⎤⎦ ,

and px is deˇned in (2.16). Further extraction of the asymptotics is standard. The
resulting expressions are (see also (1.33)):

I(aba1a2) =
1

3st

{
−1

6
l̃3s +

1
2
l̃2s lt + l̃sl

2
t − 10

3
l̃slt −

28
9

ls −
π2

6
lt+

+ l̃s ln
m2

λ2

(
lt −

5
3

)
+ O(1)

}
,

J(aba1) =
1
3t

{
1
3
l3t − 5

6
l2t + 2ζ2lt + O(1)

}
, (2.23)

J(ba1a2) =
1
3s

{
1
6
l̃3s − 5

6
l̃2s +

(
28
9

+ ζ2

)
l̃s + O(∞)

}
,

l̃s = ln
s

m2
− iπ, lt = ln

−t

m2
.

2.3. Radiative Bhabha Scattering Process. In this Subsection we put the
relevant integrals for radiative Bhabha scattering process with one-loop RC. All
kinematics are deˇned in Subsec. 1.4. Here we used partially the results of
previous works [12,31] and refer to it for further details.

2.3.1. Integrals for G-Type Feynman Diagrams. For the set of FD, labelled
as glasses (G), only three independent external momenta are relevant due to
the conservation law: p1 + q = p′1 + k1, q = p2 − p′2. Choosing p1, p′1, q as
independent 4-vectors, we use the notation:

Jijk =
∫

d4k

iπ2

1
(i)(j)(k)

,

J012q =
∫

d4k

iπ2

1
(0)(1)(2)(q)

,
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Jμ
ijk =

∫
d4k

iπ2

kμ

(i)(j)(k)
= aijkpμ

1 + bijkp′μ1 + cijkqμ,

Jμν
ij... =

∫
d4k

iπ2

kμkν

(i)(j) . . .
= gT

ij...g
μν + aT

ij...p
μ
1pν

1 + bT
ij...p

′μ
1 p′ν1 + cT

ij...q
μqν+

+ αT
ij...(p1p

′
1)

μν + βT
ij...(p1q)μν + γT

ij...(p
′
1q)

μν ,

(2.24)

Jμνλ
012q =

∫
d4k

iπ2

kμkνkλ

(0)(1)(2)(q)
= Kg1(gp1)μνλ + Kg2(gp′1)

μνλ + Kgq(gq)μνλ+

+ K111p
μ
1pν

1pλ
1 + K222p

′μ
1 p′ν1 p′λ1 + Kqqqq

μqνqλ + K112(p2
1p

′
1)

μνλ+

+ K122(p1p
′2
1 )μνλ + K11q(p2

1q)
μνλ + K1qq(p1q

2)μνλ + K22q(p′21 q)μνλ+

+ K2qq(p′1q
2)μνλ + K12q(p1p

′
1q)

μνλ,

where the inverse propagators are

(0) = k2 − λ2,

(1) = (p1 − k)2 − m2, (2.25)

(2) = (p′1 − k)2 − m2, (q) = (p′1 − q − k)2 − m2,

λ is a ˇctitious photon mass. The symmetrized tensor structures are deˇned as
follows:

(pq)μν = pμqν + pνqμ,

(p2q)μνλ = pμpνqλ + pμpλqν + pνpλqμ,

(gp)μνρ = gμνpρ + gμρpν + gρνpμ,

(pqr)μνλ = pμqνrλ + pμqλrν + pνqμrλ + pνqλrμ + pλqμrν + pλqνrμ.

The vector and tensor integrals can be calculated by multiplying both sides
of expression (2.24) by vectors pμ

1 , p′μ1 , and qμ. Then one has to use the relations

2p1k = (0) − (1), 2k1k = (q) − (1) + χ1, 2p′1k = (0) − (2) (2.26)

and compare the coefˇcients before vector components on both sides.
Considering the vector and tensor integrals with three denominators, we use

ultraviolet divergent integrals with two denominators. Using the Feynman trick
to join denominators, they can be expressed as∫

d4k

iπ2

1
[(k − b)2 − d]2

= ln
Λ2

d
− 1,∫

d4k

iπ2

kμ

[(k − b)2 − d]2
= bμ

(
ln

Λ2

d
− 3

2

)
,

(2.27)

where Λ is the cut-off parameter supposed to be large Λ 	 s.
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We put here the complete list of these integrals:

J01 = LΛ + 1, J1q = LΛ − 1, J2q = LΛ − Lt + 1,

J0q = LΛ − Lχ1 + 1, J12 = LΛ − Lt1 + 1, J02 = LΛ + 1,

Jμ
01 =

1
2
pμ
1

(
LΛ − 1

2

)
, Jμ

1q = (pμ
1 − 1

2
kμ
1 )
(

LΛ − 3
2

)
,

(2.28)

Jμ
2q =

1
2
(pμ

1 − kμ
1 + p′μ1 )

(
LΛ − Lt +

1
2

)
,

Jμ
0q = (pμ

1 − kμ
1 )
(

1
2
LΛ − 1

2
Lχ1 +

1
4

)
,

Jμ
12 = (pμ

1 + p′μ1 )
(

1
2
LΛ − 1

2
Lt1 +

1
4

)
, Jμ

02 = p′μ1

(
1
2
LΛ − 1

4

)
,

where

Lt1 = ln
−t1
m2

, Lq = Lt = ln
−t

m2
, Lχ1 = ln

χ1

m2
,

Lχ′
1

= ln
χ′

1

m2
− iπ, LΛ = ln

Λ2

m2
.

The scalar integrals with three denominators read

J012 =
1

2t1

[
−2LλLt1 + L2

t1 −
π2

3

]
, J12q =

1
2(χ′

1 − χ1)
(L2

t − L2
t1),

J02q =
1

t + χ1

[
Lt(Lt − Lχ1) +

1
2
(Lt − Lχ1)

2 + 2Li2
(
1 +

χ1

t

)]
, (2.29)

J01q = − 1
2χ1

L2
χ1

− π2

3χ1
, Lλ = ln

λ2

m2
.

The coefˇcients for vector integrals with three denominators are

a012 = b012 =
1
t1

Lt1 , c012 = 0,

a01q = J01q +
2
χ1

(Lχ1 − 1), b01q = −c01q =
1
χ1

(−Lχ1 + 2),

a02q = 0, b02q =
χ1

χ1 + t
J02q +

2tLt

(χ1 + t)2
+

(χ1 − t)Lχ1

(χ1 + t)2
, c02q =

Lχ1 − Lt

χ1 + t
,

(2.30)

a12q =
t

t − t1
J12q +

(t + t1)Lt1 − 2tLt

(t − t1)2
+

2
t − t1

, b12q = J12q − a12q,

c12q =
t1

t − t1
J12q +

−(t + t1)Lt + 2t1Lt1

(t − t1)2
+

2
t − t1

.
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The tensor integrals for G-type FD (see Eq. (2.24)) have the following form:

gT
012 =

1
4
(LΛ − Lt1) +

3
8
,

aT
012 = bT

012 =
1

2t1
(Lt1 − 1), αT

012 =
1

2t1
,

cT
012 = βT

012 = γT
012 = 0,

gT
01q =

1
4
(LΛ − Lχ1) +

3
8
, aT

01q = J01q +
3
χ1

Lχ1 −
9

2χ1
,

bT
01q = cT

01q = −γT
01q = − 1

2χ1
(Lχ1 − 2),

(2.31)

βT
01q = −αT

01q =
1

2χ1
(Lχ1 − 3),

gT
02q =

1
4
LΛ − χ1

4(t + χ1)
Lχ1 −

t

4(t + χ1)
Lt +

3
8
,

bT
02q =

3χ2
1 − 4tχ1 − t2

2(t + χ1)3
Lχ1 +

t(t + 4χ1)
(t + χ1)3

Lt +
t − χ1

2(t + χ1)2
+

χ2
1

(t + χ1)2
J02q,

cT
02q =

Lt − Lχ1

2(t + χ1)
, γT

02q =
t + 2χ1

2(t + χ1)2
(Lχ1 − Lt) −

1
2(t + χ1)

,

aT
02q = αT

02q = βT
02q = 0,

gT
12q =

1
4
LΛ +

t1Lt1 − tLt

4(t − t1)
+

3
8
,

aT
12q =

3t2 + 4tt1 − t21
2(t − t1)3

Lt1 −
3t2

(t − t1)3
Lt +

4t − t1
(t − t1)2

+
t2

(t − t1)2
J12q,

bT
12q =

−t2 + 4tt1 + 3t21
2(t − t1)3

Lt1 +
t(t − 4t1)
(t − t1)3

Lt +
3t1

(t − t1)2
+

t21
(t − t1)2

J12q,

cT
12q =

3t21
(t − t1)3

Lt1 +
t2 − 4tt1 − 3t21

2(t − t1)3
Lt +

4t1 − t

(t − t1)2
+

t21
(t − t1)2

J12q, (2.32)

αT
12q = − t2 + 4tt1 + t21

2(t − t1)3
Lt1 +

t(t + 2t1)
(t − t1)3

Lt −
2t + t1

(t − t1)2
− tt1

(t − t1)2
J12q,

βT
12q =

t1(5t + t1)
2(t − t1)3

Lt1 −
t(t + 5t1)
2(t − t1)3

Lt +
3(t + t1)
2(t − t1)2

+
tt1

(t − t1)2
J12q,

γT
12q = − t1(t + 5t1)

2(t − t1)3
Lt1 +

−t2 + 5tt1 + 2t21
2(t − t1)3

Lt +
t − 7t1

2(t − t1)2
− t21

(t − t1)2
J12q.
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Four-denominator scalar integral reads:

J012q = − 1
t1χ1

[
−LλLt1 + 2Lt1Lχ1 − L2

t − 2Li

(
1 − t

t1

)
− π2

6

]
. (2.33)

Vector 4-denominator integrals are:

a012q =
1
d

[
−(tχ′

1 + t1χ1)J12q + (t + χ1)2J02q−

− χ1(χ′
1 − t1)J01q − t1(t + χ1)Y

]
,

b012q =
1
d

[
(t1χ′

1 + tχ1)J12q − (tt1 + χ′
1χ1)J02q+ (2.34)

+ χ1(χ1 − t1)J01q + t1(t1 − χ1)Y
]
,

c012q =
1
d

[
−t1(χ′

1 + χ1)J12q + t1(t + χ1)J02q + χ1t1J01q − t21Y
]
.

Y = J012 + χ1J012q, d = −2t1χ1χ
′
1. (2.35)

Two-rank 4-denominator tensors are:

gT
012q =

1
2
(J12q − χ1c012q),

aT
012q =

1
d

[
(t + χ1)2(J12q − χ1c012q) − (χ1t1 + χ′

1t)a12q+

+ χ1(t1 − χ′
1)a01q − t1(t + χ1)(a012 + χ1a012q)

]
,

bT
012q =

1
d

[
(t1 − χ1)2(J12q − χ1c012q) + (χ′

1t1 + χ1t)b12q+

+ χ1(χ1 − t1)b01q − (t1t + χ1χ
′
1)b02q + t1(t1 − χ1)(a012 + χ1b012q)

]
,

γT
012q =

1
d

[
−t1(t1 − χ1)(J12q − 2χ1c012q)+ (2.36)

+ (χ′
1t1 + χ1t)c12q − (tt1 + χ1χ

′
1)c02q + χ1(t1 − χ1)b01q

]
,

αT
012q =

1
d

[
−(tt1 + χ1χ

′
1)(J12q − χ1c012q) + (χ′

1t1 + χ1t)a12q+

+ χ1(χ1 − t1)a01q + t1(t1 − χ1)(a012 + χ1a012q)
]
,

βT
012q =

1
d

[
t1(t1 + χ′

1)(J12q − 2χ1c012q)−

− (χ1t1 + χ′
1t)c12q + (χ1 + t)2c02q + χ1(χ′

1 − t1)b01q

]
,

cT
012q =

1
t

[
J12q − 4gT

012q + t1α
T
012q + (χ′

1 − t1)βT
012q + tγT

012q

]
.
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We put now the coefˇcients of 3-rank tensor structures:

K1g =
1
d
[−(t + χ1)2A1 − t1(t + χ1)A8 + (tt1 + χ1χ

′
1)A18],

K2g =
1
d
[(tt1 + χ1χ

′
1)A1 + t1(t1 − χ1)A8 − (t1 − χ1)2A18],

Kqg =
1
d
[−t1(t + χ1)A1 − t21A8 + t1(t1 − χ1)A18],

K111 =
1
d
[−(t + χ1)2A2 − t1(t + χ1)A9 + (tt1 + χ1χ

′
1)A19],

K112 =
1
d
[(tt1 + χ1χ

′
1)A2 + t1(t1 − χ1)A9 − (t1 − χ1)2A19],

K11q =
1
d
[−t1(t + χ1)A2 − t21A9 + t1(t1 − χ1)A19],

K12q =
1

t + χ1
[t1K112 + αT

12q − αT
01q − 2K1g], (2.37)

K1qq =
1

t + χ1
[t1K11q + βT

12q − βT
01q],

Kqqq =
1

t + χ1
[t1K1qq + cT

12q − cT
01q],

K122 = − 1
t1

[(t1 − χ1)K12q + αT
12q − αT

01q − 2K2g],

K2qq = − 1
t1

[(t1 − χ1)Kqqq + cT
12q − cT

02q],

K22q = − 1
t1

[(t1 − χ1)K2qq + γT
12q − γT

02q],

K222 = − 1
t1

[(t1 − χ1)K22q + bT
12q − bT

02q],

where

A1 = gT
12q − gT

02q, A18 = gT
012 − gT

01q + χ1g
T
012q, A8 = gT

12q − gT
01q,

(2.38)
A2 = aT

12q − 4K1g, A19 = aT
012 − aT

01q + χ1a
T
012q, A9 = aT

12q − aT
01q.

We give below some checking equations for coefˇcients before tensor structures
of G-type integrals. The complete checking system can be obtained by contraction
of general tensor expansion with relevant vectors, simplifying the numerators of
the integrand and using a set of vector integrals given above. Additional check
can be inferred by contraction with metric tensor. In this case the scalar integrals
should be used. The complete set of 10 equations for the 2-rank tensor and
24 equations for the 3-rank 4-denominator tensor integrals for the G-type was
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convinced to be fulˇlled. For deˇniteness we give four equations of such a type,
obtained by contraction with metric tensor. They are:

4gT
012q + tcT

012q − t1α
T
012q + (χ1 − t1)βT

012q + (t + χ1)γT
012q = J12q,

6K1g − t1K112 + (χ1 − t1)K11q + tK1qq + (t + χ1)K12q = a12q,
(2.39)

6K2g − t1K122 + (χ1 + t)K22q + tK2qq + (χ1 − t1)K12q = b12q,

6Kqg + tKqqq + (χ1 − t1)K1qq + (t + χ1)K2qq − t1K12q = c12q.

Another indirect check is the absence of infrared divergence containing terms in
all the vector and tensor integrals.

2.3.2. Integrals for B-Type Feynman Diagrams. We use here the following
set of denominators:

(1) = (p1 − k)2 − m2,

(2) = (p1 − k1 − k)2 − m2,
(2.40)

(3) = (p2 + k)2 − m2,

(4) = (p1 − k1 − p′1 − k)2 − λ2, (5) = k2 − λ2.

Four-momentum conservation law we use reads p1 + p2 = p′1 + p′2 + k1. Scalar
products of the loop momentum k with the external four-vectors can be expressed
in terms of the denominators:

2p1k = (5) − (1), 2p2k = (3) − (5),
2p′1k = (4) − (2) − t − χ1, (2.41)

2k1k = (2) − (1) + χ1, 2p′2k = (3) − (4) + t.

Using these relations one can consider only one type of integrals with ˇve de-
nominators (the so-called ®pentagon¯) namely the scalar one. Using the elegant
technique developed in the paper of Van-Neerven and Vermasseren [31], it can
be expressed in the form:

J12345 = − 1
D

[D1J2345 + D2J1345 + D3J1245 + D4J1235 + D5J1234],

D = 2ss1tχ1χ
′
1,

D1 = s1t[−t(s − s1) − sχ1 − s1χ
′
1 − χ1χ

′
1],

D2 = st[t(s − s1) + sχ1 + s1χ
′
1 − χ1χ

′
1], (2.42)

D3 = χ1χ
′
1[−t(s + s1) − sχ1 + s1χ

′
1 + χ1χ

′
1],

D4 = sχ1[t(s − s1) + sχ1 − s1χ
′
1 − χ1χ

′
1],

D1 = s1χ
′
1[t(s − s1) − sχ1 + s1χ

′
1 + χ1χ

′
1].
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It is interesting to note that the method described above to calculate the coef-
ˇcients of the tensor structures cannot be applied to the tensor integrals with
5 denominators given above. Some additional information is needed to close the
system of algebraic equations.

We mention a trick which permits one to obtain additional equations for
vector and tensor integrals whose denominators do not contain the term k2 − λ2.
It consists in shifting a loop momentum. Thus, for Jμ

1234 we have∫
d4k

iπ2

k

(1)(2)(3)(4)

∣∣∣∣
k=p1−k̃

=∫
d4k̃

iπ2

(p1 − k̃)
(1̃)(2̃)(3̃)(4̃)

= p1J1234 + ã(p1 + p2) + c̃k1 + d̃p′1,

(1̃) = k̃2 − m2, (2̃) = (k̃ − k1)2 − m2,

(3̃) = (p1 + p2 + k̃)2 − m2, (4̃) = (k̃ − p′1 − k1)2.

The comparison of right-hand side of this equation with the standard expansion

Jμ
1234 = (ap1 + bp2 + ck1 + dp′1)

μ
1234

leads to the new relation:

a1234 = J1234 + b1234.

Analogous useful relations can be obtained for tensor integrals as well. We put
below the relevant scalar, vector, and tensor integrals with 3 and 4 denominators
from (2.40) and introduce the parameterization:

Jij... =
∫

d4k

iπ2

1
(i)(j) . . .

,

Jμ
ij... =

∫
d4k

iπ2

kμ

(i)(j) . . .
= (aij...p1 + bij...p2 + cij...k1 + dij...p

′
1)

μ,

Jμν
ij... =

∫
d4k

iπ2

kμkν

(i)(j) . . .
= (gT g + aT p1p1 + bT p2p2+ (2.43)

+ cT k1k1 + dT p′1p
′
1 + αT (p1p2) + βT (p1k1) + γT (p1p

′
1)+

+ ρT (p′1p2) + σT (k1p2) + τT (p′1k1))
μν
ij....

Vector 3-denominator integrals are:

a245 = −c245 = J245 +
Lχ1 − Lt

t + χ1
, b245 = 0,

d245 = − χ1

t + χ1
J245 −

2χ1Lχ1

(t + χ1)2
+

(χ1 − t1)Lt

(t + χ1)2
,
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a145 = − t

χ1 − t1
J145 +

2χ′
1Lχ′

1

(t1 − χ1)2
− t + χ′

1

(χ1 − t1)2
Lt,

b145 = 0, c145 = d145 =
Lt − Lχ′

1

χ′
1 − t

,

a345 = −c345 = −d345 =
Lt

t
, b345 = −J345 +

2Lt

t
,

a125 = J125 +
Lχ1

χ1
, b125 = d125 = 0, c125 =

Lχ1 − 2
χ1

,

a235 = −c235 =
Ls1 − Lχ1

s − χ2
, d235 = 0,

b235 = − χ1

s − χ2
J235 −

2χ1Lχ1

(s − χ2)2
+

χ1 − s1

(s − χ2)2
Ls1 ,

a135 = −b135 =
Ls

s
, c135 = d135 = 0, (2.44)

a234 = −c234 = J234 −
Ls1

s1
, b234 = −Ls1

s1
, d234 = −J234 +

2Ls1

s1
,

a123 = J123 + b123, b123 =
Ls1 − Ls

s − s1
, d123 = 0,

c123 = − s

s − s1
J123 −

2
s − s1

+
2sLs

(s − s1)2
− (s + s1)Ls1

(s − s1)2
,

a124 = J124, b124 = 0, c124 = −J124 +
Lχ′

1
− 2

χ′
1

, d124 = −
Lχ′

1

χ′
1

,

a134 =
s

s − χ′
1

J134 +
2χ′

1Lχ′
1
− (s + χ′

1)Ls

(s − χ′
1)2

, b134 = a134 − J134,

c134 = d134 = − s

s − χ′
1

J134 +
−(χ′

1 + s)Lχ′
1
+ 2sLs

(s − χ′
1)2

.

Vector integrals with 4 denominators read:

a1245 =
Δ3a

Δ3
, b1245 = 0, c1245 =

Δ3c

Δ3
,

d1245 =
Δ3d

Δ3
, Δ3 = 2t1χ1χ

′
1,

(2.45)

Δ3a = χ′
1

[
χ1(2t1 + χ′

1)J1245 + χ′
1J124 − χ1J125−

− (t + χ1)J245 + (t1 + χ1)J145

]
,

Δ3c = t1
[
−χ1χ

′
1J1245 + χ′

1J124 + χ1J125 − (t + χ1)J245 + (t − χ′
1)J145

]
,

Δ3d = χ1

[
−χ1χ

′
1J1245 − χ′

1J124 + χ1J125 + (χ′
1 − t1)J245 + (t − χ′

1)J145

]
.
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a1235 =
Δ4a

Δ4
, b1235 =

Δ4b

Δ4
, c1235 =

Δ4c

Δ4
, d1235 = 0, Δ4 = 2sχ1χ2,

Δ4a = χ2

[
sχ1J1235 − (s − s1)J123 − (s − χ2)J235 + χ1J125 + sJ135

]
,
(2.46)

Δ4b = χ1

[
sχ1J1235 + (s − s1)J123 − (s + χ2)J235 − χ1J125 + sJ135

]
,

Δ4c = s
[
−sχ1J1235 + (χ2 − χ1)J123 + (s − χ2)J235 + χ1J125 − sJ135

]
.

a1345 =
Δ2a

Δ2
, b1345 =

Δ2b

Δ2
, c1345 = d1345 =

Δ2c

Δ2
, Δ2 = 2stu,

Δ2a = −st(s + t)J1345 + t(s + t)J345 + s(s + t)J135+
+ (ut − sχ′

1)J145 + (us − tχ′
1)J134, (2.47)

Δ2b = −st(s + u)J1345 + t(s − u)J345 + s(s + u)J135−
− (s + u)2J145 + (uχ′

1 − st)J134,

Δ2c = s
[
stJ1345 − tJ345 − sJ135 + (s + u)J145 + (t − u)J134

]
.

a2345 = −c2345 =
Δ1a

Δ1
, b2345 =

Δ1b

Δ1
, d2345 =

Δ1d

Δ1
, Δ1 = −2s1u1t,

Δ1a = −s1u1tJ2345 − u1(t + χ1)J245 − u1s1J234+
+ u1(s − χ2)J235 + tu1J345,

Δ1b = −s1t(t + χ1)J2345 + (t + χ1)2J245 + s1(t + χ1)J234+ (2.48)

+ (u1χ1 + s1t)J235 + t(u1 − s1)J345,

Δ1c = −s1t(s − χ2)J2345 + (u1χ1 + s1t)J245 + s1(u1 − t)J234+

+ (s − χ2)2J235 + t(s − χ2)J345.

a1234 = J1234 +
Δ5b

Δ5
, b1234 =

Δ5b

Δ5
, c1234 = −J1234 −

Δ5b

Δ5
+

Δ5c

Δ5
,

d1234 = −J1234 +
Δ5a

Δ5
− Δ5b

Δ5
, Δ5 = 2s1χ

′
1χ

′
2, χ′

2 = s − s1 − χ′
1,

Δ5a = χ′
2

[
−(s − s1)J123 + (s − χ′

1)J134 + χ′
1J124 − s1J234 + s1χ

′
1J1234

]
,
(2.49)

Δ5b = χ′
1

[
(s − s1)J123 + (2s1 − s + χ′

1)J134 − χ′
1J124 − s1J234 + s1χ

′
1J1234

]
,

Δ5c = s1

[
(χ′

2 − χ′
1)J123 − (s − χ′

1)J134 + χ′
1J124 + s1J234 − s1χ

′
1J1234

]
.
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We put now the tensor coefˇcients for B-type integrals with 4 denominators.

gT
1245 =

1
2

[2J124 − a124 − χ1c1245 + (t + χ1)d1245] ,

aT
1245 =

1
t1χ1

[
χ′

1(−J124 + a124 − c145) + t1a145 − (t + χ1)a245+

+ t1χ1a1245 − χ′
1(t + χ1)d1245

]
,

cT
1245 =

1
χ1χ′

1

[t1(−J124 + a124) + χ1c125 + (t1 − χ1)c145 − χ1χ
′
1c1245] ,

dT
1245 =

1
t1χ′

1

[χ1(−J124 + a124 − a245) + (t1 − χ1)c145 − t1d245 − χ1χ
′
1d1245] ,

(2.50)

βT
1245 =

1
χ1

[−J124 + a124 + c145 + χ1c1245] ,

γT
1245 =

1
t1

[J124 − a124 + a245 + c145 + (t + χ1)d1245] ,

τT
1245 =

1
χ′

1

[−J124 + a245 + χ1c1245 − (t + χ1)d1245] ,

bT
1245 = αT

1245 = ρT
1245 = σT

1245 = 0.

As a check one can use the result of contraction by the metric tensor:

4gT
1245 + χ1β

T
1245 − t1γ

T
1245 + χ′

1τ
T
1245 = J124. (2.51)

gT
1235 =

1
2
[2J123 − a123 + b123 − χ1c1235],

aT
1235 =

1
sχ1

[χ2J123 − (χ1 + χ2)a123 + χ1a125 − χ1χ2c1235],

bT
1235 =

1
sχ2

[χ1(J123 − a235) + (χ1 + χ2)b123 − χ2b235 − χ2
1c1235],

cT
1235 =

1
χ1χ2

[s(J123 + b123) − (s − χ2)a235 + χ2c123 − sχ1c1235],

(2.52)

αT
1235 =

1
s
[−J123 + a123 − a235 − b123],

βT
1235 =

1
χ1

[−J123 + a123 + χ1c1235],

σT
1235 =

1
χ2

[
−J123 + a235 − b123 + χ1c1235

]
,

dT
1235 = γT

1235 = ρT
1235 = τT

1235 = 0.
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One of the checking relations here has the form

4gT
1235 + sαT

1235 + χ1β
T
1235 + χ2σ

T
1235 = J123. (2.53)

gT
1345 =

1
2
[J134 + tc1345],

aT
1345 =

1
st(χ′

1 − s − t)
[(s + t)2J134 + t(χ′

1 − s − t)a145−

− (s(s + t) + tχ′
1)a134 + χ′

1(s + t)(c145 − c134) + t(s + t)2c1345],

bT
1345 =

1
s
[b134 − b345 − (χ′

1 − t)ρT
1345],

cT
1345 = dT

1345 = τT
1345 =

1
t(χ′

1 − s − t)
×

× [(χ′
1 − t)(c145 − c134) − s(b134 − tc1345)], (2.54)

αT
1345 =

1
st(χ′

1 − s − t)
[−t(χ′

1 − s − t)a345 + χ′
1(χ

′
1 − t)(c145 − c134)−

− sχ′
1(a134 − J134) + stχ′

1c1345],

βT
1345 = γT

1345 =
1

t(χ′
1 − s − t)

[(s + t)(b134 − tc1345) − χ′
1(c145 − c134)],

ρT
1345 = σT

1345 =
1

st(χ′
1 − s − t)

[−(χ′
1 − t)2c145 + t(χ′

1 − s − t)a345+

+ (χ′
1(χ

′
1 − t) − st)c134 + s(χ′

1 − t)b134 − st(χ′
1 − t)c1345].

The relation of the same type for the above coefˇcients reads:

4gT
1345 + χ′

1c
T
1345 + sαT

1345 + (χ1 − t1)βT
1345 + (χ2 − u1)σT

1345 = J134. (2.55)

gT
2345 =

1
2
[
J234 + χ1a2345 + (t + χ1)d1345

]
,

aT
2345 = cT

2345 = −βT
2345 =

1
s1t

[
−ta345 − (s1 + χ1)a235 + s1ta2345

]
,

bT
2345 =

1
s1t(χ1 + s1 + t)

[
s1t(b235 − b345) − χ1(χ1 + t)a235−

− t(t + χ1)a345 − s1t(χ1 + t)b2345

]
,

dT
2345 =

1
χ1 + s1 + t

[
d245 − d234 −

χ1 + s1

s1t(χ1 + s1 + t)
(
s1t(a245 − a234)+

+ t(χ1 + s1)a345 + (χ1 + s1)2a235 − s1t(χ1 + s1)a2345

)]
,
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αT
2345 = −σT

2345 =
1

s1t

[
−χ1a235 − ta345

]
,

γT
2345 = −τT

2345 =
1

s1t(χ1 + s1 + t)
[s1t(a245 − a234) + t(χ1 + s1)a345+

+ (χ1 + s1)2a235 − s1t(χ1 + s1)a2345], (2.56)

ρT
2345 =

1
s1t(χ1 + s1 + t)

[−s1ta234 + χ1(χ1 + s1)a235+

+ t(χ1 + s1)a345 − s1tχ1a2345 − s1t(χ1 + t)d2345].

The above coefˇcients have to satisfy the relation

4gT
2345 − χ1a

T
2345 + (s − χ2)αT

2345 − (t + χ1)γT
2345 − u1ρ

T
2345 = J234;

gT
1234 =

1
2

[
J123 − χ′

1

Δ(3)

Δ

]
,

aT
1234 = 2

Δ(2)

Δ
+ J1234 + b̃1234,

bT
1234 = b̃1234,

cT
1234 = 2

Δ(2)

Δ
− 2

Δ(3)

Δ
+ J1234 + b̃1234 + c̃1234 − 2γ̃1234,

dT
1234 = 2

Δ(2)

Δ
− 2

Δ(1)

Δ
+ J1234 + b̃1234 + ã1234 − 2α̃1234,

αT
1234 =

Δ(2)

Δ
+ b̃1234, (2.57)

βT
1234 =

Δ(3)

Δ
− 2

Δ(2)

Δ
− J1234 − b̃1234 + γ̃1234,

γT
1234 =

Δ(1)

Δ
− 2

Δ(2)

Δ
− J1234 − b̃1234 + α̃1234,

ρT
1234 = −Δ(2)

Δ
− b̃1234 + α̃1234,

σT
1234 = −Δ(2)

Δ
− b̃1234 + γ̃1234,

τT
1234 = 2

Δ(2)

Δ
− Δ(1)

Δ
− Δ(3)

Δ
+ J1234 + b̃1234 + β̃1234 − α̃1234 − γ̃1234,
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where the quantities with the sign tilde are deˇned as follows:

ã1234 =
1

sχ′
1

(Ls − Ls1 − Lχ′
1
),

b̃1234 =
1
χ′

2

[
χ′

1

Δ(2)

Δ
+

χ′
1

s − χ′
1

J134 +
Ls1

s1
− Ls

s − χ′
1

+

+
χ′

1(s1 − χ′
2)

s1(s − χ′
1)2

(Lχ′
1
− Ls)

]
,

c̃1234 =
1
χ′

2

[
s2
1

χ′
2

Δ(2)

Δ
− s1

χ′
2

J124 +
(

s1

χ′
2

+
s1

s − s1

)
J123 +

2 − Ls

s − s1
− (2.58)

−
2 − Lχ′

1

χ′
1

− 2s1

(s − s1)2
(Ls − Ls1)

]
,

α̃1234 =
Lχ′

1
− Ls

s1(s − χ′
1)

, β̃1234 =
Δ(3)

Δ
− Ls − Ls1

χ′
1(s − s1)

,

γ̃1234 =
1
χ′

2

[
χ′

1

Δ(3)

Δ
− J123 +

Ls − Ls1

s − s1
+

Ls − Lχ′
1

s − χ′
1

]
.

One of the checking relations takes the form

2gT
1234 + χ1β

T
1234 + χ2σ

T
1234 + χ′

1τ
T
1234 = a134 − a234 + χ1a1234.

Scalar integrals with two, three, and four denominators have a form (we
imply the real part everywhere and the ultraviolet asymptotics is assumed as
well):

J12 = −1 + LΛ, J13 = 1 + LΛ − Ls,

J14 = 1 + LΛ − Lχ′
1
, J15 = J24 = J34 = J35 = LΛ + 1, (2.59)

J23 = 1 + LΛ − Ls1 , J25 = 1 + LΛ − Lχ1 ,

J45 = 1 + LΛ − Lt,

where

LΛ = ln
Λ2

m2
, Ls = ln

s

m2
, Lλ = ln

λ2

m2
,

Ls1 = ln
s1

m2
, Lχ′

1
= ln

χ′
1

m2
, Lχ1 = ln

χ1

m2
, (2.60)

Lt = ln
−t

m2
.
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Three-denominator scalar integrals are

J123 =
1

2(s − s1)
(L2

s − L2
s1

), J345 =
1
t

[
1
2
L2

t +
2π2

3

]
,

J124 =
1
χ′

1

[
1
2
L2

χ′
1
− π2

6

]
, J125 =

1
χ1

[
−1

2
L2

χ1
− π2

3

]
,

J134 =
1

s − χ′
1

[
3
2
L2

s +
1
2
L2

χ′
1
− 2LsLχ′

1
+ 2Li2

(
1 − χ′

1

s

)]
,

J235 =
1

s1 + χ1

[
3
2
L2

s1
+

1
2
L2

χ1
− 2Ls1Lχ1 + 2Li2

(
1 +

χ1

s1

)
− 3π2

2

]
, (2.61)

J135 =
1
s

[
1
2
L2

s − LsLλ − 2π2

3

]
, J234 =

1
s1

[
1
2
L2

s1
− Ls1Lλ − 2π2

3

]
,

J245 =
1

t + χ1

[
1
2
L2

t −
1
2
L2

χ1
+ 2Li2

(
1 +

χ1

t

)]
,

J145 =
1

−t + χ′
1

[
1
2
L2

χ′
1
− 1

2
L2

t −
π2

2
− 2Li2

(
1 − χ′

1

t

)]
.

Four-denominator scalar integrals read:

J1245 =
1

χ1χ′
1

[
−L2

χ1
− L2

χ′
1
− L2

t − 2Lχ1Lχ′
1
+ 2Lχ1Lt + 2Lχ′

1
Lt +

2π2

3

]
,

J2345 =
1

s1t

[
L2

s1
− Ls1Lλ − 2Ls1Lχ1 + 2Ls1Lt −

5π2

6

]
,

J1345 =
1
st

[
L2

s − LsLλ − 2LsLχ′
1
+ 2LsLt + 7

π2

6

]
, (2.62)

J1235 =
1

sχ1

[
L2

s1
+ LsLλ − 2LsLχ1 + 2Li2

(
1 − s1

s

)
− 5

π2

6

]
,

J1234 =
1

s1χ′
1

[
−L2

s − Ls1Lλ + 2Ls1Lχ′
1
− 2Li2

(
1 − s

s1

)
− 7

π2

6

]
.

The results given above are valid with power accuracy, since we omit only terms
of order of m2/s compared with ones of order unity.
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2.4. Integrals for Collinear Radiative Bhabha Scattering. Here we give the
expressions for the quantities associated with G-type integrals (see (1.160)):

J = − 1
χ1t1

[
−2LλLt1 + 2Lt1Lρ − L2

t − 2Li2(x) − π2

6

]
,

J1 =
1

t1χ1

ρ∫
0

dz

1 − z

ln z

1 − λz
=

A

t1χ1

(
1 +

x

ρ − x

)
=

A + ϑ

t1χ1
, Jk = −1

ρ
J1,

(2.63)

J11 = − 1
t1χ1

ρ∫
0

dz

(1 − z)(1 − λz)

(
1 +

z ln z

1 − z

)
, J1k =

1
ρ
,

A = Li2(1 − ρ) − π2

6
+ Li2(x) + Lρ ln (1 − x), λ =

x

ρ
, ρ =

χ1

m2
.

In the limit ρ 	 1 we have

Φ = χ1A2 + t1χ1(J11 − J1 + xJ1k − xJk) = −1
2

+ O(ρ−1),

and that is the reason why w structure does contribute only to next-to-leading
terms.

In general the expression for 5-denominator one-loop scalar, vector, and
tensor integrals are some complicate functions of ˇve independent kinematical
invariants (in the derivation we use the same technique as, for example, in Sub-
sec. 2.3). In the limit m2 � χ1 � s ∼ −t they may be considerably simpliˇed
because of singular 1/χ1 terms only kept (see (1.163)):

E =
1
s1

D0124 +
1
t
D0123,

E1 = −xEk =
1

2χ1
(D0134 − (1 − x)D0234 − xD1234 + χ1E) ,

D0124 =
1

xt1χ1

[
L2

ρ + 2Lρ ln
x

1 − x
− ln2 x

1 − x
− 2π2

3

]
,

Re D0123 =
1

sχ1

[
L2

s1
− 2Ls1Lρ − 2LsLλ +

π2

6
+ 2Li2(x)

]
, (2.64)

Re D0234 =
1

s1t

[
L2

s1
+ 2Ls1Lλ − 2LρLs1 + 2Ls1Lt −

5π2

6

]
,

Re D0134 =
1
st

[
L2

s + 2LsLλ − 2(Lt1 + ln (x))Ls + 2LsLt +
7π2

6

]
,

Re D1234 = − 1
s1xt1

[
−L2

s + 2Ls(Lt1 + ln (x)) + 2Ls1Lλ − 7π2

6

]
.
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The structure E11 +xE1k has the form 1/(sχ1)f(x, χ1) and will vanish after per-
forming the operation (1 + Q2)s1tP given in (1.157) which yields a contribution
of P -type graphs with crossed and uncrossed photon legs.

The following coefˇcient for the scalar integral is obtained in the calculation
of B-type FD (see (1.161) and below):

B =
1

s1t

[
L2

s1
+ 2Ls1Lλ − 2Ls1Lρ + 2Ls1Lt +

π2

6

]
. (2.65)

For the vector integral coefˇcients we get

a = − 1
2s1u1t

[
−π2s1 + 2u1Li2(1 − ρ) − s1L

2
t + tL2

s1
− 2tLs1Lt

]
,

b = − 1
2s1t

[
2π2

3
+ 2Li2(1 − ρ) − 2L2

s1
+ 4Ls1Lρ − 2Ls1Lt

]
,

(2.66)

c =
1

2s1u1t

[
2u1Li2(1 − ρ) +

π2

6
(4u1 + 6t) + (t − 2u1)L2

s1

− s1L
2
t + 4u1Ls1Lρ + 2s1Ls1Lt

]
.

The relevant quantities for tensor B-type integrals are:

a1′2′ =
1

s1t

(
ρ

ρ − 1
Lρ − Lt

)
,

ag = − 1
4u1

[(Ls1 − Lt)2 + π2],

(2.67)

a1′2 = − 1
2u2

1

[(Lt − Ls1)
2 + π2] +

1
tu1

(Ls1 − Lt) −
1

s1t

(
ρ

ρ − 1
Lρ − Ls1

)
,

J0 =
1
s1

[
3
2
L2

s1
− 2Ls1Lρ − Li2(1 − ρ) − 4π2

3

]
.

As has been mentioned in the text, the physical gauge exploited provides a
direct extraction of the kernel of the structure function out of the traces both in the
tree- and loop-level amplitudes. The pattern emerging (see the text after (1.152)):

(p̂1 − k̂1 + m) ê (p̂1 + m) ê (p̂1 − k̂1 + m) =

= 4(p1e)2(p̂1 − k̂1) − e2χ1k̂1 ≈ (1 − x)Y p̂1, (2.68)

k̂1ê(p̂1 + m)ê(p̂1 − k̂1 + m) ≈ (1 − x)
(

2
2 − x

1 − x
W − Y

)
p̂1

shows this clearly.
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