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Large-angle Bhabha scattering cross section and related processes are considered. Standard
procedure of calculation of radiative corrections (RC) with emission of one and two real photons as
well as lepton pairs is considered in detail. Special attention is paid to the case of radiative large-angle
Bhabha scattering, where we show the validity of factorization theorem for one-loop level RC. This is
the basic assumption of the Drell-Yan form of the cross sections when hard particles are detected at
large angles. The cases of collinear and semicollinear kinematics for the final particles are considered
explicitly. At the end of the review we consider some contributions to the large-angle Bhabha elastic
scattering cross section at two-loop level. Among them, the emission of two hard photons in collinear
and semicollinear kinematics regions and the contribution of a set of gauge-invariant FD of two-loop
level were calculated.

HW3ydeHsl p aM LMOHHBIC IIONpP BKH K P 3JIMYHBIM IIOCT HOBK M 6 0 -p ccesHust H Ooubline
YIJIbl, B 4 CTHOCTH C JONOIHMUTENBHBIM M3IydeHUEM OIHOTO U JBYX pe JibHBIX (hoToHOB. IloK 3 HO,
YTO y4eT p A LIOHHBIX IONP BOK COIN cyeTcs ¢ ¢ KTOpU3 LIMOHHOM TeOpeMOi M cedeHHe IpoLecc
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INTRODUCTION

Nowadays we could see the renewal of interest to Bhabha scattering. For
example, at BEPC facility (Bejing, China), the e*e™ collider with extremely high
luminosity (1023 cm~!-s~1) is build, which gives us the possibility of obtaining
with much more accuracy J/W decays and maybe some new physics such as
4-quark resonances, heavy quarkonia.
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For such a precise measurements we have to know with accuracy at the
level of 0.1% the beam luminosity and background processes such as Bhabha
scattering at small angles, with additional soft and hard photon or lepton pair
emission. All these processes are considered at this review. At the end of
each Section we give the explicit expression of the processes in the frames of
Drell-Yan picture.

At the beginning we consider the well-known lowest order RC to the large-
angle Bhabha scattering and put the final answer in terms of DGLAP evolution
equation kernels.

Then we put the expressions for the large-angle Bhabha scattering accom-
panied with the soft, hard photon and soft real lepton pair. The relevant virtual
one-loop corrections are also considered. The final answer is given in the form of
explicit leading logarithm contribution and the so-called K factor, which includes
nonleading RC corrections. Due to its cumbersome form we put some numerical
estimations of it. In the next Section we consider also the hard real lepton pair
emission, and we provide the check that the final answer is in accordance with
the renorm-group predictions.

The remainig part is devoted to the radiative Bhabha scattering. In Sub-
sec. 1.4 we start with the consideration of one-loop RC (box-type, vertex-type,
vacuum polarization, etc.). Again, we convince that our final result is con-
sistent with the Drell-Yan picture of this process. The nonleading terms are
presented in the numerical form. In Subsecs.1.5, 1.6 we consider the emis-
sion of one and two real hard photons in collinear and semicollinear
kinematics.

At the end of the review we put some parts of two-loop calculation for
Bhabha scattering. All two-loop contributions are divided to the gauge-invariant
classes, and addition soft photon emission is also included.

In Sec.2 we give the tables for one-loop Feynman integrals of scalar, vector,
and tensor types, with two, three, four, and five denominators. All formulae
are presented with the accuracy up to the terms of the order of the ratio of the
electron to the muon masses squared, and the kinematic invariants are assumed
to be large compared to the electron mass squared.

Throughout our paper we use the next designations:
DIS — deep inelastic scattering

FD — Feynman diagram

LLA — leading logarithmic approximation

NLO — next-to-leading order

QCD — quantum chromodynamics

QED — quantum electrodynamics

RC — radiative corrections.
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1. LARGE-ANGLE BHABHA SCATTERING

The cross section of Bhabha scattering (corrected by the vacuum polarization
factor), which enters into the Drell-Yan form of corrected cross section, has a bit
more complicated form, as far as the scattering and annihilation amplitudes and
their interference are to be taken into account. We remind here the form of the
Lorentz-invariant matrix element module squared in the Born approximation:

1 _ _ 2
Ro(s, t,u) = T6(dra)?t Z ’M(e (p-)+et(py) — e () +6+(Pl+))’ =
spins
s 4+ u? u? 4+ t2 u?
p— — 1.1
2t2 + 252 + st’ (1.1

s=(p-+pp)? t=(p-—p ) u=(p-—p})
(1.2)

s+t+u=0(m?),

here and below we neglect the terms of order m?/s ~ m2/(—t) ~ m?2/(—u)
compared with ones of order of unity.

The first term in the right-hand side of Eq.(1.1) describes the scattering-
type Feynman diagram square. The second one corresponds to the square of
the annihilation-type diagram. And the third one deals with the interference
of the two diagrams. A more compact representation of Ry is also useful,
Ry = (1 + s/t + t/s)?. In the center of mass of initial particles (further
implied) we have

s=4e%, t=-21-c¢), u=—-2(1+c),

where ¢ = cos 6, and the scattering angle 6 is the angle between the initial and
the scattered electron momenta, ¢ is the energy of initial electron.
The differential cross section in the Born approximation has the form

dofom o2 (3 + 2 ) 2

= 1.3
dQ)_ 4s \ 1—c¢ (1.3)
Consider the case when the initial electron and positron lost certain energy frac-
tions. Supposing the scattering angle remains the same and using the conservation
laws, we will obtain the value of Ry in terms of the relevant invariants.

The corresponding kinematics is defined as follows:

e (zip-) + et (z2py) — e (h-) + et (py),
- 1 1
5= 82129, t=—§$z1Y1(1—c)7 a:_55Z2Y1(1+C)7

)
P 22129
le?: . a=z+2 — (21 — 22)c.
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For definiteness we put here the shifted Born cross section of two types:

doo((1 —x)p_,py)  2ma® {3 —3r+ 22 +22(2 —2)c+ A(1 —x + 2?) }2

de o e? (1—2)(1—¢)(2 — 2+ zc)?

(1.4)

doo(p—, (1 —2)py)  2ma® {3 -3+ 2% —22(2 —2)c+ A(1 —x + 2?) }2

dc o g2 (1—2z)(1—-¢)(2—x—xc)?

The shifted Born cross section corrected by vacuum polarization insertions
into virtual photon propagators reads

a?+22(1 +¢)?

. 4a? 1
A

222(1 — ¢)?
N 1 71 =) +23(01+¢)?
TGP 22
1 22(1+c¢)?

— Re

T O
Quantities II(s) and II(¢) are the vacuum polarization operators in the s and ¢
channels.

1.1. Lowest Order Radiative Corrections and the Leading Logarithmic
Approximation. Rewriting the known results [14] (see as well [16]) for the cross
section in the Born approximation with one-loop virtual corrections to it and with
the other ones arising due to soft photon emission, we obtain

dUB+S+V da'()(]., 1) 2a AS—: 3
= 1+2(L-1) [2In S .
on ao- 'R
0 A
8 (ot ) 2E KSV L=In——. (1.6)
T 2 € m2
where

Kgy = —1—2Liy (sin® = | +2Liy (cos? = ! 7T—2(204—303—150)—|—

sV 2 2 TBreE|3

0

+2(2¢* = 3¢3 +9¢% 4 3¢ + 21) In? (sm > 4 ? —20)In® (COS 5) -

6 6
—4(c® 4 4% + 5¢ + 6)In? (tan§>—|—2c —3c2—|—7c—5)1n<cos§>+

0
2(3¢® +9¢% + 5¢+ 31) In (sin 5)} (1.7)
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is the part of the K factor coming from soft and virtual photon corrections,
déo(1,1) is defined in (1.5). Quantity Ae in Eq.(1.6) is the maximal energy of
emitted soft photons.

Consider now the process of hard photon (with the energy w = ko > Ac in
the center-of-mass system) emission

et(py)+e (po) — et () +e (p) + (k).

We start with the differential cross section in the form suggested by F. A.Be-
rends et al. [4,5] which is valid for scattering angles being large compared with
me /e (the case of extremely small scattering angles was treated in [32]):

o? B dpl d*p’_d*k

dahard - % Reé’y dF, dr 6(4) (p—l- +p— - p/+ - pL - k)a

7 1 1.0
€+€_k

4 (X )2\t X ty s
2 2 2 2
m S t m S t
- ;(—1+— ) - ;(—1+—1+1) , (1.8)
X5\t s X2 \ti s
where
W= s n 51 t1 B t n u n U1
X+x—  XaxD o Xixs Xx- o XAxe o xixd
T s51(8% + 8%) + tt1 (12 + 13) + uuy (u? + u?)

)

881tt1

and the invariants are defined as

s=2p_py, s1=2p"p\, t=-=2pp_, t1=-2pup,,
/ / ! /
u=—=2p_py, ur=-2pip_, x+=kpt, Xi=kpy.

It is convenient to extract the contribution of the collinear kinematics. We do
that for the following reasons. First, it is natural to separate the region with a very
sharp behavior of the cross section and to consider it carefully. Second, we keep in
mind the idea of the leading logarithm factorization, which is valid in all orders
of the perturbation theory. We will evaluate the collinear kinematical regions
in two different ways. The first one (the quasi-real electron approximation) is
suitable for generalization in order to account higher order leading corrections by
means of the structure function method. In this way we will obtain below the
leading logarithmic contributions and the compensating terms, which will provide
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the cancellation of auxiliary parameters. The second one (the direct calculation)
is more rigorous, it can be used as a check of the first one. We discuss it in detail
in Subsubsec. 1.1.1.

To obtain explicit formulae for compensators it is needed to consider four
kinematical regions corresponding to hard photon emission inside narrow cones,
surrounding the initial and final charged particle momenta. The vertices of the
cones are taken in the interaction point. We introduce a small auxiliary parame-
ter 6y, it should obey the restriction
m—; <Gy < 1. (1.9)

NG

So, we define a collinear kinematical region, as a part of the whole phase space,
in which the hard photon is emitted within the cone of 6y polar angle with respect
to the direction of motion of one of the charged particles.

Using the method of quasi-real electrons [6, 7], the matrix element M
(squared and summed up over polarization states) of the process of hard pho-
ton emission can be expressed through a shifted matrix element of the process
without photon emission:

Z ‘M(pla k7pl1aX)‘2 =

1+ (1-2)? 1 ’ ’
1+(1-2)? _m_]ZIMo(m—k,pl,X)IQa

:4““{ (—x) kg ()

Z ‘M(plaplla k7X)|2 =

2 2 2
yv +Y* ¢ m , 9
4 — = kX 1.10
wa [P0 o ] S Mot + R DE, (10
w p’O
Tr = -, p(l):E, y= 17 Y:$+y»
€ €

where X’ denotes the momenta of nonradiating incoming and outgoing particles in
the given process. The integration over the phase volume of the emitted photon
inside the narrow cone, surrounding its parent charged particle momentum, gives
the following factors:

1672 w t(1—2z) kpr  (kp1)?
2

a dz [ o 05
=— =P L—-1+In-2 1— =1-
o [ ° (21)< tlt -z, = z,

da /@{1“1—@2 1 m? }:
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4o d3k_ y2+Y2 1 m2
167T2/7 zY k—p’l_w} B
o« ng |:Pé1)(23)<L_1+1n%+21n23) ~§—1—Z3]7 (1.11)
27T zZ3 4
g1 —2 1%
Ve Y

Note that the terms proportional to (L — 1) contain the ©-part of the kernel
PO = PE) + Pél) of Altarelli-Parisi-Lipatov evolution equations:

1+ 22

1
Pé)(z): 1-=2

01—z — A).

Collecting the contributions of the four collinear regions, we obtain

dgcoll_ dz 2 9(2) 2
10 _7r/ x{{(l—x—t— 2)<L—1+lnz—|—21n(l—x) —|—7 X
A
doo(1,1) x? 90 x?

y [d&o(l —x,1) N déo(1,1 — CE)} }7 (1.12)

dQ_ dd_

where the shifted Born cross section is defined in Eq. (1.5).

Adding the contributions of virtual and soft photon emission, we restore the
complete kernel. Generalizing the procedure for the case of photon emission by
all charged particles, we come to the representation of the cross section in the
leading logarithmic approximation. The final expression for the cross section
therefore has the form

ete”—eTe (v)
d /le/dZQ 2’1 Z2)d0'06531,52) (1—|— %st) Ox

/d“/d” (7)7 (%)

dx x? 9(2)(1 —z)? 2?7 _ doBom
A
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+ l—sv—l—x—2 lnﬁ—&—m—2 do” X
2 4 2 ||s(1—x)?)2—z(1-0)
y 3-3x+22+222-2)c+ (1 —x+2?) 2+
1-c
N 40 3-3x4a2— 22— 2)c+ Al -z +22)\° o
s2—z(14 )t 1—c
a? (34 8a 0\, Ac  of WT _ dr
- — —1 t=)Iln— 4+ — — 00— 1.13
45(1—0) T n(co 2>n5+27725 / 4 dQ’ (1.13)
k0> Ae
T—600>60>00
¥, — 22122 v, = 22422 — (z%—z%)c’
21+ 20 — (21 — 29) 21+ 20 — (21 — 22)
_ ym(l+¢) . zym(l—c¢)
=" Zg=—
2—ym(l—c) 2z1 —ym(1 +¢)

Symbol © denotes above possible experimental cuts on the final state particle
phase space. The last term describes hard photon emission process, provided that
the photon energy fraction x is larger than A = Ac¢/e, and its emission angle
with respect to any charged particle direction is larger than some small quantity
0o. The sum of the last three terms in Eq. (1.13) does not depend on the auxiliary
parameters A and 6, if they are sufficiently small. We omitted the effects due
to vacuum polarization in the last three terms which describe real hard photon
emission; because the theoretical uncertainty, coming from this approximation,
has the order 6(do)/do ~ (a/m)?L < 10~% Nevertheless, if the center-of-
mass energy is close to some resonance mass (say to my), the effect due to
vacuum polarization may become visible. According to the master formula (1.13)
a Monte Carlo event generator [33] was created. The generator is applied to
data simulation and analysis at electron—positron colliders such as VEPP-2M and
VEPP-2000.

1.1.1. Calculation of Real Collinear Photon Radiation. Here we present the
direct evaluation of the collinear region contribution to the Bhabha scattering
cross section. Let us write the contribution of the collinear kinematics in the
form:

(do)con = dojp_. + doip,. + dowp. + dowp, =
=do, +doy + do. + dog. (1.14)
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For the case of photon emission along the initial electron we have (see Egs. (1.4),

(1.8)):

2 1 1+(1—2)? 3k y§
W, = — , To=— " R(sy,t%u0), dl, =~ D go_,
w? 1— fBea 1—2 (51 u’) W ag
_— m2
ca =cos(kp_), 8= 1—5—26, w=Fk" =ua¢, 51 =s(1 —x), t{=t*(1 —x),
(1.15)
1—2)*(1— 1—2z)(1
PO S B RN k. ol Ul RN Gl | U ) S
Qg Qg
2(1 - _
a, =2—z(l —c¢), y‘fzw, c=cos(p_p_).
Gq

Performing the angular integration over photon angles inside the narrow cone,
surrounding the direction of the initial electron beam, we get

/Wdl" —47T—dQ X

deg yr 05 2
« / 1_&2_4% a2 <L+ln4+0(90) . (116)
1-62/2

We neglect the terms proportional to 2. Collecting all the factors and reminding
the contribution of the terms proportional to m? (see Eq.(1.8)), we obtain the
contribution of the first collinear region:

jgi :4T %A/li—x Kl—ﬂx;) (L—1+1n£>+%2] ER
Ll (-0 -2 —au(1 - o)1 - 2)?
21— 2’1 - op

(1.17)

For the case of photon emission inside the narrow cone, surrounding py, in a
similar way one gets

1
40? a [ dz x? 62 z?] 1
== 21—+ ) (—14m )+ | =
d s W/.’E|:< x+2)< +n4>+2]azx

A
X[ L (1—e2(1 2x1)2_—0;b(1—c)(1—33)}27 ay=2—z(1+¢). (1.18)
b
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For the cases k || p’_ and k || p/,, quantity R (if suppose II = 0) is simple:

1 2 2 14+ (1—2)2
RC:Rd=—<3+C> P e € )

4\ 1-c¢c 1—=z

9 xyc,d -
dl¢q = e“dz dQ_ dpy dey m———, ¢ = cos kp’_,
2—x+4+x01
70 _
It N
€ lypr. 2—TF |,y
g P o 2l-ua) m?
v == T2 x4 Y2 1=

k|lp/.
2(1 — x
Walkp! ) = Walkp!,) = 207,

Note that kp/, = 2¢%(1 —y). In the evaluation of the rest multipliers for these
cases one has to be careful:

/VVC dr’. = /Wd dlg
1-62/2<e1<1

de 1 02
=2 aq_ 29” {L+ln—0+21n(1—x)} .
X

—1462(1—2)2/22c1 >—1

4

Note that the collinear region d is defined by the condition 1 — 63/2 <

cos kp’Jr < 1, which leads to the bounds on ¢; shown above. So, the con-
tributions of these two collinear regions are

2

02 x
< (L=1+m=2+2m(1-a)) + | (119

Note that there is an asymmetry between the contributions due to the emission
along the directions of the (initial or final) electron and the ones due to pro-
duction of collinear photons along the positron momenta. The symmetry was
broken when we decided to write a differential cross section with respect to the

electron scattering angles (dQ2_ = dcos (}fp\L )dy). After an integration over
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a symmetrical angular acceptance, the contributions would become equal. Com-
pensating terms are to be extracted from Egs. (1.17)—(1.19) by omitting the terms
proportional to (L — 1).

1.2. Virtual and Soft Real Pair Production in Large-Angle Bhabha Scat-
tering. This Subsection is devoted to the calculations of the QED O(a?) RC to
the LABS process accompanied by the production of a virtual or a soft real eTe™
pair. We work within the logarithmic accuracy and drop all the terms of the
order o which are not reinforced by the large logarithm L = In (42 /m?) (e is
the beam energy in the center-of-mass reference frame). We consider here only
the contribution of eTe™ pairs. The contributions of muon and other pairs are
less than the latter (they contain only linear in L terms), they will be considered
separately.

Recently analytic calculations for complete two-loop virtual pair corrections
to Bhabha scattering have been completed including the contributions of electron—
positron loop [38] and those of heavier leptons and hadrons [34-37].

The general expression for the cross section with the corrections under con-
sideration can be presented in the form

2 L4 _
do = doy {1 +(%) [Z G 0 4 07+ 05t ] } : (1.20)
=1

v
soft

from soft photon emission, ¢;, , — from hard photon emission, and 6:‘;}57 —
from soft pair production.

1.2.1. Virtual Corrections. The Feynman diagrams describing the O(a?)
order RC to LABS process

e (p1) +e"(p2) = e (qn) + e (q2), (1.21)

which contain a vacuum polarization bubble, can be split into seven classes. In
Fig. 1, one can see some representatives of the diagrams from different classes
(any multiplication of diagrams has to be considered as a multiplication of a
diagram by a conjugated one).

The first five contributions J; 5 can be written down using the known expres-
sions for vacuum polarization operators and vertex functions (only the Dirac form
factor is relevant: the contribution of the Pauli one is proportional to m?/e?). In
the scattering channel one has for the vacuum polarization operators II;; (for a
one-loop bubble) and II,; (for a two-loop bubble):

1 5 1 —t
Il = =l; — = Iy = =1 1 ;=1 —
1 =zl—g, 2t 4t+0( ) L n(mﬁ)’

where dog is the Born cross section, 9; arises from virtual corrections, ¢

(1.22)
t=—2p1q1, 5=2pipa, u=—2piqz, —t~ 5>m2,
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e

N
FK
\/
A/
Y.y
A

> & g >m<
> “>@< ><

o torar

A

Fig. 1. Representatives of Feynman diagrams for virtual pair production

and for the vertex functions Fy; (for a one-loop vertex correction) and Fy; (for

a two-loop vertex correction which includes a vacuum polarization insertion (see
Fig.5.(4,5)):

1 1 2 A
Flt:(lt—l)(l)\+1)——lt——lt2+ﬂ-—, l>\=1n (—),

47 4t 12 Me
(1.23)
1 19 72 265
Foo=——+ 12— (= I+ 0(1
b = —3glt + =5l <36+216>t+ (1),
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A is an auxiliary parameter — the fictitious photon mass. Similar expressions can
be written in the annihilation channel (for Il o and Fi, 25) using the substitution

l, > I, =1, —im, ly=1In (%) . (1.24)
m

e

After simple algebraic transformations within the logarithmic accuracy we obtain

5 29 -1 2 2 2 2 2

¢ ¢ 2
35 = {2<f+—+1> ] {s g, LY <I>s+l<1>st}, (1.25)
— t s S st

t2

o, = 3H§t + 2I0p; + 811y Fyy + 4Fo =

8 8 T4 9 72 311
= Ll — = )Ix— =B+ 2P+ 1| — - ==
3t<t 3)* 9t+2t+t<9 27)’

&y = 3|Il14|* + 2Rellos + 8Rellj, Fis + 4Re Fhy =

8 8 T, 9, 2n? 311
_3l5<l5 3>ZA 918+2l8+13< 9 27),

@y = Re {II}, + 11}, + My, Ilys + 2(I0yy + Iy, ) (Fuy + Fig) + gy + Tlos+

2 32 2
+2(Fy + Fay)} = {g(zs + 1) — E(zs + zt)} Iy — 5(155 +13)—
1 61 5, o . 10 17 5, 311
6l,gls(l,g +1)+ 36(lt +I5)+ 5 lls + <367r ) )(lt +15).

Consider now the virtual corrections of the sixth class: the ones due to the
interference of the Born amplitude corrected by a vacuum polarization insertion
with the box amplitude. One has to consider the scalar, vector, and tensor loop
integrals over the box virtual momentum k. As an example we present here
the integrals for scattering channel box diagram with uncrossed photon lines (see
Fig. 1(6)):

d*k 1, ko, kpko
bodos e = [ G TG
1

o+ R —m2 +10)((—ps + k)2 —m2 + 40 (1.26)
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Jo = blAa + bQQO'a
Jpa = b3ApA¢7 + b4PpP¢7 + b5(qu0' + Aan) + bGQpQU + b7gpaa
1 1
¢=q-p1=p2—a A=gp2-p) P=5p1+p2)

The explicit expressions for the coefficients b — b7 are given in Subsec.2.1.
After some algebraic work with traces one gets

56 = {2<§+£+1>T_1Re (1+ P(s,1)) x

X {%(1 — P(s,u)) fi(s,t) — F (fa(s,t) +f3(u,t))}, (1.27)

S

where

fl(s, t) = —8(82 + u2)[b — bl] + 282t[—bg + b5 + b6}+

i(252 + u?)[—bg + ba] + 2(45 + u?)by,

"1

1 1
b4 —by— ~by| —b
1+43 44:| 7)7

P 1- 1- - - N N
f3(u,t) = u? (u —b+b1 — 553 - 5b4:| + Qt[—bQ + b5 —|-b6] _|_8b7> ;
b.b 1 . 5
b= P(sub by 1L, = Sl +im) — 2.

The interchange operators P(s,t) and P(s,u) act in the following way:

P(Sv t)f(S, t, u; l~sa lta lu) = f(tv S, U3 ly, lea lu)a

P(S, u)f(s, t,u; ZS» lta lu) = f(uv t,8; 1y, ltv le)

Consider now the corrections of the seventh class. In the calculations we
use the substitution suggested by J. Schwinger for the photon propagator (with

4-momentum k) corrected by a one-loop vacuum polarization insertion (see Sub-
sec.2.2 for implementation of this method):

(1.28)

1
1 a [ dvp;(v) 1 9 4m?
= M? = L, 1.29
k2—/\2+i0—>7r/1—v2 k2 — M2’ b1 —0? (1.29)
0

For contribution of leptons we have

w1(v) = %(2 —(1=v*)2-2%), mi=my, l=e,pu,r. (1.30)
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The interference of the eight box diagrams with the Born ones gives the
following contribution to the summed over spin states matrix element square:

1
Z IM|? = a428/ civcp (1+ P(s,t))x
0

spin

o

X/ﬁ ! x
i (= N+ 0)((k + a” — M)

Sl Al 1 52 A2 1
2 A = _ = 1.31
X{(t 4s>a1a2+<t 48>ala3}7 (131)

a = (k+q1)2 —mg + 40,
as = (k —q2)2 —mg + 40,
az = (k + p2)* —m? 410,

where S7 2 and A, » are relevant traces of  matrixes.
Some scalar, vector, and tensor integrals calculated within the logarithmic
accuracy are necessary. We use the notations

1
/dvcp @ 1, k,, kpko

1—22 ) in2  abajas

I(abaqas), , (1.32)

0

I(aba2):/1dv<p(v) /d4—k ! , I(ba1a2)=/1dv(p(v) /ﬂ 1
0 0

172 abasg

a=k2 =22 +i0, b= (k+q)?— M2
1
I, = a(p2p — p1p) + BP1p — q1p), = % [—1 — 2I(abaz) + I (basaz)],
1
f=5- [(t — u)I + sI(bajas) + 2tI(abas)],

5~ 10 28 8
= —Red —=B+ P+ 1, |I?— =l + =+ =n? 1
Re{6§ Gle Hls|li - gl 5 +gm +0(1) ¢,
Lo = fogps + [1(Q1p010 + @2p020) + [30000 + f1(q1p020 + G2pq15 )+

+ f5(2p(q20 — q15) + @0 (q2p — q15))-

In Subsec.2.1 we give the list of scalar integrals. It appears that only two tensor
coefficients, namely fy and f4, are relevant. They contain only the first power of
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the large logarithm. Infrared parameter A is contained only in I(abajas):

1
I(abajaz) = QRex

1y 1, -, 10-, 2 2
x {—Ezi + 5B+ Ll — gozszt - 3815 - %zt — 2, (zt - g);x}. (1.33)

1.2.2. The Soft Photon Emission. To eliminate the dependence on the fictitious
photon mass A we have to consider also the cross section of the additional
emission of a soft photon with the energy

w<de, d<1, (1.34)

corrected by vacuum polarization insertion into the virtual photon propagator. The
correction can be obtained using the standard technique [2,3], where we use the
same reference frame to calculate the soft and hard photon emission contribution:

29 —1 2 2 2 2
t t
5 = {2<§+—+1> } Re {%Hﬁ L
S

52

2
+ Z—t(ms + Hu)] {4(1nd D) s+ 1 — 1y — 1)+ 124+ 12—

2 1 - 1
- 2e 2L12<TC> ; zLiz(%> } (1.35)

c=cosf, 6=pi,a.

1.2.3. The Semicollinear Kinematics of Hard Photon Emission. To cancel
the auxiliary parameter d we have to consider also the case of a hard photon
(with the energy w > de) emission. Our method of calculation here consists in a
splitting of the total kinematical region of the emitted photon into two ones: the
collinear one, when the photon is emitted within a small cone with respect to one
charged particle, and the semicollinear one, when the photon moves outside of
any such a cone. Then we show explicitly that the small auxiliary parameter 6,
describing that cones, cancels in the sum of the contributions of two regions. The
procedure allows us to extract explicitly the radiative corrections to the process
under considerations of the orders O(a?L?) and O(a?L).

Consider at first the case, when the photon moves in respect to the directions
of the charged particles (as of the initial ones as well as of the final ones) with
the angles satisfying the following conditions:

kp; o > 00, kq;o > 6o (1.36)
Here the matrix element of the process is not singular and the contribution of this

region in the O(«) order does not contain the large logarithm. In the next order
in o« we can just write down the contribution in the next-to-leading approximation
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multiplying the well-known differential cross section of a single hard photon
emission by the factor 2aL/(37), coming from the vacuum polarization insertion
into the virtual photon propagator:

d ~ - Oé3 « d3q1 dSQQ dSk

O semi—coll — 48’/T2 3_7T q?qgko

S S1 t t1 u ul
= + - - + + ,
pikpek  qikgk  pikqik pakgek  pikgek  pakagik
ss1(s? + s7) + tt1 (12 4+ t3) + wuq (u? + u?)

sslttl
5=2pipa, t=-2piqi, u=-2p1g2, p;=¢q; =0,
$1=2q1q2, t1 = —2p2q2, w1 = —2paqa.

WB™W (p1 +p2 — g1 — g2 — k),

B =

, (1.37)

The contribution should be integrated over the phase volume of the final particles,
which is defined by experimental conditions, restrictions (1.36) should be fulfilled.

1.2.4. The Collinear Kinematics of Hard Photon Emission. The contribution
of the collinear kinematics of a photon emission is divided naturally into four ones
(in the correspondence with the cases of the photon motion in the four directions
of the charged particles): 1) k || p1, 2) k || p2, 3) k || a1, 4) k || g2. So, we
write the differential cross section in the form

dO’ZOH _ doy + dog + dos + da4’ (1.38)

dyy dc_ dyy dc_
where y; = ¢¥ /¢ is the energy fraction of the scattered electron; ¢c_ = cos _,
6_ = p1q; is the electron scattering angle in the CM reference frame of the

initial particles; subscripts in o; denote correspondent kinematical regions.
In the first region we get
doy a3y1 2
= 14 (1- Lo—2(1—xz)|x
dyrde—  sx(1—2)(2—y1(1 —c_)) [+ (1= 2)%)Lo —2(1 - )]
4+ 2-yp(d—c))’

(1 (1 —c))?

+ (2= y1(1 - c))’] — Re (P, Py,)

1RGP (1 - )%+

-yl —c))?
y(l—co)

o 5\ " o 5 -t
R (R ) O (R O N

X [Pfl

], (1.39)
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z is the energy fraction of the emitted photon. The energy fraction and the
scattering angle of the positron in this kinematical region are

_ g 1+ (1 —y)?+ 32—y
2= 2—y1(1—co) ’

cy =cos(P1a2), y2y/l—cd =y1y/1—c2.

One can check that in the sum of the above contribution with the one of the
semicollinear region, when the photon is emitted close to the cone of the angle 6
around the initial electron beam direction, the terms of the order ~ L In 9(2) will
disappear.

The contribution of the second collinear region has the form

Y2ly = =T — Y1C—,
(1.40)

dos  _ o’y (14 (1 —2)?)Lo — 2(1 — 2)] x
dyyde—  sz(l1—2)2—yp1(1+c)) 0
2

[ratromt—c)

1P P [0 (1 — e )P+

2—yi1(1—c))?
yi(l—c-)

e 5.\ 291 (1 — c_)e?
Pt:(l—?)—ﬂ_(lt—g)) , lt:1H<T .

We put here also the expressions for the photon and positron energy fractions
and for the positron scattering angle:

_ pllme) 1+ (1 —y)® —y(2—y)e
2—y(1+c) 7 2—y1(1+c) ’

(y1(L = c))?
+2-un(l- c,))Q] — Re (PtPsl)(

], (1.41)

1-—

(1.42)
YaCy = T — Y1C—.

The contribution of the third collinear region and the parameters of the
scattered positron are:

dos Py} 1+ (1—2)?
dyldCf_QSx(l—x) 1— 2 (Lo+21n(1—33))—2 X
2 _ 2 2
x PEM—HPS\QG c)*+ (1 +c )
(1—c)? 4
_ (Ate)? (o, 5 A\
Re(PiP)7———| Po=(1-g-(l—g—ir . (1.43)

m

42
ls:1n<5>7 ye=1 1-z=y, c4=—c_.
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Finally, in the fourth collinear region the energy fraction of the scattered
electron is unity and the final particles move back to back as well as in the third
region. The correspondent contribution reads

doy aB35(1—y1) o 1+(1—2)?
= Lo+2In(1— -2
dyy de— /2$x(1—x) y2 dy2 1- (Lo+21n(1—2)) %
4+ (1+c)? (1—c_)?+ (1+c_)?
2 2 _
><|:Pt d—c 2 + | Ps| 4
1 _ 2
—Re(PtPs)%], 1 -z =yo, cy =—c—. (1.44)

In all cases one can be convinced in the cancellation of L1In6? in the sum with
the relevant terms of the semicollinear contributions.

So, the total contribution to the LABS process differential cross section due
to a hard photon emission with the vacuum polarization correction of the virtual
photon propagator reads

-1
67 — dO’O dagemi»coll + do-;yoll (1 45)
hard dyy de_ dyy de_ dyy de_ |’ ’

The auxiliary parameter d (see Eq. (1.34)) cancels in the above sum.
1.2.5. Soft Pair Production. Here we consider the process

e~ (p1) + et (p2) = e (@) + e (q2) + e (p-) + et (py), (1.46)

where e~ (p_) + et(py) is the created soft pair. It gives to the cross section
an important contribution, which contains terms cubic in the large logarithm.
The maximum energy of the soft pair is taken as De, it is assumed to be large
compared with the electron mass:

2m. < De < ¢. (1.47)

The contributions containing L3 will cancel with the terms due to virtual correc-
tions, and the dependence on the auxiliary parameter D will disappear in the sum
with the contribution of the hard (with the energy of pair components larger than
De) pair emission.

Recently the contribution of the soft pair production was calculated in two
limiting cases: for the process of eTe™ annihilation into hadrons [11] and for the
case of small-angle Bhabha scattering [1,9]. Here we carry out the calculations
for arbitrary scattering angles.

Due to the smallness of the energy of the pair components, the matrix element
M of a hard process with the charged particles with momenta p;, q;, accompanied
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by soft pair emission, can be expressed through the matrix element of the hard
subprocess M, without pair production in the way

drex
M = My 0(p)yu(p-) Ju, k= ps +p-. (1.48)

The classic accompanied radiation current approximation can be applied to put
J,, in the form:

qiu

P o P e (149)

e k+1k2 k—1k2 k—1k2 IH—le
b1 B q1 5 b2 5 q2 5

Performing the covariant integration of the summed over spin states modulus
of the matrix element over the pair components momenta, we obtain

i Ko
S o) yeu(p) P —4(p+p ot - g )

spin

&Ppy d’p b 2
/%54(1% +p- —k) (Pip +pipt — 79’“’> =

bip_
2 4m2 1
— (—?(lﬂ + ng) k;) (gMV — ﬁkuk’/>' (1.50)

At first, we parameterize the phase volume of the pair momentum as

d*k = dko(k)?d |k| dQ = dko dk? \/k} — k27 dc. (1.51)

Neglecting the invariant mass of the pair VE? compared with the energies
of its components and omitting the terms of order m?2/(p1k)? (this simplification
does not violate the logarithmical accuracy that we keep here) we perform the
angular integration:

1 1
A 2piqn / e / dey 2p1qa _2nmaq /
21 2p1k 21k 4e2(ko — |Kk||n|ck)? 2e2 | k3 — ’
0 —1

n=z—+(1—-2)=—, (n?=1-4z(1-1x)? z= ;, (1.52)

c=cosf, 0=piq.
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Integrating over auxiliary variable = we obtain
2J

[=——"
kg(1—y)

y —1/2
= 1 B
! ( * (1 —y)22> .

A=+ /ITyz2=1
1nz—%1ny+1n2+ln< vt ;y('z )ﬂ (1.53)

X

The result can be expressed as a ratio of the cross sections of the processes
of electron scattering in an external field with soft pair production to the Born
one:

N 1
do®P o [dt [dy 1 1 9 1
L L R 1)) V2
= [T [ g1 - )
JT=7+ /1 7 _q
x[21n2+21n2—1ny+21n< y+ ;y(z )ﬂ (1.54)

De\? k2 k2
N:(_) T L I
2 K2

m 4m?2’

At first integrating over ¢ we omit terms of the order N ~!. Then we introduce
variable x = 1/(Ny) and split the integration using parameter n (1 > n > N~1).
Within the logarithmic accuracy we obtain

7
do®P a? / dz ( 5 )
—_ = —~42In2-Inz) x
dog  3m? y Ve +N-1(z2-1))\ 3

1N

X |?1nz—|—lnN+21n2—|—lnx+

—|—21n(\/1 —(Nz)" T+ /1+ (Nz)" (272 - 1)) N

2

1
—\2
+1nN/d% K—g—%x) VT =74 1o V= 2) V;CE)] . (1.55)

n
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The final expression reads

do®  o? [1 5
= _—{-I*+1L?(2mnD—- =
dog 67r2{3 + ( . 3>+

L{41n2D — ?m D+ 5625, +2L12<ﬂ>} +O(1)}, (1.56)

9 3 2

2¢%(1 — 1—
A M il I ek} (1.57)
mé 2

Using general expression (1.56) we reproduce the results [11] obtained earlier

where

in the annihilation channel (¢ = —1, z = 1):
doSP a? |1
= —<= 2In D)3~
dog » 772{3(p+ nD)
14 2
- g(p+2lnD)2 +4(p+ 21nD)<§ — %) } (1.58)
42
p=In w2 )
and in the small-angle scattering channel (¢ — 1) [8]:
doSP a? (1 5
= —<{=(L+2mnD)* - =(L+2InD)?
dog |2« 67r2{3( +2D)T = 5L+ 2 D)
14 =2
2¢2 0
Lzln(e 5 ), z~—-—0, L>1.
ms 2

To obtain the total contribution of the soft pair production we have to multiply
by a factor of 2 (to account the pair emission from the positron line) and to add
the ¢- and u-channel contributions, which can be obtained by simple substitutions.
In this way one gets

_ 1(1 2
5ee :5{—l§+l§<2lnD—g>+ZS<41n2D—?01nD+AS>+

1 2
+§lf’+lt2<21nD—g> +lt<41n2D—?01nD+At>—

- %li—lfL(anD— g) —lu<4ln2D— 23—01nD+Au>}, (1.60)
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where
At:5—;—§w2+2mg<1;c>, (1.61)
u—%—%nMQLlQ(l_C)

1.2.6. Total Sum of the Contributions and Numerical Estimation. The total
sum of the considered corrections does not contain parameter A and cubic in large
logarithm terms. It reads

do = doy {1 + (—) 6+ 5hmd)}

64
9

4 t 20 17
InD| -1 — —ls—
+1n (3 n( ) =l 9>+6l‘

2
3
4 1-— 1 11 1
——L12< C)+ L12< +C>—3—+ s+ A — Ay)—

5:ls{§l‘glnd lnd+—l dln( ) “In®>D+

3 2

4 S t s

where H(c) is a function of the scattering angle (for analytical exression see
Subsec. 2.1), the table of values in several points in Table 1 shows us that H(c)
is not small. That convinces us in the importance of the nonleading terms.
Parameters d and D will cancel in the sum with the contributions due to the
emission of a hard photon 4/, , and a hard pair [29].

Table 1. H(c) as a function of ¢

c -0.8 | —-06|—-041|-0.2| 0.0 0.2 0.4 0.6 0.8

H(c)|—13.9|—-12.7|—12.2|—12.2|—12.5|—13.0| —13.7|—14.7| —17.1

In this Subsection we calculated the correction within the logarithmic accu-
racy due to all mechanisms of virtual and soft pair production to the large-angle
Bhabha differential cross section. The correction is one of the important contri-
butions, which are to be taken in an analysis of experimental data.



RADIATIVE CORRECTIONS TO THE BHABHA SCATTERING 1213

1.3. Hard Pair Production in Large-Angle Bhabha Scattering. In this
Subsection we calculate the cross section of hard pair production in large-angle
Bhabha scattering in the leading and next-to-leading logarithmic approximations.

Eight regions of the collinear kinematics, when the final particles imitate a
process of the 2 — 2 type, three semicollinear regions, when the final particles
imitate a process of the 2 — 3 type, are considered. Analytical formulae for
differential cross sections are presented in [15].

Large-angle Bhabha scattering (LABS) process ete™ — ete™ is used for
mobile luminosity measurements at electron—positron colliders of intermediate
energies (1/s ~ 1—3 GeV). The experimental accuracy is estimated to be better
than 0.5% [18,19]. Adequate calculations of the cross section in the framework
of the Standard electroweak theory are in general rather poor. We perform
systematic analytical calculations of RC to the process at the O(a?) level. Due to
the complexity of the problem we separate it into several parts. Here we consider
the process of the 2 — 4 type:

e (p)+e(p2) = e (@) +e(g2) +e (p-) + et (py). (1.63)

We assume for definiteness that two final particles e~ (q1) and e (g2) hit the
detectors, allowing the following angular aperture and energy thresholds:

Vo< by, Oy<7—"y, 012=qi2P1,
(1.64)

0
1,2
yih <y2<1l, yi2= 0

where the dead angle Wy depends on the detector (Vo ~ 20° for DAFNE and
Wy ~ 35° for CMD-1 [18]), ysn 2 0.1, € is the beam energy in the center-of-mass
(CM) reference frame of the initial particles.

In paper [15] similar problems were considered for the case of small-angle
Bhabha scattering (SABS). We have there at least three simplifications: i) the
generalized eikonal form of the amplitude allowed to omit all scattering-type
Feynman diagrams with more than one exchanged photons in the ¢ channel; ii) at
the O(a?) level it was possible to omit all annihilation-type Feynman diagrams
and contributions connected with heavy Z, W, and H bosons; iii) the interference
of the emission from the positron line with the emission from the electron line
was suppressed for real photon or pair production. Calculations for the LABS
case are considerably more complicated. Only the possibility to omit heavy-boson
contributions in the O(a?) order remains here.

1.3.1. Definitions of Kinematical Regions. There are 36 tree-type Feynman
(Fig. 2) diagrams which describe e™e™ pair production in the LABS process. A
lot of attention was paid to this process in the literature [10,20], where different
cross sections were obtained in terms of chiral amplitudes. It was found that in the
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92
O
P1 P2
O

w S

1 2 3 4
/ q1 q>
f f j‘ P P2 Pi1 P2
/ 92 a
5 6 7 8

Fig. 2. Kinematical diagrams for collinear pair production

general kinematics the cross section has a rather complicated form. Fortunately
in the general case, when the angles between each of two final particles are not
small, the correspondent RC contribution to the Born cross section will have the
value (a/7)% ~ 1075):
_ _ a2 _ _
dor®e 72 o~ —5dog el (1.65)

It can be safely omitted working within an accuracy of 0.1%. In RC contributions
due to pair production some enhancements appear in the cases when one or two
final particles move within a small angle 6; ~ m./e to the direction of one of
the tagged (initial or final registered) particles. In these cases one will have
logarithmical enhanced contributions of the orders (aL/7)? and (a/7)%L, where
L =1Ins/m? is the large logarithm, s = 4¢® (L ~ 15 for y/s ~ 1 GeV). The aim
is to extract contributions of that sort because of their importance at the 0.1%
accuracy level.

Our method of calculation is to separate the contributions of the collinear
and semicollinear kinematical regions. In the collinear kinematics two of the final
particles (which are not registered) go within the narrow cone about the direction
of one of the initial particles or about the direction of one of the registered final

particles:
2

0; < 0o, 72—2 <0< 1, (1.66)

where 0;, i = 1,2 are the polar angles of the two particles with respect to the
chosen direction. As the semicollinear case we define the kinematics when only
one of the nonregistered final particles moves within this cone and the second one
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does not (with respect to all tagged directions). The contribution of the collinear
kinematics has the form

2 2
a(%(L+ln98)) +b<%) (L +1n6?2), (1.67)

while the semicollinear one reads

(07

2
(;) f(00)L, f(6p) = —2aln62 +C, (1.68)

where C' is finite for ) — 0. The sum of the contributions does not depend on
the auxiliary parameter 6y within the logarithmic accuracy (we omit the terms
(a/m)?1n* 62 and (a/7)?In63). The cancellation of the dependence provides a
test of our calculations.

Consider now the structure of the collinear region contribution to the cross
section. It could be presented as a sum of the cross sections of hard subprocesses
multiplied by the so-called collinear factors. In the case of the emission of one or
two hard collinear photons, the hard subprocess is just the Bhabha scattering. This
is the manifestation of the known factorization theorem in the simplest form [15].
In the case of pair production, besides Bhabha scattering there three other types
of hard subprocesses appear: Compton scattering, two-quantum annihilation of
the initial particles, and the subprocess of the creation of the final registered
particles by two photons moving close to the directions of the initial beams. Note
that this rather complicated form of the factorization theorem appears for Bhabha
scattering first in the process under consideration.

The contributions of semicollinear regions could as well be expressed in
terms of hard subprocesses of the 2 — 3 type [4]: a single-photon emission in
eTe™ scattering, and the process of pair creation in a photon—electron (—positron)
scattering. In Figs.2 and 3 we show the kinematical schemes for the collinear
and semicollinear regions (empty circles denote the production of a collinear
undetected pair; the full ones, hard subprocesses).

q1 q> q1
P1 P2 Pi y2) P P2
q2 q1
p- P+ 92 P
1 2 3

Fig. 3. Kinematical diagrams for semicollinear pair production

Our method, we believe, saves a lot of computation work. Really, instead
of 8-fold integration of very complicated expressions with sharp singularities it
provides 2(3)-fold integrals of smooth functions within the same accuracy.
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1.3.2. Collinear Regions. Consider first the set of the collinear kinematics.
We will see that there are eight different cases. As we underlined above, the
experimental criterion of an event consists in the kinematics of the final particles
with at least one electron and one positron moving at large angles to the beam
direction in the opposite hemispheres. In the case of the emission of a particle
with momentum k, moving along the direction of its parent particle with momen-
tum p, a small quantity 2pk appears in the denominator of the matrix element.
Evidently, at least, two such small denominators are necessary to obtain a nonzero
contribution integrating over the small phase volume of the two emitted particles
in the collinear kinematics (d['s ~ 63). Our criterion of the Feynman-diagram
selection from the total 36 ones (or from 18 gauge-invariant pairs of diagrams)
is to choose such gauge-invariant sets which have one diagram with two small
denominators.

We verified explicitly the validity of the criterion for the first kinematics con-
sidering the full set of 36 diagrams. Note that collinear regions (5-8) (see Fig.2)
are specific for the pair-production process and arise due to the presence of
identical particles in the final state.

Calculation of the collinear factors for regions (1-4) (see Fig.2) was de-
scribed in detail in papers [21,22], so here we present only the main points
of the derivations. We start with the general form of the cross section in re-
gion 1:

4 2 d3 d3 d3 B d3
1 « qra~qz2 a'p D+
daioflz 1 E:‘M(l)‘ 0.0 0.0 X
8ms o 4q7qy 4p” py

x 8@ (yp1 +p2 — q1 — q2), (1.69)

where

4 1M t 2
SO =216 <3—1+—1+1> :
Yy m; t S1

spin

51 =ys =4y, t =yt = =2yl —c_), (1.70)
— qg,z
C_ = COos q1P1, ¥Y12—= T’

and quantity 7" is a rather complicated function of 24 = 263 /m? and x4, it
is given explicitly in [19,21].
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Transforming the phase volume of the created pair into the form

d3 d3 2 20 z0 1—y 1
/d<I> / b p*:“— /—<p/dz+/dz,/dx+
4p° pJr 4 2
0
9 2
zo:<60> > 1
Me

and performing all integrations over variables of pair components except its total
energy fraction (1 — y), one obtains

/ r_zydr_,

(1.71)

—y—T_
0

2
a2 20 dy . FO(y) (81 +_ ) g g
co 25 y t 44965

x 8B (ypy +p2 — @1 — q2).  (1.72)

The next step is to rewrite the contribution in terms of the scattered-electron
observable variables c_ and y;.
The conservation law gives

lt+y=y1+y2, —-l4+y=yic_+yacy,
(1.73)

. . —_—
yi1sin _ = yosin 4, ¢4 = cos qap1 = cos 0.

The final result for the contribution of the first collinear kinematics region reads

do™ ot FM (y, z) Y1 1—c_ 2 2
dyide— — sty [2—y1(1—c)}< T _y1<1—c)) ’
(1.74)
_ yl+ce)
S 2—y(1—c)’

The quantity F(M)(y, z9) could be found in papers [19,21] and it has the following
form:

FO.20) = L (GROL+f0)). L=z

1+y?2 11—y

2
R(y)—gl_y 3y

(4+7y-|—4y )+2(1+y)lny,
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1 12 20
fly) = —(—107+ 136y — 6y* — — — —) + —(—41/2 — 5y +1+
9 y l-y

4 1 13
+———|In(1-y +—<8y2+5y—7——>lny—
y(l—y)> -+ -y

In®y +4(1+y)lnyIn(l—y)+ Lio(1 —y). (1.75)

1-y

Remind the way in which this differential cross section enters into the experi-
mentally observable one:

y 1)

0 1
do
Aaé}% = / de_ /dy1®(c(2) — ci)@(yg — )0 (1 — yg)ﬁ, (1.76)
0 Yth

where

1+ (1 =)+ (2 —y1)e
2—y1(1—co) ’

Y2 =

(1.77)
-1 - _
cy = M, co = cos Y.
Y2

Let us consider as a check that our formula for dagl) agrees with the corresponding
contribution to the case of small-angle Bhabha scattering cross section. Really,

the correspondence would take place if we took the small-angle limit:

0% 0%

co=1-—, 0,=yb_, z=—2, Q=% (1.78)
2 62
In this way we obtain
2 2
(1) _ O 4ma” ) dz
do Q2 FY(y, z0) dy o (1.79)

This formula agrees with Eq.(39) from [15], where two directions were taken
into account (we have to note that the expression for f(y) in this paper contains
some misprints, they are corrected above).

The third collinear region gives the same contribution:

Ac®) = Aol

exp exp*

(1.80)
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Also, the contributions of the collinear regions 2 and 4 are equal:

Afféi% =Acly), (1.81)
Ac() = / de- /dy an C;él ya=1, cp=—c., y=y,
da(2) a4 1—c_ 2 2
_ F? 1— —
dyy de— — 2sw v, ZO)( 2 1-— c_> ’

F®(y, z) = —yFW G Zoy2> = L(%R(y)L +2R(y) Iny + fl(y)>,

1 6 20 2
fily) = 9< 116 + 127y + 12y? +§__>+_<_4y2_5y+1+

11—y 3
—|—L>ln(l—y)—|—1<8y2—10y—10+L)lny—(l—ky)ln%ﬁ-
y(1—y) 3 l—y
3-y
+4(1+y)lnyln(1—y)+%y)hz(l—y)

Again one can check the correspondence of this result with the case of SABS
(see Eq.(39) in [15]).

We underline that neglecting terms of order a?/m? permits us within the
accuracy of 0.1% to express the contribution to oep in terms of two-fold integrals

of smooth functions.

Fig. 4. Diagrams for collinear factors in a space-like kinematics (1) and in a time-like
one (2)

Consider now the collinear region (see Fig.2(5)) in which two of the final
particles move close to the directions of the initial beams and the registered
pair is created by two almost real photons moving also very close to the initial
particle directions. The method of the collinear-factor calculations in this case
can be considered as an essential generalization of the Weizsaecker—Williams
approximation [6,7]. Let us consider the block of the kinematical diagram,
Fig. 2(5), that describes the emission of an undetected fermion and an almost real
photon (both close to the initial direction). The photon enters then into a hard
block (see Fig.4(1)). The corresponding matrix element reads

1
M = q_2 V9" L, Jy, = a(ph)veu(pr), (1.82)
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where I, is the current corresponding to the hard block. Let us expand, following
V. Sudakov [23], the 4-momentum of the emitted fermion:

Py = ap2 + Bpr + 111, Pripi =p1ip2 =0,
- m? 9
P12 =DP1,2 — p2,1?7 §=2p1p2 >m”.

(1.83)

The 4-momentum p; o is almost light-like. The parameter 3 here is the quantity
of an order of unity. It has the meaning of energy fraction of the scattered
electron; 1 — 3 is the energy fraction of our almost real photon; p/  is the two-
dimensional vector describing the components of the scattered electron momentum
transverse with respect to the initial direction (and further we denote transverse
momentum components by symbol «L»). Parameter o = ((p1)? + m?)/(sp) is
small: o < 1. It could be found from the mass shell condition for the scattered
electron: p’12 = m?. In that way we obtain also the useful equation

PO s
B
Representing identically the metric tensor, entering into the photon Green func-
tion, in the form

<0. (1.84)

2
9" = g1" + ~(prps + i), (1.85)
we note it could be effectively written as
2
N N GV (1.86)

since the contribution of the omitted term is suppressed by an additional factor
of order q2 /s. Taking that into account, one obtains

1 2 Ip]
v = fon+ 2 (- 185 ) (187

where the current conservation condition
Iqg=I(capz + (1= B)p1 +qu) = I((1 = B)p1 +q1) =0 (1.88)
was used. Now we sum up over fermion spin states:

S NI L =Tr (p) +m) I (b1 +m)IL = —2¢*13 >0,

spin

> | Ipaf? = 2578, (1.89)

spin

D Up)(JI)L =2s(qilL), qi=—piy-

spin
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And we obtain

> 1M

spin

8
{—2q2ﬁ + m(p/uIL)Q], (1.90)

where ¢ are to be taken from Eq.(1.84). The phase volume of the scattered
electron can be presented in the form

d3 / dﬁ d (EQQO)Zd( /)2
Py ¥$ P1
= =] =2 . 1.91
2 / 25 ) 27 " / 2 (1.91)
0
Then we carry out a simple integration and obtain
a3 p
[ 3o aap S = 7(1.)2Q(6.20) d5, (1.92)
spin
where the collinear factor (03, z¢) for a space-like virtual photon reads
1+ B 26
= L+21 - . 1.93
Q) = T Lo o] - 2 (1.93)

Now we are ready to calculate the cross section in the collinear region (see
Fig.2(5)), where we have two collinear factors Q(03,20). We need also the
matrix element squared of the hard block describing hard e*e™ pair creation by
two photons:

V(1 = B1)p1) +v((1 = B2)p2) — e4(q2) +e—(q1). (1.94)

Taking the phase volume in terms of the detected electron as follows:

dg‘]l dS(]Q (4)

d
B a3l

(1 +q2—p1(1 = B1) —p2(1 = B2)) =

_(m/2)y1 dyy de—
28 —p(l+ce)’

(1.95)

we obtain for the cross section

coll — / dﬂlyQ(l —C C+) X
dyl de_ ﬁ2,32 2,31 — y1(1 + c,))yl(l — C2_)
X {(1+(1 —51)2)<L+21n1;161> —-2(1 —51)}><

x {(1+(1 —ﬂ2)2)<L—|—21n 1;2&) -201 —ﬁg)}, (1.96)
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where

y151(1 —c)

261 —yi(L+c-) >0, 52—251 ndtc)

(1.97)
2067 +y1(y1 —261) (1 +c-) 1
- ) = — - —Yic_).
y2 2,81 ( + c_ ) y2 (/61 /62 yl )
For the hard block we used the following expression:
1—c_ 1—
Z‘M'y'y—»(’ e~ |2 :yl( & )+ ( C+)
spin tl y2(1 - C+) (]- — C_— )
23/2(1 - C+C_)
== (1.98)
y1(1—c2)

And for the contribution to the experimental cross section we get

Ac® = /dy1 /d&d Cj“ Oy2 — ym) O(1 — y2) O(c§ — 4).  (1.99)

A similar situation takes place for the collinear kinematics (see Fig.2(6)),
when the initial electron and positron annihilate into two almost real photons, that
convert then into two electron—positron pairs.

The matrix element describing the emission of a time-like almost real photon
with its subsequent conversion into a pair (see Fig. 3(2)) has the form

g

M_k2

Iy, Jy =0(p-)nulg) (1.100)

We use again the Sudakov representation for the momenta of the pair components
and the photon:

9
g ~ gl + Eq”qi, =0, 2qq; = s,

m2

p-=a1q+ /gy +(p-)1, G+ =q4+ — o (1.101)
k=g +p- =aoq+[agy +ki, B1=p—1>0.

The current conservation condition here reads

kI~ (B1Gy +pi)I =0. (1.102)
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Using the above definitions we get the matrix element squared summed over spin
states in the following form:

s (5 (4 (B — D)D) + m2)
2 M =255 B(%—1) !

spin

(1.103)

(k1)* +m?53
B2 —1

Integrating over the transverse momentum components (p_); of the electron
from the created pair, we obtain

/d2LZ|M2 )dﬁ2

~ spin

X {(1+(52 —1)?) <L+2ln <y2 (1 - é))) +2(B2 — 1)}. (1.104)

Note that due to the character of the hard ete™ — v block we have kY = k9 = ¢,
and the relation between the detected positron energy fraction yo = q9r /e and
parameter 2 reads:

k? = > 0.

B2 = 1/ya. (1.105)

The cross section for the collinear region 6 takes the form

dO'(G)

coll _
dyy de— dys
at 1+

dts 1 —c_
X {5 + (1= y2)*) (L +2In(y2(1 = 92))) +242(1 — y2) }.  (1.106)

The corresponding contribution to the experimentally observable cross section has
the following form:

{Wi+Q—y))(L+2mm(y(1— 1)) + 2y (1 —y1) } x

(6)
Ac® = N / dy1 / dys / de_ dyldC(;-CCOlldyQ Cy = —C—. (1.107)

Quantity N depends on the concrete experimental set-up. Namely, N = 1/2
when one requires registration of two leptons with opposite charges going back
to back. In a charge-blind set-up one would have N = 1.
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Consider now two remaining collinear regions (Fig.2(7,8)). They contain,
as a hard block, the Compton scattering amplitude. Combining the expressions
for the collinear factors for time-like and space-like photons one obtains

1 Co
58
AoV = Ac® = /dy1 / de_ O(1 — y2)O(y2 — yth)G)(cg — ci),
o

dyrde—
Yth
o® ot /1 dg, y
dyi de— 27786 | B263(1+ 1+ c—(1 = B1))
ya(1l —cq) 2 2 1-0
><< 5 +y2(1—c+)){(1+(1_ﬂl) )<L+21n 3 )—Q(I—ﬂl)}x
R R T O ) RS (BT
ﬁ . Qﬂl _1+ﬁ%+c—(1_ﬂ%)
2_311(1~9-51~9-(1—51)C—)7 yz_1+ﬂ1+c—(1—51)7
Ll o _nte)
Cy = o [ﬁl 1 523/16—]’ ﬂlmln — 9 _ y1(1 — C,) .

1.3.3. Semicollinear Regions. The differential cross section of the pair pro-
duction process in large-angle Bhabha scattering (see Fig.2) has the following
form:

1-Bo
dp(1 + %)
Aos—con = QgL f21(9179279+,00)x
2m 0/ 1-0
x do(y(pr(1 = B)) + e (p2) — e"(p1) + e (g2) + e~ () +
1/y
ot [ (6 020 200

x do(e” (p1) + et (p2) — e (q1) + et (g2) +7(Bpy)), (1.109)

where we used the collinear factors considered above within the logarithmic
accuracy, y = p9r /€, and the hard subprocess cross sections [15,20] are

doV(@+eT (p2)—eT (p)+et (g2)+e™ (a1) —
(4ma)? 1

_ o
= To@n2rs) G D) @@ e | P2 0P (P20 Hap
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+ (P2p+)(@102) ((q142) + (p2p+)?) + (P201)(@2p+ ) ((P2q1)* + (Q2p+)2)) X

( 2pap+ 2p2q2 2q1p+ 2q12  2paqn
(r20)(p+q)  (P29)(q29)  (©1a)(p+a)  (019)(q29)  (p29)(q19)
2p 1 qo ) 4 dq1 dqo Ppy
— e 0 (gt p2 —pr 1~ 2) g g (1.110)
Prag )’ ATP2TPr @) A adpY.

do€” P1)+et (p2)—e (a)+et (e2)+7(a) —

B (4ma))3 1 9 9

- 16(271')52(])1])2) (p1p2)(Q1Q2)(p1Q1)(p2Q2) ((p1p2)((hq2)((p1p2) +(q1q2) )+
+ (p1a1) (p262) ((P101)* + (p242)?) + (Pra2) (P2q1) (P142)” + (p2Q1)2)) X

( 2p1p2 2q1q2 2p1qu 2p2ga 2p1g2
(

p1a)(p2q)  (@a)(a2q)  (P1@)(qiq)  (p2q)(a2q)  (P19)(g29)

2paq1 ) 4 d3q1 d3qe d3q
-2 D pe—g— g — o) ——2 . (1.111)
(p2q)(q19) (1 +p2 17 42) Yq%¢°

X

The quantity 1 — 3y in Eq. (1.109) is the minimum energy fraction of the virtual
photon in the pair creation process y*e — eée provided that fermions with
momenta ¢; and g, are to be detected. Multipliers >; and X5 provide the emission
angles of every final state of a fermion with respect to the beam directions; also
with respect to each other in order the angles to be larger than 6y. Note that
because of the integration over the phase space of the final particles, the identity
of two positrons is taken into account automatically. The numerical integration
of Aos_con (1.109) and different contributions to Aocoy (see Egs. (1.76), (1.81),
(1.99), (1.107), (1.108)) will show that the total sum does not depend on the
auxiliary parameter 6.

1.3.4. Renormalization Group Approach. In the leading logarithmic approxi-
mation, i.e., for the terms of order («L)?, the parton picture of the cross section
is valid: that could be just seen from the above expressions for different collinear
kinematics.

Radiative corrections to the considered process, i.e., terms of order (OzL)3
could be obtained using the renormalization group methods. But their contribution
is beyond the required accuracy.

1.4. Large-Angle Radiative Bhabha Scattering. Let us consider the calcu-
lation of RC to a single hard-photon emission process [25]. We consider the
kinematics essentially of type 2 — 3, in which all possible scalar products of
4-momenta of external particles are large compared to the electron mass squared.

Considering virtual corrections, we identify several gauge-invariant sets of FD.
Loop corrections associated with emission and absorption of virtual photons by
the same fermion line are called as Glass-type (G) corrections. The case in which
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a loop involves exchange of two virtual photons between different fermion lines
is called Box-type (B) FD. The third class includes the vertex function and vac-
uum polarization contributions (I'TI-type). We see explicitly that all terms that
contain the square of large logarithms In (s/m?), as well as those that contain the
infrared singularity parameter (fictitious photon mass \), are cancelled out in the
total sum, where the emission of an additional soft photon is also considered.

We note here that the part of the general result associated with scattering-type
diagrams (see Fig.5(1,5)) was used to describe radiative DIS with RC taken into
account in [16]. A similar set of FD can be used to describe the annihilation
channel [25].

The problem of virtual RC calculations at the one-loop level is cumbersome
for the process

et (p2) +e (p1) — et (ph) + e (py) + (k). (1.112)

¢ >
C)
C b) C
C) (> ()
O [) b}
C ¢ £
Cz On 3 SAUAV 4
C

19

~
~
e <]

Fig. 5. G- and B-type Feynman diagrams for radiative Bhabha scattering. For designations
see Fig.6
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Specifically, if at the Born level we need to consider eight FD, then at the one-loop
level we have as many as 72. Furthermore, performing loop momentum integra-
tion, we introduce scalar, vector, and tensor integrals up to the third rank with 2,
3, 4, and 5 denominators (a set of relevant integrals is given in Subsec.2.3). A
high degree of topological symmetry of FD for a cross section can be exploited
to calculate the matrix element squared. Using them, we can restrict ourselves to
the consideration of interferences of the Born-level amplitudes (Fig. 5(1-4)) with
those that contain one-loop integrals (Fig. 5(5-16)). Our calculation is simplified
since we omit the electron mass m in evaluating the corresponding traces due to
the kinematic region under consideration:

S~sy~ =t~ =t~ —u~—Uu~ X122 X/LQ > m2,
§=2p1p2, t=-2popy, u=—2piph, s1=2p\py,
tr=—=2p1py,  ur = —2papy,  X12 = 2kipra, X1 = 2kipio,  (1.113)
s+s+t+tit+utu =0, s+t+u=xl,
s1+t+u = —x1, t+X1=t1+X’1.

We found that some kind of local factorization took place both for the G- and
B-type FD: the leading logarithmic contribution to the matrix element squared,
summed over spin states, arising from interference of one of the four FD at the
Born level (Fig.5(1-4)) with some one-loop corrected FD (Fig. 5(5-16)), turns

out to be proportional to the interference of the corresponding amplitudes at the
Born level. The latter has the form

_ 161 . .~ 1 R R
Ey = (4ma)~? E My = 721 Tr (p'1011/p1011/)1 Tr (P2y0P57,) =
16
= o, (u® +uf + 5% + 57),

_ 8 s S1 u U1
Oy = (47 3§ MM*z—( + + + )x
0 = (4ma) BT X1X2  XiXz  X1Xa o X2Xi

x (u? +ut + 5%+ s7), (1.114)

-3 * % 5 4 4U1X/2
Iy = (4me) ™) " My (M3 + M) = 0+ T
1 1
du(sy +t1)(s+1 2
+ (51 1?( ) _ [2suuy + (u + uy)(uug + ss1 — tt1)]+
X2X1 X1X2
2
+ -2t uuy + (u+ up)(uuy + tt — ssl)]},
) X1X1
D1+ k1 p1 — k1

On1r =% == = Vo Ow =Ow(pep), (L1115
1
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where the Z operator acts as follows:
~ pl «—> pll S 851
Z = |pg «— p’2 U — Ul

ki — =k tt1 — 1,1

It can be shown that the total matrix element squared, summed over spin
states, can be obtained using symmetry properties realized by means of the per-

mutation operations:
Z |M|?* = (47a)®F.

5 A L P 24 57) it (12 + 13 2 pud
F=(1+P+Q+R)¢>:16551(S + s7) + tta ( ;1)+uu1(u +“1)X
881111

S S1 t t1 U ul
X t - 7 7t 7t 7)o
X1X2  XiXz2  X2X2  X1X1  X1X2  X2X1
®=FEy+ Oy — . (1.116)

The explicit form of the 15, Q, R operators is

ey s s
P = |py +— —p’1 t—— t1 ,
k1 — k1 U, Uy — U, U
R p2 — —p} st
Q=| ph—0ph s1—t |, (1.117)
p1, k1 — p1, kL u,ur — uug
. p1 — —p’2 s«—t
R=| pi—p 51—t
p2, k1 — p2, k1w, — u,un

The differential cross section at the Born level in the case of large-angle kine-
matics (1.113) was found in [4,5]:

al Fd3p’1 d3ply d®ky

(4) WA L11
32sm2 ehehun 0 (p1+p2—py —py— k1), ( 8)

doo(p1,p2) =

where €1, €2, and w; are the energies of the outgoing fermions and photon,
respectively. The collinear kinematic regions (real photon emitted in the direction
of one of the charged particles) corresponding to the case in which one of the
invariants ;, x} is of order m? yields the main contribution to the total cross
section. These require separate investigation, and will be considered elsewhere.
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Here we consider the cross section in the kinematic region (1.113), in prin-
ciple, with the power-law accuracy, i.e., neglecting terms that are

2
O(gm—@), (1.119)

™S

as compared to O(1) terms calculated in this Section. Note that the terms
in (1.119) are less than 10~* for typical moderately high energy colliders
(DA®NE, VEPP-2M, BEPS). Unfortunately, the nonleading terms are too com-
plicated to be presented analytically, so we have estimated them numerically
in Table 2.

1.4.1. Contribution of G-Type Diagrams. The set of FD (Fig.5(5-8)) we
call glasses here (G-type diagrams). Using crossing symmetry, we can construct
the whole G-type contribution from the gauge-invariant set of FD in Fig. 5(5).
Moreover, only the set of FD depicted in Fig. 6,d can be considered in practical
calculations, due to an additional mirror symmetry in the diagrams of Fig.6,d, e.
We therefore start by checking the gauge invariance of the Compton tensor
described by the FD of Fig. 6,d, e for all fermions and one of the photons:

a(py) Ry u(pr). (1.120)

This was done indirectly in [8], where the Compton tensor for a heavy photon
was written in terms of explicitly gauge-invariant tensor structures. We use the
expression

R‘l"{ = RX* + RX1 (1.121)

+

- Ak | (B — k)ve (L — ky — k)ya(pr — k1)
RXl — A Uk. . + / — 1 o M
FRT | i { —xa(0)2)(9)

_|_
0)(1)(2)(a)
where
(0) =k =N, 2 =@ =k —m* (1) =1 —k)*—m®
(1.123)
2 1
(Q) = (pl — k1 _k)Q _m27 Ay = ;(LXI - 5)’ Lx1 :ln%.

The quantity RX' corresponds to the FD depicted in Fig.6,d, while RXi
corresponds to the FD in Fig.6,e. The first term on the right-hand side of
Eq.(1.122) corresponds to the first two FD of Fig.6,d. The gauge invariance
condition R{", k,, = 0 is clearly satisfied. The gauge invariance condition regard-
ing the heavy photon Lorentz index provides some check of the loop momentum
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YYNYYNY
AR A

Fig. 6. Content of the notation for Fig.5

integrals, which can be found in Subsubsec.2.3.1:

ﬂ(pll)RTﬁ’u(pl)qoeu(kl) = Akllie,u,(kl)a
Ao obu=2 a1
X1 X1

The gauge-invariance thus satisfied due to the Lorentz condition for the on-
shell photon, e(k1)ks = 0. As stated above, the use of crossing symmetries
of amplitudes permits us to consider only RX*. For interference of amplitudes
at the Born level (see Fig.5(1-4) and Fig.5(5-8)), we obtain in terms of the
replacement operators

(AIM[*)e =
=202 (1+ P+ Q+ R)(1 4+ 2)[EX + 0% — I} — I)¥], (1.125)

(1.124)

with
X1 16 1 A X1 A 1 N 1
Efs = 21 Tr (p1 RX*p10117) - 1 (D2YpD5Y0),
16 1 1 . R
O) = — — Tr(p\ R p17,) - — Tt (PayophO22),

ttq 4 4

g = . Z Tr (p) RX* p1012P2V0 DoY)
S1

4 ) A
I = R (P RX* pryp 2o phOrr2r),
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0 _7]5/14'7%17 Wﬁl—%lv
117 — T )
o X I VS o
A~/ 7 A~ 7
—py — k1 —p2 + k1
Oz =y 27/% T Tw
X2 X2
X X (1.126)
Oy — Vﬁl_klry 7_ﬁ2+k1’y
12=""Yu——Y VoV
VR P S I
A7 7. A7 7.
P+ k1 —ph — k1
Ova2 =1 ! VT 7#27/%-
X1 X2

In the logarithmic approximation, the G-type amplitude contribution to the cross
section has the form

doy « - A oA 1 3 A
dO’G = ? ;(1 +P+Q+R)¢) —§L%1 + §Lt1 +2Lt1 hl E:|’
(1.127)
—t
L =In"Ts-

1.4.2. Vacuum Polarization and Vertex Insertion Contributions. Let us exam-
ine a set of I'lI-type FD. The contribution of the Dirac form factor of fermions
and vacuum polarization can be parameterized as (1 + I';)/(1 — II;), while the
contribution of the Pauli form factor is proportional to the fermion mass, and is
omitted here. We obtain

dorn = d% 221+ P+ Q+ R)(T, +11,)0, (1.128)

™

where

Ft:

RS

m 1. 1., 1
{(h’lx—l) (1—Lt)—ZLt_ZLt+5C2},

1 5) -t
Ht:—<§Lt—§>, Lt:hlm.

(1.129)

e

3

In realistic calculations, the vacuum polarization due to hadrons and muons can
be taken into account in a very simple fashion, just by adding it to II,.

1.4.3. Contribution of the B-Type Set of Feynman Diagrams. The contribution
of FD with virtual two-photon exchange, shown in Fig.5(9-12) are called boxes
here (B-type diagrams). Again, using the crossing symmetry of FD, we can use
only the FD of Fig.5(9) in calculations.

A procedure resembling the one used in the Subsubsec. 1.4.1, applied to the
B-type set of FD, enables us to use only one-loop diagrams in the scattering
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channel with uncrossed exchanged photon legs:
(AIM*)p =
=2°0*72Re (14 P+ Q + R)[(1 — Pop ) I} + (1 + Poo) I} — 1], (1.130)

where
. P2 — —p’2 S——u
P22/ = p1<— D1 81— U1 (1131)
pllvkl_)pll,k1 t,t1—>t,t1
and
d'k 1 16 1
IX1: . ——T A,BXIAO )
v /i7T2 0)(q)((p2 + k)2 —m?2) t 4 r(p1 BX prO11)
1 ~ ~ 7 A~
x 7 Tr (D270 (=P2 = k)1apa),
d'k 1 16 1
IXI_ __T A/BX1A
» /”T2 (0)(q)((p2 + k)2 —m2) t, 4 r (P B Pryp)x
1 - 7, A~
x 7 Tr (270 (=P2 = k)1ap022), (1.132)

d*k 1 41 S
I= [ S8 8 STy (b, p, BY p1Osapa(A + B
/ in2 (0)(q){51 1 r (95,01 BX p1012P2(A + B)+

41 . A A s (A 3
+311 Tr (P50 p1 BX p1y,p2 (A + B))}’

el G - Tl e\ G S e k)Y

(p2 + k)2 —m?’ (=py + k)? —m?
Here
g b1~ k1 = k)yo (b1 — k1) n (1 — k1 — k)y,(pr — /;)704_
—x1(d) d)(1)
v ﬁl +]; p1 — ]; o
(P 1)/’Y>\( 1 ) . (1.133)
xi(1)

(q) = (p2 — Py + k)* — N2,
(d) = (p1 — k1 — k)* — m?,
(1) = —k)?—m? (0)=k -\

Box contribution does not contain double logarithm (~ L?) and infrared logarithm
(~1In(A/m)L) terms. The correction coming from the B-type FD is:

o 1 UUq U]
dogp =dog—Ls;Ap, Ap=— [(P+Pp)In —+(Pp+Pr)In —| . (1.134
op = doo— B, Ap =4 (®+®p) Hssl+( Q+®r)In i ( )
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The total virtual correction to the cross section has the form:

do"'" = dog + dorn + dog =

= %[—Li + L (% +41n% +Ag + Arm + AB) + 0(1)]» (1.135)
1 2
AG+AFH:—<(‘I>+‘I>P)1ns—+(CDR+CDQ)IHi>,
F tt1 S1

where ®p = PO, &g = Q®, and O = R.

1.4.4. Contribution from Additional Soft Photon Emission. Consider now
radiative Bhabha scattering accompanied by emission of an additional soft photon
in the center-of-mass reference frame. By soff we mean that its energy does not
exceed some small quantity Ae, compared to the energy ¢ of the initial beams.
The corresponding cross section has the form

do_soft — do_oé*soft7

2
6s0ft - _ dra / d3k2 _ b1 + pll + D2 o p/2
1673 wa pika  pika  paka  phko
The soft photon energy does not exceed Ac < 1 = e =e ~ e} ~ e In
order to calculate the right-hand side of Eq. (1.136), we use [25]:

A
:—g1n< €m>, w=Vk?+ X2

(1.136)

wa<Ae

i [k o)

- 3 )2 .
167 w (gik) e v Agi
dra [ dPk 2qiqo a m?(Ae)? 1.,
— [ — =—|Ljln| ——*— —L:— 1.137
167?3/ w (kq1)(kge) ae T e A2eqe9 + 21 ( )

1
2

2
€1 s . %
In?( =) — — +Liy (cos® = ) |.
! <€2> 3 ? (C i
Here we used the notation

Ly=n—z, qi=g=m" —¢=-(a-¢)>n
(1.138)
Q2= (e12,q1,2), 0= 192,

where €1, €2, and 6 are the energies and angle between the three-momenta qi, g,
respectively, and A is the fictitious photon mass (all defined in the center-of-mass
system).
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Factorized out the large logarithms, we obtain

. A A A
gooft — g{(LS -1) {éllnE —|—21n—6 —|—1n—,6 —|—1n—,6} +
™ A € €1 €y
2 tt151
+L;+Lsln +0O(1) p. (1.139)
UULS

This can be written in another form, using experimentally measurable quantities,
the relative energies of the scattered leptons and the scattering angles:

3 ’ , 7
yizgv Ci:COSHi, ei:plvpia

o~

t 1+ co U 1—co 3] 1—0c

_Z = = 1.140
S Y2 2 ) s Y2 2 ) S U1 2 ) ( )
S U 1+c 1 +ys—1
—=ytyp-1, ——=un Lol = T2
S S 2 2 Y1Y2

1.4.5. Renormalization Group Approach. The double logarithmic terms of
type L? and those proportional to L, In (A\/m) cancel in the overall sum with the
corresponding terms from the soft photon contribution (1.139). Omitting vacuum
polarization, we obtain in the logarithmic approximation

) Ag)?
do,soft+v1rt — do.og |:Ls (hl (2—(/3)/ + 3) + A(yl,y2701702) . (1.141)
Vs g 5152

The function A(yi,ys,c1,c2) is quite complicated. We give the numerical

values in Table2 (omitting vacuum polarization) for a certain set of points from
physical regions:

Ay >1, D>0, 0<y; <1, —1<ecp<Ll. (1.142)

Table 2. Numerical estimates of A versus y1, y2, c1, c2 (see (1.141))

Y1 Y2 c1 c2 A
0.36 | 0.89 | —0.70 | —0.10 | —8.89
0.59 | 0.66 0.29 —0.06 2.00
0.67 | 0.67 | 0.50 0.30 —1.47
0.68 | 0.65 0.60 —0.50 7.80

After performing loop integration and shifting of logarithm argument (L; =
L+ L;s), one can see that the terms containing infrared singularities and double
logarithmic terms ~ L2, are associated with a factor equal to the corresponding
Born contribution. This is true of all types of contributions.
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The phase volume

_ P dphd’hy oo

dr’ —
E1E9W1

(p1 4+ p2 — P —ph — k1)

can be transformed in various ways. The phase volume then takes the form in
the variables (1.140):

ws dyy dys dey deg
2+/D(y1,y2,c¢1,C2)
D(y1,y2, c1,¢2) = p* — 3 — 3 — 2cpacica, (1.143)
)(1 —y)(1 - 312)_
Y1y2

dl' = @(yl + Y2 — 1)@(D(y1’ Y2, C1, CQ)),

p2 = 2(1 — C1/2/

The allowed region of integration is a triangle in the y;, y2 plane and the interior
of the ellipse D > 0 in the ¢, c2 plane.

We now discuss the relation of our result to the renormalization group ap-
proach. The dependence on Ae/e in (1.141) disappears when one takes into
account hard two-photon emission. The leading contribution arises from the
kinematics when the second hard photon (with the energy ws) is emitted close to
the direction of motion of one of the incoming or outgoing particles:

dhard_aL 1+Z2d AW d /AW d
o b g 00(2p1, P2, 1, Pa) + doo(p1, 2p2, Py, pa) |dz+
1+ 23 / 1+ 23 :
! dUO pl»p%livpé d,21+ 2 dUo plvavpllvl22 dZQ )
1—2 21 1— 29 22
(1.144)
z=1—-w zZi = Yi To = “2
25 7 yi+x2’ 2 - .

The fractional energy of the additional photon varies within the limits Ae/e <
Z9 = wy/e < 1. This formula agrees with the Drell-Yan form of radiative
Bhabha scattering (with switched-off vacuum polarization)

da(p17p27pl17p/2) :/dl‘l d-r2 le dZQD(-Tl,ﬂ)D(IQ,ﬂ)D(Zl,ﬂ)D(ZQ,ﬂ)X
/ /
x o (:clpl,xzpz, o @) . (1.145)
zZ1 R2

where the nonsinglet structure functions D(zx, (), f = «/(27)(Ls — 1) are ex-
plicitly given in [17].



1236  ARBUZOV A.B. ET AL.

1.5. Radiative Large-Angle Bhabha Scattering in Collinear Kinematics.
In this Subsection we consider the process of large-angle high-energy electron—
positron scattering with emission of one hard photon almost collinear to one
of the charged particles momenta. We derive the differential cross section with
radiative corrections due to emission of virtual and soft real photons with a power
accuracy. At the end of Subsection we consider the emission of two hard photons
and total expressions for radiative correction in LLA [25].

1.5.1. Born Expressions in Collinear Kinematics. Physical Gauge. Let us
begin with revising the radiative Bhabha scattering process

e (p1) + € (p2) — e (py) + €T (ph) + v(k1) (1.146)

at the tree level. We define the collinear kinematical domains as those in which
the hard photon is emitted close (within a narrow cone with opening angle 6y <

1) to the incident (0y(5) = pl/(g)\kl < 6p) or the outgoing electron (positron)
(0’1(2) = p’l/(z)\kl < #p) direction of motion. Because of the symmetry between
electron and positron, we may restrict ourselves to a consideration of only two
collinear regions, which correspond to the emission of the photon along the
electron momenta. The two remaining contributions to the differential cross
section of the process (1.146) can be obtained by the substitution Q:

doeon = {1+ Q( b1 D2 )] {da”(kl | p1) + do” (k1 || pg)}. (1.147)
P < P2
In the collinear kinematical domain in which k; || p1, the above formula
takes the form
a® dky LTFdSp'ld/?’p'Q 5@

— 1—2)p1 +p2—p) —py) =
s o e (( )p1 + p2 — P — P)

dog (k1 || p1) =

= deldO'()((]. — ZL’)pl,pg), (1148)

1+ (1—2)2 2m2 t 2

z(l —2) X1 S1
where
' 1-— ! 2—-2 2 2 —
51 = s(1— 1), y1:6_1:2 x7 y2:6—2: x4 2 + cx( .Z‘)’
€ a € a
2
a=2—z+cr, w =ecx, s=4¢e2, Xlz%x(l—clﬂ), ﬂ:\/l—m—2,
€
(1.149)
1—2)2%(1 - — —
t:tl(l—x):—sw, c=cos(p1p}), ¢ =cos(piki),
1-— d*k
AW, = — —— Ly T =L

212 x1 w1
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Here y; are the energy fractions of the scattered leptons and dog(p1(1 — ), p2)
is the cross section of the elastic Bhabha scattering process.
Throughout this Subsection we use the following relations among invariants:

s14+t+u; =4m? —x1 =~ 0, s+t +u=4m?+x; ~0.
In the case k; || p} we have

a 1 ¢ d3k1

dol (ki | P}) = — =T (1 - 2)d
GO( 1 H pl) 272 X/l w1 ( .f) O-O(plapQ)a
(1.150)
F_ 1+(1—2)? B 27?2.
€T X1

These expressions could also be inferred by using the method of quasi-real elec-
trons [6,7,30] and starting from the nonradiative Bhabha cross section.

After integration over a hard collinear (k; || p1) photon angular phase space,
the cross section of radiative Bhabha scattering in the Born approximation is
found to be

dog
dz dc

Lo —2

S xT xT

_ 4a? [14—(1—33)2 I_I}x
ki|/p1

where Lo = In (e6p/m)>. And in the case k; || p} it reads

vy 3 N2 _ 2\ 2
dog _«a {14—(1:6 x) Lé_lex] (3—|—c> (14 0O@62)),

dx dc

4s 1—c

ki||p}
(1.151)

"o 2
b=1In (6;1()) , el =¢e(l—u).

The simplest way to reproduce these results is to use the physical gauge for
the real photon which in the beam cms sets the photon polarization vector to be
a space-like 3-vector e, having density matrix

Ze’\e/\*z 0, if porv=0, n:ﬁ
N i 5;1,1/ - nunuv H=V= 172737 w1
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with the properties

dlealP=-2, D Ime?=e*1-¢}),
A A
(1.152)

t1u1
Z \pﬁex\Q = Z(plex)(pﬁex)* ~0.
A

s )
A 0—0

These properties enable us to omit mass terms in the calculations of traces and, be-
sides, to restrict ourselves to the consideration of singular terms (see Eq. (1.153))
only, both at the Born and one-loop level. As shown in [26], this gauge is proved
useful for a description of jet production in QCD; it is also very well suited to
our case because it allows one to simplify a lot of the calculations with respect,
for instance, to the Feynman gauge. What is more, it possesses another very at-
tractive feature related with the structure of the correction to be mentioned below
(see (2.68)).

With these tools at our disposal, let us turn now to the main point. The
contributions, which survive the limit 8y — 0, arise from the terms containing

2 2 /)2
(p“;) RGO (1.153)
X1 X1 X1

Other omitted terms (in particular those which do not contain a factor y; ') can be
safely neglected since they give a contribution of the order of #3 which determines
the accuracy of our calculations
o m
1+O(—9§LS), D<o, Ly=— (1.154)
0 € m
In the realistic case this corresponds to an accuracy of the order of per mill.
1.5.2. Crossing Relations. In this and the next Section we shall consider the

case k; || p1. In the case of photon emission along p} one can get the desired
expression by using the left-to-right permutation

2 p1 < =Dy 2
[ M, p; = < ( P2 —ph ) IMIE, |p, - (1.155)

From now on, we deal with scattering-type amplitudes (FD) with the emission
of hard photon by initial electron. This is possible due to the properties of the
physical gauge. The contribution of annihilation-type amplitudes may be derived
by applying the momenta replacement operation as follows:

A | M ‘ gnnihilation =

= {Q(pll A _pQ)} A‘M|§ca‘ctering = {Ql} A|M‘s2‘cattering' (1156)
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When considering FD with two photons in the scattering channel (box FD)
one may examine only those with uncrossed photons because a contribution of
the others may be obtained by the permutation ps < —pj. Thus the general
answer becomes

M, = Re {(1 LQUIE I+ Q) +Q2>[slt<B+P>]},

[P1 = S_lt
(1.157)
with the permutation operators acting as

Q1 F(s1,t1,5,t) = F(t,s,t1,51), Q2F(s,u,s1,ur) = F(u,s,u,s1).

1.5.3. Virtual and Soft Photon Emission in ky || p1 Kinematics. One-loop
QED RC (which are described by seventy two Feynman diagrams) can be classi-
fied out into the two gauge-invariant subsets (see Fig.7):

e single-photon exchange between electron and positron lines (G, L-type);

e double-photon exchange between electron and positron lines (B, P-type).

~ 5
s o
5 5 5 5
C C C C
s S 5
S
5 S S
7 8

3 4 5 6

Fig. 7. Some representatives of FD for radiative Bhabha scattering up to the second order:
1) is the vertex insertion; 2) is the vacuum polarization insertion; graphs denoted by 3),
4) are of the L-type, 5) is of G1-type, 6) is of Ga-type, 7) is of B-type and §) is of P-type

For L-type FD (see Fig.7(3,4)) the initial spinor wu(p;) is replaced by
(a/(27)) Agkiéu(py), with

1 2p% —3p+2 1 _ 2
Ay = {— p + p p Lp+; —ng(l—p)+%:| ,

20—1)  2(p—1)

L,=Inp, p="=.
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The relevant contribution to the matrix element squared and summed over spin
states reads

3_,3 _
AIMP = 202t 25 |y 227 0)y )
X1 s1t? 1—2
(1.158)
Y = 4(pie)? — T xe2X1’ W = (pre)*.

The contribution of vertex insertion, vacuum polarization® and G1-type (see
Fig.7(1,2,5)) has the following form:

AlM

1 s3—u}
e, =27 [Ht +T;+ —ra] Y,

4 t2s1x3
1 5 1 1 72
M==-L;—=, T,=(Lx—1)(1-L;)—=-L;—=-L?>+—
t 3t 9’ t (A )( t) 4t 4t+12’

(1.159)
2

Ty = —3L%+4L,L, + 3L, + 4Ly — 2In (1 — p) — % +2Lis(1 — p) — 4,

m —
L)\:h'lx, Ltzlnm.

Here A is as usual the IR cut-off parameter to be cancelled at the end of calculus
against a soft photon contribution.

For the contribution of Gy-type FD (see Fig. 7(6)) with four denominators
we obtain

AM|% =
-l 22 — )
P T Skl SR 1 S SV C ) - B
a*m (1 —7) (J = )Y + 12 W(Ji —J1 +xJie — xJy)

It turns out that only the scalar integral and the coefficients before pi, %y in the
vector and tensor integrals give nonvanishing contribution in the limit 6y — 0:

d*k (1, k", kP EY . . . L .
/mm = (J, lell + Jkkllajllpélﬁ + Jkkki k'1 + Jlk(plk'l)# )a
(0) =K% =22, (1) =k® —2pik, (2)=k?—2p\k, (1.160)

(q) = k? = 2k(p1 — k1) — x1,  (ab)" = a¥b” + a"b",

and the terms having no p; or k; momentum in the decomposition have been
omitted for their unimportance.

*For realistic applications one should also add to IT the contributions due to p and 7 leptons
and hadrons.
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The B-type FD shown in Fig. 7(7) with uncrossed legs gives

1
AIM|% = 2971'2044)’@ l(u? —s9)51(B +a —b) —uls; x
1

2
X (C + a9 + ayg + s—ag> + S?(C[t - U]] + 2J0) s (1161)
1

where the coefficients are associated with scalar, vector, and tensor integrals over
the loop momentum

/@ (1, kH, KMk d'k 1
i7T2 b0b1b2b3 i7T2 b1b2b37

bo=k>—X\2, by =k?+2p\k, by =Kk* —2phk,

:(_B’_B/"’7‘B/“/)7 J0:/

bs =k —2qk+t, q=ph—ps B" = (ap|+bpy+ cp2)",
B/w _ nv w1 173N U7 / 5%
= agg"” + avvp! ' py + axpypy + azopy Py + ava(pip2)" +
+ aro (P05 + aza (p2py)™ .

For (the so-called «pentagon type») P-type FD (see Fig. 7(8)) with uncrossed
photon legs we have

$3 _ 3
AIM|% = 2272 =L L _«
P tx1(1—x)

22 —x)

T W(En — By +xBy — oEy) | . (1162)

X [Y(E —E1)+

Here we are using the definition (with tensor structures giving no contributions
in the limit 8y — 0 dropped)

[t
in2 agajasasas

= (E, Exp) + Exky', Eupipy + Exck'ky + Evg(pi'kY + pikY)),
a0=k2—/\2, a1:k2—2p1k, a2:k2—2k(p1—k1)—x1,
as = k? 4+ 2pok, ag = k* — 2qk + t. (1.163)

Note that in the evaluating of P-type FD we are allowed to put k1 = xp;, thus
keeping only p; momentum containing terms in the decomposition.
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Collecting all the contributions (for the explicit expressions of all the coef-
ficients see Subsec.2.4) given above we arrive at the general expression for the
virtual corrections with p = z[1 + (¢6/m)?] < s/m?

. 2 adr? 2—zw
2Re Y (MgM)y,|p, = P T F 22— L= Ly — Lo

2 101
—le+Lu+Lul)+7r—+L12(x)——+ln‘ p ‘+L31—Lf—

3 18 1—0p
L? +L,In(1 )+11L 9+m2 5Ly 2L H+3t3_u%1 iy
— n(l—z)+ —L;— n° —+ — n—
s 1P 3 t F 2t t
2up(u? + s2) — ts? 12 2uy (u? + t22) — 125 2t
425, t 4ts? s1

81, Ul i ur 3 581t
— ln — —In— — = —_ —
* 2t n t + 281 " S1 4’/T (t + 81>

}, (1.164)

where we have used the following definitions:

9= —"|Liy(1 - )—12+Li (z) + L,In(1 - 2)
_p—ZE 2 14 6 2(T P x)|l,

3 3

s{—uy|m 1 1 )
Il = - —1) ==L +=

5112 {a(l—ﬂt ) 3 t+9}+

t3—ud [7 1 1 5
~R —1) ==L, +=|,
T Lu e<1—H51 ) 3 ‘1+9}

. 5
My, = 3 (Ls, —im) = 5, @ =x1ds +toxa (S — i+ 2 — wdi),

, Ly=Ih-L L,=lh—o
m m

27

L,, =In

)
m2

Ltzln;—z, Ltlzln;n—.

After integration over x; one gets additional large logs of the form Ly =
Ls +1n(62/4). Terms containing the last factor have to be cancelled against
a contribution coming from the emission of hard photon outside a narrow cone
0 < 6y < 1 (and supplied by the same set of virtual and soft corrections). In the
case of two hard photon emission it is necessary to consider four kinematical re-

gions, namely when both are emitted inside/outside a cone and one inside/another
outside.
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Fortunately enough, the w structure, which obviously violates factorization
feature, does not contribute in LLA due to a cancellation of large logs in ®. What
for a correction to the above structure coming from P-type graph, it vanishes in
the sum of FD with crossed and uncrossed photon legs.

The total expression can be obtained by summing virtual photon emission
corrections and those arising from the emission of additional soft photon with
energy not exceeding Ae < €. The soft correction can be written as

Z ‘M|}21ard+soft = Z |M‘2Bw80ft(k1 H pl)a
(1.165)

/ 7N\ 2
PP P2 pz)

SO k
Wsote (k1 || P1) = /m( p1k+ 1I~c+p2k pak

w<Ae

where Mp denotes the matrix element of the hard photon emission at the Born
level and in the kinematics k; || p; it reads

211 3.3
YoM =" rr (1.166)
X1

Now let us check the cancellation of the terms containing L). Indeed it takes
place in the sum of contributions arising from emission of virtual and soft real
photons. To show that we put the soft correction into the form:

A
el [0 = 242 (10554 £ ) (S04 Lot L+ L L = L L)+
1
+ (LS + L + L+ L, — Ly = L) + i (Lu, = Ly — Loy )+

272 1+ cyror
(L, = L= L) +In () — - — 3 2+ Ly (%%

. (14 cy o1 —co (1 —cy {1+ co
+L12< 21>+L12< 22>—L12< 21>—L12< 22>}, (1.167)

where c; are the cosines of emission angles of ith particle with respect to the
beam direction (p; in cms); cj/9- is the cosine of the angle between scattered
fermions in cms of the colliding particles and y; are their energy fractions, and
in the case k; || p1 we have

R T N ek e R U O (1.168)
2 Y1Y2 2 2y2(1 — )

Then the cancellation of infrared singularities in the sum is evident from
comparison of Egs.(1.164), (1.167). The terms with In (Ae/e) should be can-
celled when adding a contribution of a second hard photon having energy above
the registration threshold Ae.
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The complete expression for the correction in the case k; || p; reads

911 4,2 9 rw
— * 2 _
R=2Re 3 (MgM) + [M [ = = ——FY¢ T 0+
A 1 11
+41H —E _1+Lt1+_ —ln(l—x)_’_ani +_Lt+
€ 2 —u 3
s
+ (L, — L) In (1 — x) — Ly In (y1y2) + In® —_lt +Iny; In (1 —2)+
—u\ _ 7 101 p
1 T4 =) =™ Lig(a) — —— —9+1n || —
+n(yly2)< +In S) 7+ iz() s +n‘1—p‘
1 - 1 191 1 / 1_ ,
_§1n2%+ln(1—x)1n%+u2< +2012>+Li2< +201>+Li2< 262)_
. 1-— C1/ A 1+ Cor 1 t3 _ uil)) 51
—-L —-L —|II+3 In 2L
12( 5 ) 12( 5 >+F + Sft n_t—|—
2ur(uf + ) —tst | pwn | 2ua(uf + t22) — 1 o —u
425 t 4ts? s

}, (1.169)

2t t 281 s 4 t S1
1
do(ki || p1) = deF-

The similar expression can be obtained for the case ki ||p].

1.5.4. The Results in LLA. It should be noted that all the terms quadratic in
large logarithms L;, ~ L, ~ L, > L, are mutually cancelled out in the total
sum of virtual and real photon contribution. From formula (1.169) it immediately
follows that (upon doing an integration over a hard-photon angular (within a
narrow cone) phase space) the w term that is not proportional to Y, which is
in fact the kernel of the nonsinglet electron structure function, is not dangerous
in the sense of a feasible violation of the expected Drell-Yan form of the cross
section, because it does contribute only at next-to-leading order.

Performing the above-mentioned integration and confining ourselves to LLA
we get for the sum of virtual and soft photons

do"SHV) ol o Ae 11 1
=L jdn— 4 — - gl -2) -1 - (1.170
dz dc dx dc nz T 3 9 n(l—z)—In(yiy2)|. ( )

The LLA contribution coming from the emission of second hard photon with
total energy exceeding Ae consists of a part corresponding to the case in which
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both hard photons (with total energy ex) are emitted by initial electron

2y 24 (2) _
do doy aL{xP@ (1—x) +11n(1—m)—ln%—§},

dede  dedenm *[4(1+ (1 —12)2) ' 2 4
(1.171)
2
Péz)(z):2{11tzz <2ln(1—z)—1nz—|—g>+1¥lnz—1+z],

and the remaining part which describes the emission of second hard photon along
scattered electron and positrons. The latter, upon combining with the part of
contributions of soft and virtual photons to our process

dog 3a [ Ae 3]

g In== 4+ 2
dede © ° e + 4
may be represented via electron structure function in the spirit of the Drell-Yan
approach

dz dedys dya ka|lps
1
14+ (1—2)° 1—
- KMLS/d@ D (22, 3) dog (p1 ( x), 22P2,q1,42) %
2w T dc
0
1 1
x —D <$ﬂ> —D (y—45> . (1.172)
z3 Z3 Z4 Z4
«o
=—(Ls—1),
s 271'( : )

where ys 4 is the energy fraction of the scattered leptons and the nonsinglet
structure function D (z, 3) could be found in [17], 21 = q10/E, 22 = q20/E are
determined by 2 — 2 subprocess.

These functions describe the emission of (real and virtual) photons both by
final electron and by positrons. The multiplier before the integral stands for
the emission of a hard photon by the initial electron. Thus Eq.(1.172) actually
represents the partially integrated Drell-Yan form of the cross section. Quite
the same arguments are applicable to the second case in which a hard photon is
emitted by the final electron.

The cross section of the hard subprocess e(p121) + €(p222) — e(q1) + €(g2)
entering Eq. (1.172) has the form

doo(z1p1, 22p2; 41, 42) _
dc
_8ma? [z 4 25 + 2120 4 2¢(25 — 23) 4+ A(2F + 25 — 2120) 2
s 21(1 —¢)(z1 + 22 + (22 — 21))?
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The momenta of scattered electron ¢; and positron g are completely determined
by the energy-momentum conservation law
22’1 z9
= £ s
21+ 29+ c(z2 — 21)

—_— . —_— . —_—
C=CO0s q1,P;, 21511 q1,P; = 22511 q2,P;-

@) + ¢ = e(z1 + 22),

In general, their energies differ from those detected in experiment £}, 5, namely
r_ 0 /0
€1 = 173, &2 = (224,

whereas the emission angles are the same in LLA.
Collecting the two expressions presented in Eqgs.(1.170), (1.171) one can
rewrite the result in LLA as

do”
dx de dys dyy

ki|lp:

doy a  [2 ng)(l — 1)
=(——0— 14+ —L|=—1 ——e |},
(dx dedys dy4>k1|pl { + {3 n(z324) + 414 (1 —z)2)

~

and L
dx de dys dyy

found to be

is given in (1.172). For the case k; || p}, the correction is

do”
dx dc dyy

ki|lp}

() fiem
dx dc dyy K1l T8

In terms of 2 — 2 hard subprocess in LLA we have

2 xP(Q)(l —x)
3+ m} } . (1.173)

do] _
(dxdcdy4> K1 l|p1 B
) 1 1
= ﬁw@/dzl/dzzp(zl,ﬁ)p(zz,g)x
27 T ) )

1
, doo (21p1,22p27Q17Q2)_D (y_4’ﬂ> (1174
dc 24 24

where z4 = ¢o0/FE is determined by the kinematics of e_(p121) + e4(p2z2) —
e_(q1) + e1(g2) subprocess.
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1.6. Emission of Two Hard Photons in Large-Angle Bhabha Scattering.
Consider the emission of two real hard photons:

et (p) +e(p-) — e (g+) + e (a-) + (k1) + (k). (1.175)

The relevant contribution to the experimental cross section has the following
form:

Oexp = /da@Jr@,, (1.176)

where © and ©_ are the experimental restrictions providing the simultaneous
detection of both the scattered electron and positron. First, this means that their
energy fractions should be larger than a certain (small) quantity ey, /¢, e¢p, is the
energy threshold of the detectors. The second condition restricts their angles with
respect to the beam axes. They should be larger than a certain finite value 1)
(¥o ~ 35° in the experimental conditions accepted in [18]):

7T_¢0 >9—a 9-‘1— >¢0a Q:I::(Et\p,7 (1177)

where A1 are the polar angles of the scattered leptons with respect to the beam
axes (p—). We accept the condition on the energy threshold of the charged-
particle registration ¢ > &¢,. Both photons are assumed to be hard. Their
minimal energy

wmin = A, A< 1 (1.178)

could be considered as the threshold of the photon registration.

The main (~ (aL/m)?, L = In (s/m?)) contribution to the total cross section
(1.176) comes from the collinear region: when both the emitted photons move
within narrow cones along the charged particle momenta (they may go along the
same particle). So we will distinguish 16 kinematical regions:

;1\{1 and ;1\{2 < 90, f/il\(l and ]:/)T(Q < 90,
(1.179)

m
?<<90 < 1a a#ba aab:p—ap-‘raQ—aQ-‘r'

The matrix element module square summed over spin states in the regions (1.179)
is of the form of the Born matrix element multiplied by the so-called collinear
factors. The contribution to the cross section of each region has also the form of
2 — 2 Bhabha cross sections in the Born approximation multiplied by the factors
of the form

Ao = don: lai (2 1) In2 % N %
i =dooi |ai(zj,y;) In — + bi(zj,y;) In — )| (1.180)
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where z; = w; /e, y1 = ¢° /e, y2 = ¢} /e are the energy fractions of the photons
and of the scattered electron and positron. The dependence on the auxiliary
parameter 6y will be cancelled in the sum of the contributions of the collinear and
semicollinear regions. The last region corresponds to the kinematics, when only
one photon is emitted inside the narrow cone 61 < 6y along one of the charged
particle momenta. And the second photon is emitted outside any cone of that sort
along charged particles (62 > 6y):

o = 2 Ldoy, (ks), (1.181)
s

where dog; has the known form of the single hard bremsstrahlung cross section
in the Born approximation.

Below we show explicitly that the result of the integration over the single
hard photon emission in Eq. (1.181) in the kinematical region 6% > 6y (63 is the
emission angle of the second hard photon with respect to the direction of one of
the four charged particles) has the following form:

2
/dff&(kz) = —21n<%°>ai(:c,y) doo; + do;. (1.182)

The collinear factors in the double bremsstrahlung process were first consid-
ered in papers of the CALCUL collaboration. Unfortunately, they have a rather
complicated form which is less convenient for further analytical integration in
comparison with the expressions given below. The method of calculation of the
collinear factors may be considered as a generalization of the quasi-real electron
method to the case of multiple bremsstrahlung. Another generalization is required
for the calculations of the cross section of process eTe™ — 2eT2e™ [24].

It is interesting that the collinear factors for the kinematical region of the two
hard photon emission along the projectile and the scattered electron are found the
same as for the electron—proton scattering process considered in paper [21].

There are 40 Feynman diagrams of the tree type which describe the double
bremsstrahlung process in eTe™ collisions. The differential cross section in terms
of helicity amplitudes has a very complicated form. We note that the contribution
from the kinematical region in which the angles (in the c. m.s.) between any two
final particles are large compared with m/e is of the order:

2,2, 2
T 10 em®, Vs =2e~ 1 GeV (1.183)

m2e
(ro is the classical electron radius). So, the corresponding events will possess
poor statistics at the colliders with the luminosity £ ~ 1031—10%? cm=2 .51,
More probable are the cases of double bremsstrahlung imitating the processes
ete” — eTe™ or eTe” — eTe ™y, which corresponds to the emission of one or

two photons along charged-particle momenta.
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1.6.1. Kinematics in the Collinear Region. It is convenient to introduce, in
the collinear region, new variables and transform the phase volume of the final
state in the following way [29] (from now on we work in the c.m.s.):

dPq_ dqy ki ko
I'= A (. v g ke _
/d / 16(]0_(]3_@1(,02(277—)8 0 (p- +p+—q g+ — k1 — k)

492 1 1 27Td zZ0 Z0
- m- T 2
= 4(271.)6 /dxl/dxgxlxg/ﬁ/dzl/dzg/dfq,
A 0 0

0
(1.184)
g dqy
dar, = 75(4) _ —Ma_ — )\
/ q / 4ng9+(277)2 (mp— + m2p+ 19 24+ ),
01 2 2 — w; foc \ > Wiin
ap=\—— p=ki ko, Ti= 0 0= - >1, A= ot

where 6; (i = 1,2) is the polar angle of the i-photon emission with respect to the
momentum of the charged particle that emits the photon; 71 and Ay depend on
the specific emission kinematics, they are given in Table 3.

Table 3. n; and )\; for different collinear kinematics

A\ P—P- |4-q— |P+P+ |G+9+ | P-P+ | 4-q+ | P-9— | P+q+ | P—q+ | P+q—
m Y 1 1 1 11—z 1 1—x1 1 1—x1 1
72 1 1 Y 1 1— 2o 1 1 11—z 1 11—z

1 1
M1 - 1 1 1 1+22 4 1 1+
y ) 1 —1361 Y1 Y1
| 1 1|1 ] 2 1 1 1+ 22
y 1—xo Y2 Y2

The columns of Table3 correspond to a certain choice of the kinematics
in the following way: p_p_ means the emission of both the photons along
the projectile electron, pg_ means that the first of the photons goes along the
projectile positron; the second — along the scattered electron, and so on. The
contributions from 6 remaining kinematical regions (when the photons in the last
6 columns are interchanged) could be found by the simple substitution 1 < 5.
We will use the momentum conservation law

Mmp— + m2P+ = Aq— + Aa2g4, (1.185)
and the following relations coming from it:
0
m+n2 =My1 + A2y2, Ayisin - = Aayesin 04, w10 = %,
(1.186)
2 2 2,2
)\gyg—n1+n2+(n2 m)e c=cosb_, y=1—x1 —xs.

o+t (2 —m)e’
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Each of 16 contributions to the cross section of process (1.175) can be

expressed in terms of the corresponding Born-like cross section multiplied by its
collinear factor:

1/ « 2331332 — N
dacoll = 5 (%) 2 Z K(na )‘)dUO ("7’ )‘)dxl dJZQ,
(m,A)
s 202 L A
0l ) = 2= BN a1, Bl = ()

d3q_d3q
dli(m, ) = / q° q° +5(4)(7711?7 +mepy — A1g- — Aaqy) =
RV ES

_ 4mning de
MA3[c(na —m) +m + 2]

20 20 27
K(n, ) =m4/dzl/d22/;l—@iC(n,>\),
™
0 0 0

s m( —c
m+m2 + (n2 —m)c’
5= (mp-+ 772p+)2 =4e%mny = smne, S§+t+a=0.

(1.187)

t=(mp- —Mg-)? =

The sum over (7, A) means the sum over 16 collinear kinematical regions. The

corresponding (7, A) could be found in Table 3. The quantities /C;(7, A) are as
follows:

2
’C(p—p—) = ;A(Ala A2a A,Jfl,ﬂ?Q,y),

K(q*q*) = 2yA<317327Bv _—xlv _—1.27 1)7
Y y vy
2
K(p+p+) = ;A(Clacbvcv $17x2>y)7

—zy -z 1
]C(q+q+) :2yA<D17D27D7 xlv x27_>7
Y y oy

yd2  yA 1+ i +yro
Ay, Ag A =— —
A( 1452, 2 T x2) A2A1 A2A2 + LU1£L'2A1A2 AA1£U1£L'2

rs+yrr . 2mP(y2 +12)  2mP(y? +rd)
AAQ.I‘lJ?Q AA%.IQ AA%xl ’

(1.188)
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K(p-py) =2K1Ks, K(p-gq+) = —2K1K3, K(prq-) = —2K4Ks,
K(q-q+) = 2KeK7, K(p-g-)=—2K1K5, K(piqs)=—-2K4Kj,

g1 2m? g2 2m?2 g4 2m?
Ki=—" +2 Ky=—2 42 K3= -
! A1£L’1’I"1 A% ’ 2 CQZL'Q’I"Q 022 ’ 3 D2£U2t2 D% ’
g1 2m? g3 2m?2 g1 2m?2
K, = ~_, Ks= - K¢= -
4 Clxﬂ’l 012 ’ > BQZL’Qtl B% ’ 6 lel B% ’
g2 2m2
K7 == D2x2 - D—%, (1189)

rm=1—x1, ro=1-—x9,
g=1+17, go=1+73,
g3 =yi + 1, g1 =ys +13,
i =y1+x2, t2=y2+ 22,

Y1, , Y2 are the energy fractions of the scattered electron and positron defined in
Eq. (1.186).

Expressions (1.189) agree with the results of paper [22] except for a simpler
form of K(g_g4). As for Eq.(1.188) it has an evident advantage in comparison
to the corresponding formulae given in paper [22]. Let us note that the remain-
ing factors /C(p,q) could be obtained from the ones given in Eq.(1.189) using
relations of the following type:

K(p—q-)(x1,22, A1, B2) = K(q-p—) (w2, 21, A2, By). (1.190)

Note also that terms of the kind m*/(B2C?%) do not give logarithmic enhanced
contributions, and we will omit them below. The denominators of the propagators
entering into Eqgs. (1.188), (1.189) are:

2

Ai = (p- — ki)* —m?, A=(p- — ki —ko)? —m?,
B; = (¢ + ki)* — m?, B = (q- + k1 + k2)* —m?,

(1.191)
C; = (ki —py)® —m?, C = (k1 + ko — py)? —m?,
Di:(q++ki)2—m2, D:(q++k1—|—k2)2—m2.

For further integration it is useful to rewrite the denominators in terms of the
photon energy fractions x; 2 and their emission angles. In the case of the emission
of both the photons along p_ we would have

A

i —x1(1 4 21) — x2(1 + 22) + z122(21 + 22) + 2w122+/21 22 COS @,
(1.192)

A;

m2 = —in(l + ZZ‘),



1252 ARBUZOV A.B. ET AL.

where z; = (6;/m)?, ¢ is the azimuthal angle between the planes containing the
space vector pairs (p_,k;) and (p_, kz). In the same way one can obtain in the
case ki, kallg—:

B T x

— = (L4 y3z) + 21+ yPz2) + w129(21 + 22) + 221224/Z122 COS @,

m Y1 Y1

B (1.193)
i Ty 2

i a(l +y1%)-

Then we perform the elementary azimuthal angle integration and the integration
over z1, zo within the logarithmical accuracy [29]:

zZ0 zZ0 27 d
Ezw#/dm/ﬁ@/wa (1.194)
27
0 0 0

By using the relevant integrals

Ay Lo 1 3327"% T1To
= —Lo+1 -1 )
A2 A, 3313327‘% [2 o+ 1Y * Y
1 L 1 2 2 L
- 0 |:—L0+lnx2rl], mzz_ 20 ’
AAL x| 2 1y AA7 xiTom
(1.195)
1 L3 1 Lo

(LO + 21113/1),

A1Ay  mxs’ A1By  yiame

02 4¢2
%:mmEL+Ll:m<f>,L:n<£J,

where 6 is the collinear parameter, we obtain the differential cross section in the
collinear region (the remaining integrals could be obtained by simple substitutions
defined in Eq. (1.191):

o*L d3qy d3q_ dxy dxs
dn?s ngg T1T2

1 (1
doconn = (1 + P1,2) { y? |:§(L + 2l)9195+
1

2

Xor

+ (2 +rf)n =2
1Y

+ z122(Y — T172) — 27"195] [Bp p 0p p_ + BP+P+5P+P+]+

1 (1 xir?
+— —(L+21+41ny)g1g5+(y2+r%)lnL—&—xwg(y—xlxg)—%lgl X
yri |2 2y
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9192 22_29_2}+

rir2 1 T2
9192 _ 01 _29_2%_

X [Bq_ g 0q g +Bqqi 04,01+ Bp p.0p_p, {(L +20)=—

+ By q.0q_q. {(L—&-Ql—&-?ln (7“17”2))7“17’2 o 7"2

+[Bp_g 0p_q + Bprg 0p.q] [(L 2L+ 2Inyy) LB Il 29—3] +

r1y1ty T Y1ty

r1Ya2ta r1 Yol
(1.196)

9194 9 94
+ [BP+Q+5P+Q+ + Bp7q+5p7q4r] {(L +20+2Iny; ) —2— - 2—] }

We used the symbol P; o for the interchange operator (P12 f (z1,22) = f(x2, 1))
and g5 = y? + r}. Other variables are defined in Eq. (1.189). Delta function §, ,
corresponds to the specific conservation law of the kinematical situation defined
by the pair p, g (see Table 1): §, , = 6@ (napy +mp— — A\1g— — Aagy ). Besides,
we imply that the first photon is emitted along the momentum p; and the second,
along the momentum ¢ (p, ¢ = p—, P+, q—, q+). These ¢ functions could be
taken into account in the integration as is made in the expression for dI(n, \)
(see Eq. (1.187)). Finally, we define

2
Byg = <%+%+1> , t=(p— —q ) (1.197)

1.6.2. Contribution of the Semicollinear Region. We will suggest for defi-
niteness that the photon with momentum %k, moves inside a narrow cone along
the momentum direction of one of the charged particles, while the other photon
moves in any direction outside that cone along any charged particle. This choice
allows us to omit the statistical factor 1/2!. The quasi-real electron method [6,7]
may be used to obtain the cross section:

P
Op
P R, +

do®® =

ot d3q_d3q, &Pk, Vd3k2 K
32smt 2 g%k kS

K K, K
+pp]: bp. Rp, + qké R, + qkﬂs R, } (1.198)

We omitted the terms of the kind m?/(p_k2)? in Eq. (1.198) because their con-
tribution does not contain the large logarithm L. The quantities entering into
Eq. (1.198) are given by

s s’ t t

kipykip—  kigikig—  kipikigy kip-kig-

u/

+ + .
kipykig-  kigykipo

(1.199)
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V' is the known accompanying radiation factor; /C; are the single-photon emission
collinear factors:

92 g :yf+(y1+x2)2 K :y§+(y2+x2)2.

K, =K, = —— _ (1.200)
P A A x2(y1+x2) T o (yatao)
Quantities R; read:
R, = Rlsra,tra,urs, s’ t',u'], Ry, = R[sra, t,u, s, t'ro, u'rs),
(1.201)
t t t t t t
R, =R s,t—l,u,s’—l,t',u'—l] , R, =R [s,t,u—2,s'—2,t'—2,u' ,
Y1 ! ! Y2 Y2 Y2
with R:
1
R[s, t,u, st u'] = T [ss'(s® + 5/2) +tt/ (2 + t'2) + un/ (u? + u’2)],
55
s=(r+p ), &=(+q) t=0p —q), (1.202)

=y —qr) u=@ —q)? u=@py—q)

Finally, we define
op. =0W(p_rs +pp —qr — g — k1),
p, = 0N (p_ +pira — gy —q- — k1),

+x
5y =060 <p+p+—q+—qyly1 - —k1>,

Y2+
§qp =W (P + —Q+% —q- —k1>~

Performing the integration over angular variables of the collinear photon we
obtain

(1.203)

dos¢ = O[4L d3q* dqurd?)kl
16573 ¢° ¢% KD

d@V{’CP— [Rp 0p + Ry, 0p, ]+

1 1
+ —Kq, Ry, g, + —Kq_ Rq_dq_ } (1.204)
Y2 n
To see that the sum of cross sections (1.196) and (1.204)
dO.SC
do" = do*°! / d 1.205
o o + Oq 40, ( )

does not depend on the auxiliary parameter 3. We verify that terms LI from
Eq. (1.196) cancel out with the terms

0,0
PRt /d01 ~ I, (1.206)
2 kIQi

which arise from 16 regions in the semicollinear kinematics.
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1.7. Second-Order Contributions to Elastic Large-Angle Bhabha Scatter-
ing. In this Subsection we put some NLO results concerning 2-loop contributions
to the vertex functions, the contributions coming from the squares of 1-loop
Feynman amplitudes which correspond to both the vertex- and box-type Feyn-
man diagrams and the expressions of contributions of two soft photons emission
processes. In this Subsection we do not consider the effects of vacuum polariza-
tion inserted into the virtual photon Green function since it was examined earlier
in [15], see also Subsec. 1.2.

NLO virtual photonic corrections were also found earlier in [40]. Recently the
complete calculation of two-loop photonic corrections to elastic Bhabha scattering
was fulfilled in [39,41,42].

1.7.1. Two-Loop Vertex Contribution. The corresponding Feynman diagrams
up to two-loop level are depicted in Fig. 8 (there are four more diagrams coming
from cross channels to Fig.8, g, h,i,7). We use the following asymptotes of the
fermion vertex function in the case of space-like and time-like 4-vectors of virtual
photons [10]:

) =1+ 2122 + (2) T,

where
P=s>0 or ¢>?=t<0,

Xwﬁx
O 1Y
MVM

Fig. 8. Vertex diagrams up to 2-loop level
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L—-1 1 3 2 1 1 3
r®(s) = Ly—-L*+°L+— —1+in(=L—=Ly-2
(5) R R e S AU S S R
1 1 1 72
@y — (7. 1 [~ oty 1 _
¢ = (L 1)<2LA+1> LTt o

1 1 1
ReT®(s) = g(L2 —2L4+1-7%)L3 + 12 [(L 1) (-ZB + gL—

u 21, 3 1, 3.5, (17 57\ ,
—1+?>+w (—L——)}JF—L ——L +<3—2—J>L+ (1.207)

21 3 1772
23 L+0(1
+ (-3 + 3@+ S ) L+ o),
1 3 17 72 21 72 3
T = —r4 - 23 (- V24 (= -2 4+ 2¢3)) L
®) 32t 16t T\ T as) M T\ T 16+2C() al
1., , 1 1., 3 72
+ g LAL=1) + S Ly 1)( (Lt Ll ) +o),
s —t A2

In these formulae we have retained only the Dirac form factor of electron and
dropped the Pauli one, since its contribution is suppressed by the factor of m?/s.
The second order PT contribution to the matrix element squared reads
A|M‘2 = 2(Ma + Mb)*(M2»vertex)+
+ |Me + Mg+ M + My + My, + My, + M, + Mg J?,  (1.208)

where My yertex 1S the matrix element of ten 2-loop vertex Feynman diagrams.
The matrix element of elastic Bhabha scattering, including relevant contributions
up to the 2-loop level, can be written in the following form:
M = Mop(1 + 8 4+ 67) — Mog(1+ 659 + 62)+
+BM 4+ B - B — BV £ B® | (1.209)

where
drad _ _
Mo = — (P ) vpu(p1)o(p2)vu0(py),
4o _ _
MOS = ; ’U(plg)')/p,u(pl)u(pll)’yﬂv(p2)

The quantities Bgl) correspond to the 1-loop box-type diagrams (see
Fig.9, m—q), whereas B® comes from the 2-loop ones (some representatives
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Pi P1
ACAYAVAVY
k % % m ;L;>< n p
2 P2
,_/_/‘J_H_

REEAE
[T TIT

Fig. 9. Box diagrams up to 2-loop level

are drawn in Fig.9, r—r). At the Born level we have
8 8
ST IME) = (4ma)? G(s* + ), Y MG = (4ma)? S (8 + ),

" u? s t 2
> Mo Mg, = —(47ra)28g, > [Moy—Mos|? = 16(47)? <E+§+1> :

(1.210)
s = (p1+p2)?, t=(p1 —p)?, u= (p1 —ph)*,
prtpz=ph+py,  pla=ply=mt
The quantities 5t(1), 5t(2) are real. They read
sH =2 [21“(2>(t) + 13 (t)},
7r
) (1211)
5® = (%) (TP (£)2 + 2@ (T3 (1) + (TP (£))% + TTD (£) + 20D (1)).

Here T1(>%)(t) are the vacuum polarization insertions. Similar expressions are

held for 5£1),5£2) and can be derived from (1.211) by using crossing relations
(relevant quantities are, in general, complex valued).

The relevant second order PT contribution to the matrix element, squared and
summed over spin states, can be rewritten as follows:

2_ 2(@ 2
AN IMP =a (W) (Ay + Ay + Ag + Ay), (1.212)
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where

4

«

FA1=Z|M0,5|2(\5£ 2 +20) + 3 [Mos2((89)2 + 2 Re 6())
—2Re Y Mg Moy(3{V5() + 6 + o),

4

(0%

—A2=2Re ) (Mot — Mooy (B + B — B — B, (1.213)
4

« 1 1 1 1

S8 =318 + By - BV - BUP,

N =2Re Y (Mo — Mo,)*B®

e 0t 0s .

Quantity B®@, which enters into the definition of A4, in this Subsection is not
calculated. Here we put explicit expressions only for Aj, Ag, and Ag. The first
term A; was given above. As for A,, using the usual notation ¢ = ~,a*, it can
be cast down in the form

NI
A2=(1+Pst)Re t()

x / d'k { Tr (9 (1 + k) ywprph) Tr (v (=2 + k)ypoyo’)
in? Alpr + RJAR)A(k = ) A(=pz + k)
L T O r + Ry prypP) T (v (=P = k)7 By y,2)
Alpr + RJAR)A(k = q) A(py + )

2Tr (o) (1 + k)popr (B + k))
A(pr + k) A(R)A(k — ¢1) A(p) + k)
k

X

2u(p1 + k) (—ph — k) }
+ + 6,
A(py + k)A(K)A(k — q) A(p), + k) ?
A(pLQ + ]{i) = (p172 + ]{i)2 — m2, A(p'l)z + k‘) = (p/1’2 + k‘)2 — m2,
Alg—k)=(qg—k)* = X\, Alqr — k) = (@1 — k)> = N2,

q=py—p1, q=—p1— Do,

where the permutation operator P, acts as follows:
PstA(sa t7 U, La Lt) = A(t7 S, U, Lta L)

Calculating the first term in Ao, we have to put

1/1 2
Li=L, =~ (=02+2). (1.214)
s\ 2 6
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The second term in the right-hand side (rhs) of Eq.(1.214) §A, arises from the
product of imaginary parts of (I'®)(s))* and box structures (see Eq.(1.213)). It
can be obtained by applying the following rules:

1 1 3

2 4
2 /1.1 3
@ (s)*hys = —L (=L — =Ly -2 121
o Re ()" 91, S 5 R (1.215)
7T2L 7T2L2

SReL!Ly =72 0ReL't, = — 0 OReYi s =——

By performing the loop-momentum integration one arrives at the result (see
Eq. (1.218)).

Consider now Aj. The symmetry properties permit us to express it in the
form

= |By + By — By — By|? = [1 + Psu + (1 + Pra)Pst] | B1 >+
1
+2(1+ Pst) | B1Bs — BoBj — 53135; - 53233; +6A3, (1.216)
PouwA(s,t,u, L, L) = A(u,t, s, Ly, L),
Pt'lLA(S7t7 u7L7Lt) = A(S7u? t7L7L'lL)

The quantity §A3 is to be written according to the rules mentioned earlier (1.215).
In calculations of the first two terms in Az we have to take Ls and v, as
in (1.214). The remaining contributions to Ag are

B2 = / d*ky / d*k T [Py (pr + )y pive (D1 + E1 )y
im2 im2 A p1 + k‘l)A(kl)A(k‘l — q)A(—pz + kl)

Tr [Paye (—P2 — k)vubhre (=) + k1))
A(p1 + k)A(K)A(k — q)A(p2 — k)

(1.217)

and similar expressions for BiB;‘ (see [27]). Standard but rather tedious compu-
tation gives the following result:

A; = L3(ain L? + aipL) + La(aisL® + aisL? + a;s L)+
+aigL* + a7 L® + aisL? + ajoL, i=1,2,3. (1.218)

Coefficients a;; are functions of 6 = p/lﬁ)/1 They look somewhat cumbersome
and are not written here.
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1.7.2. Emission of Soft Photons. Second order corrections to the 1-loop virtual
photon emission corrected cross section, which arise from emission of a single
real soft photon having energy less than Ae, can be written down in the factorized

form:

doSV 2 2. /1_ 2\ 2

o7 _ 0 s (2) Asy. daoza_<x7+x> ,

dog T 0 s X

1 . 2 _— —t —

x==(1—cosf) =sin”“ =, 6= (p1,py), X=— I_X:T’
A
bs =4l = (L —14m 2 ) + L2+ 20In 2 +In®x — In®(1-y)—

Ae 1—x 1—x

o2 .
- % +2Lia(1 — x) — 2Lia(x),

1- 1—
5V:4ln%<1—L+ln—X> — 22420l ——X %y + 10?1 — )+
X X

+3L—4+ f(x), (1.219)
m

1
T3 (4 8+ 3 = 10x7 + 8x") + 5 (=2 + 5y~

P00 = (=)
1
— 72 +5x% —2xH In®(1 — x) + ZX(?’ —x =3+ 43 In? x+
1 2 3 1 2
+6(22—30X+33X —11x°)In x — 5)((1—&-)( YIn (1 —x)+
1
+5(4—8x+7x2—2xg)lnxln(l—x) .

The virtual corrections due to vacuum polarization are not taken into account in
the expression for dy. They give an additional contribution to the latter that looks
like
2 10 1
Sy = sL-5 - 5(1 X+ XD 22 -3x+3% - x*)Inx.  (1.220)
Consideration of emission of two soft photons having total energy wy + wa < Ae
requires some caution. The final result has the following form:

doS5 1/a)? 8 2 a\?
oo~ §<;> [5§—§7r2<1;—1+1n1i<x> ] (;) Ags. (1.221)

Note that in the case photons are emitted independently, i.e., w3 < Ae and
wa < Ag, the second term in square brackets will be absent. The multiplier 1/2!
is due to the identity of the photons.
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1.7.3. Total Sum of Two-Loop Corrections. What one would expect from
the real 2-box amplitudes contribution is that the total correction must be free of
infrared divergences supplying by cancellation of the fourth and third power of
large logarithms. Here we put the 2-loop real and virtual photon contribution:

Agy + Agg = F2{L§L2(—2) + L§L4(1 —In . X )+
- X

X
1-x

+LAL32+LAL2<—8+61n >+LALa1—

X
1-x

1
—L4§ +1° (3—2111 >+L2a2+Lb+ (1.222)

2 (12L2 + ZIL) bt & <8L2 + 22L> } (1.223)

and

3
> A =F? [L§L22 + L3L4(Lg, — Lot — 1) — LyL32+
i=1

28 1
+ LyL? <6Lst — 6L, + §> + L45+

+ L3 <2Lsu — 2Ly — %)} + LyLey + L2co + Ld,  (1.224)
with F = ; + 1 41 and coefficients a;, b, ci, d, 21 are given in [27].

Here Agg znd Agy denote quasi-elastic contributions, coming from double
soft and soft-virtual photons emission. It immediately follows that all the terms
proportional to L*, L3 L% LyL3, and L3 L disappear in the total sum. One must
expect the cancellation of the third power of large logarithms as well as the rest
of infrared singularities when contribution of 2-box diagrams will be taken into
account. As for the terms containing L?In*(Ae/e) and L?In (Ae/e), they are
explicitly seen to agree with those which could be derived in the renormalization
group approach. To show this, let us write down the expression for cross section
according to the renormalization group:

d_O': 1+£LP(1)+l ﬁL 27)(2) !
dog oA 20\ 27 A ’
, (1.225)
2 A
P§>=21HA+; Pf):(21HA+g) —4%, A=ZE
€
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and somewhat rewrite the main result of this paper:

3
L@, 350 4
Ags + Agy + ;Ai = F2[L? [5% +5Pa |+ F2g [LAL? — L]+

6 2
+ L[F?(b+ 21 + 22) +d]. (1.226)

29
+ LyL[F?a1 + ¢1] + L? {F2<a2 +2l —) +CQ]+

Then, one can immediately be convinced that indeed an agreement takes place.
We expect the 2-boxes contribution to compensate the second, third, and fourth
terms on rhs of Eq.(1.226) and to modify the fifth one.

2. TABLE OF INTEGRALS. ONE-LOOP FEYNMAN INTEGRALS

2.1. Integrals for Bhabha Scattering with Virtual and Soft Real Pair Pro-
duction. The quantities b; which enter the integral over the virtual 4-momentum
in box diagrams (see Eq. (1.26)) reads:

2~ 2/1-~
= —lg — 2 5 = —— | —is — ls \Ijs \Ij 1)
b Stl‘ Iy I) b1 " (sl (Iy — ls) + + t)
1 1 1 4~
b2=§(b—b1)7 b3=—a<(t—5)bl +4(\I/t_zlt> —gls>v
4 2 1 2 -
by = b1 — —1;, bs = ——by + —(wt = —zt) -2, @D
st [ U t Ssu

_ 1 t—u- 1 1 1
be = 5 ub1+—b+—uls__ Uy — 1y ) b7:_ib1+_\1/t’
u tus u t 4

2
1/272 1 1/272 1
U, = =— 4272 U, =2 =— 4+ 272).
! t<3+2t>’ s<3+28>

The integrals for the box diagrams with a vacuum polarization insertion in
one-photon propagator (see notations of Eq. (1.32)) are:

1 1l 5+ - (28 2
I(ba1a2) = gRe {gl? — Elz +ZS (5 + %) +O(1)},
2.2)
1 5

1 2
I(aba;) = e Re{3z§> - ng + %zt + 0(1)}.
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The other integrals with three denominators can be obtained by the following
substitutions:

I(abas) = I(abas) :~I(aba1), 23)
I(bajas) = I(ba1ag)(lS — ly, §— u)

The integral with four denominators is given in Eq. (1.33).

Fortunately, within the logarithmic accuracy one can present the square of
the matrix element in the form, where only coefficients fy and f; of the tensor
integral with four denominators enter:

1 1 1 1
1 [ dvp(v) dz
5/1 /d/ydy/ VIPE+ (1= g)t) — (1= y)(t = M2)’
0 0 0 0
(2.4)

One can see that both fy and f4 have only the first power of large logarithm:

“/d”/// 1—0)[zy2P? — <Zydz>iy1d—xz>1+2mz<1—y>:

1

// zydz dy dx
R T

00

111

// 22y32(1 — x) dz dy dx
/ [ey?z(1 —2)§ + (1 —y)(1 - 2)]*

(2.6)

These quantities are convenient for numerical integration for £ > 0; for £ < 0 it
is better to use the following expressions:

1
O/f &dx, £<0,

flx) = (1—#> lnx+iln<1+#>,
V1+4x V1+4x 14++v1+4x
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o(z, )=§ l%—\/%ln%\/g . A=¢€" 48>0,
1
My(€) = / F@)yp(e,€)dz, € <0, @.7)
0
2 2 _ _ A
w<x,£):§ %+2g+4(5ﬂx5)m _ig]

Also we put here the explicit expression for function H (c) entering Eq. (1.62):
-1 3 2 2 2
s t U s°u t t“u

Hi)=(14+-+- — — faup — == houp + == Paup—

X ( +t+8> {3t3f4”+3t3f4” 3s2 10w+ 3y up

52 u? u? u? 2 42 10t 125

— 2 four — ——fop — ——h ~ S (T M

g 0w ~ @ for = gaghon T gEha + ( 2 T35 T8

25> +7s e lls+ Tt +t2 5 2 s> 5s
St 12t 125 s2 12 sul 42 9

_ﬁ_ﬁ_g +ll E+§E+£+
s 6 sttsu| g2 ts 6

ny _17s? 255 17t 17 I L N
SS\" 32 3t 6s 2 “\" 6t 6s

lsg = 1n 2 , lgy=1In 2 .
1—c 1+c

Functions M and M, are given in Eq.(2.6) above. For an illustration in Table 1
we give function H (c¢) for different values of c.

2.2. The Scwinger Substitution. J. Schwinger suggests [13] a representation
for the photon Green function in the second order of perturbation theory which
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takes into account the fermion—antifermion intermediate state (we use Feynman
gauge):

1
a dv p.(v)
o ﬂo/l—v )@@ = AP0))
(2.10)
1 4m2
pov) = 9(0) = 32— (L= v)2 = ?)], M(v) = T,

where m is the fermion mass.
We have the case when in the intermediate state the point-like charged scalar
particle and antiparticle are ([12] of 1959, §61 and [43]):

or(v) = %04. (2.11)

The known asymptotic of polarization operator in the scattering channel ¢* = ¢
follows

1
dv p(v) 1 -t 5
= m— -2 2.12
/(1—v2)(t—M2(v)) 3| m2 3 212)
0
and
1
dv p(v —t + M?(v) 1[, -t 5. -t
1 = _|In*— —Z1ln—
/1—v2t—M2()n m? 3| m2 3nm2+C2’
0

(2.13)
1

/dvgpﬂ 1 1 1l -t 4

=—|=-ln— — - |.
1—0v2 t—M2v) 3t|2 m? 3
0

Consider first the vertex function for the scattering channel e(p1) + v*(q) —
e(p2) in two-loop approximation, with the photon polarization inserted. We will
consider the case when the fermion in the loop is an electron. The relevant vertex

function is (we are interested in asymptotic behavior —¢? = —t > m?):
o? / p(v)
B =1 0/ ~ ()
o /ﬂ Yo (P2 = k)7 (1 — k)7 .
72 2 = M2(0)) (k2 — 2pik) (k2 — 2pak)



1266  ARBUZOV A.B. ET AL.

Performing the standard procedure of joining the denominators, loop momentum
integration, we obtain

1 1 1
a? [ dvp(v)
ﬁ/ T2 /dl“/ ylf1 + fol, (2.14)
0 0 0
with
D+ A% 3A*+2)%2D
— (1 _ 2 _ _ _
=50 -y+yzl-2), fo=lh—F7 SAZT D) (2.15)

A is the ultraviolet cut-off parameter and
D= y2p§+(1—y)M2(v), Pz = p1+(1—2)p2, pi = mQ—x(l—x)t. (2.16)
Integration of the f, leads to

o2 {_1 s A2 5 A2 1

1
= R e (e
i

—t
A gl +ﬁlt+(’)(oo)} , ltzlnm. (2.17)
Terms containing the logarithms of the cut-off parameter A will be removed by
applying the renormalization procedure.
The integration of other terms of f; leads to
1

a? tde [1, p? 11, p? 72 38 1

— — |[-In-—=% — —In—=% + — --L+0 . 2.18
67r2/p§{4nm2 6 +6+9} et Ol)| - (218)

Using the relations
t/dx 1;In pI 12pI - —21'—l2+ﬂ—2'—213+ﬁl—8§ (2.19)
pz m2 - ty t 3 ) 3 t 3 t 3 .

and adding the contribution of the fs we obtain

o2 1 19 w2 265
F _ _ 234 272 Z 2.2
1(t) 12 { 9lt+18l (18+ 54>lt+(’)( )} (2.20)

in agreement with the more general result obtained in paper of Barbieri, Mignaco,
and Remiddi [10].

Let us consider, for example, the vacuum polarization insertion to Box-type
Feynman diagrams in the Bhabha scattering process. The relevant 3- and 4-
denominator Feynman integrals are:

J(abaiag); J(abay); J(balag)} =

d d*k 1 1 1
:/ ”‘p(”)/.— SR (2.21)
1—02 im2 | abajas  aba; ' bajas
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with

a=k-X, a=k+aq)?-m? a=(k—q)—m’

(2.22)
b= (k- (I)2 - MQ(U)» s=(q +(J2)27 Q% = QS = m27 q2 = (¢ —p1)2 =1,
see also designations (1.31), (1.32). The standard procedure leads:

1

1
dvp(v) dx
abores) = [ T23 | iy
0

0

1 (= M) / (yp2 — M(v)) dy
2 02+ (1— y)M2(0) |

and p,, is defined in (2.16). Further extraction of the asymptotics is standard. The
resulting expressions are (see also (1.33)):

1 =~ ~ 10~ 28 2
I(abaraz) = ﬂ{—glf lglt + 107 - Flsl = 5ls = %lmL
m2 5
l 1 Iy — = O(1
1 1 9
aba1 3— g - —l + 2(als + O( ) (2.23)
1 (1 5 28 =
J(baraz) = 3—{5 — 6 (?4‘(2)[5"‘0(00)},
. —t
s— m—’é’ﬁ, ltzlnm.

2.3. Radiative Bhabha Scattering Process. In this Subsection we put the
relevant integrals for radiative Bhabha scattering process with one-loop RC. All
kinematics are defined in Subsec.1.4. Here we used partially the results of
previous works [12,31] and refer to it for further details.

2.3.1. Integrals for G-Type Feynman Diagrams. For the set of FD, labelled
as glasses (G), only three independent external momenta are relevant due to
the conservation law: p; + ¢ = p} + k1,¢ = p2 — py. Choosing p1, p), ¢ as
independent 4-vectors, we use the notation:

d*k 1
= | 0T

d*k 1
JOquZ/Z‘ﬂ-_QW’
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) dk ke ) )
J;Jk / e = a;jkP} + bijep + cijrgt,

in? (i)(5)(k)
174 d4k k’u‘ky v v v LV
Jij. Z/WW=95...9“ +al pipy 0 Y+l a'd+

+al (pp)™ + B (m)™ + v (Do),
(2.24)

) Ak kR ) ;
Tt _/ A + Kga(gp))" A + Kgq(90)" e

012 2 002 g1 (gp1)"”
+ K o pt + Koaop'p o1 + Kogaq" ¢ a” + K112(pip))" +
+ Kio2(mp )" + K11g(02q)" + K1gq(p16*)"> + Kozg (pq)"* +
+ Kogg(p14°)"* + Kizq(p1010)",
where the inverse propagators are
(0) = k? — )2,
(1) = (p1 — k)* —m?, (2.25)
(2) = (py —k)? =m®, (q) = (0 —q—k)* —m?,
A is a fictitious photon mass. The symmetrized tensor structures are defined as
follows:
(pg)"" = p"q” +p"¢",
P = + ' e+ "N,
P’ = g“”p” + 9" + ™",
(pgr)™ = plq"r + phg*r” + pU gt + p gt 4 prgtrt 4 prgtrt

(p
(g

The vector and tensor integrals can be calculated by multiplying both sides
of expression (2.24) by vectors p, p'l“, and ¢*. Then one has to use the relations

2pk = (0) = (1), 2kik=(g)— (D) +x1, 20k=(0)—-(2)  (2.26)

and compare the coefficients before vector components on both sides.

Considering the vector and tensor integrals with three denominators, we use
ultraviolet divergent integrals with two denominators. Using the Feynman trick
to join denominators, they can be expressed as

/d4k 1 A2
e g
in? [(k — b)2 — dJ? d

d*k I A2 3
[ — )
in? [(k —b)2 — dJ? d 2

where A is the cut-off parameter supposed to be large A > s.

(2.27)
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We put here the complete list of these integrals:

Jor=La+1, Jig=Lra—-1, Joyg=Lxn—-L;+1,
Jog=Lan—Ly, +1, Jio=Ly—Lsy +1, Joo=Lp+1,

1 1 1 3
po_Lop B (b p
J01—§p1 (LA_§>a Jig = P _§k1)<LA_§)a
(2.28)
1 1
Jag = 5(}?5& — Ky +P/1M)<LA — L+ 5>,
. . A 1 1
Jog = (01 = ki)<§LA gl t Z)’
, 1 1 1 , (1 1
Ity = (o) +p") <§LA —glu+ 1>7 Joo = plf <§LA - Z)’
where
—t1 —t X1
Ltl ZIHW, Lq:LtZIHW7 LXl :lnm,
Xi ?
IJX/IZIHW—ZTF7 LA:IDW.
The scalar integrals with three denominators read
1 2 1
Joi2 = =— | —2L\L;, + L} — — Jigg = ——(L? — L2
012 o, { A, + L3, 3| 12¢ 30, —Xl)( t t1)7
Jopg = —— | Li(Le = L) + ~(Li — L, + 2Li 1+ @29
02q t+ Y1 t\Lt X1 2 t X1 2 L ) .
1 7T2 2
Jorg=—=—L? ——, Ly=In—.
0lq 2X1 X1 3X1 ) A n m2

The coefficients for vector integrals with three denominators are

1
ap12 = bo12 = t—Ltl, co12 = 0,
1

2 1
aotg = Joig + —(Ly, — 1), boig = —co1g = —(—Ly, +2),
X1 X1
a o O b _ X1 2tLt (Xl — t)LX1 ‘ o LXl — Lt
02g — Y, 02g — —  , ;Y02 ) 02g — — .,
! T+t a+t)2 T (g +t)2 T T+t
( ) (2.30)
t t+t1) Ly, — 2tL, 2
= —J - ) b = J - )
Q124 — 12¢ + t—t1)? P— 12¢ 129 — Q124

2] —(t+t1)Ls + 2t Ly 2
=1 g L .
Cl2g = 7 12e t— 1) t—t
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The tensor integrals for G-type FD (see Eq.(2.24)) have the following form:

T _
o012 =
T _
Ap12 =
T _
Co12 =
T _
gOlq -
T _
bOlq -
Borg =
0lq —
T _
gO2q -
T
b02q -
T _
COQq -

T _
Ap2q =

T _
gl2q -

T _
A19q =

T
b12q -

T _
Cl2q =

T

Qyoq = —

T
ﬂqu =

T

’712q =

1 3
(Lx— L 2
4( A t1)+8a

1 1
bl = — (L, — 1 I =
012 2t1( t )s Qp12 2%,
B2 = Y12 =0,

1
Z(LA - LXl) +

3 . 3 9
8’ a’Olq Olq + Y1 X1 2X1 )

1
Cglq = _nglq = _%(lﬁm - 2)7
(2.31)

1

T
_a01q = 2—X1(LX1 - 3)7
1 X1 t 3
Gl — & S SR A
4 A 4(t+X1) X 4(t+X1) ¢ 8
3x3 — Aty — 2 t(t+4x1) t—x1 X3

2t+x1)® T t+x1)? 2+ x1)? | (E+xa)
Ly — Ly, T t+2x1 1
7’ [ _ L _ 77
20t +x1) 02 2(t+x1)2( L) 2(t+ x1)

T _ T _
Q2 = Bozg = 0,

2J02q7

1 t1Ly, —tL; 3
R T
3t + Aty — 3 3t2 4t —ty t?
— L J
TS R R Tt AU TR TR At
—t2 + Atty + 3t3 t(t —4tq) 3t t2
— A, + L J124,
T A T e T U T PR
3t? t2 — Att — 313 Aty —t t3
1 1 1Lt+ 1 + 1
(t—1t1)3 2(t —1)3 (t—t1)%2  (t—1t1)?
2 + Atty + 3 +t(t+21t1) 24t th
2t—11)F T t—t)3 T (t—t)2 (t—t1)2 T
t1(5t+t1) B t(t+5t1) 3(t+t1) tt1 J
2t—t1)2 " 2t—t)3 P 2(t—1)2 | (t—tp)2 PP

t1(t + 5t1) —t2 + 5tty + 23 N t=Th # J
2(t—t1)3 2(t—t1)3 t 2(t—t1)2 (t—t1)2 12¢q-

Ly, +

Jizg, (232)

Ly, +
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Four-denominator scalar integral reads:

1 , t 2
Jor2q = o —L)Ly, + 2Ly Ly, — L7 — 2Lz<1 - E) - g]. (2.33)

Vector 4-denominator integrals are:

ap12q = é[—(txﬁ + t1x1)J12q + (t+ x1)*Jozg—
—xi(xt —t1)Jorg — ta(t + x1)Y],

bo12q = é[(tlxll + tx1)J12q — (tt1 + X1 x1)Jo2q+ (2.34)
+x10x1 — t1)Jorg + t1(ts — x1)Y],

€012 = % [—tl(Xi + x1)J12q + t1(t + x1)Jo2q + x1t1J014 — t%Y].

Y = Joiz + x1Joi2g,  d = —2t1x1X}- (2.35)

Two-rank 4-denominator tensors are:

goleq = %(qu — X1C€o12¢),
afaq = %[(t + x1)?(J12¢ — X1€012¢) — (X1t1 + Xit)a124+
+x1(t1 = X1)aoig — ti(t + x1)(aoi2 + X100124) ]
bi12q = é[(h — x1)%(J12¢ — X1€012¢) + (X111 + X11)b12g+
+ x1(x1 — t1)borq — (t1t + X1X1)bo2g + t1(t1 — x1)(a012 + X1bo124)]
7&2(} = é[—tl(tl — x1)(J12¢ — 2X1€012¢)+ (2.36)
+ (X1t1 + X1t)cr2q — (tt1 + x1X1)Co2g + X1 (1 — X1)bo14) 5
1oy = %[—(ttl + x1x1) (J12¢ — X1€012¢) + (X111 + X1t)a124+

+ x1(x1 — t1)aoiq + t1(t1 — x1)(ao12 + X1a012q)]7

1
Boraqg = p [t1(t1 + x1) (J12g — 2X1€012) —
— (ats + x1t)cizg + (x1 + t)2002q +xa(x1 — tl)bOIq]v

1
cgl2q =7 [J12g — 493112(1 + tlagl2q +(x1 — tl)ﬁngq + t’Y(?12q]-
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We put now the coefficients of 3-rank tensor structures:

where

_t+X1

[—(t 4+ x1)2A1 — t1(t + x1)As + (tt1 + xax}1) Aws),
[(tty + x1x1) A1 + ta(ts — x1)As — (t1 — x1)*Ass],
[—ti(t+ x1)A1 — ths +t1(t1 — x1)Aus],

[—(t 4 x1)? A2 — t1(t + x1) Ao + (tt1 + X1X1)A10],

[(tt1 + x1x1) Az + t1(ts — x1)Ag — (t1 — x1)*A1o],

QR R~

[—t1(t + x1) A2 — ] Ag + t1(t1 — x1) A1),

[t1K 112 + a1z — agrg — 2K1),

1 T T
m[thllq + Biag — Boigls

t+ X1 [thqu + C,{Qq - Cglq]a

1

__1[(t1 - Xl)K12q + Oé,{Qq — O(g;q — 2K29}7

1 T T
_E[(tl = X1)Kqqq + €124 — €024l

1
= =t = x1) Kagg + 72g = Y24}

1

1
_E[(tl = X1)Ka2q + blay — biag);

(2.37)

_ T T _ T T T _ T T
A1 = g12q — 902¢s  A18 = Y012 — Y014 T X19012¢0 A8 = G124 — Y0140

T T T T
As = ajp, —4Ki1g, A9 = agi2 — ap1g + X1001245

. T(2.38)
Ag = a1, — A,

We give below some checking equations for coefficients before tensor structures
of G-type integrals. The complete checking system can be obtained by contraction
of general tensor expansion with relevant vectors, simplifying the numerators of
the integrand and using a set of vector integrals given above. Additional check
can be inferred by contraction with metric tensor. In this case the scalar integrals
should be used. The complete set of 10 equations for the 2-rank tensor and
24 equations for the 3-rank 4-denominator tensor integrals for the G-type was
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convinced to be fulfilled. For definiteness we give four equations of such a type,
obtained by contraction with metric tensor. They are:

T T T T T
49p124 + tCh124 — L1124 + (X1 — 1) Bo124 + (t + X1)Y012¢ = J124>

6K1g — t1K112 + (X1 - tl)KHq + tKqu + (t + X1)K12q = G12¢q; (2 39)
6Kog — t1 K92 + (X1 + ) Koog + tKogq + (X1 — t1)Ki2q = b12g,

6K g +tKqqq + (X1 — 1) Ki1gq + (t + x1)K2gg — t1 K124 = 124

Another indirect check is the absence of infrared divergence containing terms in
all the vector and tensor integrals.

2.3.2. Integrals for B-Type Feynman Diagrams. We use here the following
set of denominators:

(1) = (pl - k)Q - m27

(2) = (p1 — k1 — k)2 —m?, .40
(3) = (p2 + k)* — m?, '
(4) = (p1 — ki —p| —k)> =X, (5) =K% =\

Four-momentum conservation law we use reads p; + p2 = p} + ph + k1. Scalar
products of the loop momentum k with the external four-vectors can be expressed
in terms of the denominators:

2p1k = (5) - (1)a 2p2k = (3) - (5)a
2phk = (4) = (2) =t — xa, (2.41)
2kik = (2) — (1) +x1, 2phk =(3) — (4) + 1.
Using these relations one can consider only one type of integrals with five de-
nominators (the so-called «pentagon») namely the scalar one. Using the elegant

technique developed in the paper of Van-Neerven and Vermasseren [31], it can
be expressed in the form:

J12345 = D1 Jo345 + DoJi3as + D3 Ji2as + DaJi23s + DsJ1234],

|
D
D = 2ss1tx1x},
Dy = sit[—t(s — s1) — sx1 — $1X1 — X1X1)»
Do = st[t(s — s1) + sx1 + s1X1 — x1X1)s (2.42)
D3 = xaxi[—t(s + s1) — sx1 + s1xi + xaxils
Dy = sxa[t(s — s1) +sx1 — s1X1 — X1X4),
Dy = s1x1[t(s — s1) — sx1 + s1xh + xaxil-
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It is interesting to note that the method described above to calculate the coef-
ficients of the tensor structures cannot be applied to the tensor integrals with
5 denominators given above. Some additional information is needed to close the
system of algebraic equations.

We mention a trick which permits one to obtain additional equations for
vector and tensor integrals whose denominators do not contain the term k2 — \2.
It consists in shifting a loop momentum. Thus, for Ji5,, we have

[
im? (1)(2)(3)(4) F
d'k (p1— k) . . 5
— ———=—— = p1J1234 + a(p1 + p2) + k1 + dpi,

/ 2 (H@E)E) '
(1) = k* —m?, (2) = (k= k1)* —m?,
(3)=(pr+p2+k)?—m? (&) =(k—p)—k)

The comparison of right-hand side of this equation with the standard expansion

Jioss = (apy + bpa + cky + dp')iss,
leads to the new relation:

a1234 = J1234 + b1234.

Analogous useful relations can be obtained for tensor integrals as well. We put
below the relevant scalar, vector, and tensor integrals with 3 and 4 denominators
from (2.40) and introduce the parameterization:

d*k 1
Jij... = /—7,
im? (i)(5) ...
d*k kM
i = /FW = (aij..p1 + bij..po + cij. ki + dij. pY)M,
v d*k kMPEY
I = / —5 = (9" g+ a"pip1 + b papa+ (2.43)
J im2 (i)(4) ...

+ T kiky + dTpiph + o (pip2) + BT (p1k1) + 7 (p1ph)+
%z

+p" (Pip2) + 0" (kip2) + TT(pllkl))ij...'

Vector 3-denominator integrals are:

L, —L
(245 = —Caas = Joas + =L boys = 0,
t+ x1
X1 2x1Ly, | (i —t)Le

doss = — o Joss — ,
T tra? T a)?
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t 2x1 Ly t+x)
Q145 = — Juas + = — L
X1 -t (ti—x1)? (a—t)? "
Li— Ly,
bias =0, cus = digs = ——,
Xp—t
L 2L
a345 = —C345 = —d345 = Tt, b3as = —J345 + Tta
L, —2
arzs = Jios + =%, bios = dios =0, c1o5 = —2——,
X1 X1
Ly, — L
agss = —C235 = ———2XL do35 = 0,
S — X2
hour — X1 _ 2xaly, X1~ S1
235 - 25~ T ) T (s —xa)E L
a135 = —b135 = ?S, c135 = d135 = 0,
L L 2L
assa = —Coga = Joga — —, boga = — =2, doga = —Jogq + ——
S1 S1 S1
Ly, — L
ai23 = Jioz + biog, biog = ——, di23 =0,
— 51
s 2 2Ly (54 1)L
- _ J _ E _ S1 ,
1z s—s BT s g + (s —s1)? (s—s1)?
B B B fol -2 B fol
a124 = J1oa, b1oa =0, cioa=—-Jioa + ——, dioa=——+
X1 X1
s 2x1 Ly — (s+x))L
a134 = - J134 + 4 ~ V0 bisa = anza — Juza,
S—X1 (s = x1)
s —(x} +8)L, + 2sL
C134 = di3q = — +J134 + ! X1 °

s =X (s —x41)?
Vector integrals with 4 denominators read:

o A?)a . o ASC
1245 = bi24s =0, cioa5 = AL
3 3

Asg
di2as = A As = 2t1x1X1s
3

Asa = X1 [x1(2t1 + x1)J1245 + X3 J124 — X1J125—

(2.44)

)

(2.45)

— (t+ x1)J2a5 + (t1 + x1)J145) »

Ase = t1[—x1X1J1245 + X1 124 + x1J125 — (E + Xx1)J2as + (¢ — x1)J1as)

Asa = x1[—X1X1J1245 — X1 124 + x1J125 + (X3 — t1)J2as + (t — X)) J145) -
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Ay Ay Ay
a1235 = Aa, bi23s = N, (1235 = A—C, di235 =0, Ay = 2sx1X2,
4 4 4

Aya = X2 [sx1J1235 — (s — s1)J123 — (s — Xx2)J235 + X1J125 + 5135,
(2.46)
Ay, = x1[sx1J1235 + (5 — 51)J123 — (5 + x2)J235 — x1J125 + $J135)

Ayge = s[—sx1J1235 + (X2 — x1)J123 + (s — X2)J235 + x1J125 — ST135].

AT Ay B _ Age A,
1345 = bi34s = A, (1845 = dy345 = N, 2 = 2stu,
2 2 2

Aoy = —st(s+ 1) J1345 + t(s + 1) J345 + s(s + 1) J135+
+ (ut — sx1)Juas + (us —tx1)Jiza, (2.47)
Agp = —st(s+ u)J1345 + t(s — u)Jza5 + s(s + u)J135—
— (s +u)?Jas + (uxy — st)Jiza,
Age = s[stJizas — tJsas — sJ135 + (s + u)Jias + (¢ — ) J134].

AN Aqyp Ay
(2345 = —C2345 = bazys = A dozas = ——, A1 = —-2s1u1t,
1 1

A1y = —s1ustJogss — ur(t + x1)J245 — u1S1Joga+
+u1(s — x2)J235 + tus Jass,
Ayp = —s1t(t + x1)Jozas + (t+ x1)*Jas + s1(t + x1) J2sa+ (2.48)
+ (u1x1 + s1t)J23s + t(ur — s1)J345,
A1 = —s1t(s — x2)J23as + (uix1 + s1t)Jaas + s1(ur — t)Jaza+
+ (5 = x2)?Jass + t(s — X2)J345.

Asy Asp Asy  Ase
= J _— b = — = —J _— s
1234 1234 + A 1234 As’ C1234 1234 As As
A Asyp
di234 = —J1234 + f - A—5’ As = 251X/1X/2a X’z =85—51— X’p
5 5

Asq = x5[— (5 = s1)J123 + (5 — X1)J134 + X1 J124 — 81234 + s1X1J1234]
(2.49)

Asy = X1 [(s = 51)J123 4+ (251 — s+ X1)J13a — X1J124 — $1J234 + s1X1 1234
Ase = s1[(x4 — x1)J123 — (5 — X1)J13a + X1 J124 + 51J234 — 51X J1234] -
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We put now the tensor coefficients for B-type integrals with 4 denominators.

1
Gioas = 3 [2J124 — G124 — X1€1245 + (£ + X1)d1245]
1
0{245 = ﬁ [Xﬁ(—e]124 + a124 — C145) + t1a145 — (T + x1)a245+
+ tix1a1245 — X1 (t + x1)d1245]
1
0{245 = W [t1(—J124 4+ a124) + X1€125 + (t1 — X1)C145 — X1X1C1245] 5
1
1
di4s = Y [x1(—J124 + @124 — a245) + (t1 — x1)c1a5 — tidaas — x1X1d1245)
1
1 (2.50)
5{245 = X_ [—J124 + @124 + C145 + X1C1245)
1
1
7?245 = . [J124 — @124 + @245 + c1a5 + (t + x1)d1245]
1
1
T1T245 = X—, [—J124 + @245 + x1¢1245 — (£ + X1)d1245]
1
T T 75 T
bioys = Qia45 = Plaas = 01245 = 0.
As a check one can use the result of contraction by the metric tensor:
491245 + X1Bi245 — t1V245 + XiTi2a5 = J124. (2.51)
T ].
91235 = 5[2J123 — @123 + b123 — X1€1235),
T 1
Q1235 = %[ijms - (X1 + X2)a123 + x1a125 — X1X2C1235],
1
blass = %[M(Jms — azas) + (X1 + X2)bi2s — X2bass — Xic1235),
T 1
Clogs = o [s(J123 + b123) — (5 — X2)a235 + X2C123 — SX1€1235),
(2.52)

T
Q1235 = g[—J123 + @123 — az3s — bias),
T
Biags = X—[—J123 + a123 + X1¢€1235),
1

1
0'1T235 = ; [—J123 + az35 — bios + X1C1235],

r _ T _ T _ T _
dia35 = Y1235 = P123s = Ti235 = 0



1278 ARBUZOV A.B. ET AL.

One of the checking relations here has the form

497555 + 501935 + X1Biass + X201235 = J123- (2.53)

1
i35 = §[J134 + teizas],
1
T _
N T S0 —s = 1)

— (s(s+ 1)+ tx}))aizs + X1 (s +t)(cras — c134) +t(s + t)2c1345},

[(S + t)2J134 + t(Xll — S — t)a145—

1
bizas = ;[5134 — bsas — (X1 — t)P1zas);
1
T T T
Ciaa5 = dizs5 = Tiggs = mx

X [(x1 — t)(c1a5 — c134) — s(b13a — teizas)],  (2.54)

1
T / ! !
(0% = — |-t —s—1t)a —t)(c — C —
1345 = o —s—t)[ (X1 Jazas + X1(x1 — t)(c1a5 — c134)
— sx}(a134 — Jiza) + stx)cizas),
1
T T /
= = [(s+t)(biza —t - - ,
Bizas = V1345 0 =51 [(s +t)(b13a — terzas) — X1 (cras — c134)]
1
Plats = Olss = S0, — 5 — 1) [—(x) — t)%c1as + t(X) — s — t)azas+
1

+ (X1(X1 — 1) = st)eiza + (X1 — t)biza — st(X| — t)cizas].
The relation of the same type for the above coefficients reads:

491545 + Xiclsas + salsus + (X1 — 1) Baus + (X2 — u1)0ig45 = Jiza. (2.55)

1
93315 = 3 [Ja34 + X1a2345 + (t + x1)d1345],

1
asz45 = 02T345 = —52Ta45 = s_1t [—ta345 — (51 + x1)a23s + Slta2345]’
1
bloys = ———————[s1t(bass — baus) — + t)agss—
2345 81t(X1 T —i—t)[ 1 ( 235 345) X1(X1 ) 235
— t(t + x1)asas — s1t(x1 + t)bazas),
1 X1+ 81

da, =—|d —d - ——F (s1t(a —a +

2345 = Loy [d2es — dosa slt(x1+s1+t)( 1t(agas — a234)

+t(x1 + s1)asas + (x1 + s1)%azss — sit(x1 + s1)azsas) |,



RADIATIVE CORRECTIONS TO THE BHABHA SCATTERING 1279

1
T T
Q9345 = —02345 = it [—X1a235 — tasss],

1
sit(x1 +s1+1)

+ (x1 + s1)%aa3s — sit(x1 + s1)a2345], (2.56)

’732345 = _7'27:;45 = [s1t(a245 — a234) + t(x1 + $1)azas+

1

—|—sjta + + s1)aoszs+
Slt(X1+s1+t)[ 11a234 X1(X1 1) 235

T _
P2345 =

+t(x1 + S1)asas — sitx1a2345 — s1t(x1 + t)dagas].

The above coefficients have to satisfy the relation

T T T T T
492345 — X1a2345 + (8 — X2) 2345 — (t + X1)V2345 — U1P2345 = J234;

1 ABG)
Gigss = B [Jms - XIIT )
AR) -
oy = QT + Ji234 + b1234,

T ~
b1234 = b12347

A®) A®) - ~ ~
0{234 = QT - 2T + Ji234 + b1234 + C1234 — 21234,

A2 A

diyss = 2yt Ji234 + braga + Q1234 — 261234,

0‘1T234 = AA(Z) + biasa, (2.57)
Blaza = % - 2% — J1234 — b1234 + F1234,

Mazs = % - 2% — J1234 — brasa + G123,

Plosa = — AA(Q) — biasa + G134,

i34 = —¥ — b1234 + F1234,

AR AM AB) . ~ _ _
711;34 =2 A - A - A + J1234 + b1234 + B1234 — Q1234 — Y1234,
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where the quantities with the sign tilde are defined as follows:
1

a =—(Ls,—Ls, —L,/),
1234 SX/1( 1 X,)
- 1 A®) X} Lo L
b - 1= 1 J sl s
1234 b X1 A + 5— X, 134 + 51 v
Xi(s1 — x5)
T L. —Ly)|,
s - T E)
N 1]|s2A®@ s s 2— L,
G134 = — | - —— — —rJioa + (-}—F - >J123+ -
Xo | xo A 2 2 S — 51
_ 2— LX/1 _ 281 (L I )
/ _ 2 S S1 9
X1 (s —s1)
N Lx’l — Ly B A®) L, — Ly,
« = — = — ,
1234 5105 — 1) 1234 A NACETD
N 1 A®) Ly—Ls, Ls—Ly
Fro3a = — | X1—— — Ji23 + -+ ,Xl] .
X5 A 5 — 51 5= X}

One of the checking relations takes the form

T T T T
2071934 + X181234 + X201934 + X1Ti234 = @134 — G234 + X1G1234.

(2.58)

Scalar integrals with two, three, and four denominators have a form (we
imply the real part everywhere and the ultraviolet asymptotics is assumed as

well):
Jig = =1+ Lj, Jig =1+ Lx — L,
Jiu=1+Lx— Ly, Jis=Jog = Jsa = J3s = Ly + 1, (2.59)
Jog =1+ Ly—Ls,, Jos=1+Lx—-L,,,
Jais =1+ Lp — Ly,
where
A2 s 2
LAZIHW, LS:h'l—2, L/\ZIHW’
81 X X1
le 1 m2, LX/1 =1In W’ LXl =1 W’ (260)
—t
Li=1In—.
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Three-denominator scalar integrals are

Ji23 =

J124 =

J134 =

Jozs =

J135 =

Jogs =

Jias =

_
2(s — s1)

1 [1 2 1 1 72
—|=r? - = Jigs = — | —=L2 — —
AR IR

11 272
2 _ 72 —_ |z 2 =
(LS le), J345 7 [QLt + 3 :| R

s—xi 12 2

s1+x1 |2 2

111 272 171
SSL2— Ly — |, Jogy= — |=L?
s |:2 s st/ 3 :l ) 234 51 |:2 s1

1 1 1 . X1
S22 4oL (1 —)
t+x1 {2 07k Tk LT

1 1., 2 X,
o2 s T oy (1A
—t+ X, [2 Xi T gtt T g 12( t

Four-denominator scalar integrals read:

1
Ji2a5 = XlX/ |:_L3(1 - L?(ﬁ - L? - 2LX1LX'1 + 2LX1Lt + 2LX'1Lt +
1

J2345 = 7 |:L2 - leL)\ - 2L51LX1 + 2L51Lt - —:l )

52
6

1 2
Jiss = — {LE — LyLy —2L,Ly; + 2L L; + 7%] ,

1 3., 1
{—Lg + 5L%, —2L,Ly; +2Liz (1 - %)} :

_ 372
2

- L81L>\ -

1 1
FLQ + 212 — 2L, Ly, +2Lis (1 + X
S1

1 2 . S1 7'('2
Ji2ss = — | L5, + LsLx — 2L Ly, + 2Lig (1 — —) —5—|,
SX1 s 6
1 2 . s 2
J1234 = v —Lg—Ls,Lx+2Lg Ly, —2Lig (1 — ; — 7?

272

3

(2.62)

The results given above are valid with power accuracy, since we omit only terms
of order of m?/s compared with ones of order unity.
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2.4. Integrals for Collinear Radiative Bhabha Scattering. Here we give the
expressions for the quantities associated with G-type integrals (see (1.160)):

1 2
J=—— {—QLALH +2L,, L, — L2 — 2Liy(z) — ”—} :
X1t1 6
p
1 d | A A+ 1
J1 = / £ _TE <1+ a ): - » ok =—=J1,
t1x1 ) 1—z1-Xz tixa p—x tix1 p
(2.63)
p
1 dz zlnz 1
Ji = — 1 Jip = -
H t1x1 / (1-2)(1-X2) ( +1—z)’ RPY
0
. w2 . T X1
A:L12(1—p)—F#—ng(aj)#—l}pln(l—x), )\:;, pP=r5

In the limit p > 1 we have

1
¢ =x1ds +tix1(Jin — S+ i —2dy) = -5+ O(p™),

and that is the reason why w structure does contribute only to next-to-leading
terms.

In general the expression for 5-denominator one-loop scalar, vector, and
tensor integrals are some complicate functions of five independent kinematical
invariants (in the derivation we use the same technique as, for example, in Sub-
sec.2.3). In the limit m? < y; < s ~ —t they may be considerably simplified
because of singular 1/x; terms only kept (see (1.163)):

1 1
E = —Dg124 + —Do123,
S1 t

1
Ey = —2E;, = — (Do13a — (1 — ) Doa3a — xD12ga + x1E) ,

2x1
1 T T 272
Doiog = L? +2L,1 — In? -
o124 xt1X1[”+ R N g 3}’
1 2
Re Dg1a3 = — |:L§1 — 2L51Lp —2L,L + % + 2Li2(£):| R (2.64)
SX1
1 9 52
Re D0234 - S_lt le + 2L31L)\ - 2Lple + 2L51Lt - ? 5
1 4 T2
Re Dg134 = _t L, +2L;Ly — 2([/,51 +In (m))Ls +2L,L; + T ,
S
2 7'IT2
RGD1234 = — —L9 + 2LS(Lt1 + ln (JZ‘)) =+ 2L81L)\ - .
s1xty ’ 6
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The structure F11 4+ 2 F1y, has the form 1/(sx1)f(x, x1) and will vanish after per-
forming the operation (1 + Q2)s1tP given in (1.157) which yields a contribution
of P-type graphs with crossed and uncrossed photon legs.

The following coefficient for the scalar integral is obtained in the calculation
of B-type FD (see (1.161) and below):

1 2
B-— {Lfl +2LSILA_2L51LP+2LSILt+%}. (2.65)

For the vector integral coefficients we get

1 .
= St [—7‘(‘281 +2uiLis(1 — p) — 51 L2 + tLg1 — 2thlLt] ,
1 [2n? . 9
b= ~ %5 [T + 2Lig(1 — p) — 2L;, +4Ls, L, — 2L81Lt] ,
(2.66)
L Do Lin(1 — p) + = (duy + 68) + (¢ — 20) L2
= 1 — — —
¢ 281U1t k2 p 6 “ “ 51
—s1L7 +4uiLs, L, + 251L81Lt} .
The relevant quantities for tensor B-type integrals are:
1 P
19 = — — L - L
a1/2 st (p — p t) )
1
ag = _E[(le - Ly)* + %,
(2.67)
1 1 1 P
9 =——[(Ly — Lg,)?* + 7%+ —(Ls, — Ly) — — | —L, — L,
ova = ~giallle = Lo + 7]+ o (L = 20 = o (5220 = L)
1 {3 4 . 472
JO = g |:§L81 - 2L81Lp - L12(1 - p) - T:| .

As has been mentioned in the text, the physical gauge exploited provides a
direct extraction of the kernel of the structure function out of the traces both in the
tree- and loop-level amplitudes. The pattern emerging (see the text after (1.152)):

(p1 — k1 +m)é (L +m)é (P — k1 +m) =
= 4(pre)?(p1 — k1) — e*xik1 ~ (1 — )Y Py, (2.68)

A A 2 —
b+ me(n — b+ m) = (1) (222

W—Y>151

shows this clearly.
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