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The neutrinoless double β decay of nuclei is reviewed. We discuss neutrino mixing and 3 × 3
PontecorvoÄMakiÄNakagawaÄSakata (PMNS) neutrino mixing matrix. Basic theory of neutrinoless
double β decay is presented in some detail. Results of different calculations of nuclear matrix
element are discussed. Experimental situation is considered. Appendix is dedicated to E.Majorana
(brief biography and his paper in which the theory of Majorana particles is given).
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INTRODUCTION

Observation of neutrino oscillations in atmospheric, solar, reactor and ac-
celerator neutrino experiments is one of the most important recent discoveries
in particle physics. Small neutrino masses cannot be naturally explained by the
Standard Higgs mechanism. A new, beyond the Standard Model mechanism of
the generation of neutrino masses is required. The most plausible seesaw mecha-
nism of the neutrino mass generation is based on the assumption of the violation
of the total lepton number at a large scale and Majorana nature of neutrinos with
deˇnite masses.

After it was established that neutrino masses are different from zero, the
problem of the nature of neutrinos with deˇnite masses νi (Dirac or Majorana?)
is the most important one. Investigation of the neutrino oscillations cannot allow
one to answer this fundamental question. The observation of the neutrinoless
double β decay (0νββ decay) of some evenÄeven nuclei would be a proof that
νi are Majorana particles.

The neutrinoless double β decay is extremely rare process. First, this is a
process of the second order of the perturbation theory in the Fermi constant. And,
second, this process is possible due to helicity 	ip. Thus, the matrix element of
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the process is proportional to the effective Majorana mass mββ =
∑
i

U2
eimi (mi

is the mass of the neutrino νi). Smallness of the neutrino masses is an additional
reason for smallness of the probability of the 0νββ decay.

Very high values for the lower bounds of the half-lives of the 0νββ decay of
different nuclei were reached in the HeidelbergÄMoscow [1], IGEX [2], CUORI-
CINO [3] and other experiments. However, in order to reach the values of the
half-lives of the 0νββ decay which are expected on the basis of the neutrino
oscillation data in the case if the neutrino mass spectrum follows the inverted
hierarchy, new challenging experiments with a sensitivity to |mββ | about two
orders of magnitude better than the today's sensitivity are required. It is expected
that such a sensitivity will be reached in several future experiments.

In Sec. 1 we will consider in some detail neutrino mixing. In Sec. 2 we will
discuss the standard (Type I) seesaw mechanism of the neutrino mass generation.
In Sec. 3 we will consider general properties of the neutrino mixing matrix and
obtain its standard parametrization. Then in Sec. 4 we will discuss brie	y the
present status of neutrino oscillations. In Sec. 5 we will present a quite detailed
derivation of the matrix element of the 0νββ decay. Then in Sec. 6 we will
consider effective Majorana mass under different assumptions about neutrino
mass spectrum. In Secs. 7 and 8 we will discuss the present-day situation with
the calculations of nuclear matrix elements of the 0νββ decay and experiments
on the search for neutrinoless double β decay. In Appendix we will present a
short biography of E. Majorana and brie	y discuss his 1937 paper in which the
theory of the Majorana particles was developed and a possibility of the existence
of such particles was discussed.

For different aspects of the 0νββ decay, see reviews [4Ä10].

1. NEUTRINO MIXING

We will consider here the neutrinoless double β decay under two general
assumptions.

1. The neutrino interaction is the Standard Model electroweak interaction.
The Lagrangian of the standard charged current (CC) interaction has the form

LCC
I (x) = − g

2
√

2
jCC
α (x)Wα(x) + h.c. (1)

Here Wα(x) is the ˇeld of the charged W± vector bosons; g is the constant of
the electroweak interaction and

jCC
α (x) = 2

∑
l=e,μ,τ

ν̄lL(x)γαlL(x) + jh
α(x) (2)
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is the sum of the leptonic and hadronic charged current. The hadronic charged
current is given by the expression

jh
α(x) = 2(ūL(x)γα dmix

L (x) + c̄L(x)γα smix
L (x) + t̄L(x)γα bmix

L (x)), (3)

where

dmix
L (x) =

∑
q=d,s,b

Vuq qL, smix
L (x) =

∑
q=d,s,b

Vcq qL, bmix
L (x) =

∑
q=d,s,b

Vtq qL.

(4)
In (4) the matrix V is the 3 × 3 CabibboÄKobayashiÄMaskawa (CKM) quark
mixing matrix [11,12].

The interaction (1) perfectly describes the data of numerous experiments on
the study of the weak decays, neutrino reactions, etc.

2. The neutrino mixing takes place. Neutrino ˇelds νlL(x) in the leptonic
current (2) are mixed ˇelds:

νlL(x) =
3∑

i=1

UliνiL(x). (5)

Here νi(x) is the ˇeld of neutrino with mass mi and U is the 3 × 3
PontecorvoÄMakiÄNakagawaÄSakata [13,14] neutrino mixing matrix.

The hypothesis of the neutrino mixing was conˇrmed by the observation of
the neutrino oscillations in experiments with the atmospheric, solar, reactor and
accelerator neutrinos. All existing neutrino oscillation data are described if we
assume that the number of massive neutrinos is equal to the established number
of 	avor neutrinos (three).

Quarks are charged particles; the quarks and antiquarks have the same masses
and their charges differ in sign. Thus, the quark ˇelds q(x) are complex Dirac
ˇelds.

The electric charges of neutrinos are equal to zero. For neutrinos there are
two fundamentally different possibilities.

• If the total lepton number L = Le + Lμ + Lτ is conserved, neutrino
ˇelds νi(x) are complex four-component Dirac ˇelds. In this case neutrinos νi

and antineutrinos ν̄i have the same mass and different lepton numbers (L(νi) =
−L(ν̄i) = 1).

• If there are no conserved lepton numbers, neutrino ˇelds νi(x) are two-
component Majorana ˇelds. In this case νi ≡ ν̄i.

Investigation of the neutrino oscillations does not allow one to distinguish
between these two possibilities [15, 16]. In order to reveal the Majorana nature
of νi it is necessary to observe processes in which the total lepton number is
violated. Neutrinoless double β decay of some nuclei is the only such process the
study of which allows one to reach the necessary sensitivity.
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The nature of neutrinos with deˇnite masses and the form of the neutrino
mixing is determined by the neutrino mass term of the Lagrangian. We will
consider now possible mass terms for neutrinos (see [17Ä19]).

A neutrino mass term is the Lorentz-invariant product of the left-handed and
right-handed components of neutrino ˇelds. The three left-handed current ˇelds
νlL(x), components of SU(2) doublets, must enter into any neutrino mass term.
If we assume that three right-handed singlet ˇelds νlR(x) also enter into the
Lagrangian, in this case we can build the following neutrino mass term:

LD(x) = −ν̄L(x)MD νR(x) + h.c., (6)

where

νL =

⎛
⎝ νeL

νμL

ντL

⎞
⎠ , νR =

⎛
⎝ νeR

νμR

ντR

⎞
⎠ (7)

and MD is the 3×3 neutrino mass matrix. It is obvious that the total Lagrangian
with the neutrino mass term (6) is invariant under the global gauge transformations

νL(x) → ei ΛνL(x), νR(x) → ei ΛνR(x), lL,R(x) → ei Λ lL,R(x), q(x) → q(x),
(8)

where Λ is an arbitrary constant phase. The invariance under the transforma-
tion (8) means that the total lepton number L is conserved.

The mass term (6) can be easily diagonalized. For a complex matrix MD

we have
MD = U m V †, (9)

where U and V are unitary 3 × 3 matrices and m is a diagonal 3 × 3 matrix
(mik = miδik, mi > 0). From (6) and (9) we ˇnd

LD(x) = −ν̄m(x)m νm(x) = −
3∑

i=1

mi ν̄i(x) νi(x), (10)

where

νm
L = U †νL =

⎛
⎝ ν1L

ν2L

ν3L

⎞
⎠ , νm

R = V †νL =

⎛
⎝ ν1R

ν2R

ν3R

⎞
⎠ . (11)

The expression (10) is the sum of standard mass terms for the Dirac ˇelds νi(x)
with masses mi. From (11) we ˇnd that the 	avor ˇelds νlL(x) are connected
with the left-handed components of the Dirac neutrino ˇelds νiL(x) by the mixing
relation

νlL(x) =
3∑

i=1

Uli νiL(x). (12)
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We assumed that not only left-handed ˇelds νlL(x) but also the right-handed
ˇelds νlR(x) enter into the total Lagrangian. In the original Glashow, Weinberg
and Salam papers [20Ä22], in which the Standard Model was proposed, it was
assumed that only νlL(x) ˇelds, components of the lepton SU(2) doublets, enter
into the Lagrangian. In the seventies, after the success of the theory of the two-
component neutrino, it was natural to make this simplest assumption. In such
a Standard Model with a SU(2) Higgs doublet, neutrinos are massless particles.
We can, however, generalize the original SM and to build a model in which
neutrino masses and neutrino mixing are generated by the spontaneous violation
of the symmetry in the same way as masses and mixing of quarks and leptons.
In such a model the neutrino mass term is the Dirac mass term (6).

We know from experiment that neutrino masses are many orders of magnitude
smaller than masses of quarks and leptons. For example, for the particles of the
third family

mt � 173 GeV, mb � 4.2 GeV, mτ � 1.78 GeV, m3 � 2 · 10−9 GeV. (13)

In the framework of the SM there is no natural explanation of such a big difference
between masses of neutrinos and other fundamental fermions belonging to the
same family. It is very implausible that small neutrino masses are generated by
the SM Higgs mechanism.

The small Dirac neutrino masses can be generated, however, in some models
beyond the SM, for example, in the model with large extra dimensions [23].
In such a model the Newton law at small distances r has the form F =

1
M2+n

m1m2

r2+n
, where n is the number of the extra dimensions and M is a new

scale (∼ (1−10) TeV). Dirac neutrino masses in the model with extra dimensions
are given by the expression

mi � kiv β.

Here v � 250 GeV is the electroweak scale and β = M/MP � (10−15−10−16)
is a suppression factor (MP ∼ 1.2 · 1019 GeV is the Planck mass).

We will build now a neutrino mass term, assuming that ˇelds νlL(x) and
νlR(x) enter into the Lagrangian and there are no conserved lepton numbers. Let
us consider the conjugated ˇelds

(νL)c = C(ν̄L)T , (νR)c = C(ν̄R)T , (14)

where C is the matrix of the charge conjugation which satisˇes the relations

CγT
α C−1 = −γα, CT = −C. (15)

It is easy to show that (νL)c ((νR)c) is the right-handed (left-handed) component
of the conjugated ˇeld.
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In fact, for the left-handed and right-handed components we have

γ5 νL = −νL, γ5 νR = νR. (16)

From these relations we ˇnd

ν̄L γ5 = ν̄L, ν̄R γ5 = −ν̄R. (17)

Now, taking into account that CγT
5 C−1 = γ5, we have

γ5 (νL)c = (νL)c, γ5 (νR)c = −(νR)c. (18)

From (18) we conclude that (νL)c and (νR)c are the right-handed and left-handed
components.

The most general neutrino mass term, which can be built from the 	avor
left-handed ˇelds νlL(x) and sterile ˇelds νlR(x)∗, has the form

LD+M = −1
2

ν̄L MM
L (νL)c − ν̄L MD νR − 1

2
(νR)c MM

R νR + h.c., (19)

where columns νL,R are given by (7) and MM
L,R and MD are nondiagonal complex

3 × 3 matrices. It is easy to show that MM
L,R are symmetrical matrices. In fact,

taking into account FermiÄDirac statistics of the ˇelds νL,R, we have

ν̄L,R MM
L,RCν̄T

L,R = −ν̄L,R (MM
L,R)T CT ν̄T

L,R = ν̄L,R (MM
L,R)T Cν̄T

L,R. (20)

From this relation we ˇnd

MM
L,R = (MM

L,R)T . (21)

It is obvious that the ˇrst and the third terms of the expression (19) are not
invariant under the global gauge transformations νL,R → eiΛνL,R. Thus, in the
case of the mass term (19) the total lepton number L is not conserved.

The ˇrst and the third terms of the expression (19) are called the left-handed
and right-handed Majorana mass terms, respectively. The second term is the
Dirac mass term. The mass term LD+M is usually called the Dirac and Majorana
neutrino mass term [24,25].

We will show now that in the case of the mass term (19) neutrinos with
deˇnite masses are Majorana particles.

The mass term LD+M can be presented in the following form:

LD+M = −1
2

n̄L MD+M (nL)c + h.c. (22)

∗Neutrino ˇelds that do not enter into the Lagrangian of the standard elecroweak interaction are
called sterile.
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Here

nL =
(

νL

(νR)c

)
(23)

and

MD+M =
(

MM
L MD

(MD)T MM
R

)
(24)

is a symmetrical 6 × 6 matrix.
A symmetrical matrix M can be presented in the form

M = U m UT , (25)

where U is a unitary matrix and m is a diagonal matrix with positive diagonal
elements.

From (22) and (25) we have

LD+M = −1
2

U †nL m (U † nL)c − 1
2

(U †nL)c m U † nL =

= −1
2

ν̄m m νm = −1
2

6∑
i=1

mi ν̄i νi. (26)

Here

νm = U †nL + (U †nL)c =

⎛
⎜⎜⎜⎝

ν1

ν2

...
ν6

⎞
⎟⎟⎟⎠ . (27)

From (26) and (27) we conclude that
• The ˇeld νi(x) (i = 1, 2, . . . , 6) is the ˇeld of neutrinos with mass mi.
• The ˇeld νi(x) satisˇes the Majorana condition

νi(x) = νc
i (x) = Cν̄T

i (x). (28)

Taking into account the unitarity of the matrix U , from (27) we ˇnd

nL = U νm
L . (29)

From (29) we obtain the following mixing relations in the general Dirac and
Majorana case:

νlL =
6∑

i=1

Uli νiL, (νlR)c =
6∑

i=1

Ul̄i νiL, (30)
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where U is a unitary 6 × 6 mixing matrix and νi is the ˇeld of the Majorana
neutrino with mass mi.

Let us discuss the meaning of the Majorana condition (28). A non-Hermitian
ˇeld ν(x) can be presented in the following general form:

ν(x) =
∫

1
(2π)3/2

1√
2p0

(
cr(p) ur(p) e−ipx + d†r(p)ur(−p) eipx

)
d3p, (31)

where cr(p) is the operator of absorption of neutrino with momentum p and
helicity r and d†r(p)) is the operator of creation of antineutrino with momentum p
and helicity r and ur(−p) = C(ūr(p))T . If the ˇeld ν(x) satisˇes the Majorana
condition (28), we ˇnd

cr(p) = dr(p). (32)

Thus, if ν(x) is the Majorana ˇeld, the neutrinos and antineutrinos are identical
particles. In other words, the Majorana ˇeld is the ˇeld of truly neutral particles.
There is no notion of particles and antiparticles in the case of the Majorana ˇeld∗.

We will ˇnish this section with the following remarks:
1. Dirac and Majorana mass term can be generated only in theories beyond

the SM.
2. If we assume that only left-handed ˇelds νlL(x) enter into the mass term

and the lepton number is not conserved, we come to the following (Majorana)
mass term [26]:

LM = −1
2

ν̄L MM
L (νL)c + h.c., (33)

where MM
L is 3 × 3 symmetrical matrix. After the diagonalization, the mass

term (33) takes the standard form

LM = −1
2

3∑
i=1

miν̄iνi (34)

and we come to the Majorana mixing

νlL =
3∑

i=1

Uli νiL. (35)

Here U is a 3 × 3 mixing matrix and νi is the Majorana ˇeld with the mass
mi which satisˇes the condition (28). Notice that Higgs triplet is needed for the
generation of the mass term LM .

∗In the case of the Majorana ˇeld there are no conserved charges which allow one to distinguish
particles and antiparticles.
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3. From the Majorana condition (28) we have

νiR = νc
iR = (νiL)c. (36)

Thus, in the case of the Majorana ˇeld, right-handed and left-handed components
are connected by the relation (36). In the case of the Dirac ˇeld, right-handed and
left-handed components are independent. This is the major difference between
Majorana and Dirac ˇelds.

Right-handed components of neutrino ˇelds enter into the Dirac mass term.
If neutrinos are massless there are no mass term in the Lagrangian. This is
the reason for the well-known theorem [27] which states that it is impossible
to distinguish massless Dirac and Majorana neutrinos in the case of left-handed
interaction.

4. The Dirac and Majorana mass term opens a possibility of the existence of
the sterile neutrinos. If masses mi are small, in this case in addition to the mixed
	avor left-handed neutrinos νe, νμ and ντ mixed left-handed antineutrinos ν̄lL,
quanta of mixed right-handed ˇelds νlR, must exist. Because right-handed ˇelds
do not enter into the standard CC and NC interactions, ν̄lL have no electroweak
interaction. They are called sterile neutrinos. Let us notice that the existing
LSND indication in favor of the sterile neutrinos [28] was not conˇrmed by the
MiniBooNE experiment [29].

5. In the case of the Dirac and Majorana mass term, there are additional
sterile right-handed ˇelds νlR and many parameters in the mass matrix. This
mass term opens a possibility to explain the smallness of the neutrino masses.
This (so-called seesaw) possibility will be considered in the next section.

2. SEESAW MECHANISM OF THE NEUTRINO MASS GENERATION

The most popular mechanism of the generation of small neutrino masses is
the seesaw mechanism [30]. In order to explain the main idea of this mechanism,
we consider the simplest case of one generation. The Dirac and Majorana mass
term is given in this case by the expression

LD+M = −1
2

mLν̄L(νL)c − mDν̄LνR − 1
2

mR(νL)cνR + h.c. (37)

We will assume that mL, mD and mR are real parameters. Let us write Eq. (37)
in the matrix form. We have

LD+M = −1
2

n̄L MD+M (nL)c + h.c. (38)

Here

MD+M =
(

mL mD

mD mR

)
(39)
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and

nL =
(

νL

(νR)c

)
. (40)

The real symmetrical matrix MD+M can be presented in the form

MD+M = O m′ OT , (41)

where

O =
(

cos θ sin θ
− sin θ cos θ

)
(42)

and m′
ik = m′

iδik , m′
i being an eigenvalue of the matrix MD+M . We have

m′
1,2 =

1
2

(mR + mL) ∓ 1
2

√
(mR − mL)2 + 4 m2

D. (43)

From (41), (42) and (43) for the mixing angle θ we obtain the following relations:

tan 2θ =
2mD

mR − mL
, cos 2θ =

mR − mL√
(mR − mL)2 + 4 m2

D

. (44)

The eigenvalues m′
1,2 can be positive or negative. Let us write down

m′
i = miηi, (45)

where mi = |m′
i| and ηi = ±1.

From (41) and (45) we ˇnd

MD+M = UmUT , (46)

where
U = O

√
η (47)

is a unitary matrix. Using the general results of the previous section, we easily
bring the mass term (48) to the standard form

LD+M = −1
2
ν̄mνm = −1

2

∑
i=1,2

miν̄iνi. (48)

Here

νm = U †nL + (U †nL)c =
(

ν1

ν2

)
, (49)
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νi being the Majorana ˇeld with the mass mi. From (49) we have

nL = Uνm
L . (50)

Thus, the ˇelds νL and (νR)c are connected with the ˇelds ν1L and ν2L by the
following mixing relations:

νL = cos θ
√

η1 ν1L + sin θ
√

η2 ν2L,

(νR)c = − sin θ
√

η1 ν1L + cos θ
√

η2 ν2L.
(51)

Neutrino masses are many orders of magnitude smaller than masses of leptons and
quarks which are generated by the standard Higgs mechanism of the electroweak
symmetry breaking. This fact is commonly considered as an evidence in favor of
a nonstandard mechanism of neutrino mass generation. The seesaw mechanism
connects smallness of neutrino masses with the violation of the total lepton number
at a very large scale.

The standard (type I) seesaw mechanism [30] is based on the following
assumptions:

1. There is no left-handed Majorana mass term in the Lagrangian (mL = 0).
2. The Dirac mass term is generated by the Higgs mechanism (mD is of the

order of the mass of a charged lepton or quark).
3. The constant mR, which characterizes the right-handed Majorana mass

term, the source of the violation of the total lepton number, is much larger
than mD:

mR � mD. (52)

From (43), (44) and (52) we have

m1 � mD

mR
mD 	 mD, m2 � mR, tan θ � mD

mR
	 1. (53)

Thus, the seesaw mechanism generates Majorana neutrino mass m1 which is
much smaller than a Dirac mass of a lepton or quark. As a consequence of the
seesaw mechanism, a heavy Majorana particle with a mass m2 � mR must exist.

Let us consider now the case of the three families. The seesaw mixing matrix
has in this case the form

M seesaw =
(

0 mD

mT
D MR

)
. (54)

Here mD is a complex 3 × 3 matrix, MR is a symmetrical complex matrix and
mD 	 MR.

Let us introduce the matrix M by the relation

UT M seesaw U = M, (55)
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where U is a unitary matrix. We will show now the matrix U can be chosen in
such a form that M is the block-diagonal matrix.

Notice that in the case of one generation up to terms linear in mD/mR 	 1
we have

U (2) �
(

1 mD/mR

−mD/mR 1

)
. (56)

Let us consider the matrix

U �
(

1 A
−A† 1

)
, (57)

where A is a 3×3 matrix and Aik 	 1. It is easy to see that up to terms linear in
A, U †U � 1. The nondiagonal element of the symmetrical matrix UT M seesaw U
in the approximation linear over A is equal to

mT
D − MRA†. (58)

If we choose
A† = M−1

R mT
D, (59)

the matrix UT M seesaw U takes a block-diagonal form

UT M seesaw U �
(

−mDM−1
R mT

D 0
0 MR

)
. (60)

For the left-handed Majorana neutrino mass term from (60) we ˇnd

LM = −1
2
ν̄LMM

L (νL)c + h.c., (61)

where
MM

L = −mDM−1
R mT

D (62)

and νL is given by (7).
Equation (61) is the mass term for three light Majorana neutrinos. After the

diagonalization of the total mass term, in addition to Majorana neutrino mass
term, we will obtain a mass term for three heavy Majorana particles. Thus, in the
case of the Dirac and Majorana mass term with the matrix (54) in the spectrum
of masses there are

• three light Majorana neutrino masses;
• three heavy Majorana masses, which are characterized by the scale of the

violation of the total lepton number.
These are general features of the seesaw mechanism. The values of neutrino

masses and mixing angles can be obtained only in the framework of a concrete
model.
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Thus, the seesaw mechanism connects smallness of the neutrino masses with
violation of the total lepton number at a large scale∗. The observation of the
neutrinoless double β decay would be an evidence in favor of this mechanism.
Let us notice that the existence of heavy Majorana particles, seesaw partners
of neutrinos, could allow us to explain the baryon asymmetry of the Universe
(see [31]).

3. NEUTRINO MIXING MATRIX

In this section we will consider the general properties of the unitary 3 × 3
Dirac (or Majorana) mixing matrix.

A unitary n × n matrix U is characterized by n2 real parameters∗∗. The
number of the angles which characterize the unitary n × n matrix coincides with
the number of parameters which characterize a real orthogonal n × n matrix O
(OT O = 1). Thus, for the number of the angles we have∗∗∗

nang =
n(n − 1)

2
. (63)

Other parameters of the matrix U are phases. The number of phases is equal to

nph = n2 − n(n − 1)
2

=
n(n + 1)

2
. (64)

The number of physical phases in the neutrino mixing matrix is smaller than nph.
The neutrino mixing matrix enters into the charged current. Let us consider ˇrst
the case of the Dirac neutrinos νi. Because phases of the Dirac ˇelds lL(x) and
νiL(x) are arbitrary, the matrices U and

U ′ = S†(β)US(α) (65)

are equivalent. Here Sll′(β) = eiβl δll′ , Sik(α) = eiαi δik and βl, αi are real,
arbitrary phases.

∗Usually it is assumed that this scale is about 1015−1016 GeV.
∗∗In fact, it can be presented in the form U = eiH , where H is the Hermitian matrix. The

Hermitian matrix is characterized by n + 2

(
n2 − n

2

)
= n2 real parameters.

∗∗∗The orthogonal matrix O can be presented in the form O = eA, where AT = −A. Diagonal
elements of the matrix A are equal to zero. The number of the real nondiagonal elements is equal to
n(n − 1)

2
.
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We can use this freedom in order to exclude (2n − 1) phases from the
matrix U∗. Thus, in the case of the Dirac neutrinos the number of the physical
phases in the mixing matrix U is equal to

n̄ph =
n(n + 1)

2
− (2n − 1) =

(n − 1)(n − 2)
2

. (66)

In the case of the mixing of the three Dirac neutrinos, the mixing matrix is
characterized by three mixing angles and one phase.

Let us consider now the case of the Majorana neutrinos νi. The Majorana
condition

νc
i (x) = νi(x) (67)

does not allow one to include arbitrary phases into the Majorana ˇelds. For the
number of the physical phases we have in the Majorana case [15,16]

n̄M
ph =

n(n + 1)
2

− n =
n(n − 1)

2
. (68)

Thus, in the case of the three Majorana neutrinos, the mixing matrix is character-
ized by three mixing angles and three phases.

We will obtain now constraints on the neutrino mixing matrix which follow
from the condition of the CP invariance in the lepton sector. Let us consider
ˇrst the Dirac neutrinos νi. The condition of the CP invariance in the lepton
sector has the form

VCP LCC
I (x) V −1

CP = LCC
I (x′). (69)

Here VCP is the operator of the CP conjugation, x′ = (x0,−x) and

LCC
I (x) = − g√

2

∑
l,i

l̄L(x)γαUliνiL(x)Wα†−

− g√
2

∑
l,i

ν̄iL(x)γαU∗
lilL(x)Wα (70)

is the Lagrangian of the CC interaction of neutrinos, leptons and W bosons.
Taking into account arbitrariness of the phases of fermion ˇelds, we can put CP
phase factors of the lepton and neutrino ˇelds equal to one. We have

VCP lL(x)V −1
CP = γ0Cl̄TL(x′), VCP νiL(x)V −1

CP = γ0Cν̄T
iL(x′). (71)

∗We can always make one element of the matrix S(α) (or S(β)) equal to one. In fact, let us
present the matrix S(α) in the form S(α) = eiαn S(ᾱ), where ᾱi = αi − αn. The phase factor
eiαn can be, obviously, included into S†(β). We have in this case S†(β) eiαn = S†(β̄), where
β̄l = βl − αn.
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From these relations we ˇnd

VCP l̄L(x)V −1
CP = −lTL(x′)C−1γ0, VCP ν̄iL(x)V −1

CP = −νT
iL(x′)C−1γ0. (72)

For the ˇeld of the charged W± vector bosons we have

VCP Wα(x)V −1
CP = −δαW †

α(x′), (73)

where δα is a sign factor (δ0 = 1, δi = −1). From all these relations we easily
ˇnd

VCPLCC
I (x)V −1

CP = − g√
2

∑
l,i

ν̄iL(x′)γαUlilL(x′)Wα(x′)−

− g√
2

∑
l,i

l̄L(x′)γαU∗
liνiL(x′)Wα†(x′). (74)

Comparing (69) and (74), we come to the conclusion that in the case of the CP
invariance in the lepton sector the Dirac mixing matrix is real:

Uli = U∗
li. (75)

We will consider now the case of the Majorana ˇelds [32Ä34]. The CP transfor-
mation of the Majorana ˇeld νi has the form

VCP νi(x)V −1
CP = η∗

i γ0Cν̄T
i (x′) = η∗

i γ0νi(x′), (76)

where η∗
i is a phase factor. Unlike the Dirac ˇelds, it cannot be included in the

ˇeld. We will show now that the phase factor ηi can take the values ±i. In fact,
from (76) by the Hermitian conjugation and multiplication from the right by the
matrix γ0 we ˇnd

VCP ν̄i(x)V −1
CP = ηiν̄i(x′)γ0. (77)

From this relation we have

VCP C ν̄T
i (x)V −1

CP = ηiCγ0T C−1Cν̄T
i (x′) = −ηiγ

0Cν̄T
i (x′). (78)

Finally, taking into account the Majorana condition, we ˇnd

VCP νi(x)V −1
CP = −ηiγ

0νi(x′). (79)

If we compare now (76) and (79), we conclude that

η∗
i = −ηi, η2

i = −1. (80)

Thus, the CP parity of a Majorana ˇeld can take values ±i.
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From (69), (71) and (76) we ˇnd that in the case of the CP invariance in
the lepton sector the Majorana mixing matrix satisˇes the condition

Uliη
∗
i = U∗

li. (81)

Finally, we will obtain the standard parametrization of the 3×3 Dirac mixing
matrix. Let us consider two systems of orthogonal and normalized vectors |i〉
and |νl〉 (i = 1, 2, 3, l = e, μ, τ ). We have

〈k|i〉 = δik, 〈l′|l〉 = δl′l. (82)

Vectors |νl〉 and |i〉 are connected by the relation

|νl〉 =
∑

i

U∗
li|i〉. (83)

From (82) it is obvious that U is a unitary matrix.
In the most general case, vectors |νl〉 can be obtained from vectors |i〉 by

three Euler rotations. The ˇrst rotation will be performed at the angle θ12 around
the vector |3〉. New orthogonal and normalized vectors are

|1〉(1) = c12 |1〉 + s12 |2〉,
|2〉(1) = −s12 |1〉 + c12 |2〉,
|3〉(1) = |3〉,

(84)

where c12 = cos θ12 and s12 = sin θ12. In the matrix form, (84) can be written
as follows:

|ν〉(1) = U (1) |ν〉. (85)

Here

|ν〉(1) =

⎛
⎝ |1〉(1)

|2〉(1)
|3〉(1)

⎞
⎠ , |ν〉 =

⎛
⎝ |1〉

|2〉
|3〉

⎞
⎠ (86)

and

U (1) =

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ . (87)

We will perform now the second rotation at the angle θ13 around the vector |2〉(1).
At this step we will introduce the CP phase δ. We have

|ν〉(2) = U (2) |ν〉(1). (88)
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Here

U (2) =

⎛
⎝ c13 0 s13 eiδ

0 1 0
−s13 e−iδ 0 c13

⎞
⎠ . (89)

Finally, let us perform the rotation around the vector |1〉(2) at the angle θ23. We
have

|νmix〉 = U (3)|ν〉(2). (90)

Here

|νmix〉 =

⎛
⎝ |νe〉

|νμ〉
|ντ 〉

⎞
⎠ (91)

and

U (3) =

⎛
⎝ 1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠ . (92)

From (85), (88) and (90) we ˇnd

|νmix〉 = U∗ |ν〉, (93)

where

U =
(
U (3) U (2) U (1)

)∗ =

=

⎛
⎝ 1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ . (94)

This is the so-called standard parametrization of the 3×3 Dirac mixing matrix.
This matrix is characterized by three mixing angles θ12, θ23 and θ13 and the CP
phase δ. From (94) we have

U =

⎛
⎝ c13c12 c13s12 s13 e−iδ

−c23s12 − s23c12s13 eiδ c23c12 − s23s12s13 eiδ c13s23

s23s12 − c23c12s13 eiδ −s23c12 − c23s12s13 eiδ c13c23.

⎞
⎠ . (95)

The 3×3 Majorana mixing matrix is characterized by three mixing angles and
three CP phases. It can be presented in the form

UM = USM (α), (96)
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where the matrix U is given by (94) and

SM (α) =

⎛
⎝ eiα1

eiα2

1

⎞
⎠ , (97)

where α1,2 are additional Majorana phases.

4. ON NEUTRINO OSCILLATIONS

The most important manifestation of the neutrino mixing is neutrino oscil-
lations. Neutrino oscillations are based on the fact that in processes of neutrino
production and neutrino detection due to Heisenberg uncertainty principle small
neutrino mass-squared differences cannot be resolved. As a result, in a weak
decay

a → b + l+ + νl, (98)

together with the lepton l+, a ®mixed¯ left-handed 	avor neutrino νl is produced.
The state of νl is a coherent superposition of the states of neutrinos with deˇnite
masses

|νl〉 =
∑

i

U∗
li|νi〉, (99)

where |νi〉 is the state of neutrino with mass mi and momentum pi.
If at t = 0 	avor neutrino νl is produced, at the time t for the neutrino state

we have

|νl〉t = e−iHt |νl〉 =
3∑

i=1

e−iEit U∗
li|νi〉 =

∑
l′

|νl′〉
3∑

i=1

Ul′i e−iEit U∗
li. (100)

Thus, the probability of the transition νl → νl′ during the time interval t is given
by the expression

P (νl → νl′) =

∣∣∣∣∣
3∑

i=1

Ul′i e−i (Ei−Ek)t U∗
li

∣∣∣∣∣
2

, (101)

where k is ˇxed. If all phase differences are small (|Ei − Ek| t 	 1) or/and
there is no mixing (U∗

li = δli), in this case it will be no neutrino oscillations
(P (νl → νl′) � δl′l). Thus, neutrino oscillations are effect of the neutrino mixing
and relatively large phase difference(s).

Assuming that pi = p, we obtain the standard expression for the phase
difference

(Ei − Ek)t � Δm2
ki

2E
L. (102)
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Here Δm2
ki = m2

i −m2
k and L � t is the distance between a neutrino source and

neutrino detector.
The transition probability P (νl → νl′) depends on six parameters (two mass-

squared differences Δm2
23 and Δm2

12, three mixing angles θ23, θ12 and θ13

and CP phase δ). However, from analysis of the data of neutrino oscillation
experiments it follows that the parameter sin2 θ13 and the ratio Δm2

12/Δm2
23 are

small:
Δm2

12

Δm2
23

� 3 · 10−2, sin2 θ13 � 5 · 10−2. (103)

If we neglect contribution of the small parameters to the transition probabilities,
we will ˇnd that in the atmospheric and accelerator long baseline region of the
values of the parameter L/E the two-neutrino νμ � ντ oscillations, driven by
Δm2

23, take place. From (101) and (102), for the probability of νμ to survive,
we obtain the following expression (see [18]):

P (νμ → νμ) � 1 − 1
2

sin2 2θ23

(
1 − cos Δm2

23

L

2E

)
. (104)

In the KamLAND region νe � νμ,τ oscillations, driven by Δm2
12, take place in

the leading approximation. For the probability of ν̄e to survive, we obtain the
following expression (see [18]):

P (ν̄e → ν̄e) � 1 − 1
2

sin2 2θ12

(
1 − cos Δm2

12

L

2E

)
. (105)

In the leading approximation the probability of solar νe to survive in matter is
also given by the two-neutrino expression. It depends on tan2 θ12, Δm2

12 and
electron number density in the sun.

We will present now the results of the analysis of the experimental data. From
the analysis of the data of the atmospheric Super-Kamiokande experiment, for the
parameters Δm2

23 and sin2 2θ23 the following 90% CL ranges were obtained [35]:

1.5 · 10−3 � Δm2
23 � 3.4 · 10−3 eV2, sin2 2θ23 > 0.92. (106)

The results of the atmospheric Super-Kamiokande experiment were conˇrmed
by the K2K [36] and MINOS [37] accelerator long-baseline neutrino oscillation
experiments. From the analysis of the MINOS data for the neutrino oscillation
parameters the following values were found [37]:

Δm2
23 = (2.43 ± 0.13) · 10−3 eV2, sin2 2θ23 > 0.90 (90% CL). (107)

From the global analysis of the data of the reactor KamLAND experiment and
data of the solar neutrino experiments, for the parameters Δm2

12 and tan2 θ12 the
following values were obtained [38]:

Δm2
12 = (7.59+0.21

−0.21) · 10−5 eV2, tan2 θ12 = 0.47+0.06
−0.05. (108)
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In the reactor CHOOZ experiment [39] no indications in favor of ν̄e → ν̄e

transitions, driven by Δm2
23, were found. From the exclusion plot, obtained from

the data of this experiment, for the parameter sin2 θ13 the following upper bound
can be inferred:

sin2 θ13 � 5 · 10−2. (109)

At present, a stage of the high-precision neutrino oscillation experiments starts.
In the future DOUBLE CHOOZ [40], Daya Bay [41] and RENO [42] reactor
neutrino experiments, sensitivities to the parameter sin2 2θ13 will be 10Ä20 times
better than in the CHOOZ experiment. The same sensitivity is planned to be
reached in the accelerator T2K experiment [43]. In this experiment, parameters
Δm2

23 and sin2 2θ23 will be measured with the accuracies δ(Δm2
23) ∼ 10−4 eV2

and δ(sin2 2θ23) ∼ 10−2, correspondingly. High-precision neutrino oscillation
experiments are planned at the future Super Beam [44], Beta-beam [45], and
Neutrino Factory facilities [46].

5. BASIC ELEMENTS OF THE THEORY OF 0νββ DECAY

In this section we will consider the neutrinoless double β decay of evenÄeven
nuclei [4, 5]

(A, Z) → (A, Z + 2) + e− + e−. (110)

We will assume that
• The Hamiltonian of the weak interaction is given by the SM.
• The neutrino mixing takes place.
• Neutrinos with deˇnite masses νi are Majorana particles.
For the effective Hamiltonian of the process we have

HI(x) =
GF√

2
2

∑
i

ēL(x)γα Uli νiL(x) jα(x) + h.c. (111)

Here GF is the Fermi constant; jα(x) is the hadronic charged current, and the
ˇeld νi(x) satisˇes the condition

νc
i (x) = Cν̄T

i (x) = νi(x). (112)

The neutrinoless double β decay is the second order in GF process with the virtual
neutrinos. The matrix element of the process is given by the following expression:

〈f |S2|i〉 = 4
(−i)2

2 !

(
GF√

2

)2

×

× Np1Np2

∫ ∑
i

ūL(p1) eip1x1γα Uei〈0|T (νiL(x1) νT
iL(x2)|0〉γT

β Ueiū
T
L(p2)×

× eip2x2〈Nf |T (Jα(x1)Jβ(x2))|Ni〉 d4x1 d4x2 − (p1 � p2). (113)
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Here p1 and p2 are electron momenta; Jα(x) is the weak charged current in
the Heisenberg representation; Ni and Nf are the states of the initial and the
ˇnal nuclei with 4-momenta Pi = (Ei,pi) and Pf = (Ef ,pf ), respectively, and

Np =
1

(2π)3/2
√

2p0
is the standard normalization factor.

Let us consider the neutrino propagator. From the Majorana condition (112)
we ˇnd

〈0|T (νiL(x1)νT
iL(x2)|0〉 = −1 − γ5

2
〈0|T (νi(x1)ν̄i(x2))|0〉

1 − γ5

2
C. (114)

Further, we have

〈0|T (νi(x1)ν̄i(x2))|0〉 =
i

(2π)4

∫
e−iq (x1−x2)

γq + mi

q2 − m2
i

d4q. (115)

Thus, for the neutrino propagator we ˇnd the following expression∗:

〈0|T (νiL(x1)ν̄iL(x2))|0〉 =

= − i

(2π)4

∫
e−iq (x1−x2)

mi

q2 − m2
i

d4q
1 − γ5

2
C. (116)

The neutrino propagator is proportional to mi. It is obvious from (115) that
this is connected with the fact that only left-handed neutrino ˇelds enter into the
Hamiltonian of the weak interaction. In the case of massless neutrinos (mi = 0,
i = 1, 2, 3), in accordance with the theorem on the equivalence of the theories with
massless Majorana and Dirac neutrinos, the matrix element of the neutrinoless
double β decay is equal to zero.

Let us consider the second term of the matrix element (113). It is easy to
show that

ūL(p1)γα(1 − γ5)γβCūT
L(p2) = ūL(p2)CT γT

β (1 − γT
5 )γT

α ūT
L(p1) =

= −ūL(p2)γβ(1 − γ5)γαCūT
L(p1). (117)

If we take into account (117) and the relation

T (Jβ(x2)Jα(x1)) = T (Jα(x1)Jβ(x2)), (118)

∗Notice that in the case of the Dirac neutrinos 〈0|νiL(x1)νT
iL(x2)|0〉 =

1 − γ5

2
×

〈0|νi(x1)νT
i (x2)|0〉1 − γT

5

2
= 0. The neutrinoless double β decay is obviously forbidden in the

Dirac case.
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we can show that the second term of the matrix element (113) is equal to the ˇrst
one. Thus, for the matrix element we obtain the following expression:

〈f |S2|i〉 = −4
(

GF√
2

)2

Np1Np2

∫
ūL(p1) eip1x1γα

i

(2π)4
×

×
∑

i

U2
eimi

∫
e−iq(x1−x2)

p2 − m2
i

d4q×

× 1 − γ5

2
γβC ūT

L(p2) eip2x2〈Nf |T (Jα(x1)Jβ(x2))|Ni〉 d4x1 d4x2. (119)

Initial nuclei in the process (110) are 76Ge, 136Xe, 130Te, 100Mo and other
heavy nuclei. The calculation of the nuclear part of the matrix element of the
0νββ decay is a complicated nuclear problem. In such a calculation different
approximations are used. We will present now the matrix element of the 0νββ
decay in a form which is appropriate for such approximate calculations.

Let us perform in (119) the integration over the time variables x0
2 and x0

1.
The integral over x0

2 can be presented in the form

∞∫
−∞

· · ·dx0
2 =

x0
1∫

−∞

· · · dx0
2 +

∞∫
x0
1

· · ·dx0
2. (120)

After the integration over q0 in the neutrino propagator, in the region x0
1 > x0

2

we ˇnd∗

i

(2π)4

∫
e−iq(x1−x2)

q2 − m2
i

d4q =
1

(2π)3

∫
e−iq0

i (x0
1−x0

2)+iq(x1−x2)

2q0
i

d3q, (121)

where

q0
i =

√
q2 + m2

i . (122)

In the region x0
1 < x0

2 we have

i

(2π)4

∫
e−iq(x1−x2)

q2 − m2
i

d4q =
1

(2π)3

∫
e−iq0

i (x0
2−x0

1)+iq(x2−x1)

2q0
i

d3q. (123)

For the operators Jα(x) from the invariance under the translations we have

Jα(x) = eiHx0
Jα(x) e−iHx0

, (124)

∗It is assumed that in the propagator m2
i = m2

i − iε.
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where H is the total Hamiltonian. From this relation we ˇnd

〈Nf |Jα(x1)Jβ(x2)|Ni〉 =

=
∑

n

ei(Ef−En)x0
1 ei(En−Ei)x

0
2 〈Nf |Jα(x1)|Nn〉〈Nn|Jβ(x2))|Ni〉, (125)

where |Nn〉 is the vector of the state of the intermediate nucleus with 4-momentum
Pn = (En, pn). In (125) the sum over the total system of the states |Nn〉 is
assumed.

Taking into account that at ±∞ the interaction is turned off, we have

0∫
−∞

eiax0
2 dx0

2 →
0∫

−∞

ei(a−iε)x0
2 dx0

2 = lim
ε→0

−i

a − iε
(126)

and
−∞∫
0

eiax0
2 dx0

2 →
∞∫
0

ei(a+iε)x0
2 dx0

2 = lim
ε→0

i

a + iε
. (127)

From (126) and (127) we ˇnd

∞∫
−∞

dx0
1

x0
1∫

−∞

dx0
2

∑
n

〈Nf |Jα(x1)|Nn〉〈Nn|Jβ(x2)|Ni〉×

× ei(Ef−En)x0
1+i(En−Ei)x

0
2 ei(p0

1x0
1+p0

2x0
2)eiq0

i (x0
2−x0

1) =

= −i
∑

n

〈Nf |Jα(x1)|Nn〉〈Nn|Jβ(x2))|Ni

En + p0
2 + q0

i − Ei − iε
2πδ(Ef + p0

1 + p0
2 − Ei). (128)

Taking into account all these relations, for the matrix element of the neutrinoless
double β decay we obtain the following expression:

〈f |S2|i〉 = 2i

(
GF√

2

)2

Np1Np2 ū(p1)γαγβ(1 + γ5)CūT (p2)×

×
∫

d3x1 d3x1 e−ip1x1−ip2x2
∑

i

U2
eimi

1
(2π)3

∫
eiq(x1−x2)

q0
i

d3q×

×
[∑

n

〈Nf |Jα(x1)|Nn〉〈Nn|Jβ(x2)|Ni〉
En + p0

2 + q0
i − Ei − iε

+

+
∑

n

〈Nf |Jβ(x2)|Nn〉〈Nn|Jα(x1)|Ni〉
En + p0

1 + q0
i − Ei − iε

]
2πδ(Ef + p0

1 + p0
2 − Ei). (129)
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Equation (129) is the exact expression for the matrix element of 0νββ decay in
the second order of the perturbation theory. We will consider major 0+ → 0+

transitions of evenÄeven nuclei. For such transitions the following approximations
are standard:

1. Small neutrino masses can be safely neglected in q0
i . The averaged mo-

mentum of the virtual neutrino is given by the relation q � 1/r, where r is
the average distance between two nucleons in nucleus. Taking into account that
r � 10−13 cm, we have q � 100 MeV. Neutrino masses are smaller than 2.2 eV.
Thus, we have q0

i =
√

q2 + m2
i � q.

2. Long-wave approximation. We have pkxk � pkR, where R �
1.2A1/3 · 10−13 cm is the radius of nucleus (k = 1, 2). Taking into account
that pk � 1 Mev, we have pkxk 	 1. Thus, e−ip1x1−ip2x2 � 1; i.e., two
electrons are emitted in S states.

3. Closure approximation. Energy of the virtual neutrino is much larger
than the excitation energy (En − Ei). Thus, we can change the energy of the
intermediate states En by average energy E. In this (closure) approximation we
have

〈Nf |Jα(x1)|Nn〉〈Nn|Jβ(x2))|Ni〉
En + p0

2 + q0
i − Ei − iε

� 〈Nf |Jα(x1)Jβ(x2))|Ni〉
E + p0

2 + q − Ei − iε
. (130)

4. The impulse approximation for the hadronic charged current Jα(x). Tak-
ing into account the major terms, the hadronic charged current takes the form∗

Jα(x) �
∑

n

δ(x − rn)τn
+[gV (q2)gα0 + gA(q2)σn

i gαi]. (131)

Here gV (q2) and gA(q2) are vector and axial form factors; σi and τi are Pauli
matrices; τ+ = 1/2 (τ1 + iτ2) and index n runs over all nucleons in a nucleus.
We have gV (0) = 1, gA(0) = gA � 1.27.

It is obvious that τn
+ τn

+ = 0. Thus, in the impulse approximation the hadronic
currents satisfy the relation

Jα(x1)Jβ(x2) = Jβ(x2)Jα(x1). (132)

Further, the matrix γαγβ in the leptonic part of the matrix element (129) can be
presented in the form

γαγβ = gαβ +
1
2
(γαγβ − γβγα). (133)

∗The pseudoscalar term in the one-nucleon matrix element of the hadronic charged current
induces a tensor term in the current. From numerical calculations it follows that its contribution to
the matrix element can be signiˇcant (see [47]).
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It follows from (132) that the second term of (133) does not give contribution to
the matrix element. From (131) we have

Jα(x1)Jα(x2) =
∑
n,m

τn
+τm

+ δ(x1 − rn) δ(x2 − rm)(g2
V (q2) − g2

A(q2)σn · σm).

(134)
Neglecting nuclei recoil, we obtain in the laboratory frame

Mi = Mf + p0
2 + p0

1,

where Mi and Mf are masses of the initial and ˇnal nuclei. From this relation
we ˇnd

q + p0
1,2 + E − Mi = q ±

(
p0
1 − p0

2

2

)
+ E − Mi + Mf

2
. (135)

The term

(
p0
1 − p0

2

2

)
is much smaller than all other terms in the right-hand side

of this relation. Neglecting this term, we have

q + p0
1,2 + E − Mi � q + E − Mi + Mf

2
. (136)

Further, taking into account that gV (q2) � 1
1 + q2/0.71 GeV2 and gA(q2) �

1
1 + q2/M2

A

, where MA � 1 GeV2, we can neglect q2-dependence of the form

factors. After the integration in the matrix element (129) over x1 and x2, for the
neutrino propagator we ˇnd the following expression:

1
(2π)3

∫
eiqrnm d3q

q(q + E − 1/2(Mi + Mf))
=

1
4πR

H(rnm, E), (137)

where

H(r, E) =
2R

πr

∞∫
0

sin qr dq

q + E − 1/2(Mi + Mf )
. (138)

Here R is the nuclei radius and rnm = rn − rm.
Taking into account all these relations, from (129) for the matrix element of

0νββ decay we obtain the following expression:

〈f |S2|i〉 = −i

(
GF√

2

)2 1
(2π)3

1√
p0
1p

0
2

mββ g2
A

1
R

ū(p1)(1 + γ5)CūT (p2)×

× M0νδ(p0
1 + p0

2 + Mf − Mi), (139)
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where
mββ =

∑
i

U2
eimi (140)

is the effective Majorana mass and

M0ν = M0ν
GT − 1

g2
A

M0ν
F (141)

is the nuclear matrix element. Here

M0ν
F = 〈Ψf |

∑
n,m

H(rn,m, E)τn
+τm

+ |Ψi〉 (142)

is the Fermi matrix element and

M0ν
GT = 〈Ψf |

∑
n,m

H(rn,m, E)τn
+τm

+ σn · σm)|Ψi〉 (143)

is the GamowÄTeller matrix element. In (142) and (143), |Ψi,f 〉 are wave func-
tions of the initial and ˇnal nuclei.

From (139) we conclude that matrix element of 0νββ decay is a product of
the effective Majorana mass mββ, the electron matrix element and the nuclear
matrix element which includes neutrino propagator (neutrino potential). Taking
into account that E − 1/2(Mi + Mf ) is much smaller than q̄, for the neutrino
propagator we obtain the following approximate relation:

H(r) � 2R

π

∞∫
0

sin qr

qr
dq =

R

r
. (144)

Using the standard rules, from (139) we can easily obtain the decay rate of the
0νββ decay. The electron part of the decay probability is given by the trace

Tr(1 + γ5)(γ · p2 − me)(1 − γ5)(γ · p1 + me) = 8p1p1. (145)

Taking into account the ˇnal-state electromagnetic interaction of the electrons and
nucleus for the decay rate of the 0νββ decay we ˇnd the following expression:

dΓ0ν = |mββ |2|M0ν |2 1
(2π)5

G4
F

1
R2

g4
A(E1E2 − p1p2 cos θ)×

× F (E1, (Z + 2))F (E2, (Z + 2))p1p2 sin θ dθ dE2, (146)

where E1,2 ≡ p0
1,2 is electron total energy (E2 = Mi − Mf − E1), θ is the angle

between electron momenta p1 and p2, and

F (Z) � 2πη

1 − e−2πη
(147)

is the Fermi function (η = Zα(me/p)).
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From (146) it follows that for the ultrarelativistic electrons θ-dependence of
the decay rate is given by the factor (1 − cos θ). Thus, ultrarelativistic electrons
cannot be emitted in the same direction. This is connected with the fact that the
helicity of the high-energy electrons, produced in the weak interaction, is equal
to −1. If electrons are emitted in the same direction, the projection of their total
angular momentum onto the direction of the momentum is equal to −1. It is
obvious that such electrons cannot be produced in O+ → O+ transition.

From expression (146) for the total decay rate we obtain the following ex-
pression:

Γ0ν =
1

T 0ν
1/2

= |mββ|2|M0ν |2G0ν(Q, Z), (148)

where∗

G0ν(Q, Z) =
1

2(2π)5
G4

F

1
R2

g4
A

Q∫
0

dT1

π∫
0

sin θ dθ(E1E2 − p1p2 cos θ)p1p2×

× F (E1, (Z + 2))F (E2, (Z + 2)). (149)

Here T1 = E1−me, Q = Mi−Mf −2me is the total released kinetic energy and
T 0ν

1/2 is the half-life of the 0νββ decay. In Table 1 we present numerical values

of G0ν(Q, Z) for some nuclei [48].

Table 1. The values of the factor G0ν(Q, Z) for some nuclei

Nucleus G0ν(Q,Z), 10−25 y−1 · eV−2

76Ge 0.30
100Mo 2.19
130Te 2.12
136Xe 2.26

The total rate of the 0νββ decay is the product of three factors:
1. The modulus squared of the effective Majorana mass.
2. Square of nuclear matrix element.
3. The known factor G0ν(Q, Z).
We have considered in some detail neutrinoless double β decay of nuclei

(A, Z) → (A, Z + 2) + e− + e−. (150)

There could be other second order in the Fermi constant GF processes with the
virtual Majorana neutrinos in which the total lepton number is changed by two.

∗An additional factor 1/2 is due to the fact that in the ˇnal state we have two identical electrons.
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The examples are the decays

K− → π+ + μ− + e− (151)

and

K+ → π− + μ+ + μ+, (152)

the process

μ− + (A, Z) → (A, Z − 2) + e+, (153)

and others.
The leptonic part of the operator which gives contribution to matrix elements

of (150), (151) and other similar processes is given by

∑
i

T (l̄L(x1)γαUli 〈0|T (νiL(x1)νT
iL(x2))|0〉Ul′iγ

T
β l̄′TL (x2)), l, l′ = e, μ, (154)

where Majorana neutrino propagator is given by the expression (116). Taking into
account that m2

i 	 p2, we can neglect m2
i in the denominator of the propagator.

Thus, the matrix element of a process in which a lepton pair (ll′) is produced, is
proportional to

mll′ =
∑

i

Uli Ul′i mi. (155)

Analogously, matrix elements of the processes (152), (153) and other similar
processes are proportional to m∗

ll′ .
The sensitivities to the parameter |mll′ | of the experiments on the search

for the processes (151)Ä(153) and other similar processes are much worse than
the sensitivity of the experiments on the search for 0νββ decay to the parame-
ter |mββ|.

For example, in the experiment [52] on the search for the process μ−Ti →
e+Ca the following upper bound was obtained:

Γ(μ−Ti → e+Ca)
Γ(μ−Ti → all)

� 1.7 · 10−12. (156)

For the probability of the decay K+ → π−μ+μ+, the following upper bound was
reached [53]:

Γ(K+ → π−μ+μ+)
Γ(K+ → all)

� 3 · 10−9. (157)

From these data the following upper bounds can be found (see [7]):

|mμe| � 82 MeV, |mμμ| � 4 · 104 MeV. (158)
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These values must be compared with the sensitivity of the experiments on the
search for 0νββ decay to the effective Majorana mass (in today's experiments
|mββ | � 0.2−1.3 eV (see below)).

The effective Majorana mass is determined by neutrino masses and neutrino
mixing angles. Information about the neutrino mixing angles θik and neutrino
mass-squared differences Δm2

ik was obtained from the data of the neutrino oscil-
lation experiments. Taking into account these data, we will consider now possible
values of the effective Majorana mass.

6. EFFECTIVE MAJORANA MASS

From neutrino oscillation data it follows that one mass-squared difference
(solar) is much smaller than the other one (atmospheric). For three massive
neutrinos two types of neutrino mass spectra are possible in this case:

1. Normal spectrum

m1 < m2 < m3, Δm2
12 	 Δm2

23. (159)

2. Inverted spectrum∗

m3 < m1 < m2, Δm2
12 	 |Δm2

13|. (160)

In the case of the normal spectrum the neutrino masses m2,3 are connected with
the lightest mass m1 and two neutrino mass-squared differences Δm2

12 and Δm2
23

by the following relations:

m2 =
√

m2
1 + Δm2

12, m3 =
√

m2
1 + Δm2

12 + Δm2
23. (161)

In the case of the inverted spectrum we have

m1 =
√

m2
3 + |Δm2

13|, m2 =
√

m2
3 + |Δm2

13| + Δm2
12. (162)

It is obvious that effective Majorana mass is determined not only by the lightest
neutrino mass and neutrino mass-squared differences, but also by the character of
the neutrino mass spectrum.

∗In order to have the same notation Δm2
12 for the solar-KamLAND neutrino mass-squared

difference and to determine this quantity as a positive one, the neutrino masses are usually labeled
differently in the cases of the normal and inverted neutrino mass spectra. In the case of the normal
spectrum Δm2

23 > 0 and in the case of the inverted spectrum Δm2
13 < 0. Thus, with such a notation

the character of the neutrino mass spectrum is determined by the sign of the larger (atmospheric)
neutrino mass-squared difference. It is clear, however, that the sign of the atmospheric mass-squared
difference has no physical meaning: it is a convention based on the labeling of the neutrino masses
and determination of the neutrino mass-squared difference (Δm2

ik = m2
k − m2

i ). In both cases of
the neutrino mass spectrum for the mixing angles the same notations can be used.
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Usually, the following three typical neutrino mass spectra are considered∗:
1. Hierarchy of the neutrino masses

m1 	 m2 	 m3. (163)

2. Inverted hierarchy of the neutrino masses

m3 	 m1 < m2. (164)

3. Quasi-degenerate neutrino mass spectrum

m1 � m2 � m3, m1(m3) �
√

Δm2
23

(√
|Δm2

13|
)

. (165)

We will discuss now the possible values of the effective Majorana mass in
the case of these three neutrino mass spectra.

1. Hierarchy of the Neutrino Masses. In this case we have

m1 	
√

Δm2
12, m2 �

√
Δm2

12, m3 �
√

Δm2
23. (166)

Thus, in the case of neutrino mass hierarchy the neutrino masses m2 and m3

are determined by the neutrino mass-squared differences Δm2
12 and Δm2

23, cor-
respondingly, and the lightest mass is very small. Neglecting the contribution of
m1 to the effective Majorana mass and using the standard parametrization of the
neutrino mixing matrix, we ˇnd

|mββ| �
∣∣∣∣sin2 θ12

√
Δm2

12 + e2i α sin2 θ13

√
Δm2

23

∣∣∣∣ . (167)

Here α is a Majorana phase difference.
The ˇrst term in Eq. (167) is small because of the smallness of Δm2

12. The
contribution of the ®large¯ Δm2

23 to |mββ| is suppressed by the small factor
sin2 θ13. Using the values (107) and (108) and the CHOOZ bound (109), we
have

sin2 θ12

√
Δm2

12 � 2.8 · 10−3 eV, sin2 θ13

√
Δm2

23 � 2.5 · 10−3 eV. (168)

Thus, if the value of the parameter sin2 θ13 is close to the CHOOZ bound, the
ˇrst term and the modulus of the second term of (167) are approximately equal

∗Let us notice that these three neutrino mass spectra correspond to different mechanisms of
neutrino mass generation. Masses of quarks and charged leptons satisfy hierarchy of the type (163).
Hierarchy of neutrino masses is a typical feature of GUT models (like SO(10)) in which quarks and
leptons are uniˇed. Inverted spectrum and quasi-degenerate spectrum require speciˇc symmetries of
the neutrino mass matrix.



NEUTRINOLESS DOUBLE BETA DECAY 1317

and at α � π/2 the terms in the expression (167) practically cancel each other.
In this case the Majorana mass |mββ | will be close to zero.

Even without this possible cancelation the effective Majorana mass in the
case of the neutrino mass hierarchy is very small. In fact, from (167) and (168)
we have the following upper bound:

|mββ | �
(

sin2 θ12

√
Δm2

12 + sin2 θ13

√
Δm2

23

)
� 5.3 · 10−3 eV. (169)

This bound is signiˇcantly smaller than the expected sensitivity of the future
experiments on the search for 0νββ decay (see later).

2. Inverted Hierarchy of the Neutrino Masses. For the neutrino masses we
have in this case

m3 	
√
|Δm2

13|, m1 �
√
|Δm2

13|, m2 �
√
|Δm2

13|
(

1 +
Δm2

12

2 |Δm2
13|

)
. (170)

In the expression for the effective Majorana mass |mββ| the lightest mass m3 is
multiplied by the small parameter sin2 θ13. Neglecting the contribution of this

term and also neglecting the small term
Δm2

12

2|Δm2
13|

in (170), we ˇnd

|mββ| �
√
|Δm2

13|(1 − sin2 2θ12 sin2 α)1/2, (171)

where α is the difference of the Majorana phases of the elements Ue2 and Ue1.
The phase difference α is the only unknown parameter in the expression for
|mββ | in the case of the inverted hierarchy. From (171) we ˇnd

cos 2 θ12

√
|Δm2

13| � |mββ| �
√
|Δm2

13|. (172)

The upper and lower bounds of the inequality (172) correspond to the CP in-
variance in the lepton sector. In fact, the elements of the ˇrst row of the neutrino
mixing matrix can be written in the form Uei = |Uei| eiαi . In the case of the CP
invariance, the elements of the neutrino mixing matrix satisfy the condition (81).
From this condition we have

e2iαi = ηi, (173)

where ηi = ±i is the CP parity of the Majorana neutrino with mass mi. For the
phase difference α = α2 − α1 we have

e2iα = η2η
∗
1 . (174)

If η2 = η1, we obtain α = 0, π (the upper bound in the inequality (172)). If
η2 = −η1, we have α = ±π/2 (the lower bound in the inequality (172)).
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From (107) and (108) we ˇnd the following range of the possible values of
the effective Majorana mass:

1.8 · 10−2 � |mββ | � 4.9 · 10−2 eV. (175)

Thus, in the case of the inverted hierarchy of the neutrino masses the lower bound
of the effective Majorana mass is different from zero.

The anticipated sensitivities to the effective Majorana mass of the next gener-
ation of the experiments on the search for the 0νββ decay are in the range (175)
(see below). Thus, the future 0νββ-decay experiments will probe the Majorana
nature of neutrinos with deˇnite masses in the case of the inverted hierarchy of
the neutrino masses.

3. Quasi-Degenerate Neutrino Mass Spectrum. Neglecting the small con-
tribution of sin2 θ13, for the effective Majorana mass we obtain in the case of the
quasi-degenerate neutrino mass spectrum the following expression:

|mββ | � mmin (1 − sin2 2θ12 sin2 α)1/2, (176)

where mmin is the lightest neutrino mass and α is the Majorana phase difference.
Thus, |mββ | depends in this case on two unknown parameters: mmin and α.
From (176) we obtain the following range for the effective Majorana mass:

cos 2θ12mmin � |mββ| � mmin. (177)

If 0νββ decay is observed and the effective Majorana mass turns out to be
relatively large (|mββ | �

√
Δm2

23|), it would be an evidence that neutrinos are
Majorana particles and the spectrum of their mass is quasi-degenerate. In this
case we could conclude that

|mββ | � mmin � 2.8 |mββ|. (178)

Information about the lightest neutrino mass can be obtained from experi-
ments on the measurement of the end-point part of the β spectrum of tritium.
From existing data of the Mainz [49] and Troitsk [50] tritium experiments the
upper bound was found:

mmin < 2.2 eV. (179)

The sensitivity of the future KATRIN experiment [51] is expected to be

mmin � 0.2 eV. (180)

We have considered three neutrino mass spectra with special values of the lightest
neutrino mass mmin. In the ˇgure the effective Majorana mass for the normal and
inverted neutrino mass spectra as a function of mmin is presented. Uncertainties
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The effective Majorana mass for the normal and inverted neutrino mass spectra as a
function of minimal neutrino mass

of the parameters Δm2
12, Δm2

23 and tan2 θ12 and possible values of the Majorana
phase difference α are taken into account in the ˇgure.

In conclusion let us notice that if in the KATRIN (or other) experiments the
neutrino mass is measured and in the 0νββ-decay experiments, sensitive to the
effective Majorana mass in the range (177), a positive signal is not observed, it
would be an evidence that neutrinos with deˇnite masses are Dirac particles.

7. NUCLEAR MATRIX ELEMENTS OF 0νββ DECAY

The effective Majorana mass |mββ | is not directly measurable quantity. From
the measurement of the half-life of the 0νββ decay only the product of the
effective Majorana mass and the nuclear matrix element can be obtained. In
order to determine the effective Majorana mass, we need to know nuclear matrix
elements of the 0νββ decay (NME).

The calculation of NME is a complicated nuclear many-body problem. Two
main approaches are used: Nuclear Shell Model (NSM) [54] and Quasiparticle
Random Phase Approximation (QRPA) [55,56].

The Nuclear Shell Model is attractive from physical point of view: there are
many spectroscopic data in favor of shell structure of nuclei (spins and parities
of nuclei, binding energies of magic nuclei, etc.). It is based on the assumption
that there exists spherically symmetrical averaged nucleon ˇeld (usually oscillator
potential) and one-particle states in this ˇeld are used as a basis for the description
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of valence nucleons. An effective interaction between nucleons is taken into
account in the Hamiltonian. Because of computational difˇculties, rather a limited
number of one-particle states can be used in the NSM calculations. However, all
possible distributions of valence nucleons over these states are taken into account.

The neutrinoless double β decay of a nucleus is due to transition of two
neutrons into two protons with the emission of two electrons. The operator of
the transition of two neutrons into two protons can be presented in the form of
the sum of products of an operator of the absorption of two neutrons in a state
with total momentum J and parity π and an operator of creation of two protons
with the same momentum and parity:

M =
∑

(P Jπ

)†P Jπ

. (181)

It was found [57] that the dominant contribution to the NME comes from the
0+ state of the neutronÄneutron pair. Sizable contribution is given also by the
2+ state. It is, however, smaller and has opposite sign. The contributions of
other states are negligibly small. The dominance of the contribution of the 0+

state corresponds to the pairing content of the initial and ˇnal wave functions.
Let us notice that if seniority of the initial and ˇnal wave functions is equal to
zero, NME would be maximal.

Further, it was found [58] that the major contribution to NME comes from
pairs of neutrons at the distance r � 2−3 fm. In order to take into account strong
repulsion of nucleons at small distances (� 1 fm), an additional r-dependence
(so-called short-range correlations) is introduced in the expression for the NME.

This additional r-dependence is parameterized by Jastrow-type function [59]

f(r) = 1 − e−ar2
(1 − br2), a = 1.1 fm−2, b = 0.68 fm−2. (182)

Recently it was proposed to take into account the short-range correlations by a
Unitary Correlation Operator Method (UCOM) [60]. In this method the corre-
lated wave function is obtained by a unitary transformation of uncorrelated wave
function.

In Table 2 we present the NME values of nuclear matrix elements of the
0νββ decay M0ν which were calculated with Jastrow-like and UCOM short-
range correlations.

Notice that except double-magic nucleus 48Ca NSM nuclear matrix elements
of the 0νββ decay for all considered nuclei are practically the same (they differ
by not more than ∼ 20%).

There are two groups which are performing the QRPA calculation of NME
at present: Téubingen group [61Ä63] and Jyvéaskyléa group [64Ä67]. The QRPA
method allows one to include pairing correlations in nuclear wave functions
through the introduction of quasiparticles (particleÄhole pairs). Two parameters
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Table 2. The NSM values of nuclear matrix elements of the 0νββ decay [58]

Nuclei transition M0ν (UCOM) M0ν (Jastrow)

48Ca → 48Ti 0.85 0.64
76Ge → 76Se 2.81 2.30
82Se → 82Kr 2.64 2.18
124Sn → 124Te 2.62 2.10
128Te → 128Te 2.88 2.34
130Te → 130Xe 2.65 2.12
136Xe → 136Ba 2.19 1.76

gpp and gph of the model characterize particleÄparticle and particleÄhole inter-
actions. The constant gph is obtained from the ˇt of the energy of the giant
GamowÄTeller resonance. The Téubingen group determines the value of the con-
stant gpp from the measured half-life of the 2νββ decay of the corresponding
nucleus. The Jyvéaskyléa group determines the constant gpp from data on the β
decay of nuclei which are close to the nuclei of the interest for the 0νββ decay.
They also use the value of the constant gpp, obtained from the half-life of the
2νββ decay.

In the QRPA approach the mean nuclear ˇeld is described by the WoodsÄ
Saxon potential. The number of basic one-particle states which can be used in
the QRPA is much larger than in the NSM. This is an important advantage of the
QRPA approach. However, only limited excitations can be taken into account.

Like in the NSM case, in the QRPA approach the dominant contribution to
NME gives 0+ state of neutron pairs. However, in the QRPA not only 2+ state
but also other states give signiˇcant contribution.

In both approaches, major contribution to NME comes from neutron pairs at
a distance smaller than 2Ä3 fm. The short-range correlations, taking into account
nucleon repulsion at short distances, are introduced in the QRPA expression
for NME via the Jastrow-type function (182) and through Unitary Correlation
Operator Method procedure. Recently [63] the short-range correlations were cal-
culated directly from different nucleonÄnucleon potentials by the coupled cluster
method (CCM) [68].

In Table 2 the results of the calculations of the QRPA nuclear matrix elements
by the Téubingen group are presented. The short-range correlations were calculated
by the CCM method. For comparison in Table 2 the results of the calculation of
NME with the Jastrow-type short-range correlations are also presented.

The uncertainties of NME in Table 3 are mainly due to different values of
the axial constant gA which are used in the calculations. Upper bounds of NME
correspond to the free nucleon value gA = 1.25 and lower bounds correspond to
quenched in the nuclear matter value gA = 1.
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Table 3. The values of QRPA nuclear matrix elements of the 0νββ decay with CCM
and Jastrow short-range correlations [63]

Nucleus M0ν (Jastrow) M0ν (CCM)
76Ge 3.33Ä4.68 4.07Ä6.64
82Se 2.82Ä4.17 3.53Ä5.92
96Zr 1.01Ä1.34 1.43Ä2.12
100Mo 2.22Ä3.53 2.94Ä5.56
100Mo 2.22Ä3.53 2.94Ä5.56
116Cd 1.83Ä2.93 2.30Ä4.14
128Te 2.46Ä3.77 3.21Ä5.65
130Te 2.27Ä3.38 2.92Ä5.04
136Xe 1.17Ä2.22 1.57Ä3.24

Table 4. The values of NME calculated in the framework of QRPA by the Jyvéaskyléa
group [64]

Nucleus gpp gA M0ν (Jastrow) M0ν (UCOM)
76Ge 1.02 1.00 5.08 6.56

1.06 1.25 4.03 5.36
82Se 0.96 1.00 3.54 4.60

1.00 1.25 2.78 3.72
96Zr 1.06 1.00 3.13 4.31

1.11 1.25 2.07 3.12
100Mo 1.07 1.00 3.53 4.85

1.00 1.25 2.74 3.93
116Cd 0.82(β) 1.25 3.98 4.93

0.97 1.00 3.68 4.68
1.01 1.25 3.03 3.94

128Te 0.86(β) 1.25 4.07 5.51
0.89 1.00 4.23 5.84
0.92 1.25 3.38 4.79

130Te 0.84 1.00 4.06 5.44
0.90 1.25 2.99 4.22

136Xe 0.74 1.00 2.86 3.72
0.83 1.25 2.05 2.80

The results of the calculations of nuclear matrix elements of the 0νββ decay
performed by the Jyvéaskyléa group are presented in Table 4. The short-range
correlations were taken into account by Jastrow and UCOM procedures.

It is difˇcult to expect that outcome of the many-body nuclear calculations,
based on different assumptions, will be the same. However, from the results
presented in Tables 2Ä4 we can conclude the following:
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1. The values of the nuclear matrix elements of the 0νββ decay of differ-
ent nuclei obtained in the latest QRPA and NSM calculations are qualitatively
compatible.

2. NSM nuclear matrix elements of 76Ge, 82Se and 130Te are by a factor of
(1.5Ä2) lower than QRPA nuclear matrix elements.

3. There is no doubt that traditional methods of the calculation of NME will
be improved and, apparently, new methods will appear. However, it will be very
important to ˇnd a way to test the calculations.

If neutrinoless double β decay is discovered and half-lives of different nuclei
are measured, from the ratios of measured half-lives in this case it will be possible
to test different models of the calculation of NME [69]. If, for example, half-lives
of the 0νββ decay of 76Ge and 130Te are measured, the ratio of half-lives will
be practically equal to the inverse ratio of the corresponding phase-space factors
in the case of NSM nuclear matrix elements and could be signiˇcantly different
from this ratio in the case of QRPA nuclear matrix elements.

8. EXPERIMENTS ON THE SEARCH FOR 0νββ DECAY

At present there exist data of many experiments on the search for neutri-
noless double β decay. The most stringent lower bound on the half-lives of
the 0νββ decay of different nuclei was obtained in the HeidelbergÄMoscow [1]
and IGEX [2] experiments, and in the recent CUORICINO [3] and NEMO [70]
experiments.

In the HeidelbergÄMoscow and IGEX experiments, two electrons with total
energy Qββ = 2039 keV which are produced in the 0+ → 0+ transition 76Ge →
76Se + e− + e− were searched for. In the HeidelbergÄMoscow experiment the
source (and detector) consists of ˇve crystals of 86% enriched 76Ge with total
mass 10.96 kg. In the IGEX experiment ∼ 7 kg of enriched 76Ge was used.
Low background level (∼ 0.06 counts/(keV · kg · y)) and high energy resolution
(∼ 3 keV) were reached in the germanium experiments.

For the half-life of 76Ge in the HeidelbergÄMoscow experiment the following
lower bound was obtained [1]:

T 0ν
1/2(

76Ge) > 1.9 · 1025 y. (183)

From this result the following upper bound on the effective Majorana mass was
inferred: |mββ| < 0.35 eV.

In the IGEX experiment it was found [2] that

T 0ν
1/2(

76Ge) > 1.57 · 1025 y. (184)

From these results, assuming different NME, the bound |mββ| < 0.33−1.35 eV
was found.
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In the cryogenic experiment CUORICINO [3] the search for the 0νββ decay
of 130Te was performed. An array of 62 TeO2 crystals with a total active mass of
40.7 kg was cooled to 8Ä10 mK in a dilution refrigerator. Since the heat capacity
is proportional to T 3, an increase of temperature due to tiny release of energy in
the 0νββ decay can be recorded by special thermometers.

No evidence for the 0νββ decay of 130Te was obtained in the CUORICINO
experiment. For the half-life of 130Te a limit

T 0ν
1/2(

130Te) > 3.0 · 1024 y (185)

was obtained [3]. From this limit, using the values of the NME, calculated in the
latest papers, the following upper bound was inferred: |mββ| < 0.19−0.68 eV.

In the NEMO3 experiment [70] the cylindrical source was divided into sectors
with enriched 100Mo (6914 g), 82Se (932 g), 116Cd (405 g), 130Te (454 g), 150Nd
(34 g), 96Zr (94 g) and 48Ca (7 g). For the detecting of the two electrons drift
cells and plastic scintillator were used. No 0νββ decay was observed. In Table 5
the results of the NEMO3 experiment are presented.

Table 5. Lower bounds of the half-lives of the 0νββ decay of different nuclei, obtained
in the NEMO3 experiment [70]

Nucleus T 0ν
1/2 (90% CL), y |mββ|, eV

100Mo � 5.8 · 1023 � 0.6−1.3
82Se � 2.1 · 1023 � 1.2−2.2
96Zr � 8.6 · 1021 � 7.4−20.1
48Ca � 1.3 · 1022 � 29.7
150Nd � 1.8 · 1022 � 4.0−6.3

Several new experiments on the search for the 0νββ decay are at preparation
at present. In these new experiments it is planned to reach the sensitivity |mββ| �
a few 10−2 eV, corresponding to the inverted hierarchy of the neutrino mass
spectrum.

In the future GERDA experiment [71], array of enriched Ge crystals will
be cooled and shielded by liquid argon (or nitrogen) of very high radiopurity.
In Phase I of the GERDA experiment, 5 detectors from the HeidelbergÄMoscow
experiment (active mass 11.9 kg) and 3 detectors from the IGEX experiment
(active mass 6 kg) will be used. The expected background at this phase of the
experiment will be ∼ 10−2 counts/(kg · keV · y). The expected sensitivity will be
T1/2(76Ge) � 3 · 1025 y at 90% CL. Nonobservation of the neutrinoless double
β decay at this phase of the experiment would allow one to obtain the upper
bound |mββ| � 0.27 eV (with QRPA NME).
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During Phase II of the GERDA experiment, additional 22 kg of the enriched
Ge will be used (total active mass of the enriched Ge will be about 40 kg). The
expected background is 10−3 counts/(kg · keV · y). The sensitivity T1/2(76Ge) �
1.4 · 1026 y (at 90% CL) is planned to be reached. This sensitivity corre-
sponds to the sensitivity to the effective Majorana mass |mββ | � 0.11 eV
(QRPA NME).

If the goals of Phase I and Phase II are achieved and the level of the
background 10−4 counts/(kg · keV · y) is reached, it is planned (in cooperation
with the Majorana collaboration) to build ∼ 1 t germanium detector with the aim
to investigate the region of the inverted neutrino mass hierarchy.

As is well known, the group of participants of the HeidelbergÄMoscow ex-
periment claimed that it found an evidence for neutrinoless double β decay of
76Ge [72]. For the half-life of the decay the authors obtained the following
3σ range: T1/2(76Ge) = (1.30−3.55) · 1025 y. These values correspond to the
following range for the effective Majorana mass: |mββ | = 0.24−0.58 eV (with
NME calculated in [73]). There is no detailed analysis of the systematic errors
in [72] (see [74]). The only way to conˇrm or refute the claim is to perform more
sensitive than the HeidelbergÄMoscow experiment (preferably 76Ge experiment
in order to avoid the NME problem). One of the aims of the GERDA experiment
is to check the claim made in [72].

In the proposed Majorana experiment [75], an array of enriched Ge crystals
will be installed inside of high-purity electroformed copper cryostat. It is expected
that the background in the Majorana experiment will be a factor of 150 lower than
in the HeidelbergÄMoscow and IGEX experiments. Staged approach based on
the 60 kg enriched Ge array (60/120/180 kg) is planned. The expected sensitivity
at the ˇrst stage of the experiment (T1/2(76Ge) � 5.5 · 1026 y) will allow one to
check the claim made in the papers [72].

In the cryogenic CUORE experiment [76], an array of 19 towers made from
5 × 5 × 5 cm TeO2 crystals is used as a source (detector). The total number of
the crystals in the experiment is equal to 988. The total mass of the crystals is
741 kg of TeO2 (204 kg of 130Te). In the CUORICINO experiment one similar
tower of a mass 40.7 kg was used.

The expected background in the CUORE experiment is
0.01 counts/(kg · keV · y). The expected sensitivity to the half-life is T1/2(130Te) �
2.5 · 1026 y. With the present-day values of NME, the following sensitivity to the
effective Majorana mass will be achieved: |mββ| � (4.7−5.3) · 10−2 eV.

In the future EXO experiment [77], the 0νββ decay of 136Xe will be sought
for. Because there is no need to grow crystals and procedure of enrichment is
relatively simple, Xe is ideal for a large-scale (one ton or more) neutrinoless
double β-decay experiment. Ion 136Ba++, produced in the decay 136Xe →
136Ba++ + e− + e−, by the capture of an electron can be transferred to the ion
136Ba+ which is stable in Xe. The EXO collaboration plans to identify 136Ba+
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ion by optical pumping with lasers. Single ion can be detected by this technique
(via photon rate 107 s−1). When the program of the 136Ba+ tagging will be
realized, the background in the experiment on the search for the 0νββ decay will
be drastically reduced.

At present the EXO collaboration is constructing 200 kg liquid xenon TPC
with Xe enriched to 80% in 136Xe. No 136Ba+ tagging will be done at this stage.
In this experiment the sensitivity |mββ | � 1.5 · 10−1 eV is anticipated.

We have discussed experiments on the search for neutrinoless double β
decay which will be done in the coming years. There are several other exper-
iments which are in R&D stage: Super-NEMO (150Nd or 82Se) [78], MOON
(100Mo) [79], SNO ++ (150Nd) [80], COBRA (116Cd, 130Te) [81], CANDLES
(48Nd) [82], DCBA (150Nd) [83], CAMEO (116Cd) [84], XMASS (136Xe) [85],
and others.

CONCLUSION

The observation of the neutrino oscillations in experiments with atmospheric,
solar, reactor, and accelerator neutrinos proves that neutrino masses are different
from zero and that the states of 	avor neutrinos νe, νμ, ντ are mixtures of states
of neutrinos with different masses. There are two general possibilities for neu-
trinos with deˇnite masses: they can be 4-component Dirac particles, possessing
conserved total lepton number which distinguishes neutrinos and antineutrinos,
or purely neutral 2-component Majorana particles with identical neutrinos and
antineutrinos.

It will be extremely important for the further development of the theory of
the neutrino masses and mixing to answer the fundamental question: are neutrinos
with deˇnite masses Dirac or Majorana particles?

Neutrino masses are many orders of magnitude smaller than masses of their
family partners, leptons and quarks. This fact tell us that neutrino masses and
masses of leptons and quarks are of different origin. The most natural possibility
of the explanation of the smallness of the neutrino masses gives us the seesaw
mechanism of the neutrino mass generation. This beyond-the-Standard-Model
mechanism connects smallness of neutrino masses with the violation of the total
lepton number at a large scale and Majorana nature of neutrino masses. If it is
established that neutrinos with deˇnite masses are Majorana particles, it will be a
strong argument in favor of the seesaw origin of neutrino masses.

Investigation of the neutrinoless double β decay of nuclei is the only practical
way which could allow one to prove that neutrinos are Majorana particles. This
is simply connected with the fact that there are a huge number of parent nuclei
in a source. However, even if neutrinos are Majorana particles, the probability of
the 0νββ decay is extremely small. There are two reasons for that:
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• The 0νββ decay is the second order in the Fermi constant process.
• The 0νββ decay is possible due to neutrino helicity 	ip. In the case of

neutrino mixing this means that the matrix element of the process is proportional
to effective Majorana mass mββ =

∑
i

U2
eimi. Smallness of neutrino masses is

additional suppression factor in the decay probability.
Experiments on the measurement of the half-lives of such a rare process

as neutrinoless double β decay with severe requirements on background and
energy resolution are extremely difˇcult. A big progress was achieved. However,
future experiments with about one ton detectors, which will allow one to reach
the region of values of the effective Majorana mass, which is predicted from
neutrino oscillation data in the case of the inverted mass hierarchy, is deˇnitely
a challenge. Taking into account importance of the problem of the nature of
massive neutrinos, there is no doubt that goals of future experiments will be
achieved.

In this review we considered 0νββ decay, driven by the left-handed SM weak
interaction and Majorana neutrino masses. If total lepton number is not conserved
and neutrinos with deˇnite masses are Majorana particles, such a mechanism of
the 0νββ decay obviously must exist. In the literature many other possible mech-
anisms of the 0νββ decay were considered (for references see, for example, [8]).
We shortly discuss here a mechanism due to the exchange of a heavy SUSY neu-
tralino. Let us assume that there exist an R parity and a lepton-number-violating
interaction, which induces the transition d → u + ẽ (ẽ is the selectron). In com-
bination with the standard SUSY interaction, which induces transition ẽ → e + χ
(χ is the neutralino), these two interactions in the case of the virtual neutralino
provide the 0νββ transition n + n → p + p + e + e. If the constants of the
SUSY interactions are of the order of the electroweak constant g and if masses
of SUSY particles are characterized by a scale Λ, in this case a contribution of
these interactions to the matrix element of the 0νββ decay is proportional to

MSUSY ∼ G2
F

m4
W

Λ5
. (186)

This contribution must be compared with the contribution to the matrix element
of the 0νββ decay of the standard small Majorana neutrino mass mechanism

M0 ∼ G2
F

|mββ |
〈q2〉 . (187)

Taking into account that |mββ| � 1 eV and 〈q2〉 � 100 MeV2, we come to
the conclusion that for Λ � 1 TeV MSUSY can be comparable with M0 if
a hypothetical SUSY interaction, which does not conserve R parity and the
lepton number, is characterized by the electroweak constant g (for more detail,
see [86]).
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Appendix

ETTORE MAJORANA

Great Italian physicist Ettore Majorana was born in Catania (Scicily, Italy)
on August 5, 1906. His father was an engineer, specialist in telecommunication.
There were ˇve children in the family∗.

In 1921 the family moved to Rome. In 1923 E. Majorana ˇnished High
School and entered the Engineer Faculty of Rome University.

Among his fellow-students and friends were E. Segre and E. Amaldi. In 1927
Segre and later Amaldi transferred to the Physics Faculty and started to work with
E. Fermi who was appointed in 1926 as a Professor of theoretical physics at Rome
University.

E.Majorana was famous at the Engineer Faculty for his extraordinary ability
of solving difˇcult mathematical problems. E. Segre convinced E. Majorana to
meet and to speak with Fermi. At that time Fermi was developing the statistical
model which is known as ThomasÄFermi model. He explained Majorana the
model and showed him the table with numerical values of the screening potential
which he calculated numerically.

Next morning Majorana returned back to the Institute of Physics with his
own table of values of the potential. He transformed the second-order nonlin-
ear ThomasÄFermi equation into the Riccati equation and solved it numerically.
Majorana and Fermi results coincided.

A few days later E. Majorana became student of the Physics Faculty. He im-
pressed everybody by his lively mind and broad interests. He was a very
critical person. For his criticism he was called in the Fermi group ®Great
Inquisitor¯.

In 1929 Majorana received diploma. His theses were devoted to the inves-
tigation of the structure of nuclei and to the theory of the alpha decay. His
supervisor was Fermi.

After doctorate Majorana visited the Institute of Physics for a few hours
every day. He spend most of his time in library, working and studying Dirac,
Heisenberg, Pauli, Weil and Wigner papers.

At that time Fermi and his group worked on problems of atomic and molecu-
lar physics. Majorana wrote six papers on the subject. These papers demonstrated
profound Majorana's ability of using symmetry properties of the states. This al-
lowed him to simplify the problem and to choose the suitable approximation
(which is normal now but was not usual at that time). These papers also demon-
strated perfect Majorana's knowledge of experimental data.

∗For a detailed biography of E.Majorana, see E.Amaldi [87].
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In 1932 Majorana received teaching diploma (®libero docente¯). Committee
(Fermi, Lo Surdo, Persico) concluded that ®the candidate has a complete mastery
in theoretical physics¯.

At the end of 1931Äbeginning of 1932 Fermi and his group started to con-
centrate their efforts on nuclear physics.

After the discovery of the neutron by Chadwick (1932) Majorana was one of
the ˇrst who came to an idea that constituents of nuclei are protons and neutrons.
He started to develop the theory of nuclear forces. Majorana proposed the theory
of space exchange forces between p and n (Majorana potential).

Fermi was very interested in the idea and tried to convince Majorana to
publish his results. However, Majorana refused and even did not allow Fermi to
mention them in his talk at a conference in Paris. E. Fermi managed, however,
to persuade Majorana to go to Leipzig where W.Heisenberg was working and to
Copenhagen where N. Bohr was working.

E.Majorana was abroad during seven months, starting from January 1933.
Heisenberg, who worked at that time on the theory of nuclear forces, discussed
with Majorana his paper on nuclear theory. He convinced Majorana to publish it.

After returning from Germany E.Majorana started to come to the Institute of
Physics at via Panisperna rather rarely and after some months did not come at all.

He was at home and became interested in political economy, philosophy, con-
struction of ships, medicine. He even wrote a paper on statistical laws in physics
and social sciences, which was discovered and published after his disappearance.

Meanwhile new talented physicists grew up in Italy (Wick, Racah, Giovanni
Gentili Jr. and others). It was time to create a new chair in theoretical physics.
This chair was created at the University of Palermo and at the beginning of 1937
a competition for the chair was announced.

It was a problem to convince Majorana to take part in the competition.
Finally, Fermi, Amaldi and Segre managed to convince him.

Majorana had no publications during several years. He sent to ®Nuovo
Cimento¯ his most important paper ®Symmetrical Theory of the Electron and the
Positron¯ in which the theory of the Majorana particles was proposed.

After that the following happened. By the request of Senator Giovanni Gentili
E. Majorana for his extraordinary abilities without competition was appointed as
a professor at Napoli University.

In January 1938 E. Majorana came to Napoli. In Napoli he had rather lonely
life. He went to the University only when he had lectures (on quantum mechan-
ics). After lectures he visited Professor Carrelli with whom he became friendly
and discussed different problems in physics. He never mentioned what he was
doing. He discussed his neutrino theory and Carrelli had an impression that
Majorana considered this theory as his most important contribution to physics.

On March 23, 1938 E.Majorana decided to go to Palermo. On March 25
Carrelli received a telegram from Majorana from Palermo. He asked Carrelli
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not to worry about a letter which he would receive. In the letter which came
soon, Majorana wrote that he found his life useless and decided to commit
suicide. Carrelli called Fermi and Fermi called Luciano, Ettore's brother. Luciano
immediately went to Napoli. He understood that on the evening of March 25
Ettore took boat to Napoli. He was seen sleeping in his cabin when the boat was
entering into the Napoli bay. He did not arrive in Napoli. His body was never
found.

During several months there was an investigation conducted by family and
by the police. Vatican tried to ˇnd out whether he entered some monastery. No
traces were found.

I will ˇnish with two citations: ®There are various kinds of scientists in the
world. The second- and third-rate ones do their best but do not get very far.
There are also ˇrst-rate people who make very important discoveries which are
of capital importance for the development of the science. Then there are geniuses
like Galileo and Newton. Ettore Majorana was one of these. Majorana had
greater gifts than anyone else in the world; unfortunately, he lacked one quality
which other men generally have: plain common sense¯ (E. Fermi from Cocconi
memories).

®E.Majorana was very critical to himself and other people. He was per-
manently unhappy with himself. He was a pessimist but had very acute sense
of humor. He was conditioned by complicated and absolutely nontrivial living
rules. . . . E. Majorana was quite rich and I cannot avoid thinking that his life
might not have ˇnished so tragically should he have been obliged to work for
a living. For that reason and also because he did not like to publish the results
of all investigations he had made, Majorana contribution to physics is much less
than it could be¯ (B. Pontecorvo [88]).

In conclusion I will discuss brie	y the content of Majorana's paper ®Sym-
metrical Theory of the Electron and the Positron¯ [89].

E.Majorana was not satisˇed with the then existing theory of electrons and
positrons in which positrons were considered as holes in the Dirac sea of the states
of electrons with negative energies. He wanted to formulate the symmetrical
theory in which there is no notion of states with negative energies.

Let us consider the Dirac equation for a complex ˇeld ψ(x)

(iγα∂α − m) ψ(x) = 0, (188)

where m is the mass of the particles-quanta of the ˇeld. The conjugated ˇeld

ψc(x) = Cψ̄T (x) (189)

(C is the matrix of the charge conjugation) obviously satisˇes the same equation

(iγα∂α − m)ψc(x) = 0. (190)
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Let us present the ˇeld ψ(x) in the form

ψ(x) =
χ1 + iχ2√

2
, (191)

where

χ1(x) =
ψ(x) + ψc(x)√

2
, χ2(x) =

ψ(x) − ψc(x)√
2i

. (192)

It is obvious from (188), (190) and (192) that the ˇelds χ1,2(x) satisfy the Dirac
equations

(iγα∂α − m) χ1,2(x) = 0. (193)

The ˇelds χ1,2(x) satisfy also additional (Majorana) conditions

χc
1,2(x) = χ1,2(x). (194)

Majorana used the representation in which γα are imaginary matrices (Majorana
representation). In this representation ψc(x) = ψ∗(x) and χ1(x) and χ2(x) are
real and imaginary parts of the ˇeld ψ(x).

Majorana built quantum ˇeld theory of the ˇelds χ1,2(x). First of all it is
easy to show that there are no electromagnetic currents for the ˇelds χ1,2(x). In
fact, taking into account (193), we have

jα
i (x) = χ̄i(x)γαχi(x) = −χT

i (x)(γα)T χ̄i(x)T =
= −χ̄i(x)γαχi(x) = 0 (i = 1, 2). (195)

Therefore, χ1,2(x) are ˇelds of particles with electric charge and magnetic mo-
ment equal to zero.

For the operator of the energy and momentum, Majorana obtained the fol-
lowing expressions:

P i
α =

∫ ∑
r

pα(ai
r(p))† ai

r(p) d3p (i = 1, 2), (196)

where operators ai
r(p) and (ai

r(p))† satisfy usual anticommutation relations.
Thus, (ai

r(p))† (ai
r(p)) is the operator of the creation (absorption) of a particle

with momentum p and helicity r. There are no states with negative energies and
quanta of the ˇelds χ1,2(x) are neutral particles (which are identical to their
antiparticles).

In the case of the complex ˇeld ψ(x) =
χ1 + iχ2√

2
the current ji

α(x) =

ψ̄i(x)γαψi(x) is different from zero. After quantization Majorana came to sym-
metrical theory of particles and antiparticles with operators of total momentum
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and total charge given by the following expressions:

Pα =
∫ ∑

r

pα[c†r(p)cr(p) + d†r(p) dr(p)]d3p, (197)

Q = e

∫ ∑
r

[c†r(p)cr(p) − d†r(p) dr(p)]d3p. (198)

Here c†r(p)(cr(p)) is the operator of the creation (absorption) of particle with
charge e, momentum p and helicity r and d†r(p)(dr(p)) is the operator of the
creation (absorption) of antiparticle with charge −e, momentum p and helicity r.
Correspondingly,

|p〉a = c†r(p)|0〉, |p〉ā = d†r(p)|0〉 (199)

are states of particle with charge e, helicity r and mass m and antiparticle with
charge −e, helicity r and the same mass m.

Majorana wrote in the paper [89]: ®A generalization of JordanÄWigner quan-
tization method allows one not only to give symmetrical form to the electronÄ
positron theory but also to construct an essentially new theory for particles without
electric charge (neutrons and hypothetical neutrinos)¯. And further in the paper:
®Although it is perhaps not possible now to ask experiment to choose between
the new theory and that in which the Dirac equations are simply extended to
neutral particles, one should keep in mind that the new theory is introducing in
the unexplored ˇeld a smaller number of hypothetical entities¯.

Soon after the Majorana paper, Racah [90] and Furry [91] proposed the
methods which could allow one to test whether neutrino is a Majorana or Dirac
particle. The so-called Racah chain of reactions

(A, Z) → (A, Z + 1) + e− + ν, ν + (A′, Z ′) → (A′, Z ′ + 1) + e− (200)

is allowed in the case of the Majorana neutrino and is forbidden in the case of the
Dirac neutrino. Of course, in 1937 Racah could not know that even in the case
of the Majorana neutrino the chain (200) is strongly suppressed due to neutrino
helicity.

In 1938 Furry considered neutrinoless double β decay of nuclei

(A, Z) → (A, Z + 2) + e− + e− (201)

induced by the Racah chain with virtual neutrinos.
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