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The neutrinoless double 3 decay of nuclei is reviewed. We discuss neutrino mixing and 3 x 3
Pontecorvo—Maki—Nakagawa-Sakata (PMNS) neutrino mixing matrix. Basic theory of neutrinoless
double 3 decay is presented in some detail. Results of different calculations of nuclear matrix
element are discussed. Experimental situation is considered. Appendix is dedicated to E.Majorana
(brief biography and his paper in which the theory of Majorana particles is given).
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INTRODUCTION

Observation of neutrino oscillations in atmospheric, solar, reactor and ac-
celerator neutrino experiments is one of the most important recent discoveries
in particle physics. Small neutrino masses cannot be naturally explained by the
Standard Higgs mechanism. A new, beyond the Standard Model mechanism of
the generation of neutrino masses is required. The most plausible seesaw mecha-
nism of the neutrino mass generation is based on the assumption of the violation
of the total lepton number at a large scale and Majorana nature of neutrinos with
definite masses.

After it was established that neutrino masses are different from zero, the
problem of the nature of neutrinos with definite masses v; (Dirac or Majorana?)
is the most important one. Investigation of the neutrino oscillations cannot allow
one to answer this fundamental question. The observation of the neutrinoless
double § decay (Ov33 decay) of some even—even nuclei would be a proof that
v; are Majorana particles.

The neutrinoless double 3 decay is extremely rare process. First, this is a
process of the second order of the perturbation theory in the Fermi constant. And,
second, this process is possible due to helicity flip. Thus, the matrix element of
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the process is proportional to the effective Majorana mass mgs =y, UZm; (m;

is the mass of the neutrino ;). Smallness of the neutrino masses is ;n additional
reason for smallness of the probability of the Ov 33 decay.

Very high values for the lower bounds of the half-lives of the 0v 33 decay of
different nuclei were reached in the Heidelberg—Moscow [1], IGEX [2], CUORI-
CINO [3] and other experiments. However, in order to reach the values of the
half-lives of the Ov(3( decay which are expected on the basis of the neutrino
oscillation data in the case if the neutrino mass spectrum follows the inverted
hierarchy, new challenging experiments with a sensitivity to |mgg| about two
orders of magnitude better than the today’s sensitivity are required. It is expected
that such a sensitivity will be reached in several future experiments.

In Sec.1 we will consider in some detail neutrino mixing. In Sec.2 we will
discuss the standard (Type I) seesaw mechanism of the neutrino mass generation.
In Sec.3 we will consider general properties of the neutrino mixing matrix and
obtain its standard parametrization. Then in Sec.4 we will discuss briefly the
present status of neutrino oscillations. In Sec.5 we will present a quite detailed
derivation of the matrix element of the Ov(33 decay. Then in Sec.6 we will
consider effective Majorana mass under different assumptions about neutrino
mass spectrum. In Secs.7 and 8 we will discuss the present-day situation with
the calculations of nuclear matrix elements of the Ov/33 decay and experiments
on the search for neutrinoless double 3 decay. In Appendix we will present a
short biography of E.Majorana and briefly discuss his 1937 paper in which the
theory of the Majorana particles was developed and a possibility of the existence
of such particles was discussed.

For different aspects of the Ov3( decay, see reviews [4—10].

1. NEUTRINO MIXING

We will consider here the neutrinoless double (3 decay under two general
assumptions.

1. The neutrino interaction is the Standard Model electroweak interaction.
The Lagrangian of the standard charged current (CC) interaction has the form

£8%(x) = (z)W(x) + h.c. (1)

4 jcc
2v/2 7%

Here W< (z) is the field of the charged W vector bosons; g is the constant of
the electroweak interaction and

i$9) =2 Y (@) vals(x) + () )

l=e,u,7
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is the sum of the leptonic and hadronic charged current. The hadronic charged
current is given by the expression

Ja(a) = 2(ar(@)va dE™(@) + e(@)ya sE7(@) +iL(2)7a bEX(2)),  ©)

where

AP (@) = Y Vagar, sE™@) = D Vegaw, BX@) = D Vig ar-

q=d,s,b q=d,s,b q=d,s,b
“)

In (4) the matrix V is the 3 x 3 Cabibbo—Kobayashi-Maskawa (CKM) quark
mixing matrix [11,12].

The interaction (1) perfectly describes the data of numerous experiments on
the study of the weak decays, neutrino reactions, etc.

2. The neutrino mixing takes place. Neutrino fields v (x) in the leptonic
current (2) are mixed fields:

3
vi(z) = ZUZiViL($)~ (5)
i1

Here v;(x) is the field of neutrino with mass m; and U is the 3 x 3
Pontecorvo—Maki—Nakagawa—Sakata [13, 14] neutrino mixing matrix.

The hypothesis of the neutrino mixing was confirmed by the observation of
the neutrino oscillations in experiments with the atmospheric, solar, reactor and
accelerator neutrinos. All existing neutrino oscillation data are described if we
assume that the number of massive neutrinos is equal to the established number
of flavor neutrinos (three).

Quarks are charged particles; the quarks and antiquarks have the same masses
and their charges differ in sign. Thus, the quark fields ¢(z) are complex Dirac
fields.

The electric charges of neutrinos are equal to zero. For neutrinos there are
two fundamentally different possibilities.

o If the total lepton number L = L. + L, + L, is conserved, neutrino
fields v;(x) are complex four-component Dirac fields. In this case neutrinos v;
and antineutrinos 7; have the same mass and different lepton numbers (L(v;) =
—L(l?i) =1).

e If there are no conserved lepton numbers, neutrino fields v;(x) are two-
component Majorana fields. In this case v; = 1;.

Investigation of the neutrino oscillations does not allow one to distinguish
between these two possibilities [15,16]. In order to reveal the Majorana nature
of v; it is necessary to observe processes in which the total lepton number is
violated. Neutrinoless double (3 decay of some nuclei is the only such process the
study of which allows one to reach the necessary sensitivity.
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The nature of neutrinos with definite masses and the form of the neutrino
mixing is determined by the neutrino mass term of the Lagrangian. We will
consider now possible mass terms for neutrinos (see [17-19]).

A neutrino mass term is the Lorentz-invariant product of the left-handed and
right-handed components of neutrino fields. The three left-handed current fields
v (), components of SU(2) doublets, must enter into any neutrino mass term.
If we assume that three right-handed singlet fields v;r(x) also enter into the
Lagrangian, in this case we can build the following neutrino mass term:

LP(z) = —vp(x) MP vg(z) + hee., (6)
where
VeL VeR
vp=| vur |, VR=| VuR @)
VrL VrR

and MP is the 3 x 3 neutrino mass matrix. It is obvious that the total Lagrangian
with the neutrino mass term (6) is invariant under the global gauge transformations

A A

vr(x), lo.r(x) = M r(2), o(z) — qla),
(8)
where A is an arbitrary constant phase. The invariance under the transforma-
tion (8) means that the total lepton number L is conserved.
The mass term (6) can be easily diagonalized. For a complex matrix M P
we have

vy (z) — e vi(z), vr(z) — e

MP =Um Vv, )

where U and V are unitary 3 x 3 matrices and m is a diagonal 3 x 3 matrix
(mix = m;d;k, m; > 0). From (6) and (9) we find

3
LP(z) = =™ (z)mv™(x) = =Y m;v(x) vi(2), (10)
=1
where
viL ViR
vt = Ulvp = | war |, vE = Vive =1 wr |. (11)
V3L V3R

The expression (10) is the sum of standard mass terms for the Dirac fields v;(x)
with masses m;. From (11) we find that the flavor fields vy, (x) are connected
with the left-handed components of the Dirac neutrino fields v;y,(x) by the mixing
relation

3
v () =Y Ui vir(w). (12)
=1
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We assumed that not only left-handed fields v;7,(x) but also the right-handed
fields v;r(x) enter into the total Lagrangian. In the original Glashow, Weinberg
and Salam papers [20-22], in which the Standard Model was proposed, it was
assumed that only v, (z) fields, components of the lepton SU(2) doublets, enter
into the Lagrangian. In the seventies, after the success of the theory of the two-
component neutrino, it was natural to make this simplest assumption. In such
a Standard Model with a SU(2) Higgs doublet, neutrinos are massless particles.
We can, however, generalize the original SM and to build a model in which
neutrino masses and neutrino mixing are generated by the spontaneous violation
of the symmetry in the same way as masses and mixing of quarks and leptons.
In such a model the neutrino mass term is the Dirac mass term (6).

We know from experiment that neutrino masses are many orders of magnitude
smaller than masses of quarks and leptons. For example, for the particles of the
third family

my ~ 173 GeV, my ~ 4.2 GeV, m, ~1.78 GeV, m3 < 2-107Y GeV. (13)

In the framework of the SM there is no natural explanation of such a big difference
between masses of neutrinos and other fundamental fermions belonging to the
same family. It is very implausible that small neutrino masses are generated by
the SM Higgs mechanism.

The small Dirac neutrino masses can be generated, however, in some models
beyond the SM, for example, in the model with large extra dimensions [23].

In such a model the Newton law at small distances r has the form F =
mimeo

M2+n ,r-2+n
scale (~ (1—10) TeV). Dirac neutrino masses in the model with extra dimensions
are given by the expression

, where n is the number of the extra dimensions and M is a new

m; ~ kv .

Here v ~ 250 GeV is the electroweak scale and 8 = M/Mp ~ (1071°—10716)
is a suppression factor (Mp ~ 1.2 -10'? GeV is the Planck mass).

We will build now a neutrino mass term, assuming that fields v;;,(x) and
vir(z) enter into the Lagrangian and there are no conserved lepton numbers. Let
us consider the conjugated fields

(ve)®=C(wr)",  (vr)®=C(or)", (14)
where C' is the matrix of the charge conjugation which satisfies the relations
CyICct = —,, CT=-cC. (15)

It is easy to show that (v1,)¢ ((vg)°) is the right-handed (left-handed) component
of the conjugated field.
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In fact, for the left-handed and right-handed components we have

Y5 VL = —VL, 7Y5VR = VR. (16)
From these relations we find

VLY =VL, VR7Y5 = —VR. (17)
Now, taking into account that Cv¥'C~! = 75, we have

vs (v)® = (vL), 75 (vr) = —(vr)". (18)

From (18) we conclude that (vy)¢ and (vg)° are the right-handed and left-handed
components.

The most general neutrino mass term, which can be built from the flavor
left-handed fields vy, (z) and sterile fields v;z(x)*, has the form

1 1 —

L£D+M _ ~3VL MM (vp)e — o, MP vp — 5 R)° MMvg +he,  (19)
where columns vy, g are given by (7) and M f{R and M P are nondiagonal complex
3 x 3 matrices. It is easy to show that M i‘,{R are symmetrical matrices. In fact,
taking into account Fermi—Dirac statistics of the fields vz g, we have

VLR MY RCVL g = = r (M) CTV] g =0p.r (ML'R)" CVL R (20)
From this relation we find
M} = (MPR)". 1)

It is obvious that the first and the third terms of the expression (19) are not
invariant under the global gauge transformations vy, rp — eiAyL, r. Thus, in the
case of the mass term (19) the total lepton number L is not conserved.

The first and the third terms of the expression (19) are called the left-handed
and right-handed Majorana mass terms, respectively. The second term is the
Dirac mass term. The mass term £°+M is usually called the Dirac and Majorana
neutrino mass term [24,25].

We will show now that in the case of the mass term (19) neutrinos with
definite masses are Majorana particles.

The mass term £P+M can be presented in the following form:

1
LPM — —5 7L MPTM(p ) +hee. (22)

*Neutrino fields that do not enter into the Lagrangian of the standard elecroweak interaction are
called sterile.
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= () 2

MD+M _ MIJJM MD
(MD)T M]J%l

Here
and

(24)

is a symmetrical 6 X 6 matrix.
A symmetrical matrix M can be presented in the form
M=UmUT, (25)

where U is a unitary matrix and m is a diagonal matrix with positive diagonal
elements.

From (22) and (25) we have

1 —— 1 ——-—+
LPM = —5UTan(UTnL)C— §(UTnL)CmUTnL =

1—m

6

1
:—51/ ml/m:—igmiﬂilq. (26)
Here

2
2
v =U'ng 4+ (Ung)® (27)
Ve
From (26) and (27) we conclude that
e The field v;(z) (¢ = 1,2,...,6) is the field of neutrinos with mass m;.
e The field v;(z) satisfies the Majorana condition
vi(z) = vi(z) = Col(x). (28)
Taking into account the unitarity of the matrix U, from (27) we find
ng = UV (29)

From (29) we obtain the following mixing relations in the general Dirac and
Majorana case:

6 6
v = Z Ui vir, (mRr)= Z U vip, (30)
i=1 i—1
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where U is a unitary 6 X 6 mixing matrix and v; is the field of the Majorana
neutrino with mass m;.

Let us discuss the meaning of the Majorana condition (28). A non-Hermitian
field v(x) can be presented in the following general form:

1 1 ; ;
v(w) = / @R T (cr(p) w"(p) ™" + dl(p) u" (—p) %) d’p, (31)
where ¢, (p) is the operator of absorption of neutrino with momentum p and
helicity 7 and df (p)) is the operator of creation of antineutrino with momentum p
and helicity r and u"(—p) = C(a"(p))”. If the field v(z) satisfies the Majorana
condition (28), we find

cr(p) = dr(p). (32)

Thus, if v(x) is the Majorana field, the neutrinos and antineutrinos are identical
particles. In other words, the Majorana field is the field of truly neutral particles.
There is no notion of particles and antiparticles in the case of the Majorana field*.

We will finish this section with the following remarks:

1. Dirac and Majorana mass term can be generated only in theories beyond
the SM.

2. If we assume that only left-handed fields v,z (z) enter into the mass term
and the lepton number is not conserved, we come to the following (Majorana)

mass term [26]:

1
LM = —5VL MM (v) +hee., (33)

where M y is 3 x 3 symmetrical matrix. After the diagonalization, the mass
term (33) takes the standard form

3
1
LM = —5 ;miﬁilﬁ (34)
and we come to the Majorana mixing
3
v =Y Ui vir. (35)
i=1

Here U is a 3 x 3 mixing matrix and v; is the Majorana field with the mass
m; which satisfies the condition (28). Notice that Higgs triplet is needed for the
generation of the mass term £,

*In the case of the Majorana field there are no conserved charges which allow one to distinguish
particles and antiparticles.
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3. From the Majorana condition (28) we have
ViR = l/iCR = (l/iL)C. (36)

Thus, in the case of the Majorana field, right-handed and left-handed components
are connected by the relation (36). In the case of the Dirac field, right-handed and
left-handed components are independent. This is the major difference between
Majorana and Dirac fields.

Right-handed components of neutrino fields enter into the Dirac mass term.
If neutrinos are massless there are no mass term in the Lagrangian. This is
the reason for the well-known theorem [27] which states that it is impossible
to distinguish massless Dirac and Majorana neutrinos in the case of left-handed
interaction.

4. The Dirac and Majorana mass term opens a possibility of the existence of
the sterile neutrinos. If masses m; are small, in this case in addition to the mixed
flavor left-handed neutrinos v, v,, and v, mixed left-handed antineutrinos 7z,
quanta of mixed right-handed fields v;r, must exist. Because right-handed fields
do not enter into the standard CC and NC interactions, 7;;, have no electroweak
interaction. They are called sterile neutrinos. Let us notice that the existing
LSND indication in favor of the sterile neutrinos [28] was not confirmed by the
MiniBooNE experiment [29].

5. In the case of the Dirac and Majorana mass term, there are additional
sterile right-handed fields ;g and many parameters in the mass matrix. This
mass term opens a possibility to explain the smallness of the neutrino masses.
This (so-called seesaw) possibility will be considered in the next section.

2. SEESAW MECHANISM OF THE NEUTRINO MASS GENERATION

The most popular mechanism of the generation of small neutrino masses is
the seesaw mechanism [30]. In order to explain the main idea of this mechanism,
we consider the simplest case of one generation. The Dirac and Majorana mass
term is given in this case by the expression

1 1 —
[:D—HM = —5 mLﬂL(VL)C — MpVLVR — 5 mR(I/L)Cl/R + h.c. (37)
We will assume that my, mp and mpg are real parameters. Let us write Eq. (37)
in the matrix form. We have

1
Lo — —5 L MP+HM(np)e + hec. (38)

Here

MDJrM _ ( mrp Mmp > (39)
mp Mmp
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and
ng = ( vr ) (40)
(vR)©
The real symmetrical matrix MP+M can be presented in the form
MPM = Oom' 07, (41)
where
cos 0 sin @
O_<—sin9 COS@) “42)

and m/, = m/d;;;, m being an eigenvalue of the matrix MP+M_ We have

1 1
my, = 5(m3+mL)$5\/(mR—mL)2+4m%. (43)

From (41), (42) and (43) for the mixing angle § we obtain the following relations:

2mD mpr —Mmj,

tan 20 = ———,  cos 20 = . 44
mgr —mp, V(mr —mp)?+4m?2 @9
The eigenvalues m’L2 can be positive or negative. Let us write down
mi = min;, (45)
where m; = |m}| and n; = +1.
From (41) and (45) we find
MPM — ymUT, (46)
where
U=0n (47)

is a unitary matrix. Using the general results of the previous section, we easily
bring the mass term (48) to the standard form

1 1
LD+M _ —§z7m1/m = —3 Z m;V;v;. (48)
i=1,2

Here

V2

v =Ulng + (Ulng ) = ( i ) ; (49)
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v; being the Majorana field with the mass m;. From (49) we have
nr = Uvy. (50)

Thus, the fields vy, and (vg)© are connected with the fields v1;, and voy, by the
following mixing relations:

vy = cos 0y/n1 vip + sin 0\/na vy,
(vr)¢ = —sin 0y/n1 v11, + cos 6y/ma VoL

Neutrino masses are many orders of magnitude smaller than masses of leptons and
quarks which are generated by the standard Higgs mechanism of the electroweak
symmetry breaking. This fact is commonly considered as an evidence in favor of
a nonstandard mechanism of neutrino mass generation. The seesaw mechanism
connects smallness of neutrino masses with the violation of the total lepton number
at a very large scale.

The standard (type I) seesaw mechanism [30] is based on the following
assumptions:

1. There is no left-handed Majorana mass term in the Lagrangian (my = 0).

2. The Dirac mass term is generated by the Higgs mechanism (mp is of the
order of the mass of a charged lepton or quark).

3. The constant mpg, which characterizes the right-handed Majorana mass
term, the source of the violation of the total lepton number, is much larger
than mp:

(51

mpg > mp. (52)
From (43), (44) and (52) we have

mlzwmp<<mp, mo >~ Mg, tan92@<<l. (53)
mp mpr
Thus, the seesaw mechanism generates Majorana neutrino mass m; which is
much smaller than a Dirac mass of a lepton or quark. As a consequence of the
seesaw mechanism, a heavy Majorana particle with a mass mq ~ mp must exist.
Let us consider now the case of the three families. The seesaw mixing matrix
has in this case the form

seesaw __ 0 mp
M = ( mg Mg ) . (54)

Here mp is a complex 3 x 3 matrix, Mp is a symmetrical complex matrix and
mp < Mg.
Let us introduce the matrix M by the relation

UT pseesaw rr — M, (55)
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where U is a unitary matrix. We will show now the matrix U can be chosen in
such a form that M is the block-diagonal matrix.

Notice that in the case of one generation up to terms linear in mp/mp < 1
we have

U@ ~ ( 1 mp/mp ) . (56)

—mp/mp 1

Let us consider the matrix

1 A
U:(_AT 1), (57)

where A is a 3 x 3 matrix and A;; < 1. It is easy to see that up to terms linear in
A, UTU ~ 1. The nondiagonal element of the symmetrical matrix U7 M3esaw [
in the approximation linear over A is equal to

mb — MpAT. (58)
If we choose
AT = My 'm}, (59)
the matrix U7 M3¢8 [J takes a block-diagonal form
—-1_ 7T
T seesaw ~ _mDMR mp 0
U M U~ ( 0 Mp ) (60)
For the left-handed Majorana neutrino mass term from (60) we find
1
LM = —§I;LMLM(VL)C +h.c., 61)
where
MM = —mpMp*tm} (62)

and vy, is given by (7).

Equation (61) is the mass term for three light Majorana neutrinos. After the
diagonalization of the total mass term, in addition to Majorana neutrino mass
term, we will obtain a mass term for three heavy Majorana particles. Thus, in the
case of the Dirac and Majorana mass term with the matrix (54) in the spectrum
of masses there are

o three light Majorana neutrino masses;

e three heavy Majorana masses, which are characterized by the scale of the
violation of the total lepton number.

These are general features of the seesaw mechanism. The values of neutrino
masses and mixing angles can be obtained only in the framework of a concrete
model.
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Thus, the seesaw mechanism connects smallness of the neutrino masses with
violation of the total lepton number at a large scale*. The observation of the
neutrinoless double 5 decay would be an evidence in favor of this mechanism.
Let us notice that the existence of heavy Majorana particles, seesaw partners
of neutrinos, could allow us to explain the baryon asymmetry of the Universe
(see [31]).

3. NEUTRINO MIXING MATRIX

In this section we will consider the general properties of the unitary 3 x 3
Dirac (or Majorana) mixing matrix.

A unitary n x n matrix U is characterized by n? real parameters**. The
number of the angles which characterize the unitary n x n matrix coincides with
the number of parameters which characterize a real orthogonal n x n matrix O
(OTO = 1). Thus, for the number of the angles we have***

—1
Nang = % (63)

Other parameters of the matrix U are phases. The number of phases is equal to

npn = n? — n(nQ— 1) _ n(n;— 1). (64)

The number of physical phases in the neutrino mixing matrix is smaller than ny,.
The neutrino mixing matrix enters into the charged current. Let us consider first
the case of the Dirac neutrinos v;. Because phases of the Dirac fields Iz, (z) and
v;1,(z) are arbitrary, the matrices U and

U = ST (B)US() (65)

are equivalent. Here Sy (3) = ¢ &y, Sip(a) = €' 6, and 3, o are real,
arbitrary phases.

*Usually it is assumed that this scale is about 10'5—10'6 GeV.

**In fact, it can be presented in the form U = e'H  where H is the Hermitian matrix. The
2

2
***The orthogonal matrix O can be presented in the form O = e, where AT = — A. Diagonal
elements of the matrix A are equal to zero. The number of the real nondiagonal elements is equal to
n(n —1)
5 .

Hermitian matrix is characterized by n + 2 ( ) = n? real parameters.
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We can use this freedom in order to exclude (2n — 1) phases from the
matrix U*. Thus, in the case of the Dirac neutrinos the number of the physical
phases in the mixing matrix U is equal to

n(n+1)

(n—1)(n-2)
5 ~ =

5 (66)

Nph = —2n—-1)=
In the case of the mixing of the three Dirac neutrinos, the mixing matrix is
characterized by three mixing angles and one phase.

Let us consider now the case of the Majorana neutrinos v;. The Majorana
condition

vi(z) = vi(x) (67)

does not allow one to include arbitrary phases into the Majorana fields. For the
number of the physical phases we have in the Majorana case [15, 16]

ﬁ%:w—n:w. (68)
Thus, in the case of the three Majorana neutrinos, the mixing matrix is character-
ized by three mixing angles and three phases.

We will obtain now constraints on the neutrino mixing matrix which follow
from the condition of the C'P invariance in the lepton sector. Let us consider
first the Dirac neutrinos v;. The condition of the C'P invariance in the lepton
sector has the form

Vep LSC(x) Vi = L£F(2). (69)

0

Here Vi p is the operator of the C'P conjugation, 2’ = (2, —x) and

£§%(@) =~ S Inleraluvie (@)W1
1,2
g _
= N b (@) Uil (@)W (70)

is the Lagrangian of the CC interaction of neutrinos, leptons and W bosons.
Taking into account arbitrariness of the phases of fermion fields, we can put C'P
phase factors of the lepton and neutrino fields equal to one. We have

chlL(x)VCT}% = ~Cit ("), chViL(x)VCT}% =4Crl (). (71)

*We can always make one element of the matrix S(a) (or S(3)) equal to one. In fact, let us
present the matrix S(a) in the form S(a) = e'*» S(&), where &; = a; — an. The phase factor
e'™n can be, obviously, included into ST(B). We have in this case ST(8) e = ST(3), where
Bi =061 —an.
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From these relations we find
Veply(z)Vip = =11 (2)CT0, Vepri(z)Vip = —vh (2)C71490. (72)
For the field of the charged W+ vector bosons we have
VopWa(2)Vip = —0aWi(a"), (73)

where ¢, is a sign factor (§o = 1, §; = —1). From all these relations we easily
find

VerLSC@Vip = =23 v (@ )raUul (@)W (2') ~
V24
g T * Nyrat (o0
- = (@ ) v Unvir (" )W (2"). (74
ﬁ;L()WZL() (). (74
Comparing (69) and (74), we come to the conclusion that in the case of the CP
invariance in the lepton sector the Dirac mixing matrix is real:
Ui = Uy;. (75)

We will consider now the case of the Majorana fields [32-34]. The C'P transfor-
mation of the Majorana field v; has the form

Vepri(x)Vep = ni7 0v (') = 0y vi(z'), (76)
where 1} is a phase factor. Unlike the Dirac fields, it cannot be included in the
field. We will show now that the phase factor 7; can take the values +i. In fact,
from (76) by the Hermitian conjugation and multiplication from the right by the
matrix v° we find

VCPIZ‘(ZL')VCT}% = 771‘172‘(1'/)’70. (77)
From this relation we have
VerpC vl (2)Vip = niCy’TCop] (a) = —niy Ol (o). (78)
Finally, taking into account the Majorana condition, we find
chui(x)V_ﬁ = iy vi(2)). (79)
If we compare now (76) and (79), we conclude that

ni=-m, ni=-1 (80)

Thus, the C'P parity of a Majorana field can take values +i.
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From (69), (71) and (76) we find that in the case of the C'P invariance in
the lepton sector the Majorana mixing matrix satisfies the condition

Uiin; = Uj;. (81)

Finally, we will obtain the standard parametrization of the 3 x 3 Dirac mixing
matrix. Let us consider two systems of orthogonal and normalized vectors |i)
and |v) (1 =1,2,3,l =e,pu,7). We have

(k|i) = 6, (U'|I) = 6. (82)

Vectors |v;) and |i) are connected by the relation
) = Y _ UGl (83)

From (82) it is obvious that U is a unitary matrix.

In the most general case, vectors |v;) can be obtained from vectors |i) by
three Euler rotations. The first rotation will be performed at the angle 6,5 around
the vector |3). New orthogonal and normalized vectors are

Y = cpp 1) + 512 2),
2)V = —s12 [1) + ez [2), (84)
3 =13),

where c12 = cos #12 and s19 = sin 615. In the matrix form, (84) can be written
as follows:

)M =W ). (85)
Here
1) 1)
YD = 120 |, = [2) (86)
13)() 3)
and

cr2 s12 0
U(l) = —S12 C12 0 . (87)
0 0 1

We will perform now the second rotation at the angle 6,3 around the vector |2)().
At this step we will introduce the C'P phase . We have

)@ =@ D), (88)
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Here

c13 0 sijze’
U® = 0 1 0 . (89)

—S13 6715 0 C13

Finally, let us perform the rotation around the vector [1)(?) at the angle f23. We
have

Xy = UGy 3, (90)
Here
) |V€>
[y = ) 91)
lvr)
and
1 0 0
U(S) = 0 C23 593 . (92)

0 —s23 co3

From (85), (88) and (90) we find

) = U™ |v), (93)
where
U= (U(3) U® U(l))* —
1 0 0 Cc13 0 slge_i‘; C12 s12 0
= 0 Co3 523 0 1 0 —S12 Ci12 0 . (94)
0 —so3 Ca3 —s13€® 0 ci3 0 0 1

This is the so-called standard parametrization of the 3x3 Dirac mixing matrix.
This matrix is characterized by three mixing angles 612, 623 and 6,3 and the C P
phase 4. From (94) we have

0

C13C12 C13512 Ss13€
is i
U= —c23512 — s23C12513€" €23C12 — 523512513 €° C13523 . (95)
s 5
523512 — €23C12513 € —893C12 — 23512513 €"°  C13C23.

The 3x3 Majorana mixing matrix is characterized by three mixing angles and
three C'P phases. It can be presented in the form

UM =UsM(a), (96)
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where the matrix U is given by (94) and
eial
SM(a)=| ez |, (97)
1

where o o are additional Majorana phases.

4. ON NEUTRINO OSCILLATIONS

The most important manifestation of the neutrino mixing is neutrino oscil-
lations. Neutrino oscillations are based on the fact that in processes of neutrino
production and neutrino detection due to Heisenberg uncertainty principle small
neutrino mass-squared differences cannot be resolved. As a result, in a weak
decay

a—b+1T 4+, (98)

together with the lepton [+, a «mixed» left-handed flavor neutrino v; is produced.
The state of v; is a coherent superposition of the states of neutrinos with definite

masses
) = Uglw), (99)

where |v;) is the state of neutrino with mass m; and momentum p;.
If at ¢ = 0 flavor neutrino v; is produced, at the time ¢ for the neutrino state
we have

3

3
) =e M) =" e F Uy = u) Y Upie  FUL. (100)
i=1

i=1 14

Thus, the probability of the transition v; — v, during the time interval ¢ is given
by the expression

2

3
P(vy— ) = 3 Upse™ BBt (101)
i=1

where k is fixed. If all phase differences are small (|E; — Ex|t < 1) or/and
there is no mixing (U}, = d;;), in this case it will be no neutrino oscillations
(P(v; — vp) ~ ;). Thus, neutrino oscillations are effect of the neutrino mixing
and relatively large phase difference(s).

Assuming that p; = p, we obtain the standard expression for the phase

difference

Amﬁi
(B = Ex)t = = L. (102)
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2 _ 2
Here Amg, = m; —

neutrino detector.

The transition probability P(v; — vy/) depends on six parameters (two mass-
squared differences Am3; and Am?,, three mixing angles 63, 012 and 6;3
and C'P phase §). However, from analysis of the data of neutrino oscillation
experiments it follows that the parameter sin? f3 and the ratio Am?3,/Am2, are
small:

mj and L ~ t is the distance between a neutrino source and

A 3-1072, sin?6;3 <5-1072 (103)
23

If we neglect contribution of the small parameters to the transition probabilities,
we will find that in the atmospheric and accelerator long baseline region of the
values of the parameter L/E the two-neutrino v, = v, oscillations, driven by
Am3,, take place. From (101) and (102), for the probability of v, to survive,
we obtain the following expression (see [18]):

1 . L
Py, —v,) ~1-— 3 sin? 26,3 (1 — cos Amgg)ﬁ) . (104)

In the KamLAND region v, = v, , oscillations, driven by Am?,, take place in
the leading approximation. For the probability of 7. to survive, we obtain the
following expression (see [18]):

1 L
P, — ) ~1— 5 sin? 265 (1 — cos Amgﬁ) . (105)

In the leading approximation the probability of solar v, to survive in matter is
also given by the two-neutrino expression. It depends on tan? 615, Am?2, and
electron number density in the sun.

We will present now the results of the analysis of the experimental data. From
the analysis of the data of the atmospheric Super-Kamiokande experiment, for the
parameters Am3, and sin? 26055 the following 90% CL ranges were obtained [35]:

1.5-107% < Am3; < 3.4-1072 eV?,  sin? 2653 > 0.92. (106)

The results of the atmospheric Super-Kamiokande experiment were confirmed
by the K2K [36] and MINOS [37] accelerator long-baseline neutrino oscillation
experiments. From the analysis of the MINOS data for the neutrino oscillation
parameters the following values were found [37]:

Am3, = (2.4340.13) - 1072 eV?,  sin® 2053 > 0.90 (90% CL).  (107)

From the global analysis of the data of the reactor KamLAND experiment and
data of the solar neutrino experiments, for the parameters Am?, and tan? 61, the
following values were obtained [38]:

Amiy = (7.597021) . 1075 eV?,  tan? 6y = 0.4770-08. (108)
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In the reactor CHOOZ experiment [39] no indications in favor of v, — 7,
transitions, driven by Am§3, were found. From the exclusion plot, obtained from
the data of this experiment, for the parameter sin® #;3 the following upper bound
can be inferred:

sin?03 <5-1072. (109)
At present, a stage of the high-precision neutrino oscillation experiments starts.
In the future DOUBLE CHOOZ [40], Daya Bay [41] and RENO [42] reactor
neutrino experiments, sensitivities to the parameter sin” 2615 will be 10-20 times
better than in the CHOOZ experiment. The same sensitivity is planned to be
reached in the accelerator T2K experiment [43]. In this experiment, parameters
Am3, and sin® 2693 will be measured with the accuracies 6(Am3;) ~ 107* eV?
and 0(sin® 2693) ~ 1072, correspondingly. High-precision neutrino oscillation
experiments are planned at the future Super Beam [44], Beta-beam [45], and
Neutrino Factory facilities [46].

5. BASIC ELEMENTS OF THE THEORY OF 0v35 DECAY
In this section we will consider the neutrinoless double 3 decay of even—even
nuclei [4,5]
(A, Z2) = (A, Z+2)+e +e . (110)
We will assume that
e The Hamiltonian of the weak interaction is given by the SM.
e The neutrino mixing takes place.

e Neutrinos with definite masses v; are Majorana particles.
For the effective Hamiltonian of the process we have

Hi(z) = %2 ZéL(x)wa Ui vir.(x) 7%(z) + h.c. (111)

Here G is the Fermi constant; j*(x) is the hadronic charged current, and the
field v;(x) satisfies the condition
vi(z) = Cvl (z) = v(2). (112)

The neutrinoless double 3 decay is the second order in G g process with the virtual
neutrinos. The matrix element of the process is given by the following expression:

—)?2 2
s =15 (S5)

x Nplez/ZﬂL(Pl)eim“% Uei (O[T (vir (1) v} (22)]0)75 Ueqtif, (p2) X

X eip212 <Nf‘T(Ja(£U1)JB(.’E2))‘Nl> d4x1 d4£L'2 — (pl = pg). (113)
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Here p; and py are electron momenta; J%(x) is the weak charged current in
the Heisenberg representation; IN; and Ny are the states of the initial and the
final nuclei with 4-momenta P; = (E;,p;) and Py = (Ef,py), respectively, and

No— 1
P (27)3/2 /20
Let us consider the neutrino propagator. From the Majorana condition (112)
we find

is the standard normalization factor.

1-— 1-—
(O (e (w1 (22)10) = == 22O (i (1) (w2))[0) — 22 . (114)
Further, we have
= Z —1 r1—I2 ryq_|_ mi
0|7 (vi(z1)wi(22))]0) = @) /e ch )md4Q~ (115)

Thus, for the neutrino propagator we find the following expression*:

O|T (vir(21)7ir(22))|0) =

( —iq (r1—2x m; 4 1_75
:__(%)4/6, 7 (@ 2)q2_m2dq 5 C. (116)

i

The neutrino propagator is proportional to m;. It is obvious from (115) that
this is connected with the fact that only left-handed neutrino fields enter into the
Hamiltonian of the weak interaction. In the case of massless neutrinos (m; = 0,
1 =1,2,3), in accordance with the theorem on the equivalence of the theories with
massless Majorana and Dirac neutrinos, the matrix element of the neutrinoless
double g decay is equal to zero.

Let us consider the second term of the matrix element (113). It is easy to
show that

UL (p1)Ya (1 = 75)v3C0T (p2) = L (p2)CTvE (1 — v W2 a (pr) =
= —ar(p2)ys(1 = 75)7aCur (p1).  (117)

If we take into account (117) and the relation

T(J%(w2) T (w1)) = T(J (1) (w2)), (118)
1— s
*Notice that in the case of the Dirac neutrinos (O|v;r(z1)vh (w2)0) = 270 X
1— T
(0]v; (;131)1/31(;132)\0)7,}[5 = 0. The neutrinoless double 3 decay is obviously forbidden in the

Dirac case.
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we can show that the second term of the matrix element (113) is equal to the first
one. Thus, for the matrix element we obtain the following expression:

G 2 ) .
(fIS?li) = —4 (7;) Ny, Ny, / uL(pnewmvaﬁx

—ig(z1—x2)

€
X ZU&%/W
[

7

d*qx

y 1—75

v5C @t (pa) P22 (N |T(J*(21)J? (22))|N:) d*zy d*ao.  (119)

Initial nuclei in the process (110) are "5Ge, '36Xe, !39Te, 19°Mo and other
heavy nuclei. The calculation of the nuclear part of the matrix element of the
OvBp decay is a complicated nuclear problem. In such a calculation different
approximations are used. We will present now the matrix element of the Ov3(
decay in a form which is appropriate for such approximate calculations.

Let us perform in (119) the integration over the time variables 3 and 9.

The integral over 29 can be presented in the form

0

oo xTq oo
/~-~dx8:/-~-dx8+/~-~dx8. (120)
—0o0 —00 a:?

After the integration over ¢° in the neutrino propagator, in the region z9 > 9
we find*

; —ig(z1—22) 1 —iq? (29— ) +iq(x1 —x2)
’ /e 4 /e L Bq (121)

d =
et @-m2 1T (2n)3 240

i

where

@) =/a2 +m2. (122)

) e—tg(z1—2) 1 1 o4} (25 —a9)Fia(x2—x1)
2 / 2 s—dq= 3 / 0
(2m) ?—m (2m) 2q;

i

In the region 29 < xJ we have

dq.  (123)

For the operators J“(z) from the invariance under the translations we have

J%(z) = e Jo(x) e H® (124)

*It is assumed that in the propagator m? = m? — €.
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where H is the total Hamiltonian. From this relation we find
(Np|J*(21) T (22)|N;) =

= 3 B Ba BB (N |7 (321 )| No ) (N | T (32)) V), (125)

where | V,,) is the vector of the state of the intermediate nucleus with 4-momentum
P, = (E,, pn). In (125) the sum over the total system of the states |NV,,) is
assumed.

Taking into account that at 0o the interaction is turned off, we have

0 0
/ eiazg d.’Eg _ / ei(afiE)wg d.’Eg = hn’(l) - (126)
e—=0 a — 1€
and
/ 979 40 / gilati)ad go0 _ limy ——. (127)
c—0 a 1€
0 0

From (126) and (127) we find

/ a2 / 423 S (N4 (1) No) (N9 (3| N

« (i Bs—Bu)ad +i( Ba=E e qiphal-+p3ad) gia? (e —of) _

— Y (N7 T (%1) INn ) (N | T (3x2)) | Vi

276 (E O+ 09— E;). (128
E,+p3+ ¢ — E; —ie m0(Ey + P+ P ). (128)

Taking into account all these relations, for the matrix element of the neutrinoless
double 8 decay we obtain the following expression:

) G\’ _ _
(115200 =2 (S5 ) Ny Nplin 109501 + 30)Ca” )%
. . 1 eta(x1—x2)
d3 d3 —ip1X1 —iP2X2 U2< i / d3
X/ T T e Xl: il (27T)3 q? gx

(Np [ (1) [N (N | T7 (32 ) | Ni)
X[Z E, +p)+q) — Ei —ic -

+3 (N4 |J7 (2) [ Niw) (N [T (1) | N:)

216 (E O+ pd —FE). (129
Ent 09+ 0 — E; —ic 1“( f+Dp1+D3 ). (129)
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Equation (129) is the exact expression for the matrix element of Ov33 decay in
the second order of the perturbation theory. We will consider major 07 — 0T
transitions of even—even nuclei. For such transitions the following approximations
are standard:

1. Small neutrino masses can be safely neglected in ¢¢. The averaged mo-
mentum of the virtual neutrino is given by the relation ¢ ~ 1/r, where r is
the average distance between two nucleons in nucleus. Taking into account that
r ~ 10713 cm, we have ¢ ~ 100 MeV. Neutrino masses are smaller than 2.2 eV.
Thus, we have ¢ = \/q2 + m? ~ q.

2. Long-wave approximation. We have piprr < pipR, where R ~
1.2AY/3 .10 cm is the radius of nucleus (k = 1,2). Taking into account
that pr, < 1 Mev, we have przr < 1. Thus, e P1X17P2X2 ~ 1 je, two
electrons are emitted in S states.

3. Closure approximation. Energy of the virtual neutrino is much larger
than the excitation energy (E, — E;). Thus, we can change the energy of the
intermediate states £, by average energy E. In this (closure) approximation we
have

(N |72 (360) [N ) (N |7 (%2)) [ Ni) | (N[ (1) 7 (x2)) | N:)
E,+p3+ ¢ — E; —ie E+p)+q—E; —ie

(130)

4. The impulse approximation for the hadronic charged current J*(x). Tak-
ing into account the major terms, the hadronic charged current takes the form*

TH(x) = > 0(x = 1)} gv (6*)g*° + ga(q®)of g™, (131)

Here gv(¢?) and ga(q?) are vector and axial form factors; o; and 7; are Pauli
matrices; 7 = 1/2 (71 + i¢72) and index n runs over all nucleons in a nucleus.
We have gy (0) =1, ¢ga(0) =ga ~1.27.

It is obvious that 77! 7% = 0. Thus, in the impulse approximation the hadronic
currents satisfy the relation

J(x1)JP (x2) = JP(x2)J%(x1). (132)

Further, the matrix 7,73 in the leptonic part of the matrix element (129) can be
presented in the form

1
7078 = Jap + 5 (Va8 — V8Ya)- (133)

*The pseudoscalar term in the one-nucleon matrix element of the hadronic charged current
induces a tensor term in the current. From numerical calculations it follows that its contribution to
the matrix element can be significant (see [47]).
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It follows from (132) that the second term of (133) does not give contribution to
the matrix element. From (131) we have

T (1) Ja(x2) = Y mTE(xa —ra) 8(x2 — vw) (97 (¢°) — gA(¢")a" - ™).

Neglecting nuclei recoil, we obtain in the laboratory frame
M; = My +p3 + 1Y,

where M; and M/ are masses of the initial and final nuclei. From this relation
we find

(135)

= ¢ —pd = M;+M
q+P(1),2+E—Mi:qi(p1 2p2>+E—7f.

2

0_ .0
The term PP

) is much smaller than all other terms in the right-hand side
of this relation. Neglecting this term, we have

Mi+Mf
—

1
Further, taking into account that 2y ~ and 2) ~
g gv(q°) T 42/0.71 GeV? 94(q”)
1

1+q%2/M3’
factors. After the integration in the matrix element (129) over x; and x», for the
neutrino propagator we find the following expression:

q+p)s+E—~Mi~q+E - (136)

where M, ~ 1 GeV2, we can neglect ¢*-dependence of the form

1 iQrpm d?’ 1 —
. / _° d = — H(rpm,E), (137
@r)® ) q(g+E —1/2(M; + My)) 4nR
where -
— 2 51
HOLE :_R _ sin gr dq .
) g+ E—1/2(M;+ My)
0

(138)

Here R is the nuclei radius and r,,,, = r,, — I'y,.
Taking into account all these relations, from (129) for the matrix element of
Ov3( decay we obtain the following expression:

150 = =i (75 ) s s g1+ )0 (o)

x M%5(pY + p3 + My — M;), (139)
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where
mgs =Y _UZm; (140)
is the effective Majorana mass and
1
M% = M&¥, — My (141)
9ga
is the nuclear matrix element. Here
\Iff|ZH Troms B)TTT ;) (142)

is the Fermi matrix element and

Mgr = ‘PHZHMW yrirle" o) W) (143)

is the Gamow-Teller matrix element. In (142) and (143), \\Ill f> are wave func-
tions of the initial and final nuclei.

From (139) we conclude that matrix element of Ov(33 decay is a product of
the effective Majorana mass mgg, the electron matrix element and the nuclear
matrix element which includes neutrino propagator (neutrino potential). Taking
into account that £ — 1/2(M; + M) is much smaller than g, for the neutrino
propagator we obtain the following approximate relation:

2R sm qr

(144)

Using the standard rules, from (139) we can easily obtain the decay rate of the
OvB( decay. The electron part of the decay probability is given by the trace

Tr(1475) (7 - p2 — me)(1 —5) (7 - p1 + me) = 8p1p1. (145)

Taking into account the final-state electromagnetic interaction of the electrons and
nucleus for the decay rate of the Oyﬁﬂ decay we find the following expression:

dr% = |mgag \ \MO”|2 (E1E2 — p1p2 cos 0)x

(2 )
X F(El, (Z + 2))F(E2, (Z + 2))p1p2 sin 0 df dEQ, (146)

where E o = p(1)72 is electron total energy (Eo = M; — My — Ey), 0 is the angle
between electron momenta p; and ps, and
2mn

F(Z)~ P

(147)

is the Fermi function (n = Za(me/p)).
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From (146) it follows that for the ultrarelativistic electrons #-dependence of
the decay rate is given by the factor (1 — cos €). Thus, ultrarelativistic electrons
cannot be emitted in the same direction. This is connected with the fact that the
helicity of the high-energy electrons, produced in the weak interaction, is equal
to —1. If electrons are emitted in the same direction, the projection of their total
angular momentum onto the direction of the momentum is equal to —1. It is
obvious that such electrons cannot be produced in Ot — O™ transition.

From expression (146) for the total decay rate we obtain the following ex-
pression:

v 1 v v
% = g = Imas| M PG (Q, 2), (148)
1/2
where*
G (Q,7) = 2(2 E GFRQQA/dT1/51n 6 df(Er B2 — p1p2 cos 6)p1pax

0
x F(Ey,(Z +2))F(Es, (Z +2)). (149)

Here T = £y —me, Q@ = M; — My —2m, is the total released kinetic energy and
Tlo;’Q is the half-life of the O30 decay. In Table 1 we present numerical values

of G%(Q, Z) for some nuclei [48].

Table 1. The values of the factor G%(Q, Z) for some nuclei

Nucleus | G%(Q,Z), 10725 y=1.ev—2
0Ge 0.30

100)\fq 2.19

130 2.12

136X e 2.26

The total rate of the Ov33 decay is the product of three factors:

1. The modulus squared of the effective Majorana mass.

2. Square of nuclear matrix element.

3. The known factor G%(Q, Z).

We have considered in some detail neutrinoless double 3 decay of nuclei

(A Z) = (A, Z4+2)+e +e . (150)

There could be other second order in the Fermi constant G processes with the
virtual Majorana neutrinos in which the total lepton number is changed by two.

* An additional factor 1/2 is due to the fact that in the final state we have two identical electrons.
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The examples are the decays

K —at4u +e” (151)
and
Kt s +pt +ut, (152)
the process
o+ (A Z) = (A, Z —2)+ e, (153)

and others.
The leptonic part of the operator which gives contribution to matrix elements
of (150), (151) and other similar processes is given by

D TVl (0T (vir (21)v]y (22))[0) Urin 17 (22)), 1,1 = e, 1, (154)

where Majorana neutrino propagator is given by the expression (116). Taking into
account that m? < p?, we can neglect m? in the denominator of the propagator.
Thus, the matrix element of a process in which a lepton pair ({I’) is produced, is
proportional to

my = Uy Ui m. (155)

(]

Analogously, matrix elements of the processes (152), (153) and other similar
processes are proportional to mj;,.

The sensitivities to the parameter |my;| of the experiments on the search
for the processes (151)—(153) and other similar processes are much worse than
the sensitivity of the experiments on the search for Ov3(3 decay to the parame-
ter ‘mgﬁ|.

For example, in the experiment [52] on the search for the process p~Ti —
et Ca the following upper bound was obtained:

I'(p~Ti— e'Ca)
L(p~Ti— all)

< 1.7-10712 (156)

For the probability of the decay KT — 7~ uTu™, the following upper bound was
reached [53]:
(Kt — 7 putu®)
T(K* = all)

<3-1077. (157)
From these data the following upper bounds can be found (see [7]):

Myue| < 82 MeV, |m,,| <4-10* MeV. (158)
iz i



NEUTRINOLESS DOUBLE BETA DECAY 1315

These values must be compared with the sensitivity of the experiments on the
search for Ov33 decay to the effective Majorana mass (in today’s experiments
|mgps| >~ 0.2—1.3 eV (see below)).

The effective Majorana mass is determined by neutrino masses and neutrino
mixing angles. Information about the neutrino mixing angles 6;; and neutrino
mass-squared differences Am?, was obtained from the data of the neutrino oscil-
lation experiments. Taking into account these data, we will consider now possible
values of the effective Majorana mass.

6. EFFECTIVE MAJORANA MASS

From neutrino oscillation data it follows that one mass-squared difference
(solar) is much smaller than the other one (atmospheric). For three massive
neutrinos two types of neutrino mass spectra are possible in this case:

1. Normal spectrum

my < mg <msz, Ami, < Amis. (159)

2. Inverted spectrum”*
mz < myp < ma, Ami, < |AmZ,|. (160)

In the case of the normal spectrum the neutrino masses mg 3 are connected with
the lightest mass m; and two neutrino mass-squared differences Am?, and Am3,
by the following relations:

mg =/m3+ Am?2,, m3 = \/m% + Am2, + Ami,. (161)

In the case of the inverted spectrum we have

my = \/m3 + |Am2,|, mo = \/m?,, + |Ami,| + Ami,. (162)

It is obvious that effective Majorana mass is determined not only by the lightest
neutrino mass and neutrino mass-squared differences, but also by the character of
the neutrino mass spectrum.

*In order to have the same notation Am%z for the solar-KamLAND neutrino mass-squared
difference and to determine this quantity as a positive one, the neutrino masses are usually labeled
differently in the cases of the normal and inverted neutrino mass spectra. In the case of the normal
spectrum Am§3 > 0 and in the case of the inverted spectrum Am%S < 0. Thus, with such a notation
the character of the neutrino mass spectrum is determined by the sign of the larger (atmospheric)
neutrino mass-squared difference. It is clear, however, that the sign of the atmospheric mass-squared
difference has no physical meaning: it is a convention based on the labeling of the neutrino masses
and determination of the neutrino mass-squared difference (Am?)C = mi — m?). In both cases of
the neutrino mass spectrum for the mixing angles the same notations can be used.
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Usually, the following three typical neutrino mass spectra are considered™:
1. Hierarchy of the neutrino masses

mip K mg K ms. (163)
2. Inverted hierarchy of the neutrino masses
ms K mp < ma. (164)

3. Quasi-degenerate neutrino mass spectrum

my >~ mg ~ms, mi(ms)> \/Amgg <\/|Am§3> . (165)

We will discuss now the possible values of the effective Majorana mass in
the case of these three neutrino mass spectra.
1. Hierarchy of the Neutrino Masses. In this case we have

my < \/Am3y, mo ~\/Ami,, m3~/AmZ,. (166)

Thus, in the case of neutrino mass hierarchy the neutrino masses mo and ms
are determined by the neutrino mass-squared differences Am?, and Am2,, cor-
respondingly, and the lightest mass is very small. Neglecting the contribution of
m; to the effective Majorana mass and using the standard parametrization of the
neutrino mixing matrix, we find

sin? 012 \/ Am3, + ¥ @ sin 013 \/ Am3,

Here « is a Majorana phase difference.

The first term in Eq. (167) is small because of the smallness of Am?,. The
contribution of the «large» Am3; to |mgs| is suppressed by the small factor
sin? 013. Using the values (107) and (108) and the CHOOZ bound (109), we
have

sin® 019 \/Am3, ~2.8-107% eV, sin?6131/Am3; $2.5-107% eV. (168)

Thus, if the value of the parameter sin? 013 is close to the CHOOZ bound, the
first term and the modulus of the second term of (167) are approximately equal

. (167)

Imga| ~

*Let us notice that these three neutrino mass spectra correspond to different mechanisms of
neutrino mass generation. Masses of quarks and charged leptons satisfy hierarchy of the type (163).
Hierarchy of neutrino masses is a typical feature of GUT models (like SO(10)) in which quarks and
leptons are unified. Inverted spectrum and quasi-degenerate spectrum require specific symmetries of
the neutrino mass matrix.
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and at o ~ 7/2 the terms in the expression (167) practically cancel each other.
In this case the Majorana mass [mgg| will be close to zero.

Even without this possible cancelation the effective Majorana mass in the
case of the neutrino mass hierarchy is very small. In fact, from (167) and (168)
we have the following upper bound:

Imgg| < <$n29m\/Anﬁ24—$n293\/Anﬁ3>:553-10SeV. (169)

This bound is significantly smaller than the expected sensitivity of the future
experiments on the search for Ov(3 decay (see later).

2. Inverted Hierarchy of the Neutrino Masses. For the neutrino masses we
have in this case

Am?
ms < \/|Am2;|, my1 >~ \/|Am2;|, ma ~ \/|Am2,| <1+2A = > (170)

In the expression for the effective Majorana mass |mgg| the lightest mass msg is
multiplied by the small parameter sin® 6;3. Neglecting the contribution of this

term and also neglecting the small term ———— in (170), we find

m
ﬂﬁlﬂ

Imps| ~ \/|Am24](1 — sin 29045 sin a)l/2 (171)

where « is the difference of the Majorana phases of the elements U,y and U,;.
The phase difference o is the only unknown parameter in the expression for
|mgaga| in the case of the inverted hierarchy. From (171) we find

cos2 012 \/|Am2;| < |mpg| < \/|Am3,|. (172)

The upper and lower bounds of the inequality (172) correspond to the C'P in-
variance in the lepton sector. In fact, the elements of the first row of the neutrino
mixing matrix can be written in the form U,; = |Ue;| e'®i. In the case of the CP
invariance, the elements of the neutrino mixing matrix satisfy the condition (81).
From this condition we have

i =, (173)

where 7; = =+ is the C'P parity of the Majorana neutrino with mass m;. For the
phase difference o = a2 — a1 we have

e = myni. (174)

If 72 = m, we obtain o = 0,7 (the upper bound in the inequality (172)). If
72 = —11, we have o = £7/2 (the lower bound in the inequality (172)).
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From (107) and (108) we find the following range of the possible values of
the effective Majorana mass:

1.8-107% < |mpgp| <4.9-1072 eV. (175)

Thus, in the case of the inverted hierarchy of the neutrino masses the lower bound
of the effective Majorana mass is different from zero.

The anticipated sensitivities to the effective Majorana mass of the next gener-
ation of the experiments on the search for the Ov33 decay are in the range (175)
(see below). Thus, the future Ov3(-decay experiments will probe the Majorana
nature of neutrinos with definite masses in the case of the inverted hierarchy of
the neutrino masses.

3. Quasi-Degenerate Neutrino Mass Spectrum. Neglecting the small con-
tribution of sin? 63, for the effective Majorana mass we obtain in the case of the
quasi-degenerate neutrino mass spectrum the following expression:

Imgag| =~ Mmin (1 — sin? 26,5 sin® a)l/Q, (176)

where muyiy is the lightest neutrino mass and « is the Majorana phase difference.
Thus, |mgg| depends in this case on two unknown parameters: Mmin and a.
From (176) we obtain the following range for the effective Majorana mass:

€08 2612Mmin < |Maa| < Mumin- (177)

If OvBp3 decay is observed and the effective Majorana mass turns out to be
relatively large (Jmgg| > \/Am3;|), it would be an evidence that neutrinos are
Majorana particles and the spectrum of their mass is quasi-degenerate. In this
case we could conclude that

Impp| < Mmin < 2.8|mgg|. (178)

Information about the lightest neutrino mass can be obtained from experi-
ments on the measurement of the end-point part of the § spectrum of tritium.
From existing data of the Mainz [49] and Troitsk [50] tritium experiments the

upper bound was found:
Mupin < 2.2 eV. (179)

The sensitivity of the future KATRIN experiment [51] is expected to be
Mumin ~ 0.2 eV. (180)

We have considered three neutrino mass spectra with special values of the lightest
neutrino mass my,i,. In the figure the effective Majorana mass for the normal and
inverted neutrino mass spectra as a function of my,i, is presented. Uncertainties
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of the parameters Am?,, Am3, and tan? 6,5 and possible values of the Majorana
phase difference « are taken into account in the figure.

In conclusion let us notice that if in the KATRIN (or other) experiments the
neutrino mass is measured and in the Orv3(-decay experiments, sensitive to the
effective Majorana mass in the range (177), a positive signal is not observed, it
would be an evidence that neutrinos with definite masses are Dirac particles.

7. NUCLEAR MATRIX ELEMENTS OF 0v53 DECAY

The effective Majorana mass |mgg| is not directly measurable quantity. From
the measurement of the half-life of the Ov(B3 decay only the product of the
effective Majorana mass and the nuclear matrix element can be obtained. In
order to determine the effective Majorana mass, we need to know nuclear matrix
elements of the Ov(33 decay (NME).

The calculation of NME is a complicated nuclear many-body problem. Two
main approaches are used: Nuclear Shell Model (NSM) [54] and Quasiparticle
Random Phase Approximation (QRPA) [55,56].

The Nuclear Shell Model is attractive from physical point of view: there are
many spectroscopic data in favor of shell structure of nuclei (spins and parities
of nuclei, binding energies of magic nuclei, etc.). It is based on the assumption
that there exists spherically symmetrical averaged nucleon field (usually oscillator
potential) and one-particle states in this field are used as a basis for the description



1320 BILENKY S.M.

of valence nucleons. An effective interaction between nucleons is taken into
account in the Hamiltonian. Because of computational difficulties, rather a limited
number of one-particle states can be used in the NSM calculations. However, all
possible distributions of valence nucleons over these states are taken into account.

The neutrinoless double 3 decay of a nucleus is due to transition of two
neutrons into two protons with the emission of two electrons. The operator of
the transition of two neutrons into two protons can be presented in the form of
the sum of products of an operator of the absorption of two neutrons in a state
with total momentum J and parity 7 and an operator of creation of two protons
with the same momentum and parity:

M= (PP (181)

It was found [57] that the dominant contribution to the NME comes from the
07T state of the neutron—neutron pair. Sizable contribution is given also by the
2% state. It is, however, smaller and has opposite sign. The contributions of
other states are negligibly small. The dominance of the contribution of the 0
state corresponds to the pairing content of the initial and final wave functions.
Let us notice that if seniority of the initial and final wave functions is equal to
zero, NME would be maximal.

Further, it was found [58] that the major contribution to NME comes from
pairs of neutrons at the distance r < 2—3 fm. In order to take into account strong
repulsion of nucleons at small distances (< 1 fm), an additional r-dependence
(so-called short-range correlations) is introduced in the expression for the NME.

This additional r-dependence is parameterized by Jastrow-type function [59]

fry=1—e"(1-br?), a=11fm 2, b=068fm > (182)

Recently it was proposed to take into account the short-range correlations by a
Unitary Correlation Operator Method (UCOM) [60]. In this method the corre-
lated wave function is obtained by a unitary transformation of uncorrelated wave
function.

In Table 2 we present the NME values of nuclear matrix elements of the
OvB33 decay M which were calculated with Jastrow-like and UCOM short-
range correlations.

Notice that except double-magic nucleus **Ca NSM nuclear matrix elements
of the Ov(33 decay for all considered nuclei are practically the same (they differ
by not more than ~ 20%).

There are two groups which are performing the QRPA calculation of NME
at present: Tiibingen group [61-63] and Jyvéskyld group [64—67]. The QRPA
method allows one to include pairing correlations in nuclear wave functions
through the introduction of quasiparticles (particle-hole pairs). Two parameters
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Table 2. The NSM values of nuclear matrix elements of the Ov (50 decay [58]

Nuclei transition | M°® (UCOM) | M° (Jastrow)
BCa — BT 0.85 0.64
6Ge — 0Se 2.81 2.30
829¢ — 2Ky 2.64 2.18
1249y 5 124 2.62 2.10
128g _, 1280 2.88 2.34
180e —, 130X e 2.65 2.12
136X e — 136RBgy 2.19 1.76

gpp and gpn of the model characterize particle—particle and particle-hole inter-
actions. The constant gy, is obtained from the fit of the energy of the giant
Gamow-Teller resonance. The Tiibingen group determines the value of the con-
stant gp, from the measured half-life of the 2v33 decay of the corresponding
nucleus. The Jyvéskyld group determines the constant g,, from data on the (3
decay of nuclei which are close to the nuclei of the interest for the OvG3 decay.
They also use the value of the constant g, obtained from the half-life of the
2v 3 decay.

In the QRPA approach the mean nuclear field is described by the Woods—
Saxon potential. The number of basic one-particle states which can be used in
the QRPA is much larger than in the NSM. This is an important advantage of the
QRPA approach. However, only limited excitations can be taken into account.

Like in the NSM case, in the QRPA approach the dominant contribution to
NME gives 07 state of neutron pairs. However, in the QRPA not only 2% state
but also other states give significant contribution.

In both approaches, major contribution to NME comes from neutron pairs at
a distance smaller than 2-3 fm. The short-range correlations, taking into account
nucleon repulsion at short distances, are introduced in the QRPA expression
for NME via the Jastrow-type function (182) and through Unitary Correlation
Operator Method procedure. Recently [63] the short-range correlations were cal-
culated directly from different nucleon—nucleon potentials by the coupled cluster
method (CCM) [68].

In Table 2 the results of the calculations of the QRPA nuclear matrix elements
by the Tiibingen group are presented. The short-range correlations were calculated
by the CCM method. For comparison in Table 2 the results of the calculation of
NME with the Jastrow-type short-range correlations are also presented.

The uncertainties of NME in Table 3 are mainly due to different values of
the axial constant g4 which are used in the calculations. Upper bounds of NME
correspond to the free nucleon value g4 = 1.25 and lower bounds correspond to
quenched in the nuclear matter value g4 = 1.
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Table 3. The values of QRPA nuclear matrix elements of the Ov 33 decay with CCM
and Jastrow short-range correlations [63]

Nucleus | M (Jastrow) | M° (CCM)
6Ge 3.33-4.68 4.07-6.64
82Ge 2.82-4.17 3.53-5.92
%7y 1.01-1.34 1.43-2.12
1000\ 14 2.22-3.53 2.94-5.56
1000\ 1o 2.22-3.53 2.94-5.56
H6cq 1.83-2.93 2.30-4.14
128 2.46-3.77 3.21-5.65
130 2.27-3.38 2.92-5.04
136X e 1.17-2.22 1.57-3.24

Table 4. The values of NME calculated in the framework of QRPA by the Jyviskyld
group [64]

Nucleus Ipp ga | M® (Jastrow) | M° (UCOM)
6Ge 1.02 1.00 5.08 6.56
1.06 1.25 4.03 5.36
82Ge 0.96 1.00 3.54 4.60
1.00 1.25 2.78 3.72
967y 1.06 1.00 3.13 431
1.11 1.25 2.07 3.12
1000\[o 1.07 1.00 3.53 4.85
1.00 1.25 2.74 3.93
H6cd | 0.82(8) | 1.25 3.98 4.93
0.97 1.00 3.68 4.68
1.01 1.25 3.03 3.94
128 0.86(8) | 1.25 4.07 5.51
0.89 1.00 4.23 5.84
0.92 1.25 3.38 4.79
130 0.84 1.00 4.06 5.44
0.90 1.25 2.99 422
136%e 0.74 1.00 2.86 3.72
0.83 1.25 2.05 2.80

The results of the calculations of nuclear matrix elements of the Ov33 decay
performed by the Jyviskyld group are presented in Table 4. The short-range
correlations were taken into account by Jastrow and UCOM procedures.

It is difficult to expect that outcome of the many-body nuclear calculations,
based on different assumptions, will be the same. However, from the results
presented in Tables 2—4 we can conclude the following:
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1. The values of the nuclear matrix elements of the Ov(30 decay of differ-
ent nuclei obtained in the latest QRPA and NSM calculations are qualitatively
compatible.

2. NSM nuclear matrix elements of °Ge, 82Se and '3°Te are by a factor of
(1.5-2) lower than QRPA nuclear matrix elements.

3. There is no doubt that traditional methods of the calculation of NME will
be improved and, apparently, new methods will appear. However, it will be very
important to find a way to test the calculations.

If neutrinoless double 3 decay is discovered and half-lives of different nuclei
are measured, from the ratios of measured half-lives in this case it will be possible
to test different models of the calculation of NME [69]. If, for example, half-lives
of the Ov33 decay of ®Ge and '3°Te are measured, the ratio of half-lives will
be practically equal to the inverse ratio of the corresponding phase-space factors
in the case of NSM nuclear matrix elements and could be significantly different
from this ratio in the case of QRPA nuclear matrix elements.

8. EXPERIMENTS ON THE SEARCH FOR 0v35 DECAY

At present there exist data of many experiments on the search for neutri-
noless double 3 decay. The most stringent lower bound on the half-lives of
the OvB( decay of different nuclei was obtained in the Heidelberg—Moscow [1]
and IGEX [2] experiments, and in the recent CUORICINO [3] and NEMO [70]
experiments.

In the Heidelberg—Moscow and IGEX experiments, two electrons with total
energy Qs = 2039 keV which are produced in the 0F — 07 transition "°Ge —
"6Se + e~ + e~ were searched for. In the Heidelberg—Moscow experiment the
source (and detector) consists of five crystals of 86% enriched "®Ge with total
mass 10.96 kg. In the IGEX experiment ~ 7 kg of enriched "®Ge was used.
Low background level (~ 0.06 counts/(keV -kg-y)) and high energy resolution
(~ 3 keV) were reached in the germanium experiments.

For the half-life of Ge in the Heidelberg—Moscow experiment the following
lower bound was obtained [1]:

TP (" Ge) > 1.9-10% . (183)

From this result the following upper bound on the effective Majorana mass was
inferred: |mgg| < 0.35 eV.
In the IGEX experiment it was found [2] that

TY/5("Ge) > 1.57-10% y. (184)

From these results, assuming different NME, the bound |mgg| < 0.33—1.35 eV
was found.
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In the cryogenic experiment CUORICINO [3] the search for the Ov3/3 decay
of 139Te was performed. An array of 62 TeO, crystals with a total active mass of
40.7 kg was cooled to 8—10 mK in a dilution refrigerator. Since the heat capacity
is proportional to 72, an increase of temperature due to tiny release of energy in
the Ov303 decay can be recorded by special thermometers.

No evidence for the Ov33 decay of '3°Te was obtained in the CUORICINO
experiment. For the half-life of 139Te a limit

T/ ("0 Te) > 3.0-10* y (185)

was obtained [3]. From this limit, using the values of the NME, calculated in the
latest papers, the following upper bound was inferred: |mgg| < 0.19—0.68 eV.

In the NEMO3 experiment [70] the cylindrical source was divided into sectors
with enriched '°°Mo (6914 g), 2Se (932 g), '6Cd (405 g), '30Te (454 g), 19Nd
(34 g), %Zr (94 g) and *3Ca (7 g). For the detecting of the two electrons drift
cells and plastic scintillator were used. No 0v(33 decay was observed. In Table 5
the results of the NEMO3 experiment are presented.

Table 5. Lower bounds of the half-lives of the 0v3( decay of different nuclei, obtained
in the NEMO3 experiment [70]

Nucleus Tlo/”2 (90% CL), y |mgsl|, eV
1000\ 1o >5.8-10% <0.6-1.3
825 >2.1-10% <1.2-2.2
967y > 8.6-10% < 7.4-20.1
BCa >1.3-10%? < 29.7

150N >1.8-10%? < 4.0-6.3

Several new experiments on the search for the 033 decay are at preparation
at present. In these new experiments it is planned to reach the sensitivity |mgg| ~
a few 1072 eV, corresponding to the inverted hierarchy of the neutrino mass
spectrum.

In the future GERDA experiment [71], array of enriched Ge crystals will
be cooled and shielded by liquid argon (or nitrogen) of very high radiopurity.
In Phase I of the GERDA experiment, 5 detectors from the Heidelberg—Moscow
experiment (active mass 11.9 kg) and 3 detectors from the IGEX experiment
(active mass 6 kg) will be used. The expected background at this phase of the
experiment will be ~ 10~2 counts/(kg - keV -y). The expected sensitivity will be
T1/2("Ge) ~ 3-10% y at 90% CL. Nonobservation of the neutrinoless double
( decay at this phase of the experiment would allow one to obtain the upper
bound |mgg| < 0.27 eV (with QRPA NME).
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During Phase II of the GERDA experiment, additional 22 kg of the enriched
Ge will be used (total active mass of the enriched Ge will be about 40 kg). The
expected background is 1073 counts/(kg - keV -y). The sensitivity T; /2("*Ge) ~
1.4 - 10% y (at 90% CL) is planned to be reached. This sensitivity corre-
sponds to the sensitivity to the effective Majorana mass |mgg| ~ 0.11 eV
(QRPA NME).

If the goals of Phase I and Phase II are achieved and the level of the
background 10~* counts/(kg-keV -y) is reached, it is planned (in cooperation
with the Majorana collaboration) to build ~ 1 t germanium detector with the aim
to investigate the region of the inverted neutrino mass hierarchy.

As is well known, the group of participants of the Heidelberg—Moscow ex-
periment claimed that it found an evidence for neutrinoless double 3 decay of
"6Ge [72]. For the half-life of the decay the authors obtained the following
30 range: T'/2("®Ge) = (1.30—3.55) - 10%° y. These values correspond to the
following range for the effective Majorana mass: |mgg| = 0.24—0.58 eV (with
NME calculated in [73]). There is no detailed analysis of the systematic errors
in [72] (see [74]). The only way to confirm or refute the claim is to perform more
sensitive than the Heidelberg-Moscow experiment (preferably "®Ge experiment
in order to avoid the NME problem). One of the aims of the GERDA experiment
is to check the claim made in [72].

In the proposed Majorana experiment [75], an array of enriched Ge crystals
will be installed inside of high-purity electroformed copper cryostat. It is expected
that the background in the Majorana experiment will be a factor of 150 lower than
in the Heidelberg—Moscow and IGEX experiments. Staged approach based on
the 60 kg enriched Ge array (60/120/180 kg) is planned. The expected sensitivity
at the first stage of the experiment (7} /5("°Ge) ~ 5.5 - 10%° y) will allow one to
check the claim made in the papers [72].

In the cryogenic CUORE experiment [76], an array of 19 towers made from
5 x 5 x5 cm TeOq crystals is used as a source (detector). The total number of
the crystals in the experiment is equal to 988. The total mass of the crystals is
741 kg of TeOy (204 kg of 139Te). In the CUORICINO experiment one similar
tower of a mass 40.7 kg was used.

The  expected background in the CUORE experiment is
0.01 counts/(kg - keV -y). The expected sensitivity to the half-life is T} /2(130Te) ~
2.5-10%6 y. With the present-day values of NME, the following sensitivity to the
effective Majorana mass will be achieved: |mgg| ~ (4.7—5.3) - 1072 eV.

In the future EXO experiment [77], the 0v33 decay of '3Xe will be sought
for. Because there is no need to grow crystals and procedure of enrichment is
relatively simple, Xe is ideal for a large-scale (one ton or more) neutrinoless
double [3-decay experiment. Ion '36Ba™™ produced in the decay 36Xe —
136Batt 4+ e~ 4 e, by the capture of an electron can be transferred to the ion
136Ba™ which is stable in Xe. The EXO collaboration plans to identify Ba™
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ion by optical pumping with lasers. Single ion can be detected by this technique
(via photon rate 107 s~!). When the program of the '3°Ba™ tagging will be
realized, the background in the experiment on the search for the 0v 33 decay will
be drastically reduced.

At present the EXO collaboration is constructing 200 kg liquid xenon TPC
with Xe enriched to 80% in '36Xe. No #Ba™ tagging will be done at this stage.
In this experiment the sensitivity [mgg| ~ 1.5- 107! eV is anticipated.

We have discussed experiments on the search for neutrinoless double /3
decay which will be done in the coming years. There are several other exper-
iments which are in R&D stage: Super-NEMO (°°Nd or #2Se) [78], MOON
(19°Mo) [79], SNO ++ (1°°Nd) [80], COBRA (*!¢Cd, *3°Te) [81], CANDLES
(8Nd) [82], DCBA (!5°Nd) [83], CAMEO (}16Cd) [84], XMASS (13¢Xe) [85],
and others.

CONCLUSION

The observation of the neutrino oscillations in experiments with atmospheric,
solar, reactor, and accelerator neutrinos proves that neutrino masses are different
from zero and that the states of flavor neutrinos v, v, v, are mixtures of states
of neutrinos with different masses. There are two general possibilities for neu-
trinos with definite masses: they can be 4-component Dirac particles, possessing
conserved total lepton number which distinguishes neutrinos and antineutrinos,
or purely neutral 2-component Majorana particles with identical neutrinos and
antineutrinos.

It will be extremely important for the further development of the theory of
the neutrino masses and mixing to answer the fundamental question: are neutrinos
with definite masses Dirac or Majorana particles?

Neutrino masses are many orders of magnitude smaller than masses of their
family partners, leptons and quarks. This fact tell us that neutrino masses and
masses of leptons and quarks are of different origin. The most natural possibility
of the explanation of the smallness of the neutrino masses gives us the seesaw
mechanism of the neutrino mass generation. This beyond-the-Standard-Model
mechanism connects smallness of neutrino masses with the violation of the total
lepton number at a large scale and Majorana nature of neutrino masses. If it is
established that neutrinos with definite masses are Majorana particles, it will be a
strong argument in favor of the seesaw origin of neutrino masses.

Investigation of the neutrinoless double 3 decay of nuclei is the only practical
way which could allow one to prove that neutrinos are Majorana particles. This
is simply connected with the fact that there are a huge number of parent nuclei
in a source. However, even if neutrinos are Majorana particles, the probability of
the Ov303 decay is extremely small. There are two reasons for that:
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e The O3/ decay is the second order in the Fermi constant process.

e The Ov@0 decay is possible due to neutrino helicity flip. In the case of
neutrino mixing this means that the matrix element of the process is proportional
to effective Majorana mass mgg = »_ UZm;. Smallness of neutrino masses is

additional suppression factor in the décay probability.

Experiments on the measurement of the half-lives of such a rare process
as neutrinoless double § decay with severe requirements on background and
energy resolution are extremely difficult. A big progress was achieved. However,
future experiments with about one ton detectors, which will allow one to reach
the region of values of the effective Majorana mass, which is predicted from
neutrino oscillation data in the case of the inverted mass hierarchy, is definitely
a challenge. Taking into account importance of the problem of the nature of
massive neutrinos, there is no doubt that goals of future experiments will be
achieved.

In this review we considered Ov 30 decay, driven by the left-handed SM weak
interaction and Majorana neutrino masses. If total lepton number is not conserved
and neutrinos with definite masses are Majorana particles, such a mechanism of
the Ov 3 decay obviously must exist. In the literature many other possible mech-
anisms of the Ov (30 decay were considered (for references see, for example, [8]).
We shortly discuss here a mechanism due to the exchange of a heavy SUSY neu-
tralino. Let us assume that there exist an R parity and a lepton-number-violating
interaction, which induces the transition d — u + € (€ is the selectron). In com-
bination with the standard SUSY interaction, which induces transition ¢ — e +
(x is the neutralino), these two interactions in the case of the virtual neutralino
provide the Ov3Q3 transition n +n — p + p + e + e. If the constants of the
SUSY interactions are of the order of the electroweak constant g and if masses
of SUSY particles are characterized by a scale A, in this case a contribution of
these interactions to the matrix element of the Ov(33 decay is proportional to

2 Miy

MSUSY ~ GF F (186)
This contribution must be compared with the contribution to the matrix element
of the OvB8 decay of the standard small Majorana neutrino mass mechanism

[mpss!
My ~ G2 . (187)

" e
Taking into account that [mgg| < 1 eV and {(¢?) ~ 100 MeV?2, we come to
the conclusion that for A ~ 1 TeV Mgygy can be comparable with M if
a hypothetical SUSY interaction, which does not conserve R parity and the

lepton number, is characterized by the electroweak constant g (for more detail,
see [86]).
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Appendix
ETTORE MAJORANA

Great Italian physicist Ettore Majorana was born in Catania (Scicily, Italy)
on August 5, 1906. His father was an engineer, specialist in telecommunication.
There were five children in the family*.

In 1921 the family moved to Rome. In 1923 E.Majorana finished High
School and entered the Engineer Faculty of Rome University.

Among his fellow-students and friends were E. Segre and E. Amaldi. In 1927
Segre and later Amaldi transferred to the Physics Faculty and started to work with
E. Fermi who was appointed in 1926 as a Professor of theoretical physics at Rome
University.

E. Majorana was famous at the Engineer Faculty for his extraordinary ability
of solving difficult mathematical problems. E.Segre convinced E.Majorana to
meet and to speak with Fermi. At that time Fermi was developing the statistical
model which is known as Thomas—Fermi model. He explained Majorana the
model and showed him the table with numerical values of the screening potential
which he calculated numerically.

Next morning Majorana returned back to the Institute of Physics with his
own table of values of the potential. He transformed the second-order nonlin-
ear Thomas—Fermi equation into the Riccati equation and solved it numerically.
Majorana and Fermi results coincided.

A few days later E. Majorana became student of the Physics Faculty. He im-
pressed everybody by his lively mind and broad interests. He was a very
critical person. For his criticism he was called in the Fermi group «Great
Inquisitor».

In 1929 Majorana received diploma. His theses were devoted to the inves-
tigation of the structure of nuclei and to the theory of the alpha decay. His
supervisor was Fermi.

After doctorate Majorana visited the Institute of Physics for a few hours
every day. He spend most of his time in library, working and studying Dirac,
Heisenberg, Pauli, Weil and Wigner papers.

At that time Fermi and his group worked on problems of atomic and molecu-
lar physics. Majorana wrote six papers on the subject. These papers demonstrated
profound Majorana’s ability of using symmetry properties of the states. This al-
lowed him to simplify the problem and to choose the suitable approximation
(which is normal now but was not usual at that time). These papers also demon-
strated perfect Majorana’s knowledge of experimental data.

*For a detailed biography of E.Majorana, see E. Amaldi [87].
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In 1932 Majorana received teaching diploma («libero docente»). Committee
(Fermi, Lo Surdo, Persico) concluded that «the candidate has a complete mastery
in theoretical physics».

At the end of 1931-beginning of 1932 Fermi and his group started to con-
centrate their efforts on nuclear physics.

After the discovery of the neutron by Chadwick (1932) Majorana was one of
the first who came to an idea that constituents of nuclei are protons and neutrons.
He started to develop the theory of nuclear forces. Majorana proposed the theory
of space exchange forces between p and n (Majorana potential).

Fermi was very interested in the idea and tried to convince Majorana to
publish his results. However, Majorana refused and even did not allow Fermi to
mention them in his talk at a conference in Paris. E.Fermi managed, however,
to persuade Majorana to go to Leipzig where W. Heisenberg was working and to
Copenhagen where N. Bohr was working.

E.Majorana was abroad during seven months, starting from January 1933.
Heisenberg, who worked at that time on the theory of nuclear forces, discussed
with Majorana his paper on nuclear theory. He convinced Majorana to publish it.

After returning from Germany E. Majorana started to come to the Institute of
Physics at via Panisperna rather rarely and after some months did not come at all.

He was at home and became interested in political economy, philosophy, con-
struction of ships, medicine. He even wrote a paper on statistical laws in physics
and social sciences, which was discovered and published after his disappearance.

Meanwhile new talented physicists grew up in Italy (Wick, Racah, Giovanni
Gentili Jr. and others). It was time to create a new chair in theoretical physics.
This chair was created at the University of Palermo and at the beginning of 1937
a competition for the chair was announced.

It was a problem to convince Majorana to take part in the competition.
Finally, Fermi, Amaldi and Segre managed to convince him.

Majorana had no publications during several years. He sent to «Nuovo
Cimento» his most important paper «Symmetrical Theory of the Electron and the
Positron» in which the theory of the Majorana particles was proposed.

After that the following happened. By the request of Senator Giovanni Gentili
E. Majorana for his extraordinary abilities without competition was appointed as
a professor at Napoli University.

In January 1938 E. Majorana came to Napoli. In Napoli he had rather lonely
life. He went to the University only when he had lectures (on quantum mechan-
ics). After lectures he visited Professor Carrelli with whom he became friendly
and discussed different problems in physics. He never mentioned what he was
doing. He discussed his neutrino theory and Carrelli had an impression that
Majorana considered this theory as his most important contribution to physics.

On March 23, 1938 E.Majorana decided to go to Palermo. On March 25
Carrelli received a telegram from Majorana from Palermo. He asked Carrelli
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not to worry about a letter which he would receive. In the letter which came
soon, Majorana wrote that he found his life useless and decided to commit
suicide. Carrelli called Fermi and Fermi called Luciano, Ettore’s brother. Luciano
immediately went to Napoli. He understood that on the evening of March 25
Ettore took boat to Napoli. He was seen sleeping in his cabin when the boat was
entering into the Napoli bay. He did not arrive in Napoli. His body was never
found.

During several months there was an investigation conducted by family and
by the police. Vatican tried to find out whether he entered some monastery. No
traces were found.

I will finish with two citations: «There are various kinds of scientists in the
world. The second- and third-rate ones do their best but do not get very far.
There are also first-rate people who make very important discoveries which are
of capital importance for the development of the science. Then there are geniuses
like Galileo and Newton. Ettore Majorana was one of these. Majorana had
greater gifts than anyone else in the world; unfortunately, he lacked one quality
which other men generally have: plain common sense» (E.Fermi from Cocconi
memories).

«E.Majorana was very critical to himself and other people. He was per-
manently unhappy with himself. He was a pessimist but had very acute sense
of humor. He was conditioned by complicated and absolutely nontrivial living
rules. ...E.Majorana was quite rich and I cannot avoid thinking that his life
might not have finished so tragically should he have been obliged to work for
a living. For that reason and also because he did not like to publish the results
of all investigations he had made, Majorana contribution to physics is much less
than it could be» (B.Pontecorvo [88]).

In conclusion I will discuss briefly the content of Majorana’s paper «Sym-
metrical Theory of the Electron and the Positron» [89].

E. Majorana was not satisfied with the then existing theory of electrons and
positrons in which positrons were considered as holes in the Dirac sea of the states
of electrons with negative energies. He wanted to formulate the symmetrical
theory in which there is no notion of states with negative energies.

Let us consider the Dirac equation for a complex field ¢ (x)

(1700 — m) (x) =0, (188)

where m is the mass of the particles-quanta of the field. The conjugated field
ve(x) = CPT (x) (189)
(C' is the matrix of the charge conjugation) obviously satisfies the same equation

(1700 — m)Y°(x) = 0. (190)
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Let us present the field ¢)(x) in the form

_ x1tixe
Y(z) = 3 (191)

where $(@) + (@) 9(@) — (@)
)+ Y°(x T) — T
xi(z) = Ta x2(7) = T
It is obvious from (188), (190) and (192) that the fields x1 2(z) satisfy the Dirac
equations

(192)

(17%00 — m) x1,2(z) = 0. (193)

The fields x1,2(x) satisfy also additional (Majorana) conditions

X12(7) = x1,2(2). (194)

Majorana used the representation in which v are imaginary matrices (Majorana
representation). In this representation ¢¢(z) = *(x) and x1(x) and xo(z) are
real and imaginary parts of the field ¢ (x).

Majorana built quantum field theory of the fields x12(x). First of all it is
easy to show that there are no electromagnetic currents for the fields x1 2(z). In
fact, taking into account (193), we have

T T

3 (@) = Xi(@2) xa(@) = —x7 (@) (v*) xi(@)" =
= —xi(@)Y*xi(x) =0 (i=1,2). (195)

Therefore, x1,2(x) are fields of particles with electric charge and magnetic mo-
ment equal to zero.

For the operator of the energy and momentum, Majorana obtained the fol-
lowing expressions:

mz/zm@@w¢@ﬁpu=m» (196)

where operators a’.(p) and (a’(p))" satisfy usual anticommutation relations.
Thus, (a’(p))T (al(p)) is the operator of the creation (absorption) of a particle
with momentum p and helicity r. There are no states with negative energies and
quanta of the fields xi2(z) are neutral particles (which are identical to their
antiparticles).
X1 +ixe
) V2
Y (x)y*; () is different from zero. After quantization Majorana came to sym-
metrical theory of particles and antiparticles with operators of total momentum

In the case of the complex field ¥ (z) = the current ji(x) =
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and total charge given by the following expressions:

P = / >l )er(p) + dip) dr(p)]d®p, (197)
@=e / > _lelp)er () — di(p) d(p)]dp. (198)

Here cl(p)(c.(p)) is the operator of the creation (absorption) of particle with
charge e, momentum p and helicity 7 and d.(p)(d,(p)) is the operator of the
creation (absorption) of antiparticle with charge —e, momentum p and helicity 7.
Correspondingly,

P)a = cl(p)[0), Ip)a = di(p)|0) (199)

are states of particle with charge e, helicity r and mass m and antiparticle with
charge —e, helicity r and the same mass m.

Majorana wrote in the paper [89]: «A generalization of Jordan—Wigner quan-
tization method allows one not only to give symmetrical form to the electron—
positron theory but also to construct an essentially new theory for particles without
electric charge (neutrons and hypothetical neutrinos)». And further in the paper:
«Although it is perhaps not possible now to ask experiment to choose between
the new theory and that in which the Dirac equations are simply extended to
neutral particles, one should keep in mind that the new theory is introducing in
the unexplored field a smaller number of hypothetical entities».

Soon after the Majorana paper, Racah [90] and Furry [91] proposed the
methods which could allow one to test whether neutrino is a Majorana or Dirac
particle. The so-called Racah chain of reactions

(A, Z) = (A, Z+1)+e +v, v+ (A,Z2)— (A, Z +1)+e  (200)

is allowed in the case of the Majorana neutrino and is forbidden in the case of the
Dirac neutrino. Of course, in 1937 Racah could not know that even in the case
of the Majorana neutrino the chain (200) is strongly suppressed due to neutrino
helicity.

In 1938 Furry considered neutrinoless double 3 decay of nuclei

(A Z) = (A Z+2)+e +e (201)

induced by the Racah chain with virtual neutrinos.
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