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An understanding of atomic nuclei is crucial for a complete nuclear theory, for the nuclear
astrophysics, for performing new experimental tasks, and for various other applications. Within
a density functional theory, the total binding energy of the nucleus is given by a functional of
the nuclear density matrices and their derivatives. The variation of the energy density functional
with respect to particle and pairing densities leads to the Hartree—Fock—Bogoliubov equations. The
«Universal Nuclear Energy Density Functional» (UNEDF) SciDAC project to develop and optimize
the energy density functional for atomic nuclei using state-of-the-art computational infrastructure is
briefly described. The ultimate goal is to replace current phenomenological models of the nucleus
with a well-founded microscopic theory with minimal uncertainties, capable of describing nuclear data
and extrapolating to unknown regions.

PACS: 21.60.-n

INTRODUCTION

Density Functional Theory (DFT) has its roots in the Hohenberg—Khon the-
orem showing the total energy of a many-fermion system as a universal energy
density functional of local density distribution p(r) — a simple quantity which
depends on a spatial coordinate only, has a clear physical meaning, and can be
measured experimentally.

In the nuclear case, the energy density functional depends on densities and
currents (and their derivatives) representing distributions of nucleonic matter,
spins, momentum, and kinetic energy. Since superconductivity plays a central
role, the nuclear energy density functional is augmented by the pairing densities
as well. As a result, its variation with respect to particle and pairing density
matrices leads to a highly nonlinear system of Hartree—Fock—Bogoliubov (HFB)
equations which has to be solved in a self-consisted manner.

Historically, the first nuclear energy density functionals appeared in the con-
text of zero-range, density-dependent interactions such as the Skyrme force [1].
The strategy used in all modern nuclear DFT applications, however, does not
assume the realistic energy density functional to be related to any given effective
Hamiltonian; i.e., an effective interaction could be secondary to the functional [2].
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In this way, the DFT mass calculations have achieved a quite remarkable rms
deviation of the order of ~600 keV with respect to the existing mass measure-
ments [3].

Over the past few years, however, it has become clear that commonly used
functionals suffer from various deficiencies that make it impossible to obtain a
consistent and highly quantitative description of nuclear properties. For example,
existing nuclear functionals remain rather poorly constrained [2,4,5] with limited
predictive power when extrapolating nuclear masses away from the regions where
experimental data are available, significant uncertainties regarding shell structure,
and especially the energies of the single-particle states [5].

Since nuclear DFT remains the only tractable microscopic theory that can
be applied across the entire table of nuclides, a lot of efforts has recently been
devoted to its development.

In this short overview, some aspects of the «Universal Nuclear Energy Den-
sity Functional» SciDAC project to develop and optimize the energy density
functional for atomic nuclei are briefly described.

1. UNEDF SciDAC COLLABORATION

The «Universal Nuclear Energy Density Functional» (UNEDF) SciDAC-2
collaboration [6] carries out a comprehensive study of all nuclei based on the
most reliable theoretical approaches, the most advanced algorithms, and extensive
computational resources, with a view of scaling to the petaflop platforms and
beyond. We seek to replace current phenomenological models of nuclear structure
and reactions with a well-founded microscopic theory that delivers maximum
predictive power with well-quantified uncertainties.

One of the research tasks under UNEDF is aiming at development of the
optimized nuclear energy density functional and the related computational in-
frastructure to solve self-consistent, nonlinear equations of the nuclear energy
Density Functional Theory (DFT). The goal is to combine the best knowledge
of the nuclear Hamiltonian with newly developed many-body techniques to con-
struct a novel class of energy functionals. These functionals, validated by using
the relevant data, will then be applied to predict nuclear properties and describe
nuclear reactions.

From the point of view of DFT practitioners, the challenges by the UNEDF
roadmap are, therefore, threefold:

(i) What mathematical form should the energy functional take?

(i) Given the mathematical form, how can one optimize the functional para-
meters to a set of experimental data?

(iii) How can one compute the properties of all atomic nuclei within a
reasonable timescale?

The essence of these key roadmap challenges are further briefly addressed.
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2. NUCLEAR ENERGY DENSITY FUNCTIONAL

Within the UNEDF project, the following general representation of the nu-
clear energy density functional is under consideration:
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where
Hpr (v) = UPPY pyipy + UPT pyryy + UPY T 0,V T + UM 30 T (2)

The isospin index ¢t = {0,1} labels isoscalar (t = 0) and isovector (¢ = 1)
densities p;, 7, and Jy, respectively. The isoscalar local density, for example, is
the sum pg = p,, + pp of neutron p,, and proton p, densities, while the isovector
local density is the difference p1 = p,, — pp. The same is also true for 74 and J;.

The diagonal energy densities Hy(r) entering Eq. (1) may appear when con-
sidering a bilinear product pV p with a two-body (/N V) interaction V. When V'
includes three-body (NN N) forces, the «crossing» terms ’Htt/#(r) may appear
in Eq. (2) in such a way that the functional (1) is isospin-invariant.

The expression (2) includes six densities p;, 7¢, J¢ grouped in twenty terms
multiplied by the amplitudes

uvm=um (pthtaJtv"')v (3)
where the superscript m stands for all twenty combinations
{ptpt', ptTt’7ptApt’yptv-Jt’aJt-Jt’}- 4)

The assumption the amplitudes (3) could be functions of p;, 7, J; and their
derivatives makes the functional representaion (1) quite general.

The standard Skyrme functional follows from Eq.(1) at Hyy»; = 0 and
assuming the amplitudes U™ are all constants C" with the only exception for
the density-dependent amplitudes

CPtPt — C(I)’tpt + Cf)tptpg, (5)

which include a fractional power ~. Altogether, the standard Skyrme functional
contains 13 parameters

{Cgtpt’cgtpt7cptApt7 CptTt’CJt27Cptv<]t7,y}’ (6)

which are uniquely related to the well-known (¢, z:) parameters [1].
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A straightforward empirical generalization of the standard Skyrme functional
is suggested in [7] by replacing all coupling amplitudes U™, Eq. (3), with density-
dependent functions

D™ =C" +a™(1—yg )+ "yl )

where yo = (po/pc)s Y1 = (p1/pc)?, and p, is the infinite nuclear matter equi-
librium density. In this way the set of 13 C parameters (6) is extended to a
set of 68 independent parameters, i.e., 40 coupling constants {C™, o™, ™}, and
28 powers {y™,n™}, thus increasing the flexibility of the functional.

Another extension of the nuclear energy density functional currently pursued
comes from the Density Matrix Expansion (DME) method applied to the long-
range part of chiral nucleon—nucleon interactions [8] through the leading (LO),
next-to-leading (NLO), and next-to-next-to-leading (N2LO) order [9]. It retains
the general structure (1) through the coupling amplitudes (3) which are of the
form

U™ =60 (C™ 4+ g™ (u) + po K™ (w)) + (1 = 6e,/)p1h™ (w), ®)

where functions ¢ (u) collect all LO, NLO, and N2LO contributions from the
long-range part of the NN interaction, while functions 2™ (u) originate from the
long-range part of the NN N interaction which appears for the first time at N2LO.

The explicit form of g™ (u) and h™ (u) offers novel density dependence of the
functional as log (u) and arctan (u). In the local density approximation (LDA)
the Fermi momentum kg entering the variable u = kp/m; is linked to the spatial
local density distribution in the following way:

k(r) = (?mr))m. ©)

It introduces, in the sense of Eq.(3), an additional pg-dependence of the ampli-
tudes U™ = U™ (pp). A more complicated gradient dependence could be obtained
by applying the LDA suggested by Campi and Bouyssy [10]:

_ [570(r) = (1/4)Apo(r)

which implies U™ = U™(po, 70, App). The mixed amplitudes additionally in-
clude the isovector density p; reflecting the isospin symmetry of the functional.

Substituting the amplitudes (8) into Eq. (2), the DME functional (1) naturally
splits into two terms:

Elp] = Ec[p] + Ex[p]- (11)

The first term E.[p] collects all contributions from the contact part of the inter-
action. It has exactly the same form and the same number of parameters as the
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standard Skyrme functional. The second term FE[p] originates solely from the
long-range pion part of the interaction. It contains the parameters g4, fr, M,
€1, C3, C4, Cg, Ce, Ay Of the underlying Chiral EFT interaction [8].

The underlying philosophy is that the DME can accurately capture the long-
range pion physics entering F[p], while one could release for optimization the
parameters of the Skyrme-like functional E.[p] in order to capture the missing
short-range physics. Work in this area is in progress.

3. DFT SOLVERS

Having the form of the nuclear energy density functional, one should perform
self-consistent HFB calculations in order to find the properties of a nucleus.

The coordinate-space formulation of HFB has an advantage to treat arbitrarily
complex intrinsic shapes, including those seen in fission or heavy-ion fusion. A
number of coordinate-space DFT solvers have been developed over the years,
and their performance strongly depends on the size and symmetries of the spa-
tial mesh employed. Of particular interest is the recently developed 2D solver
HFBAX [11], based on B-splines that contain a number of enhancements resulting
in a significant numerical speedup of the code. Under UNEDF, efforts are under
way to develop a new-generation 3D DFT solver based on the multiresolution
wavelet analysis under the MADNESS framework [12].

The configuration-space DFT solvers are based on the expansion of HFB
eigenstates in a discrete basis, such as the harmonic oscillator basis. The codes
that use the basis expansion technique can be very versatile. For example, the
3D DFT solver HFODD [13] is capable of treating arbitrary shapes, which is
of particular importance when studying complex configurations such as high-
spin states or nuclear fission. In many problems of physical interest, however,
symmetry-restricted solvers are sufficient.

The computational cost of HFB iterative convergence schemes can become
very expensive, especially when the size of the model space, largely determined
by the imposed symmetries or the number of many-body configurations processed
simultaneously, becomes huge. The HFBTHO solver [14] is a highly optimized
equivalent of HFODD that is restricted to axially symmetric shapes. It is partic-
ularly adapted to large-scale nuclear mass calculations, since the vast majority of
atomic nuclei are axially deformed in their ground states.

4. OPTIMIZATION OF THE FUNCTIONAL

In order to ensure close alignment of the necessary applied mathematics and
computer science research with the necessary physics research, partnerships have
been formed within the UNEDF collaboration consisting of computer scientists
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and applied mathematicians linked with specific physicists. The optimization of
the nuclear energy density functional is an example of such a joint effort with the
mathematicians from the Argonne National Laboratory.

For values of p parameters 8 € R? of a given functional, the simulators
compute T' observables for N nuclei: {s;,(0)}ternen. Given an experimental
data set, {dt,n}teT,ne N, corresponding to different nuclear properties (such as
binding energies, radii, moments), the objective is to find the parameters 6 so
that the theoretical output approximates the experimental data. To this end, we
solve the nonlinear least squares problem

2
min{ f(6) = (e =50 (O)” g ¢ o | (12)

t,n t,n
where oy, > 0 reflects the relative accuracy of the experimental data. The
optimization procedure is based on updating a quadratic model

1(6) = F(8) + (0~ 0)7g+ 5(6—6)H(6 - 0) (13)

approximating f(6) near the calculated solution 6.

Since the Hessian H is positive semi-definite at a solution, we conduct
sensitivity and correlation analysis at 6 asa byproduct of the optimization. Under
certain statistical assumptions, H can be used to approximate the covariance
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Fig. 1. Differences between experimental binding energies and theoretical results obtained
with the standard Skyrme functional for two different sets of parameters: SLY4 [15] and
UNEDFpre [16]
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Cov (0) ~ H~!, and hence the correlation matrix

Cov;;(0)

R = .
! \/COVu‘(a)COij (0)

(14)

Such an analysis is a standard approach in other domains of physics, but
could not be addressed in nuclear structure until very recently due to the extremely
high cost of the function evaluations. Recent progress in code development and
hardware architectures, however, made it possible to undertake such a global
parameter search with a consequent statistical analysis of the nuclear functional.

As an example, the difference between experimental masses and theoreti-
cal results obtained with newly optimized standard Skyrme functional [16] is
illustrated in Fig. 1. To generate the functional UNEDFpre [16], the HFBTHO
solver has been used as a simulator for the optimization (12)-(14) carried out
for 108 observables — binding energies, rms-radii, and pairing gaps for a set of
72 spherical and deformed nuclei.

5. LARGE SCALE NUCLEAR MASS TABLE

Calculating the entire nuclear mass table is a challenge of its own. Around
10,000 nuclei are expected to exist between the proton and neutron limits of
stability, representing about 600,000 many-body configurations for which an HFB
solution needs to be found. They are either spherical (quadrupole deformation
G = 0), prolate (3 > 0), or oblate (3 < 0).

In order to determine the ground-state equilibrium deformation, constrained
calculations are first carried out for every nucleus on a 3-deformation grid. The
resulting energy curves define the regions within which the local minima are
found. The ground-state configuration is assigned to the lowest-energy minimum.

In the nuclear DFT, the ground state of an odd-mass nucleus is represented
by the blocking of a one-quasi-particle excitation out of a paired HFB vacuum
representing a neighboring even—even system [17]. The quantum numbers of
the quasi-particle excitation that yield the lowest total energy are not known
beforehand; hence, one must select several blocking candidates in a given energy
window around the Fermi level.

In HFBTHO, the quasi-particle calculations are carried out for each con-
figuration within the so-called equal-filling approximation, which preserves the
time-reversal symmetry. Odd—odd nuclei are handled by a double-blocking pro-
cedure: for each blocked one-quasi-neutron state, we solve the HFB equations by
considering all possible one-quasi-proton states within the energy cutoff range,
and the lowest-energy final state is assigned to the ground state of the odd—odd
system. The total number of different configurations to be taken into account
across the mass table is of the order of one million.
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In spite of the high efficiency of HFBTHO, computing the entire mass table
would take almost 12 CPU years on a single processor. However, with the help
of massively parallel computers such as the Cray XT5 Jaguar and Kraken, the
entire calculation is accomplished in a single 14-CPU-hour run involving 9,000
processors. As an illustrative example, Fig.2 shows the result of a large-scale
HFBTHO mass-table run with the UNEDFpre Skyrme functional [16] and a zero-
range pairing force covering all even—even, odd—even, and odd—odd nuclei with
neutron number 2 < N < 190 and proton number 2 < Z < 110. For some recent
applications of mass-table results, see [18].
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Fig. 2. Ground-state shape deformation of even—-even, odd-even, and odd—odd atomic
nuclei across the entire nuclear chart obtained in a singe mass-table run on the Cray XTS5
Jaguar supercomputer. The calculations were carried out with the HFBTHO solver using
the energy density functional UNEDFpre [16] augmented by density-dependent zero-range
pairing force

The complexity of the large-scale nuclear mass table problem cannot be
resolved by a trivial increase in the number of processors used. To find converged
DFT results for the multitude of nuclear configurations is a challenging task that
requires the development of efficient DFT solvers, optimized for leadership-class
architectures.

One of the crucial enhancements, proposed and analyzed in detail in [19], is
the use of the modified Broyden mixing for the numerical solution of nonlinear
equations in many variables to nuclear self-consistent calculations. This method
provides impressive performance improvements against the conventional linear-
mixing procedure. For example, using linear mixing, one is left with almost
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30% unconverged cases assuming the standard accuracy requirements. With the
Broyden method, all nuclei shown in Fig.2 are resolved.

6. VISUALIZATION TOOLS

One of the bottlenecks in large-scale calculations is the massive amount of
data produced in mass-table runs. Specialized tools must be developed to analyze
and exploit this rich theoretical output. To this end, a web server has been
dedicated to collecting, sorting, and visualizing the data produced by UNEDF
mass-table runs. It can be freely accessed at http://massexplorer.org. The web
site contains links to the raw data files, and more useful data will become available
as the UNEDF project progresses.

From the http://massexplorer.org web site, one can download a powerful
visualization tool written in Java, Mass Table Explorer (MTeX), which offers
visualization, manipulation, and access to the numerical values and graphical
representations of the data.

Its online version, WebMTeX, allows one to perform online DFT «calcula-
tions» right from the browser by utilizing all the pre-calculated mass-table data
sets available. The output is displayed in the browser as image files or data grids
that can be further copied and manipulated.

CONCLUSIONS

We have presented a short overview of the current status of one of the
research tasks under the UNEDF SciDAC project aiming to develop key com-
putational codes and algorithms for reaching the goal of solving the nuclear
quantum many-body problem, thus paving the road to the comprehensive model
of the nucleus.

Finding the nuclear energy density functional for atomic nuclei capable of
describing stable and short-lived nuclei and their reactions requires the unique
combination of innovative theoretical tools that can link microscopic interactions
to energy functionals, significant code development with special emphasis on
massively parallel algorithms, and state-of-the-art optimization techniques that
can efficiently cope with the high computational cost of function evaluations.

Acknowledgements. M.S. would like to thank Victor Voronov, Rostislav
Jolos, and Elena Kolganova for their kind and warm hospitality.

The DFT/Optimization UNEDF team includes M. Kortelainen, T.Lesinski,
J.McDonnell, W. Nazarewicz, N. Nikolov, J.C. Pei, N. Schunck, and M. Stoitsov
from ORNL/UT; G.I.Fann, H. A. Nam, and W. A. Shelton from ORNL; J. Moré,
J.Sarich, and S.Wild from ANL; D.Furnstahl (OSU); S.K.Bogner and Biruk



NUCLEAR DENSITY FUNCTIONAL THEORY 1625

Gebremariam (NSCL/MSU); J. Dobaczewski (Warsaw/Jyviskyld), and T. Duguet
(Saclay).

The UNEDF SciDAC collaboration is supported by the Office of Science,
U.S. Department of Energy, grant No. DOE-FC02-09ER41583. This work was
also supported by DOE Contract Nos. DE-FG02-96ER40963 (University of Ten-
nessee), DE-FG05-87ER40361 (Joint Institute for Heavy Ion Research), and DE-
FG03-03NAO00083 (Stewardship Science Academic Alliances).

REFERENCES

1. Negele J. W. // Phys. Rev. C. 1970. V. 1. P.1260;
Vautherin D., Brink D. M. // Phys. Rev. C. 1972. V.5. P.626;
Negele J. W., Vautherin D. // Ibid. P. 1472.

. Stoitsov M. et al. // Intern. J. Mass Spectrometry. 2006. V.251. P.243.

. Goriely S., Chamel N., Pearson J. M. // Phys. Rev. Lett. 2009. V.102. P. 152503.
. Bertsch G. F., Sabbey B., Uusndkki M. // Phys. Rev. C. 2005. V.71. P.054311.

. Kortelainen M. et al. // Phys. Rev. C. 2008. V.77. P.064307.

. Bertsch G. F., Dean D. J., Nazarewicz W. SciDAC Review. 2007. P.42;
http://www.unedf.org.

AN AW

3

. Kortelainen M. et al. To be published.

8. Epelbaum E., Glockle W., Meifiner U.-G. // Nucl. Phys. A. 2005. V.747. P.362;
Epelbaum E. et al. // Phys. Rev. C. 2002. V. 66. P.064001.

9. Gebremariam B., Duguet T., Bogner S. K. nucl-th/0910.4979v3.

10. Campi X., Bouyssy A. // Phys. Lett. B. 1978. V.73. P.263.

11. Pei J.C. et al. // Phys. Rev. C. 2008. V.78. P.064306.

12. Yanai T. et al. // J. Chem. Phys. 2004. V. 121. P.2866.

13. Dobaczewski J. et al. // Comp. Phys. Commun. 2009. V. 180. P.2361.
14. Stoitsov M. V. et al. // Comp. Phys. Commun. 2005. V.167. P.43.

15. Chabanat E. et al. /] Nucl. Phys. A. 1998. V.635. P.231.

16. Kortelainen M. et al. To be published.

17. Bertsch G. et al. I/ Phys. Rev. A. 2009. V.79. P.043602.

18. Bertsch G. F. et al. // Phys. Rev. C. 2009. V.79. P.034306;
Stoitsov M., Nazarewicz W., Schunck N. // Intern. J. Mod. Phys. E. 2009. V. 18.

19. Baran A. et al. // Phys. Rev. C. 2008. V.78. P.014318.



