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BOGOLIUBOV COMPENSATION APPROACH IN QCD
AND IN THE ELECTROWEAK THEORY
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We apply the Bogoliubov compensation principle to the gauge electroweak interaction to demon-
strate a spontaneous generation of anomalous three-boson gauge-invariant effective interaction. The
nontrivial solution of compensation equations uniquely deˇnes values of parameters of the theory and
the form factor of the anomalous interaction. The contribution of this interaction to running EW
coupling αew(p2) gives its observable value aew(M2

W ) = 0.0374 in satisfactory agreement to the
experiment.

The same approach is applied to QCD to demonstrate a spontaneous generation of three-
gluon gauge-invariant effective interaction which contributes signiˇcantly in the infrared region.
Then we consider a possibility of a spontaneous generation of an effective interaction, leading to
SU(2) × SU(2) NambuÄJona-Lasinio model. The nontrivial solution of the compensation equation
gives unique deˇnition of the form factor of the effective interaction. The resulting theory contains
two parameters: average low-energy value of αs and current light quark mass m0. All other low-
energy parameters Å the pion decay constant, mass of the π meson, mass of the σ meson and its
width, the constituent quark mass, the quark condensate Å are expressed in terms of the two input
parameters in satisfactory correspondence to experimental data and chiral phenomenology. The same
method is applied for a description of ρ and ai mesons. The results agree with data up to accuracy of
the approximation being used. Thus, we conclude that the Bogoliubov compensation principle works
quite effectively in application to elementary particle physics.

PACS: 11.10.-z; 11.15.-q; 12.38.-t

In previous works [1Ä6] N.N. Bogoliubov's compensation principle [7,8] was
applied to studies of spontaneous generation of effective nonlocal interactions in
renormalizable gauge theories. In view of this, one performs ®add and subtract¯
procedure for the effective interaction with a form factor. Then one assumes the
presence of the effective interaction in the interaction Lagrangian and the same
term with the opposite sign is assigned to the newly deˇned free Lagrangian.

Now we shall ˇrstly demonstrate an application of the principle to the elec-
troweak theory. We start with EW Lagrangian with Ngen = 3 lepton and colour
quark doublets with gauge group SU(2). That is, we restrict the gauge sector to
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triplet of W a
μ only:

L =
3∑

k=1

(
ı

2

(
ψ̄kγμ∂μψk − ∂μψ̄kγμψk

)
− mkψ̄kψk +

g

2
ψ̄kγμτaW a

μψk

)
+

+
3∑

k=1

(
ı

2

(
q̄kγμ∂μqk − ∂μq̄kγμqk

)
− Mkq̄kqk +

g

2
q̄kγμτaW a

μ qk

)
−

− 1
4

(
W a

μνW a
μν

)
, W a

μν = ∂μW a
ν − ∂νW a

μ + g εabcW
b
μW c

ν , (1)

where we use the standard notations and ψk and qk correspond to left leptons and
quarks, respectively. We write here masses for leptons and quarks, bearing in
mind the ready Higgs phenomenology. In accordance to the Bogoliubov approach
in application to QFT, we look for a nontrivial solution of a compensation equa-
tion, which is formulated on the basis of the Bogoliubov addÄsubtract procedure.
We have L = L0 + Lint, where

L0 = =
3∑

k=1

(
ı

2

(
ψ̄kγμ∂μψk − ∂μψ̄kγμψk

)
− mkψ̄kψk +

ı

2

(
q̄kγμ∂μqk −

∂μq̄kγμqk

)
− Mkq̄kqk

)
− 1

4
W a

μνW a
μν +

G

3!
εabc W a

μν W b
νρ W c

ρμ, (2)

Lint =
g

2

3∑
k=1

(
ψ̄kγμτaW a

μψk + q̄kγμτaW a
μ qk

)
− G

3!
εabcW

a
μνW b

νρW
c
ρμ. (3)

Here the notation (G/3!) εabc W a
μν W b

νρ W c
ρμ means corresponding nonlocal

vertex in the momentum space

(2π)4Gεabc(gμν(qρpk − pρqk) + gνρ(kμpq − qμpk) + gρμ(pνqk − kνpq)+
+ qμkνpρ − kμpνqρ)F (p, q, k) δ(p + q + k) + . . . , (4)

where F (p, q, k) is a form factor and p, μ, a; q, ν, b; k, ρ, c are respectively
incoming momenta, Lorentz indices and weak isotopic indices of W bosons.

Effective interaction −(G/3!)εabc W a
μν W b

νρ W c
ρμ ; G = g λ/M2

W is usually
called anomalous three-boson interaction and it is considered for long time on
phenomenological grounds.

Let us consider expression (2) as the new free Lagrangian L0, whereas expres-
sion (3) as the new interaction Lagrangian Lint. Then compensation conditions
will consist in demand of full connected three-boson vertices of the structure (4),
following from Lagrangian L0, to be zero. This demand gives a nonlinear equa-
tion for form factor F .
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According to terminology by Bogoliubov, such equations are called compen-
sation equations. In a study of these equations the existence of a perturbative
trivial solution (in our case G = 0) is always evident, but, in general, a nonper-
turbative nontrivial solution may also exist.

The goal of a study is a quest of an adequate approach, the ˇrst nonper-
turbative approximation of which describes the main features of the problem.
Improvement of a precision of results is to be achieved by corrections to the
initial ˇrst approximation.

Now in ˇrst approximation we come to the following equation for F (x):

F (z) = 1 +
85 g

√
N

√
z

96 π

(
ln z + 4γ + 4 ln 2 +

1
2

G31
15

(
z0 |00,0,1/2,−1,−1/2

)
−

− 3160
357

)
+

2
3 z

z∫
0

F (t) t dt − 4
3
√

z

z∫
0

F (t)
√

t dt − 4
√

z

3

z0∫
z

F (t)
dt√

t
+

+
2 z

3

z0∫
z

F (t)
dt

t
z =

G2 N x2

1024 π2
. (5)

Here x = p2, N = 2. We introduce here an effective cutoff Y , which bounds a
®low-momentum¯ region where our nonperturbative effects act and consider the
equation at interval [0, Y ] under condition F (Y ) = 0. We solve equation (5)
and obtain

F (z) =
1
2

G31
15

(
z |01, 1/2, 0,−1/2, −1

)
− 85 g

√
N

512 π
G31

15

(
z |1/2

1, 1/2, 1/2,−1/2,−1

)
+

+ C1 G10
04

(
z |1/2, 1, −1/2,−1

)
+ C2 G10

04

(
z |1, 1/2,−1/2,−1

)
, (6)

where Gnm
qp

(
z |a1,...,aq

b1,...,bp

)
is a Meijer function [9]. Constants C1, C2 are deˇned

by boundary conditions. With N = 2 this gives

g(z0) = −0.4301; z0 = 205.4254; C1 = 0.00369; C2 = 0.00582. (7)

Note that there is also a solution with large positive g(z0), which will be consid-
ered further on.

We use the SchwingerÄDyson equation for W -boson polarization operator to
obtain a contribution of additional effective vertex to the running EW coupling
constant αew. The contribution under discussion reads after angular integrations

ΔΠμν(x) = (gμν p2 − pμpν)Π(x), x = p2, y′ = q2 +
3x

4
,
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Π(x) = − g GN

32 π2

( x∫
3x/4

F (y′)dy′

y′ − x/2

(
16

y′3

x2
− 48

y′2

x
+ 45y − 27

2
x

)
+

+

Y∫
x

F (y′)dy′

y′ − x/2

(
− 3y′ +

5
2

x

))
, g = g(Y ). (8)

So we have modiˇed one-loop expression for αew(p2), x = p2

αew(x) =
6 π αew(x′

0)
6 π + 5 αew(x′

0) ln (x/x′
0) + 6 π Π(x)

, αew(x0) =
g(Y )2

4 π
, (9)

where x′
0 = 4/3 x0 means a normalization point such that Π(x′

0) = 0. Using
expression (9), we calculate behaviour of αew(x) down to values of x = M2

W

and obtain αew(M2
W ) = 0.0374 (αexp

ew (M2
W ) = α(MW )/ sin2

W = 0.0337). It is
only 10% larger than the experimental value. We consider this result as strong
conˇrmation of the approach.

Let us consider a contribution of effective interaction in (3) to g−2 anomaly
Δa. Considering contributions of the the new three-boson interaction to W W H
interaction, we have from its conventional deˇnition

G =
gλ

M2
W

, λ = −0.0151, (10)

which agrees with experimental limitations. Then for mass of Higgs MH =
114 GeV we obtain Δa = 3.34 · 10−9, which comfortably ˇts into error bars for
well-known deviation [13] Δa = (3.02 ± 0.88) · 10−9. With MH growing, Δa
slowly decreases inside the error bars down to 2.67·10−9 for MH = 300 GeV [6].

We apply the same procedure to QCD Lagrangian with Nf = 3 colour quarks
with gauge group SU(3) and study a possibility of a spontaneous generation of ef-
fective interaction − (Gg/3!) fabc F a

μν F b
νρ F c

ρμ, which is usually called anomalous
three-gluon interaction. The second solution of Eq. (5) for N = 3 reads

z0 = 0.01784, g(z0) = 2.92145, C1 = −18.8241, C2 = 56.2171. (11)

Then we again use the SchwingerÄDyson equation for gluon polarization oper-
ator to obtain a contribution of additional effective vertex to the running strong
coupling constant αs.

So we have modiˇed one-loop expression for αs(p2)

αs(x) =
4 π αs(x′

0)
4 π + 9 αs(x′

0) ln (x/x′
0) + 4 π Π(x)

, x = p2, (12)



BOGOLIUBOV COMPENSATION APPROACH IN QCD 1685

where x′
0 means a normalization point such that Π(x′

0) = 0. We normalize the
running coupling by conditions

αs(x0) =
g(Y )2

4 π
= 0.679185, αs(x′

0) =
4αs(x0)π(1 + Π(x0))
4π + 9 αs(x0) ln(4/3)

. (13)

Applying the standard transformation, we have

αs(x) =
4π

9 ln (x/Λ2)(1 + 2 g
√

3(αs(x′
0) ln (x/Λ2))−1Π(x))

,

Π(x) = 0 for x � x′
0.

(14)

From here we have also x0/Λ2 = 1.1707002, Gg = 6.62198/Λ2. Using expres-
sions (12), (13), (14) and normalization at point Mτ , we calculate behaviour of
αs(x). We also use the ShirkovÄSolovtsov [10] method to eliminate the ghost
pole, which means the following substitution in (14):

αs(x) =
4π

9

(
1

ln (x/Λ2)
− Λ2

x − Λ2

)
×

×
(

1 +
2 g

√
3

αs(x′
0)

(
1

ln (x/Λ2)
− Λ2

x − Λ2

)
Π(x)

)−1

, (15)

α(2)
s � 0.67 for Q < 250 MeV.

As the next step we apply the Bogoliubov compensation principle to studies
of spontaneous generation of effective nonlocal NambuÄJona-Lasinio interaction.
The NJL model [11,12] proves to be effective in description of low-energy hadron
physics. However, the problem how to calculate parameters of the model (Gi, Λi;
. . .) from the fundamental QCD was not solved for a long time. For the purpose
we start with the conventional QCD Lagrangian with two light quarks and use
again the Bogoliubov addÄsubtract procedure with test interaction

G1

2

(
ψ̄τbγ5ψ ψ̄τ bγ5ψ − ψ̄ ψ ψ̄ ψ

)
+

+
G2

2

(
ψ̄τbγμψ ψ̄τbγμψ + ψ̄τ bγ5γμψψ̄τ bγ5γμψ

)
. (16)

Here notation, e.g., (G1/2)ψ̄ ψ ψ̄ ψ means corresponding nonlocal vertex in the
momentum space with form factor F1(pi).
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Then we again come to the corresponding compensation equation (see [3]),
which has the following nontrivial solution:

F1(z) = C1 G40
06

(
z|1,

1
2
,
1
2
, 0, a, b

)
+ C2 G40

06

(
z|1,

1
2
, b, a,

1
2
, 0

)
+

+ C3 G40
06

(
z|1, 0, b, a,

1
2
,
1
2

)
, a = −1 −

√
1 − 64u0

4
, F1(u0) = 1, (17)

b = −1 +
√

1 − 64u0

4
, β =

(G2
1 + 6G1G2)N

16π4
, z =

βx2

64
, u0 =

βm4
0

64
.

Constants Ci are deˇned by boundary conditions. So we have the unique solution.
The value of parameter u0 and ratio of two constants Gi are also ˇxed: u0 =
1.92 · 10−8 � 2 · 10−8; G1 = (6/13)G2. We would draw attention to a natural
appearance of small quantity u0.

Thus, we come to effective nonlocal NJL interaction, which we use to obtain
the description of low-energy hadron physics [2, 3, 5]. In this way we obtain
expressions for all the quantities under study. Analysis shows that the optimal
set of low-energy parameters corresponds to αs = 0.67 and m0 = 20.3 MeV.
We present a set of calculated parameters for these conditions including quark
condensate, constituent quark mass m, parameters of light mesons:

αs = 0.67, m0 = 20.3 MeV, mπ = 135 MeV, g = 3.16,

mσ = 492 MeV, Γσ = 574 MeV, fπ = 93 MeV,

m = 295 MeV, 〈q̄ q〉 = −(222 MeV)3, G−1
1 = (244 MeV)2, (18)

Mρ = 926.3 MeV, Γρ = 159.5 MeV, Ma1 = 1174.8 MeV,

Γa1 = 350 MeV,
Γ(a1 → σ π)

Γa1

= 0.23.

We use input quantity m0, while all the other quantities are calculated. The
overall accuracy may be estimated to be of the order of 10−15%. The worse
accuracy occurs in value Mρ (20%).
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