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The manner in which the elastic scattering amplitude obeys unitarity, how it enters the circle
of unitarity, and what its asymptotic limit is, remains a problem for models which include terms that
rise fast with s. We have checked that the features of cross sections which come from unitarization
are present for most unitarization schemes, e.g., those that saturate the proˇle function or those
that describe multiple exchanges via an analytic formula. We have also obtained a scheme which
interpolates between different classes of the unitarization and found corresponding nonlinear equations.
Considering different forms of energy dependence of the scattering amplitude, and a variety of
unitarization schemes, we show that, in order to reproduce the data, the ˇts choose an amplitude that
corresponds to an asymptotic value S = 0.
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The asymptotic properties of the S matrix are connected to the unitarity
condition SS+ � 1 [1]. In the impact parameter representation after unitarization
the total cross section is

σtot(s) = 4π Im

∞∫
0

b G(χ(s, b)) db, (1)

where G(χ(s, b)) is the unitarized amplitude built from the Born term χ(s, b).
There exist two main classes of unitarization [2]: the standard one leads to the
Black Disk Limit (BDL), and includes the standard eikonal representation, while
the Full Unitarity Circle (FCU) class, which includes the standard U matrix, does
not lead asymptotically to the BDL, but rather to a scattering amplitude which is
mostly elastic.

In the absence of inelastic processes, the conservation of probability in the
scattering process requires that each phase shift δl or, in the impact parameter
representation, that the Born term χ(s, b) be real. In the standard representation
the S matrix has an exponential form S(s, b) = eiχ(s,b), where, at low energy,
the phase χ(s, b) is taken as purely real. Obviously, one then has |S(s, b)|2 = 1.
When one thought that total cross sections at high energies decreased, it was
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believed [3] that the scattering amplitude tended to its Born term and that the
asymptotic value of the S matrix was S(s → ∞) = 1.

Later, it was realized that total cross sections grew with s. If χ → ∞,
the value of the S matrix will oscillate. In this case the asymptotic value of
the S matrix is indeˇnite. However, as the phase χ(s, b) develops a positive
imaginary part, χ(s) = i Imχ(s) + Reχ(s), we obtain the inequality SS+ =
e−2 Im χ � 1, which is the standard eikonal representation. Asymptotically, for
s → ∞, it leads to S = eiχ → 0: the large imaginary part of the scattering
amplitude damps the size of the S matrix down to zero.

Another value can, however, be envisaged. Indeed, a unitarization scheme
was proposed [4], which leads to a different asymptotic value

S(s, b) =
1 + iχ(s, b)/2
1 − iχ(s, b)/2

→− 1 for s → ∞. (2)

Such a form for the S matrix leads to the scattering amplitude G(s, b) =
χ(s, b)/(1 − iχ(s, b)/2) and to a new effect [4], ®antishadowing¯. The forms
of the S matrix (2) and of the scattering amplitude ˇll the full circle of unitarity
and lead to |G(s, b = 0)| � 1.

The most famous derivation of such a scheme [5] comes from the expansion
of the U matrix [6] in the impact parameter representation. It was shown that
this scheme takes into account the minus sign in the solution of the unitarity
equation

2 ImG(s, b = 0) = 1 −
√

1 − 4ginel, (3)

where ginel is the contribution of the inelastic channels, whereas the usual BDL
schemes correspond to a plus sign. It was also shown [5] that this leads at
asymptotic energies to an unusual behavior σel/σtot → 1.

The question thus is to understand what this new regime means in physical
terms. At ˇrst, it was thought that the BDL came from the exponential used
in the eikonal scheme [9], but we have shown that the precise analytic form of
the unitarization does not matter. The BDL can be obtained both with exponen-
tials or rational functions, whereas one can extend the eikonal scheme to obtain
antishadowing.

Our analysis shows that there is no sharp distinction between these two classes
of unitarization. In the works [2, 7] we have in fact shown that one can obtain a
nonlinear equation that describes both classes

dG

dy
= gΔC−1

[
1 − (1 − G)1/g

]
[1 − CG], (4)

which leads to the solution

G(s, b) = C

(
1 − 1

[1 + χ(s, b)/(Cg)]g

)
. (5)
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One sees that, for C = 2 and g ∈ [1,∞], this equation gives the FCU class of
unitarization schemes. If one takes C = 1 and g ∈ [1,∞], one gets the BDL class
of unitarization schemes. Hence, the precise form of unitarization is not relevant.

There have been several attempts to interpret the new physical regime which
leads from the BDL to the antishadowing picture, with decreasing inelastic con-
tributions and at the same time a growth of the imaginary part of the scattering
amplitude and of total cross sections. From the impact-parameter proˇle, the FCU
amplitude corresponds to a central part where re�ection is dominant, surrounded
by a ring in which absorption dominates∗.

Recently, it was proposed [9] to interpret the central region as ®re�ective scat-
tering¯. This is well known in electromagnetism: a mirror re�ects light because
of a large imaginary part of the index of refraction, which is also responsible for
the absorption. The S matrix in some region of light frequency is

S(k) =
1 − Im n(k)
1 + Im n(k)

= −1. (6)

Such a value of the S matrix is connected with backward scattering, and one can
show that the absorption goes to zero, i.e., the absorption length vanishes. The
problem with this interpretation is that re�ective scattering as in a metal would
imply a substantial amount of backward scattering, as after full absorption, the
disc of the proton changes absorption to re�ection which corresponds to S = −1.

This, however, does not explain the growth of the total cross section. Ap-
plying Babinet's principle and changing the scattering on the circle with that
through a hole, we expect that the diffraction picture will be the same as in the
case of the light scattering on the circle. Hence, the forward diffraction picture
is independent of the property of the screen (full absorption or full re�ection),
and so it is independent of backward scattering. Hence, backward scattering by
itself cannot explain the growth of the imaginary part of the scattering amplitude
at zero angle, i.e., of the total cross section.

However, let us examine backward scattering more carefully. Forward scat-
tering comes from a region where |t| is small, whereas backward scattering comes
from a region where |u| is small. The Born term χ(s, t) is such that backward
scattering is exponentially suppressed. In the case of identical particles (such
as pp), the amplitude should in principle be symmetric between t and u, and
one should use χ(s, t) + χ(s, u). One can, however, neglect the backward peak
because it is indistinguishable from the forward one, hence, one must divide

∗The central part has been described as ®. . . after having reached its maximal darkness around
the Tevatron energy region, it may get less opaque beyond¯ [8]. However, the scattering on the
central transparent region leads to a decrease of the scattering amplitude and of the total cross
sections, contrarily to the results of the U matrix.
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the cross section by a factor 2, which cancels the contribution from backward
scattering.

But instead of considering χ, let us now examine its unitarized form G, and
assume that it has a substantial contribution from backward scattering, even if it
is absent in χ. Now the amplitude in momentum space will be non-negligible
for |t| small or |u| small, and we can write G(s, t) = a(t) + b(u), with a and
b being rapidly falling functions. For p̄p scattering, this leads to a cross section
proportional to |a(t)|2 + |b(u)|2. For pp, this gives the amplitude (a(t) + b(u))+
(a(u) + b(t)) which contributes (|a(t) + b(t)|2 + |a(u) + b(u)|2)/2. Hence, the
elastic cross section should be different in the pp and p̄p cases.

We can also consider the experimental consequences of the U matrix. The
most dramatic one may be an increase in the real part of the amplitude. As
an example, compare the properties of the U - and K-matrix schemes, which
correspond to ω = 1/2 or 1 in the formula

G(s, b) =
i[ Im χ(s, b)(1 + ω Im χ(s, b)) + (ω Re χ(s, b))2] + Re χ(s, b)

(1 + ω Im χ(s, b))2 + (ω Re χ(s, b))2
. (7)

Here χ(s, b) is taken in standard form for the pomeron contribution.
We show in the Figure the ratio ρ(s) of the real to the imaginary parts for

the two unitarization schemes.
At low energy both schemes give the same result as they reduce to the Born

approximation. But the U -matrix form leads to a ρ value 3 times larger than that
given by the K matrix at CDF energies. However, the experimental data (to the
exception of a set from the UA4 Collaboration) agree with the eikonal or K-matrix
results. Furthermore, we have also compared the two schemes in the framework of
the high-energy model [10], taking into account the contributions of the soft and

ρ(s) as calculated by (7) for the U matrix (solid line) and for the K matrix (dashed line)
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hard pomerons, tuning it to describe quantitatively all high-energy data, including
the Coulomb-hadron interference region at large momentum transfer, and using
the interpolating form of unitarization [2]. This leads to the conclusion that the
preferred form of unitarization is the eikonal or the K matrix.

So it seems that the data prefer S → 0 as s → ∞. This asymptotic value
leads to the BDL and to the saturation effects described in [11]. Hence, although
the U -matrix scheme cannot be ruled out on mathematical grounds, it appears
difˇcult to interpret it physically, and leads to several puzzling features. It also
seems that it is disfavored by the experimental value of the ρ parameter.
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