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The Méobius form of the BFKL kernel in the next-to-leading order (NLO) in theories containing
fermions and scalars in arbitrary representations of the colour group is presented. The ambiguity of
the NLO kernels permits one to get agreement between the BFKL approach and the colour dipole
model and to ˇnd the quasi-conformal representation of the BFKL kernel.
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INTRODUCTION

The most common basis for the theoretical description of processes with
small ratio x = Q2/s (Q2 is a typical virtuality and s is the squared center-of-
mass energy) is given in QCD by the BalitskyÄFadinÄKuraevÄLipatov (BFKL)
approach [1] based on the gluon Reggeization and applicable for arbitrary colour
exchanges. Originally this approach was formulated in the momentum represen-
tation, and the kernel of the BFKL equation for the evolution of QCD amplitudes
with s was calculated in the space of transverse momenta q1,q2 of two interacting
Reggeized gluons (now the kernel is known in the next-to-leading order (NLO)
both for the forward scattering [2] and for any momentum and colour transfer [3]).
Later it was recognized that for the case of scattering of colourless objects the
BFKL equation possesses remarkable properties, which become mostly apparent
in the space of conjugate coordinates r1, r2. It was shown [4] that in this case the
BFKL equation can be written in the special (Méobius) representation, where the
equation is invariant under the conformal (Méobius) transformations of the trans-
verse coordinates. For brevity, we call the BFKL kernel in this representation
Méobius kernel, and its form in the coordinate space Méobius (or dipole) form. The
Méobius form of the leading order (LO) BFKL kernel coincides with the kernel of
the colour dipole model [5] formulated in the coordinate space and is explicitly
conformal invariant [6]. Here we present the result of recent investigations of the
Méobius form in the NLO.
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1. AMBIGUITY OF THE NLO KERNEL

We use the notation of [6, 7], denoting the Reggeon transverse momenta in
initial and ˇnal t-channel states as q ′

i and qi and the corresponding coordinates
r ′

i and ri, i = 1, 2. The state normalization is

〈q|q′〉 = δ(q − q′),

〈r|r′〉 = δ(r − r′),

〈r|q〉 =
eiq r

(2π)
.

(1)

For brevity, we use pij′ = pi − p′
j .

The s-channel discontinuities of scattering amplitudes for the processes A +
B → A′ + B′ have the form

−4i(2π)2 δ(qA − qB) discsAA′B′

AB = 〈A′Ā|
(

s

s0

)K̂ 1
q̂2

1q̂
2
2

|B̄′B〉. (2)

In this expression s0 is an appropriate energy scale, qA = pA′A,qB = pBB′ , K̂
is the BFKL kernel (note that it differs from the symmetric kernel K̂s deˇned
in the momentum space according to [8]: K̂ = (q̂2

1q̂
2
2)−1K̂s; in the LO it is

just K̂ that has the Méobius form which is conformal invariant and coincides with
the dipole kernel); 〈A′Ā| and |B̄′B〉 represent the impact factors. One can see
that the discontinuity discsAA′B′

AB in Eq. (2) is invariant under the transforma-
tion

K̂ → Û−1K̂Û , 〈A′Ā| → 〈A′Ā|Û ,
1

q̂2
1q̂

2
2

|B̄′B〉 → Û−1 1
q̂2

1q̂
2
2

|B̄′B〉. (3)

If the kernel is ˇxed in the LO, transformations with Û = 1− Ô, where Ô ∼ αs,
are still possible. Within the NLO accuracy they give

K̂ → K̂ − [K̂B, Ô], (4)

where K̂B is the LO value of K̂. Such transformations can be used to simplify the
form of the kernel, in particular of its Méobius form. Indeed, it was shown [6,7]
that the last form is simpliˇed by the transformation

K̂ → K̂ = K̂ +
αs

8π
β0

[
K̂B, ln

(
q̂2

1q̂
2
2

) ]
, (5)

where β0 is the ˇrst coefˇcient of the beta-function.
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2. MéOBIUS FORM OF K̂

In the NLO the Méobius form can be written [6] as follows:

〈r1, r2|K̂M |r′1, r′2〉 =
αs(μ2)Nc

2π2

∫
dr0

r2
12

r2
10r

2
20

[
δ(r11′)δ(r2′0)+δ(r1′0)δ(r22′ )−

− δ(r11′)δ(r22′ )

]
+

α2
s(μ2)N2

c

4π3

[
δ(r11′ )g1(r1, r2; r′2) + δ(r22′)g1(r2, r1; r′1)+

+ δ(r11′)δ(r22′ )
∫

dr0 g0(r1, r2; r0) +
1
π

g2(r1, r2; r′1, r
′
2)

]
. (6)

Here rij = ri − rj , and the whole kernel is symmetric with respect to the
substitution 1 ↔ 2, 1′ ↔ 2′. The coefˇcients of δ(r11′)δ(r22′ ) in Eq. (6) are
written in integral form in order to make explicit the cancellation of the ultraviolet
singularities of separate terms. The Méobius kernel (6) is deˇned with accuracy
up to functions independent of r1 or of r2, such that after they are added to the
kernel the functions g1,2 remain zero at r1 = r2 [6, 7]. Therefore, one can add
to the kernel only functions which are antisymmetric with respect to the r1 ↔ r2

substitution. These functions do not change the symmetric part of the kernel, but
this is the only part which plays a role because of the symmetry of the impact
factors.

In the general case of theory with nf fermions and ns scalar particles the
direct transfer of the kernel K̂ to the Méobius form gives for the functions gi in
Eq. (6)

g0(r1, r2; r0) = 2πζ(3)δ (r0) − g1(r1, r2; r0), (7)

g1(r1, r2; r′2) =
r2
12

r2
22′r2

12′

[
β0

2Nc

(
ln

(
r2
12μ

2

4e2ψ(1)

)
+

+
r2
12′ − r2

22′

r2
12

ln
(

r2
22′

r2
12′

))
−ζ(2)+

67
18

− 1
2

ln
(

r2
12

r2
22′

)
ln

(
r2
12

r2
12′

)
− 5af + 2as

9Nc

]
+

+
1

2r2
22′

ln
(

r2
12′

r2
22′

)
ln

(
r2
12

r2
12′

)
, (8)
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g2(r1, r2; r′1, r
′
2) =

1
2r4

1′2′

(
r2
11′ r2

22′ − 2r2
12 r2

1′2′

d
ln

(
r2
12′ r2

21′

r2
11′r2

22′

)
− 1

)
×

×
(

1 − bf +
bs

2

)
+

(
(2bs − 3bf)

4r2
1′2′

r2
12

d
+

1
4r2

11′r2
22′

(
r4
12

d
− r2

12

r2
1′2′

))
×

× ln
(

r2
12′ r2

21′

r2
11′r2

22′

)
+

r2
12 ln

(
r2
11′/r2

1′2′
)

2r2
11′r2

12′r2
22′

+
ln

(
r2
12r

2
1′2′/r2

11′r2
22′

)
2r2

12′r2
21′

×

×
(
r2
12/2r2

1′2′ +
1
2
− r2

22′/r2
1′2′

)
+

r2
21′ ln

(
r2
21′r2

1′2′/r2
12r

2
11′

)
2r2

11′r2
22′r2

1′2′
+

+
ln

(
r2
12/r

2
1′2′

)
4r2

11′r2
22′

+
ln

(
r2
22′/r2

12

)
2r2

11′r2
12′

+
r2
12 ln

(
r2
12r

2
1′2′/r2

12′r2
21′

)
4r2

11′r2
22′r2

1′2′
+

+
ln

(
r2
12r

2
1′2′/r2

12′r2
22′

)
2r2

11′r2
1′2′

+
ln

(
r2
12r

2
11′/r2

22′r2
1′2′

)
2r2

12′r2
1′2′

+ (1 ↔ 2, 1′ ↔ 2′). (9)

Here β0 = 11Nc/3 − 2af/3 − as/6, af = 2κfnfTf , as = 2κsnsTs, Tf and Ts

are the colour group generators for fermions and scalars, respectively, and are
deˇned by the relations

Tr
(
T a

f T b
f

)
= Tfδab, Tr

(
T a

s T b
s

)
= Tsδ

ab, (10)

κf (κs) is equal to 1/2 for Majorana fermions (neutral scalars) in self-conjugated
representations and to 1 otherwise,

d = r2
12′r2

21′ − r2
11′r2

22′ , bj =
4njκj

N2
c − 1

Tr

(
C2

j

N2
c

− Cj

2Nc

)
, Cj = T a

j T a
j , (11)

j = f, s. The gluon part of the functions gi was calculated in [7]; the quark and
scalar parts can be obtained by a simple colour algebra from the results of [6, 9]
and [10], respectively. The quark part completely agrees with the corresponding
part calculated in the colour dipole model [11]. However, the result for the gluon
part obtained in this model [12] strongly differs from the one presented above. In
both results the conformal invariance is violated not only by the terms related to
renormalization (proportional to β0). The problem of ˇnding transformations of
the kind (4) matching the kernels and bringing them to a quasi-conformal shape
(where the conformal invariance is broken only by terms proportional to β0) was
formulated in [10]. For the colour dipole kernel the last problem was solved
in [13]. In the BFKL framework both problems were solved in [14].
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3. TRANSFORMATION TO THE QUASI-CONFORMAL SHAPE

It was shown in [14] that after the application to the kernel K̂ of the trans-
formation (4) with Ô deˇned as

〈q1,q2|Ô|q′
1,q

′
2〉 =

αsNc

2π2

[
−δ(q11′ + q22′)

(
k
k2

− q1

q2
1

) (
k
k2

+
q2

q2
2

)
lnk2+

+ δ(q22′)δ (q11′)
∫

d2l

(
1
l2

− l(l − q1)
2l2(l − q1)2

− l(l − q2)
2l2(l − q2)2

)
ln l2

]
, (12)

where k = q1 − q′
1, one obtains for the Méobius form of the transformed kernel

what follows:

gT
0 (r1, r2; r0) = g0(r1, r2; r0) = −gT

1 (r1, r2; r0) + 2πζ(3)δ(r0), (13)

gT
1 (r1, r2; r′2) =

r2
12

r2
22′r2

12′

[
β0

2Nc

(
ln

(
r2
12μ

2

4e2ψ(1)

)
+

r2
12′ − r2

22′

r2
12

ln
(

r2
22′

r2
12′

))
−

−ζ(2) +
67
18

− ln
(

r2
12

r2
22′

)
ln

(
r2
12

r2
12′

)
− 5af + 2as

9Nc

]
, (14)

and

gT
2 (r1, r2; r′1, r

′
2) =

1
r 4
1′2′

(
r2
11′ r2

22′ + r2
12′ r2

21′ − 4r2
12 r2

1′2′

2d
×

× ln
(

r2
12′ r2

21′

r2
11′r2

22′

)
− 1

)(
1 − bf +

bs

2

)
+

[
1

4r2
11′r2

22′

(
r4
12

d
− r2

12

r2
1′2′

)
+

+
1

4r2
12′r2

21′

(
r4
12

d
+

r2
12

r2
1′2′

)
+

(2bs − 3bf)
2r2

1′2′

r2
12

d

]
ln

(
r2
12′ r2

21′

r2
11′r2

22′

)
(15)

plus terms antisymmetric with respect to the exchange r1 ↔ r2, which can be
omitted due to the symmetry of impact factors. Up to the difference in the
renormalization scales (which is discussed in detail in [15]) and with account of
the correction of the result of [12] made in [13], the gluon part of Eqs. (13)Ä(15)
coincides with this result. Thus, the discrepancy between the BFKL and the
colour dipole approaches is completely removed.

Moreover, it was shown in [14] that using the transformation (4), one can
come to the quasi-conformal kernel. Speciˇcally, the quasi-conformal kernel K̂QC

can be deˇned by the relation

K̂QC = K̂ +
αs

8π
β0

[
K̂B, ln

(
q̂2

1q̂
2
2

)
] − [K̂B

, Ô + Ô1

]
, (16)



LOW-X EVOLUTION EQUATIONS IN MéOBIUS REPRESENTATION 1747

where the operator Ô is given in Eq. (12) and Ô1 is deˇned through

〈r1r2|Ô1M |r′1r′2〉 =
αsNc

4π2

∫
dr0

r2
12

r2
10r

2
20

ln
(

r2
12

r2
10r

2
20

)
×

×
[
δ(r11′)δ(r2′0) + δ(r1′0)δ(r22′ ) − δ(r11′)δ(r22′ )

]
. (17)

For the Méobius form of K̂QC one has

gQC
0 (r1, r2; r0) = 6πζ (3) δ (r0) − gQC

1 (r1, r2; r0), (18)

gQC
1 (r1, r2; r′2) =

r2
12

r2
22′r2

12′

[
β0

2Nc

(
ln

(
r2
12μ

2

4e2ψ(1)

)
+

r2
12′ − r2

22′

r2
12

ln
(

r2
22′

r2
12′

))
+

+
67
18

− ζ(2) − 5af + 2as

9

]
, β0 =

11Nc

3
− 2af

3
− as

6
, (19)

gQC
2 (r1, r2; r′1, r

′
2) =

1
r 4
1′2′

(
r2
11′ r2

22′ − 2r2
12 r2

1′2′

d
ln

(
r2
12′ r2

21′

r2
11′r2

22′

)
− 1

)
×

×
(

1 − bf +
bs

2

)
+

(
(2bs − 3bf)

2r 2
1′2′

r2
12

d
+

1
2r2

11′ r2
22′

(
r4
12

d
− r2

12

r2
1′2′

))
×

× ln
(

r2
12′ r2

21′

r2
11′r2

22′

)
+

r2
12

r2
11′r2

22′r2
1′2′

ln
(

r2
12r

2
1′2′

r2
12′ r2

21′

)
, d = r2

12′r2
21′ − r2

11′r2
22′ . (20)

Here the conformal invariance is violated only by terms proportional to β0.
N -extended supersymmetric YangÄMills theories (N = 1, 2, 4) contain, besides
the YangÄMills ˇelds (gluons), nM = N Majorana spinors (gluinos) and nS =
2(N − 1) scalars (for our purposes there is no difference between scalars and
pseudoscalars). All particles are in the adjoint representation of the colour group.
Therefore, in such theories we have af = nMNc, as = nSNc, bf = nM , bs = nS .

In the case of N = 4 one has β0 = 0 and the Méobius form of K̂QC is conformal
invariant.
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