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The Mobius form of the BFKL kernel in the next-to-leading order (NLO) in theories containing
fermions and scalars in arbitrary representations of the colour group is presented. The ambiguity of
the NLO kernels permits one to get agreement between the BFKL approach and the colour dipole
model and to find the quasi-conformal representation of the BFKL kernel.
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INTRODUCTION

The most common basis for the theoretical description of processes with
small ratio = Q%/s (Q? is a typical virtuality and s is the squared center-of-
mass energy) is given in QCD by the Balitsky—Fadin—Kuraev—Lipatov (BFKL)
approach [1] based on the gluon Reggeization and applicable for arbitrary colour
exchanges. Originally this approach was formulated in the momentum represen-
tation, and the kernel of the BFKL equation for the evolution of QCD amplitudes
with s was calculated in the space of transverse momenta q, q2 of two interacting
Reggeized gluons (now the kernel is known in the next-to-leading order (NLO)
both for the forward scattering [2] and for any momentum and colour transfer [3]).
Later it was recognized that for the case of scattering of colourless objects the
BFKL equation possesses remarkable properties, which become mostly apparent
in the space of conjugate coordinates ry,rs. It was shown [4] that in this case the
BFKL equation can be written in the special (Mobius) representation, where the
equation is invariant under the conformal (Mobius) transformations of the trans-
verse coordinates. For brevity, we call the BFKL kernel in this representation
Mobius kernel, and its form in the coordinate space Mobius (or dipole) form. The
Mobius form of the leading order (LO) BFKL kernel coincides with the kernel of
the colour dipole model [5] formulated in the coordinate space and is explicitly
conformal invariant [6]. Here we present the result of recent investigations of the
Mobius form in the NLO.
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1. AMBIGUITY OF THE NLO KERNEL

We use the notation of [6,7], denoting the Reggeon transverse momenta in
initial and final ¢-channel states as q, and q; and the corresponding coordinates
r/ and r;, i =1,2. The state normalization is

(dld') =d(a —d'),
(rlr’) = 5<r —r'), 0

@r)’

(rlq) =

For brevity, we use p;j» = p; — P}-
The s-channel discontinuities of scattering amplitudes for the processes A +
B — A’ + B’ have the form

K
1Y — 1 —
—4i(2m)2 8(qa — qp) disc, A4 = (A'A] <i> ——|B'B). ()
S0 q193

In this expression sg is an appropriate energy scale, qa = pa’a,q5 = P/, K
is the BFKL kernel (note that it differs from the symmetric kernel K, defined
in the momentum space according to [8]: K = (§3G3) 'K; in the LO it is
just K that has the Mébius form which is conformal invariant and coincides with
the dipole kernel); (A’A| and |B’B) represent the impact factors. One can see
that the discontinuity discs.Aﬁ;f/ in Eq. (2) is invariant under the transforma-
tion

K—UTKU, (AA - (AAU, =
q795
If the kernel is fixed in the LO, transformations with U=1- O, where O ~ o,

are still possible. Within the NLO accuracy they give

K —K-I[K5,0], )

where K2 is the LO value of K. Such transformations can be used to simplify the
form of the kernel, in particular of its Mobius form. Indeed, it was shown [6,7]
that the last form is simplified by the transformation

- k=K 2207, e | ®

where [ is the first coefficient of the beta-function.
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2. MOBIUS FORM OF K

In the NLO the Mébius form can be written [6] as follows:

N as (12N, r?
<I‘1,I‘2‘KM|I‘/1, I‘/2> = ('u 2) /dI‘O 3 122 5(r11/)5(r2/0)+5(r1/0)5(r22/)—
27 riprso

Oé2 2N2
n S(u?)N;

— 5(1‘11/)5(7‘22/) 4’/T3

[5(r11')91(r17r2; ry) + 6(roa)gi(ra, ri;ry)+

1
+5(1”11/)5(1”22/)/dl‘ogo(rlarz;l‘o)+;92(1‘1»1‘251”/171”/2) . (6)

Here r;; = r; —r;, and the whole kernel is symmetric with respect to the
substitution 1 «» 2,1’ « 2/. The coefficients of §(r11)d(r22/) in Eq. (6) are
written in integral form in order to make explicit the cancellation of the ultraviolet
singularities of separate terms. The Mobius kernel (6) is defined with accuracy
up to functions independent of r; or of ro, such that after they are added to the
kernel the functions g; » remain zero at ry = rp [6,7]. Therefore, one can add
to the kernel only functions which are antisymmetric with respect to the r; < rs
substitution. These functions do not change the symmetric part of the kernel, but
this is the only part which plays a role because of the symmetry of the impact
factors.

In the general case of theory with ny fermions and n, scalar particles the
direct transfer of the kernel K to the Mobius form gives for the functions g; in
Eq. (6)

go(r1,r2;10) = 27((3)0 (r0) — 91(r1,T2; 1)), @)

9 2 2
N Bo rigpt
g1(r1,ra;ry) = r§2,r§2, {QNC (hl <4ezw(1)>+

2 2 2 2 2
Il — Iy r3y 67 1 ri, riy day + 2as
Try — Yooy (T220 ) ) gy 425 -2 ] _20f T 28s
T <r§2, )) (@)+g—gn 2, ) \i2, o, |t
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) 2 .2 2 .2
o 1 I/ T59 — 2r{g Ty 1 rig Iy
gQ(rlarQarlvrQ)_ 4 n 2 .2 —1)x

2r d rsr
172/ 11/ T2/

bs 2b, — 3bs) r? 1 r} r?
c(1—py o) g (B 3brn 1 (ra X))
2 4ri,y d 4rir5, \ d Iy

. (rfg, r§1,> ri, In (v}, /ri,y)  In(ripr?, /rird,) y

2 2 2 2 2 2 2
11/ 150 2ry Ty T3y 2riy 13y,

2 2 .2 2 .2
1 r3, In (r3,, 13, /rirdy))
2 /9.2 2 2 21 21 T2 /[ T12T 1y
X | r{o/2r7i9 + = — 155 /TTi9 | + 5 +
2 2r{y/ Ty Ty

In (r%2/r§'2') In (r§2,/r%2) ri, In (r§2r§,2,/r§2,r§1,)+

2 2 2 2 2 2 2
4ryy ray 2ry) riy Ary) T30/

1 2 2/ ’ 2 ’ 2 ’ 1 2 2 ’ 2 ’ 2/ ’
n (1‘121'122 /;12 rso ) n n (1‘121'121 /12'22 Iy ) F(1e2, 1 2/). 9)

2r1y Ty 201y Ty
Here By = 11N./3 — 2a¢/3 — as/6, ay = 26snsTf, a5 = 2ksnsTs, Ty and T
are the colour group generators for fermions and scalars, respectively, and are
defined by the relations

Tr (T{T}) = Ty6"", Tr(T2TY) = T.s*, (10)

kr (ks) is equal to 1/2 for Majorana fermions (neutral scalars) in self-conjugated
representations and to 1 otherwise,

2 2 2 .2 Anjk; 012 Gj arpa

d =r1iyry —T{Toy, b= mTr (N—CQ - 2—Nc> , Gy =T7TY, (11)
j = f,s. The gluon part of the functions g; was calculated in [7]; the quark and
scalar parts can be obtained by a simple colour algebra from the results of [6,9]
and [10], respectively. The quark part completely agrees with the corresponding
part calculated in the colour dipole model [11]. However, the result for the gluon
part obtained in this model [12] strongly differs from the one presented above. In
both results the conformal invariance is violated not only by the terms related to
renormalization (proportional to 3y). The problem of finding transformations of
the kind (4) matching the kernels and bringing them to a quasi-conformal shape
(where the conformal invariance is broken only by terms proportional to 3y) was
formulated in [10]. For the colour dipole kernel the last problem was solved
in [13]. In the BFKL framework both problems were solved in [14].
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3. TRANSFORMATION TO THE QUASI-CONFORMAL SHAPE

It was shown in [14] that after the application to the kernel K of the trans-
formation (4) with O defined as

as N,

3 k qi k q2 2
(a1,92|0|q},q3) = 93 [—5(0111/ + qg22/) (@ - q?) (F + o Ink?+

2, (1 11—a1) 11— q2) 2
+ 6(q22/)d (q117) /d l (1—2 - MW= q)? — (= q2)2> Inl ], (12)

where k = q; — q], one obtains for the Mdbius form of the transformed kernel
what follows:

o (r1,125T0) = go(r1,T2;10) = —gi (r1,T2;10) + 27¢(3)d(x0),  (13)

2 2 2 2 2 2
T / P Bo TigH Tl — Ioy Toor

g7 (r1,r2515) = [ (111 ( ) + In(==)) -
T r3, 2, | 2N, 4e24(1) r?, ri,

2 2
—((2)+g—ln<r212>ln<r212> —M}, (14)

18 I3y rio 9N,
and
T L ’ ]. I‘%l/ 1‘52/ + r%2/ I‘%l/ - 41‘%2 I‘%Q/
ga (r1,T2;17,15) = — X
ry7y 2d

2 P2 b, 1 4 2
o (22 ) 1) (1m0 ) o [ (B2 - 2+
T Loy 2 Aryyryy \ d o Ty

1 1 i 2bs — 3by) 17 Ty 131
(rﬁ+r12)+( : f)rl—ﬂln(—rlf r§—1> (15)

2 2 2 2
driyryy, \ d Ty 2ry,y d 1150

plus terms antisymmetric with respect to the exchange r; < ro, which can be
omitted due to the symmetry of impact factors. Up to the difference in the
renormalization scales (which is discussed in detail in [15]) and with account of
the correction of the result of [12] made in [13], the gluon part of Egs. (13)-(15)
coincides with this result. Thus, the discrepancy between the BFKL and the
colour dipole approaches is completely removed.

Moreover, it was shown in [14] that using the transformation (4), one can
come to the quasi-conformal kernel. Specifically, the quasi-conformal kernel KQC
can be defined by the relation
2 -B A A
1

KO0 = K+ 205 K7 1n (aa2)] - K70+ 04, 16)
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where the operator O is given in Eq. (12) and O, is defined through

2 2
A ag N, r r
i s:Vce 12 12
(r1ra|O1pr|rirs) = e /dro 55 ln< 55 ) X
0 TToT20 T10T20

X

(5(1‘11/)(5(1‘2/0) + 5(1‘1/0)5(1‘22/) — (5(1‘11/)(5(7“22/)] . (17)

For the Mébius form of K€ one has

96 (r1,12510) = 67C (3) 8 (r0) — 97 (r1, 125 T0), (18)

9 2 2 2 2 2
QC / rip Bo rigpt Tl — Ty a2
.o rh) = In In
91 ( 1,123 2) 1‘32/1‘%2/ {2N6< <4e2w(1) + r%Q 1”%2/ +

67 day + 2as
2L () T A
13 €(2) 5

], Bo=——-=L-22 9

2 2 2 .2 2 2
QC ooy 1 iy I3y — 2075 Ty ] 1o oy 1
9o (r17r27r17r2)_ 1 d n 2 .2 - X
Lyrgr Ty oo

bs 2b, — 3bs) r? 1 r} r?
X (L=br+ o)+ (72”1—2+ﬁ Foa))x
2 2r 7y, d 2ri; 55, \ d T

2 .2 2 2 .2

r2,, r2, r ri,rs,,,

xIn | S22 ) + 2 (22 d=rird, il (20)

2 2 2 2 2 2 2 ) 12721 11/T22
11150 ST DI RSTDY 1o Toy

Here the conformal invariance is violated only by terms proportional to [y.
N-extended supersymmetric Yang—Mills theories (N = 1,2,4) contain, besides
the Yang—Mills fields (gluons), ny; = N Majorana spinors (gluinos) and ng =
2(N — 1) scalars (for our purposes there is no difference between scalars and
pseudoscalars). All particles are in the adjoint representation of the colour group.
Therefore, in such theories we have ay = narN¢,as = nsNe, by = nar, bs = ng.
In the case of N = 4 one has y = 0 and the Mdbius form of KQC is conformal
invariant.
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