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THE PROPERTY OF MAXIMAL
TRANSCENDENTALITY IN THE N = 4 SYM

A. V. Kotikov

Joint Institute for Nuclear Research, Dubna

We show results for the universal anomalous dimension γuni(j) of the Wilson twist-2 operators
in the N = 4 Supersymmetric YangÄMills theory in the ˇrst three orders of perturbation theory. These
expressions are obtained by extracting the most complicated contributions from the corresponding
anomalous dimensions in QCD.

PACS: 11.10.-z; 11.15.-q

INTRODUCTION

The anomalous dimensions (ADs) of the Wilson twist-2 operators govern the
Bjorken scaling violation for parton distributions in the framework of Quantum
Chromodynamics (QCD) [1, 2]. Now they are known up to the next-to-next-to-
leading order (NNLO) of the perturbation theory [3].

The QCD expressions for ADs can be transformed to the case of the N -
extended Supersymmetric YangÄMills theories (SYM) [4] if one uses for the
Casimir operators CA, CF , Tf the following values CA = CF = Nc, Tfnf =
NNc/2. For N = 2 and N = 4-extended SYM the ADs of the Wilson operators
get also additional contributions coming from scalar particles [5]. These ADs
were calculated in the next-to-leading order (NLO) [5,6] for the N = 4 SYM.

However, it turns out, that the expressions for eigenvalues of the AD matrix
in the N = 4 SYM can be derived directly from the QCD anomalous dimensions
without tedious calculations by using a number of plausible arguments. The
method elaborated in [5] for this purpose is based on special properties of the
integral kernel for the BalitskyÄFadinÄKuraevÄLipatov (BFKL) equation [7Ä9]
in this model and a new relation between the BFKL and DokshitzerÄGribovÄ
LipatovÄAltarelliÄParisi (DGLAP) equations (see [5]).

1. LEADING ORDER AD MATRIX IN N = 4 SYM

In the N = 4 SYM theory [4] one can introduce the following color and
SU(4) singlet local Wilson twist-2 operators [5, 6]:

Og
μ1,...,μj

= ŜGa
ρμ1

Dμ2Dμ3 · · ·Dμj−1G
a
ρμj

, (1)
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Õg
μ1,...,μj

= ŜGa
ρμ1

Dμ2Dμ3 · · ·Dμj−1G̃
a
ρμj

, (2)

Oλ
μ1,...,μj

= Ŝλ̄a
i γμ1Dμ2 · · · Dμj λ

ai, (3)

Õλ
μ1,...,μj

= Ŝλ̄a
i γ5γμ1Dμ2 · · ·Dμj λ

ai, (4)

Oφ
μ1,...,μj

= Ŝφ̄a
rDμ1Dμ2 · · ·Dμj φ

a
r , (5)

where Dμ are covariant derivatives. The spinors λi and ˇeld tensor Gρμ describe
gluinos and gluons, respectively, and φr are the complex scalar ˇelds. For all
operators in Eqs. (1)Ä(5) the symmetrization of the tensors in the Lorentz indices
μ1, . . . , μj and a subtraction of their traces is assumed. Due to the fact that all
twist-2 operators belong to the same supermultiplet the eigenvalues of AD matrix
can be expressed through one universal AD γuni(j) with shifted argument. At the
leading order (LO), it has the form (8) [11].

2. TRANSCENDENTALITY PRINCIPLE

As it was already pointed out in the Introduction, the universal AD can
be extracted directly from the QCD results without ˇnding the scalar particle
contribution. This possibility is based on the deep relation between the DGLAP
and BFKL dynamics in the N = 4 SYM [5,9].

To begin with, the eigenvalues of the BFKL kernel turn out to be analytic
functions of the conformal spin |n| at least in two ˇrst orders of perturbation
theory [5]. Further, in the framework of the DR-scheme [12] one can obtain
from the BFKL equation (see [9]), that there is no mixing among the special
functions of different transcendentality levels i∗, i.e., all special functions at the
NLO correction contain only sums of the terms ∼ 1/γi (i = 3). More precisely,
if we introduce the transcendentality level i for the eigenvalues ω(γ) of integral
kernels of the BFKL equations in accordance with the complexity of the terms in
the corresponding sums (here Ψ is Riemannian Ψ-function)

Ψ ∼ 1/γ, Ψ′ ∼ ζ(2) ∼ 1/γ2, Ψ′′ ∼ ζ(3) ∼ 1/γ3, (6)

then for the BFKL kernel in LO and in NLO the corresponding levels are i = 1
and i = 3, respectively.

Because in N = 4 SYM there is a relation between the BFKL and DGLAP
equations (see [5, 9]), the similar properties should be valid for the ADs them-

selves, i.e., the basic functions γ
(0)
uni(j), γ

(1)
uni(j) and γ

(2)
uni(j) are assumed to be of

∗Note that similar arguments were used also in [13] to obtain analytic results for contributions
of some complicated massive Feynman diagrams without direct calculations.
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the types ∼ 1/ji with the levels i = 1, i = 3 and i = 5, respectively. An excep-
tion could be for the terms appearing at a given order from previous orders of the
perturbation theory. Such contributions could be generated and/or removed by an
approximate ˇnite renormalization of the coupling constant. But these terms do
not appear in the DR-scheme.

It is known, that at the LO and NLO approximations (with the SUSY relation
for the QCD color factors CF = CA = Nc) the most complicated contributions
(with i = 1 and i = 3, respectively) are the same for all LO and NLO ADs in
QCD [3] and for the LO and NLO scalarÄscalar ADs [6]. This property allows

one to ˇnd the universal ADs γ
(0)
uni(j) and γ

(1)
uni(j) without knowing all elements

of the AD matrix [5], which was veriˇed by the exact calculations in [6].
Using above arguments, we conclude, that at the NNLO level there is only one

possible candidate for γ
(2)
uni(j). Namely, it is the most complicated part of the QCD

AD matrix (with the SUSY relation for the QCD color factors CF = CA = Nc).
Indeed, after the diagonalization of the AD matrix its eigenvalues should have
this most complicated part as a common contribution because they differ from
each other only by a shift of the argument and their differences are constructed
from less complicated terms. The nondiagonal matrix elements of the AD matrix
contain also only less complicated terms (see, for example, AD exact expressions
at LO and NLO approximations in [3] for QCD and [6] for N = 4 SYM),
and therefore they cannot generate the most complicated contributions to the
eigenvalues of AD matrix. Thus, the most complicated part of the NNLO QCD

ADs should coincide (up to color factors) with the universal AD γ
(2)
uni(j).

3. UNIVERSAL AD FOR N = 4 SYM

The ˇnal three-loop result for the universal AD γuni(j) for N = 4 SYM
is [10]

γ(j) ≡ γuni(j) = âγ
(0)
uni(j) + â2γ

(1)
uni(j) + â3γ

(2)
uni(j) + . . . , â =

αNc

4π
, (7)

where∗

1
4
γ

(0)
uni(j + 2) = −S1, (8)

1
8

γ
(1)
uni(j + 2) =

(
S3 + S−3

)
− 2 S−2,1 + 2 S1

(
S2 + S−2

)
, (9)

∗Note that in accordance with [8] our normalization of γ(j) contains the extra factor −1/2
in comparison with the standard normalization (see [5]) and differs by sign in comparison with one
from [3].
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1
32

γ
(2)
uni(j + 2) = 2 S−3 S2 − S5 − 2 S−2 S3 − 3 S−5 + 24 S−2,1,1,1+

+ 6
(

S−4,1 + S−3,2 + S−2,3

)
− 12

(
S−3,1,1 + S−2,1,2 + S−2,2,1

)
−

−
(

S2 + 2 S2
1

)(
3 S−3 + S3 − 2 S−2,1

)
− S1

(
8 S−4 + S

2

−2+

+ 4 S2 S−2 + 2 S2
2 + 3 S4 − 12 S−3,1 − 10 S−2,2 + 16 S−2,1,1

)
(10)

and Sa ≡ Sa(j), Sa,b ≡ Sa,b(j), Sa,b,c ≡ Sa,b,c(j) are harmonic sums

Sa(j) =
j∑

m=1

1
ma

, Sa,b,c,···(j) =
j∑

m=1

1
ma

Sb,c,···(m), (11)

S−a(j) =
j∑

m=1

(−1)m

ma
, S−a,b,c,···(j) =

j∑
m=1

(−1)m

ma
Sb,c,···(m),

(12)

S−a,b,c,···(j) = (−1)j S−a,b,c,...(j) + S−a,b,c,···(∞)
(
1 − (−1)j

)
.

The expression (12) is deˇned for all integer values of arguments but can be
easily analytically continued to real and complex j by the method of [5, 14].

The obtained results are very important for the veriˇcation of the various
assumptions (see [15] and references therein) coming from the investigations of
the properties of a conformal operators in the context of AdS/CFT correspon-
dence [16].

CONCLUSION

In this short review we presented the AD γuni(j) for the N = 4 supersym-
metric gauge theory up to the NNLO approximation. At the ˇrst three orders, the
univesal AD has been extracted from the corresponding QCD calculations. The
four- and ˇve-loop results have been obtained in [17Ä19] from the long-range
asymptotic Bethe equations together with some additional terms, so-called wrap-
ping corrections, coming in agreement with Luscher approach∗. All the results
have been obtained with using of the transcendentality principle.

Author thanks the Organizing Committee of the International Bogolyubov
Conference ®Problems of Theoretical and Mathematical Physics¯ for invitation.

∗The three- and four-loop results for the universal AD have been reproduced also in [20] by
solution of so-called Baxter equation, which can be obtained from the long-range asymptotic Bethe
equations.
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